spi: move more spi_setup() functionality into core
[linux-2.6/mini2440.git] / mm / swapfile.c
blob28faa01cf578bd1bc05fa20771015194fd966e4d
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
38 static DEFINE_SPINLOCK(swap_lock);
39 static unsigned int nr_swapfiles;
40 long nr_swap_pages;
41 long total_swap_pages;
42 static int swap_overflow;
43 static int least_priority;
45 static const char Bad_file[] = "Bad swap file entry ";
46 static const char Unused_file[] = "Unused swap file entry ";
47 static const char Bad_offset[] = "Bad swap offset entry ";
48 static const char Unused_offset[] = "Unused swap offset entry ";
50 static struct swap_list_t swap_list = {-1, -1};
52 static struct swap_info_struct swap_info[MAX_SWAPFILES];
54 static DEFINE_MUTEX(swapon_mutex);
56 /* For reference count accounting in swap_map */
57 /* enum for swap_map[] handling. internal use only */
58 enum {
59 SWAP_MAP = 0, /* ops for reference from swap users */
60 SWAP_CACHE, /* ops for reference from swap cache */
63 static inline int swap_count(unsigned short ent)
65 return ent & SWAP_COUNT_MASK;
68 static inline bool swap_has_cache(unsigned short ent)
70 return !!(ent & SWAP_HAS_CACHE);
73 static inline unsigned short encode_swapmap(int count, bool has_cache)
75 unsigned short ret = count;
77 if (has_cache)
78 return SWAP_HAS_CACHE | ret;
79 return ret;
82 /* returnes 1 if swap entry is freed */
83 static int
84 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
86 int type = si - swap_info;
87 swp_entry_t entry = swp_entry(type, offset);
88 struct page *page;
89 int ret = 0;
91 page = find_get_page(&swapper_space, entry.val);
92 if (!page)
93 return 0;
95 * This function is called from scan_swap_map() and it's called
96 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
97 * We have to use trylock for avoiding deadlock. This is a special
98 * case and you should use try_to_free_swap() with explicit lock_page()
99 * in usual operations.
101 if (trylock_page(page)) {
102 ret = try_to_free_swap(page);
103 unlock_page(page);
105 page_cache_release(page);
106 return ret;
110 * We need this because the bdev->unplug_fn can sleep and we cannot
111 * hold swap_lock while calling the unplug_fn. And swap_lock
112 * cannot be turned into a mutex.
114 static DECLARE_RWSEM(swap_unplug_sem);
116 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
118 swp_entry_t entry;
120 down_read(&swap_unplug_sem);
121 entry.val = page_private(page);
122 if (PageSwapCache(page)) {
123 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
124 struct backing_dev_info *bdi;
127 * If the page is removed from swapcache from under us (with a
128 * racy try_to_unuse/swapoff) we need an additional reference
129 * count to avoid reading garbage from page_private(page) above.
130 * If the WARN_ON triggers during a swapoff it maybe the race
131 * condition and it's harmless. However if it triggers without
132 * swapoff it signals a problem.
134 WARN_ON(page_count(page) <= 1);
136 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
137 blk_run_backing_dev(bdi, page);
139 up_read(&swap_unplug_sem);
143 * swapon tell device that all the old swap contents can be discarded,
144 * to allow the swap device to optimize its wear-levelling.
146 static int discard_swap(struct swap_info_struct *si)
148 struct swap_extent *se;
149 int err = 0;
151 list_for_each_entry(se, &si->extent_list, list) {
152 sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
153 sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
155 if (se->start_page == 0) {
156 /* Do not discard the swap header page! */
157 start_block += 1 << (PAGE_SHIFT - 9);
158 nr_blocks -= 1 << (PAGE_SHIFT - 9);
159 if (!nr_blocks)
160 continue;
163 err = blkdev_issue_discard(si->bdev, start_block,
164 nr_blocks, GFP_KERNEL);
165 if (err)
166 break;
168 cond_resched();
170 return err; /* That will often be -EOPNOTSUPP */
174 * swap allocation tell device that a cluster of swap can now be discarded,
175 * to allow the swap device to optimize its wear-levelling.
177 static void discard_swap_cluster(struct swap_info_struct *si,
178 pgoff_t start_page, pgoff_t nr_pages)
180 struct swap_extent *se = si->curr_swap_extent;
181 int found_extent = 0;
183 while (nr_pages) {
184 struct list_head *lh;
186 if (se->start_page <= start_page &&
187 start_page < se->start_page + se->nr_pages) {
188 pgoff_t offset = start_page - se->start_page;
189 sector_t start_block = se->start_block + offset;
190 sector_t nr_blocks = se->nr_pages - offset;
192 if (nr_blocks > nr_pages)
193 nr_blocks = nr_pages;
194 start_page += nr_blocks;
195 nr_pages -= nr_blocks;
197 if (!found_extent++)
198 si->curr_swap_extent = se;
200 start_block <<= PAGE_SHIFT - 9;
201 nr_blocks <<= PAGE_SHIFT - 9;
202 if (blkdev_issue_discard(si->bdev, start_block,
203 nr_blocks, GFP_NOIO))
204 break;
207 lh = se->list.next;
208 if (lh == &si->extent_list)
209 lh = lh->next;
210 se = list_entry(lh, struct swap_extent, list);
214 static int wait_for_discard(void *word)
216 schedule();
217 return 0;
220 #define SWAPFILE_CLUSTER 256
221 #define LATENCY_LIMIT 256
223 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
224 int cache)
226 unsigned long offset;
227 unsigned long scan_base;
228 unsigned long last_in_cluster = 0;
229 int latency_ration = LATENCY_LIMIT;
230 int found_free_cluster = 0;
233 * We try to cluster swap pages by allocating them sequentially
234 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
235 * way, however, we resort to first-free allocation, starting
236 * a new cluster. This prevents us from scattering swap pages
237 * all over the entire swap partition, so that we reduce
238 * overall disk seek times between swap pages. -- sct
239 * But we do now try to find an empty cluster. -Andrea
240 * And we let swap pages go all over an SSD partition. Hugh
243 si->flags += SWP_SCANNING;
244 scan_base = offset = si->cluster_next;
246 if (unlikely(!si->cluster_nr--)) {
247 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
248 si->cluster_nr = SWAPFILE_CLUSTER - 1;
249 goto checks;
251 if (si->flags & SWP_DISCARDABLE) {
253 * Start range check on racing allocations, in case
254 * they overlap the cluster we eventually decide on
255 * (we scan without swap_lock to allow preemption).
256 * It's hardly conceivable that cluster_nr could be
257 * wrapped during our scan, but don't depend on it.
259 if (si->lowest_alloc)
260 goto checks;
261 si->lowest_alloc = si->max;
262 si->highest_alloc = 0;
264 spin_unlock(&swap_lock);
267 * If seek is expensive, start searching for new cluster from
268 * start of partition, to minimize the span of allocated swap.
269 * But if seek is cheap, search from our current position, so
270 * that swap is allocated from all over the partition: if the
271 * Flash Translation Layer only remaps within limited zones,
272 * we don't want to wear out the first zone too quickly.
274 if (!(si->flags & SWP_SOLIDSTATE))
275 scan_base = offset = si->lowest_bit;
276 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
278 /* Locate the first empty (unaligned) cluster */
279 for (; last_in_cluster <= si->highest_bit; offset++) {
280 if (si->swap_map[offset])
281 last_in_cluster = offset + SWAPFILE_CLUSTER;
282 else if (offset == last_in_cluster) {
283 spin_lock(&swap_lock);
284 offset -= SWAPFILE_CLUSTER - 1;
285 si->cluster_next = offset;
286 si->cluster_nr = SWAPFILE_CLUSTER - 1;
287 found_free_cluster = 1;
288 goto checks;
290 if (unlikely(--latency_ration < 0)) {
291 cond_resched();
292 latency_ration = LATENCY_LIMIT;
296 offset = si->lowest_bit;
297 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
299 /* Locate the first empty (unaligned) cluster */
300 for (; last_in_cluster < scan_base; offset++) {
301 if (si->swap_map[offset])
302 last_in_cluster = offset + SWAPFILE_CLUSTER;
303 else if (offset == last_in_cluster) {
304 spin_lock(&swap_lock);
305 offset -= SWAPFILE_CLUSTER - 1;
306 si->cluster_next = offset;
307 si->cluster_nr = SWAPFILE_CLUSTER - 1;
308 found_free_cluster = 1;
309 goto checks;
311 if (unlikely(--latency_ration < 0)) {
312 cond_resched();
313 latency_ration = LATENCY_LIMIT;
317 offset = scan_base;
318 spin_lock(&swap_lock);
319 si->cluster_nr = SWAPFILE_CLUSTER - 1;
320 si->lowest_alloc = 0;
323 checks:
324 if (!(si->flags & SWP_WRITEOK))
325 goto no_page;
326 if (!si->highest_bit)
327 goto no_page;
328 if (offset > si->highest_bit)
329 scan_base = offset = si->lowest_bit;
331 /* reuse swap entry of cache-only swap if not busy. */
332 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
333 int swap_was_freed;
334 spin_unlock(&swap_lock);
335 swap_was_freed = __try_to_reclaim_swap(si, offset);
336 spin_lock(&swap_lock);
337 /* entry was freed successfully, try to use this again */
338 if (swap_was_freed)
339 goto checks;
340 goto scan; /* check next one */
343 if (si->swap_map[offset])
344 goto scan;
346 if (offset == si->lowest_bit)
347 si->lowest_bit++;
348 if (offset == si->highest_bit)
349 si->highest_bit--;
350 si->inuse_pages++;
351 if (si->inuse_pages == si->pages) {
352 si->lowest_bit = si->max;
353 si->highest_bit = 0;
355 if (cache == SWAP_CACHE) /* at usual swap-out via vmscan.c */
356 si->swap_map[offset] = encode_swapmap(0, true);
357 else /* at suspend */
358 si->swap_map[offset] = encode_swapmap(1, false);
359 si->cluster_next = offset + 1;
360 si->flags -= SWP_SCANNING;
362 if (si->lowest_alloc) {
364 * Only set when SWP_DISCARDABLE, and there's a scan
365 * for a free cluster in progress or just completed.
367 if (found_free_cluster) {
369 * To optimize wear-levelling, discard the
370 * old data of the cluster, taking care not to
371 * discard any of its pages that have already
372 * been allocated by racing tasks (offset has
373 * already stepped over any at the beginning).
375 if (offset < si->highest_alloc &&
376 si->lowest_alloc <= last_in_cluster)
377 last_in_cluster = si->lowest_alloc - 1;
378 si->flags |= SWP_DISCARDING;
379 spin_unlock(&swap_lock);
381 if (offset < last_in_cluster)
382 discard_swap_cluster(si, offset,
383 last_in_cluster - offset + 1);
385 spin_lock(&swap_lock);
386 si->lowest_alloc = 0;
387 si->flags &= ~SWP_DISCARDING;
389 smp_mb(); /* wake_up_bit advises this */
390 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
392 } else if (si->flags & SWP_DISCARDING) {
394 * Delay using pages allocated by racing tasks
395 * until the whole discard has been issued. We
396 * could defer that delay until swap_writepage,
397 * but it's easier to keep this self-contained.
399 spin_unlock(&swap_lock);
400 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
401 wait_for_discard, TASK_UNINTERRUPTIBLE);
402 spin_lock(&swap_lock);
403 } else {
405 * Note pages allocated by racing tasks while
406 * scan for a free cluster is in progress, so
407 * that its final discard can exclude them.
409 if (offset < si->lowest_alloc)
410 si->lowest_alloc = offset;
411 if (offset > si->highest_alloc)
412 si->highest_alloc = offset;
415 return offset;
417 scan:
418 spin_unlock(&swap_lock);
419 while (++offset <= si->highest_bit) {
420 if (!si->swap_map[offset]) {
421 spin_lock(&swap_lock);
422 goto checks;
424 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
425 spin_lock(&swap_lock);
426 goto checks;
428 if (unlikely(--latency_ration < 0)) {
429 cond_resched();
430 latency_ration = LATENCY_LIMIT;
433 offset = si->lowest_bit;
434 while (++offset < scan_base) {
435 if (!si->swap_map[offset]) {
436 spin_lock(&swap_lock);
437 goto checks;
439 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
440 spin_lock(&swap_lock);
441 goto checks;
443 if (unlikely(--latency_ration < 0)) {
444 cond_resched();
445 latency_ration = LATENCY_LIMIT;
448 spin_lock(&swap_lock);
450 no_page:
451 si->flags -= SWP_SCANNING;
452 return 0;
455 swp_entry_t get_swap_page(void)
457 struct swap_info_struct *si;
458 pgoff_t offset;
459 int type, next;
460 int wrapped = 0;
462 spin_lock(&swap_lock);
463 if (nr_swap_pages <= 0)
464 goto noswap;
465 nr_swap_pages--;
467 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
468 si = swap_info + type;
469 next = si->next;
470 if (next < 0 ||
471 (!wrapped && si->prio != swap_info[next].prio)) {
472 next = swap_list.head;
473 wrapped++;
476 if (!si->highest_bit)
477 continue;
478 if (!(si->flags & SWP_WRITEOK))
479 continue;
481 swap_list.next = next;
482 /* This is called for allocating swap entry for cache */
483 offset = scan_swap_map(si, SWAP_CACHE);
484 if (offset) {
485 spin_unlock(&swap_lock);
486 return swp_entry(type, offset);
488 next = swap_list.next;
491 nr_swap_pages++;
492 noswap:
493 spin_unlock(&swap_lock);
494 return (swp_entry_t) {0};
497 /* The only caller of this function is now susupend routine */
498 swp_entry_t get_swap_page_of_type(int type)
500 struct swap_info_struct *si;
501 pgoff_t offset;
503 spin_lock(&swap_lock);
504 si = swap_info + type;
505 if (si->flags & SWP_WRITEOK) {
506 nr_swap_pages--;
507 /* This is called for allocating swap entry, not cache */
508 offset = scan_swap_map(si, SWAP_MAP);
509 if (offset) {
510 spin_unlock(&swap_lock);
511 return swp_entry(type, offset);
513 nr_swap_pages++;
515 spin_unlock(&swap_lock);
516 return (swp_entry_t) {0};
519 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
521 struct swap_info_struct * p;
522 unsigned long offset, type;
524 if (!entry.val)
525 goto out;
526 type = swp_type(entry);
527 if (type >= nr_swapfiles)
528 goto bad_nofile;
529 p = & swap_info[type];
530 if (!(p->flags & SWP_USED))
531 goto bad_device;
532 offset = swp_offset(entry);
533 if (offset >= p->max)
534 goto bad_offset;
535 if (!p->swap_map[offset])
536 goto bad_free;
537 spin_lock(&swap_lock);
538 return p;
540 bad_free:
541 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
542 goto out;
543 bad_offset:
544 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
545 goto out;
546 bad_device:
547 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
548 goto out;
549 bad_nofile:
550 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
551 out:
552 return NULL;
555 static int swap_entry_free(struct swap_info_struct *p,
556 swp_entry_t ent, int cache)
558 unsigned long offset = swp_offset(ent);
559 int count = swap_count(p->swap_map[offset]);
560 bool has_cache;
562 has_cache = swap_has_cache(p->swap_map[offset]);
564 if (cache == SWAP_MAP) { /* dropping usage count of swap */
565 if (count < SWAP_MAP_MAX) {
566 count--;
567 p->swap_map[offset] = encode_swapmap(count, has_cache);
569 } else { /* dropping swap cache flag */
570 VM_BUG_ON(!has_cache);
571 p->swap_map[offset] = encode_swapmap(count, false);
574 /* return code. */
575 count = p->swap_map[offset];
576 /* free if no reference */
577 if (!count) {
578 if (offset < p->lowest_bit)
579 p->lowest_bit = offset;
580 if (offset > p->highest_bit)
581 p->highest_bit = offset;
582 if (p->prio > swap_info[swap_list.next].prio)
583 swap_list.next = p - swap_info;
584 nr_swap_pages++;
585 p->inuse_pages--;
586 mem_cgroup_uncharge_swap(ent);
588 return count;
592 * Caller has made sure that the swapdevice corresponding to entry
593 * is still around or has not been recycled.
595 void swap_free(swp_entry_t entry)
597 struct swap_info_struct * p;
599 p = swap_info_get(entry);
600 if (p) {
601 swap_entry_free(p, entry, SWAP_MAP);
602 spin_unlock(&swap_lock);
607 * Called after dropping swapcache to decrease refcnt to swap entries.
609 void swapcache_free(swp_entry_t entry, struct page *page)
611 struct swap_info_struct *p;
613 if (page)
614 mem_cgroup_uncharge_swapcache(page, entry);
615 p = swap_info_get(entry);
616 if (p) {
617 swap_entry_free(p, entry, SWAP_CACHE);
618 spin_unlock(&swap_lock);
620 return;
624 * How many references to page are currently swapped out?
626 static inline int page_swapcount(struct page *page)
628 int count = 0;
629 struct swap_info_struct *p;
630 swp_entry_t entry;
632 entry.val = page_private(page);
633 p = swap_info_get(entry);
634 if (p) {
635 count = swap_count(p->swap_map[swp_offset(entry)]);
636 spin_unlock(&swap_lock);
638 return count;
642 * We can write to an anon page without COW if there are no other references
643 * to it. And as a side-effect, free up its swap: because the old content
644 * on disk will never be read, and seeking back there to write new content
645 * later would only waste time away from clustering.
647 int reuse_swap_page(struct page *page)
649 int count;
651 VM_BUG_ON(!PageLocked(page));
652 count = page_mapcount(page);
653 if (count <= 1 && PageSwapCache(page)) {
654 count += page_swapcount(page);
655 if (count == 1 && !PageWriteback(page)) {
656 delete_from_swap_cache(page);
657 SetPageDirty(page);
660 return count == 1;
664 * If swap is getting full, or if there are no more mappings of this page,
665 * then try_to_free_swap is called to free its swap space.
667 int try_to_free_swap(struct page *page)
669 VM_BUG_ON(!PageLocked(page));
671 if (!PageSwapCache(page))
672 return 0;
673 if (PageWriteback(page))
674 return 0;
675 if (page_swapcount(page))
676 return 0;
678 delete_from_swap_cache(page);
679 SetPageDirty(page);
680 return 1;
684 * Free the swap entry like above, but also try to
685 * free the page cache entry if it is the last user.
687 int free_swap_and_cache(swp_entry_t entry)
689 struct swap_info_struct *p;
690 struct page *page = NULL;
692 if (is_migration_entry(entry))
693 return 1;
695 p = swap_info_get(entry);
696 if (p) {
697 if (swap_entry_free(p, entry, SWAP_MAP) == SWAP_HAS_CACHE) {
698 page = find_get_page(&swapper_space, entry.val);
699 if (page && !trylock_page(page)) {
700 page_cache_release(page);
701 page = NULL;
704 spin_unlock(&swap_lock);
706 if (page) {
708 * Not mapped elsewhere, or swap space full? Free it!
709 * Also recheck PageSwapCache now page is locked (above).
711 if (PageSwapCache(page) && !PageWriteback(page) &&
712 (!page_mapped(page) || vm_swap_full())) {
713 delete_from_swap_cache(page);
714 SetPageDirty(page);
716 unlock_page(page);
717 page_cache_release(page);
719 return p != NULL;
722 #ifdef CONFIG_HIBERNATION
724 * Find the swap type that corresponds to given device (if any).
726 * @offset - number of the PAGE_SIZE-sized block of the device, starting
727 * from 0, in which the swap header is expected to be located.
729 * This is needed for the suspend to disk (aka swsusp).
731 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
733 struct block_device *bdev = NULL;
734 int i;
736 if (device)
737 bdev = bdget(device);
739 spin_lock(&swap_lock);
740 for (i = 0; i < nr_swapfiles; i++) {
741 struct swap_info_struct *sis = swap_info + i;
743 if (!(sis->flags & SWP_WRITEOK))
744 continue;
746 if (!bdev) {
747 if (bdev_p)
748 *bdev_p = bdget(sis->bdev->bd_dev);
750 spin_unlock(&swap_lock);
751 return i;
753 if (bdev == sis->bdev) {
754 struct swap_extent *se;
756 se = list_entry(sis->extent_list.next,
757 struct swap_extent, list);
758 if (se->start_block == offset) {
759 if (bdev_p)
760 *bdev_p = bdget(sis->bdev->bd_dev);
762 spin_unlock(&swap_lock);
763 bdput(bdev);
764 return i;
768 spin_unlock(&swap_lock);
769 if (bdev)
770 bdput(bdev);
772 return -ENODEV;
776 * Return either the total number of swap pages of given type, or the number
777 * of free pages of that type (depending on @free)
779 * This is needed for software suspend
781 unsigned int count_swap_pages(int type, int free)
783 unsigned int n = 0;
785 if (type < nr_swapfiles) {
786 spin_lock(&swap_lock);
787 if (swap_info[type].flags & SWP_WRITEOK) {
788 n = swap_info[type].pages;
789 if (free)
790 n -= swap_info[type].inuse_pages;
792 spin_unlock(&swap_lock);
794 return n;
796 #endif
799 * No need to decide whether this PTE shares the swap entry with others,
800 * just let do_wp_page work it out if a write is requested later - to
801 * force COW, vm_page_prot omits write permission from any private vma.
803 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
804 unsigned long addr, swp_entry_t entry, struct page *page)
806 struct mem_cgroup *ptr = NULL;
807 spinlock_t *ptl;
808 pte_t *pte;
809 int ret = 1;
811 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
812 ret = -ENOMEM;
813 goto out_nolock;
816 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
817 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
818 if (ret > 0)
819 mem_cgroup_cancel_charge_swapin(ptr);
820 ret = 0;
821 goto out;
824 inc_mm_counter(vma->vm_mm, anon_rss);
825 get_page(page);
826 set_pte_at(vma->vm_mm, addr, pte,
827 pte_mkold(mk_pte(page, vma->vm_page_prot)));
828 page_add_anon_rmap(page, vma, addr);
829 mem_cgroup_commit_charge_swapin(page, ptr);
830 swap_free(entry);
832 * Move the page to the active list so it is not
833 * immediately swapped out again after swapon.
835 activate_page(page);
836 out:
837 pte_unmap_unlock(pte, ptl);
838 out_nolock:
839 return ret;
842 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
843 unsigned long addr, unsigned long end,
844 swp_entry_t entry, struct page *page)
846 pte_t swp_pte = swp_entry_to_pte(entry);
847 pte_t *pte;
848 int ret = 0;
851 * We don't actually need pte lock while scanning for swp_pte: since
852 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
853 * page table while we're scanning; though it could get zapped, and on
854 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
855 * of unmatched parts which look like swp_pte, so unuse_pte must
856 * recheck under pte lock. Scanning without pte lock lets it be
857 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
859 pte = pte_offset_map(pmd, addr);
860 do {
862 * swapoff spends a _lot_ of time in this loop!
863 * Test inline before going to call unuse_pte.
865 if (unlikely(pte_same(*pte, swp_pte))) {
866 pte_unmap(pte);
867 ret = unuse_pte(vma, pmd, addr, entry, page);
868 if (ret)
869 goto out;
870 pte = pte_offset_map(pmd, addr);
872 } while (pte++, addr += PAGE_SIZE, addr != end);
873 pte_unmap(pte - 1);
874 out:
875 return ret;
878 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
879 unsigned long addr, unsigned long end,
880 swp_entry_t entry, struct page *page)
882 pmd_t *pmd;
883 unsigned long next;
884 int ret;
886 pmd = pmd_offset(pud, addr);
887 do {
888 next = pmd_addr_end(addr, end);
889 if (pmd_none_or_clear_bad(pmd))
890 continue;
891 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
892 if (ret)
893 return ret;
894 } while (pmd++, addr = next, addr != end);
895 return 0;
898 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
899 unsigned long addr, unsigned long end,
900 swp_entry_t entry, struct page *page)
902 pud_t *pud;
903 unsigned long next;
904 int ret;
906 pud = pud_offset(pgd, addr);
907 do {
908 next = pud_addr_end(addr, end);
909 if (pud_none_or_clear_bad(pud))
910 continue;
911 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
912 if (ret)
913 return ret;
914 } while (pud++, addr = next, addr != end);
915 return 0;
918 static int unuse_vma(struct vm_area_struct *vma,
919 swp_entry_t entry, struct page *page)
921 pgd_t *pgd;
922 unsigned long addr, end, next;
923 int ret;
925 if (page->mapping) {
926 addr = page_address_in_vma(page, vma);
927 if (addr == -EFAULT)
928 return 0;
929 else
930 end = addr + PAGE_SIZE;
931 } else {
932 addr = vma->vm_start;
933 end = vma->vm_end;
936 pgd = pgd_offset(vma->vm_mm, addr);
937 do {
938 next = pgd_addr_end(addr, end);
939 if (pgd_none_or_clear_bad(pgd))
940 continue;
941 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
942 if (ret)
943 return ret;
944 } while (pgd++, addr = next, addr != end);
945 return 0;
948 static int unuse_mm(struct mm_struct *mm,
949 swp_entry_t entry, struct page *page)
951 struct vm_area_struct *vma;
952 int ret = 0;
954 if (!down_read_trylock(&mm->mmap_sem)) {
956 * Activate page so shrink_inactive_list is unlikely to unmap
957 * its ptes while lock is dropped, so swapoff can make progress.
959 activate_page(page);
960 unlock_page(page);
961 down_read(&mm->mmap_sem);
962 lock_page(page);
964 for (vma = mm->mmap; vma; vma = vma->vm_next) {
965 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
966 break;
968 up_read(&mm->mmap_sem);
969 return (ret < 0)? ret: 0;
973 * Scan swap_map from current position to next entry still in use.
974 * Recycle to start on reaching the end, returning 0 when empty.
976 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
977 unsigned int prev)
979 unsigned int max = si->max;
980 unsigned int i = prev;
981 int count;
984 * No need for swap_lock here: we're just looking
985 * for whether an entry is in use, not modifying it; false
986 * hits are okay, and sys_swapoff() has already prevented new
987 * allocations from this area (while holding swap_lock).
989 for (;;) {
990 if (++i >= max) {
991 if (!prev) {
992 i = 0;
993 break;
996 * No entries in use at top of swap_map,
997 * loop back to start and recheck there.
999 max = prev + 1;
1000 prev = 0;
1001 i = 1;
1003 count = si->swap_map[i];
1004 if (count && swap_count(count) != SWAP_MAP_BAD)
1005 break;
1007 return i;
1011 * We completely avoid races by reading each swap page in advance,
1012 * and then search for the process using it. All the necessary
1013 * page table adjustments can then be made atomically.
1015 static int try_to_unuse(unsigned int type)
1017 struct swap_info_struct * si = &swap_info[type];
1018 struct mm_struct *start_mm;
1019 unsigned short *swap_map;
1020 unsigned short swcount;
1021 struct page *page;
1022 swp_entry_t entry;
1023 unsigned int i = 0;
1024 int retval = 0;
1025 int reset_overflow = 0;
1026 int shmem;
1029 * When searching mms for an entry, a good strategy is to
1030 * start at the first mm we freed the previous entry from
1031 * (though actually we don't notice whether we or coincidence
1032 * freed the entry). Initialize this start_mm with a hold.
1034 * A simpler strategy would be to start at the last mm we
1035 * freed the previous entry from; but that would take less
1036 * advantage of mmlist ordering, which clusters forked mms
1037 * together, child after parent. If we race with dup_mmap(), we
1038 * prefer to resolve parent before child, lest we miss entries
1039 * duplicated after we scanned child: using last mm would invert
1040 * that. Though it's only a serious concern when an overflowed
1041 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1043 start_mm = &init_mm;
1044 atomic_inc(&init_mm.mm_users);
1047 * Keep on scanning until all entries have gone. Usually,
1048 * one pass through swap_map is enough, but not necessarily:
1049 * there are races when an instance of an entry might be missed.
1051 while ((i = find_next_to_unuse(si, i)) != 0) {
1052 if (signal_pending(current)) {
1053 retval = -EINTR;
1054 break;
1058 * Get a page for the entry, using the existing swap
1059 * cache page if there is one. Otherwise, get a clean
1060 * page and read the swap into it.
1062 swap_map = &si->swap_map[i];
1063 entry = swp_entry(type, i);
1064 page = read_swap_cache_async(entry,
1065 GFP_HIGHUSER_MOVABLE, NULL, 0);
1066 if (!page) {
1068 * Either swap_duplicate() failed because entry
1069 * has been freed independently, and will not be
1070 * reused since sys_swapoff() already disabled
1071 * allocation from here, or alloc_page() failed.
1073 if (!*swap_map)
1074 continue;
1075 retval = -ENOMEM;
1076 break;
1080 * Don't hold on to start_mm if it looks like exiting.
1082 if (atomic_read(&start_mm->mm_users) == 1) {
1083 mmput(start_mm);
1084 start_mm = &init_mm;
1085 atomic_inc(&init_mm.mm_users);
1089 * Wait for and lock page. When do_swap_page races with
1090 * try_to_unuse, do_swap_page can handle the fault much
1091 * faster than try_to_unuse can locate the entry. This
1092 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1093 * defer to do_swap_page in such a case - in some tests,
1094 * do_swap_page and try_to_unuse repeatedly compete.
1096 wait_on_page_locked(page);
1097 wait_on_page_writeback(page);
1098 lock_page(page);
1099 wait_on_page_writeback(page);
1102 * Remove all references to entry.
1103 * Whenever we reach init_mm, there's no address space
1104 * to search, but use it as a reminder to search shmem.
1106 shmem = 0;
1107 swcount = *swap_map;
1108 if (swap_count(swcount)) {
1109 if (start_mm == &init_mm)
1110 shmem = shmem_unuse(entry, page);
1111 else
1112 retval = unuse_mm(start_mm, entry, page);
1114 if (swap_count(*swap_map)) {
1115 int set_start_mm = (*swap_map >= swcount);
1116 struct list_head *p = &start_mm->mmlist;
1117 struct mm_struct *new_start_mm = start_mm;
1118 struct mm_struct *prev_mm = start_mm;
1119 struct mm_struct *mm;
1121 atomic_inc(&new_start_mm->mm_users);
1122 atomic_inc(&prev_mm->mm_users);
1123 spin_lock(&mmlist_lock);
1124 while (swap_count(*swap_map) && !retval && !shmem &&
1125 (p = p->next) != &start_mm->mmlist) {
1126 mm = list_entry(p, struct mm_struct, mmlist);
1127 if (!atomic_inc_not_zero(&mm->mm_users))
1128 continue;
1129 spin_unlock(&mmlist_lock);
1130 mmput(prev_mm);
1131 prev_mm = mm;
1133 cond_resched();
1135 swcount = *swap_map;
1136 if (!swap_count(swcount)) /* any usage ? */
1138 else if (mm == &init_mm) {
1139 set_start_mm = 1;
1140 shmem = shmem_unuse(entry, page);
1141 } else
1142 retval = unuse_mm(mm, entry, page);
1144 if (set_start_mm &&
1145 swap_count(*swap_map) < swcount) {
1146 mmput(new_start_mm);
1147 atomic_inc(&mm->mm_users);
1148 new_start_mm = mm;
1149 set_start_mm = 0;
1151 spin_lock(&mmlist_lock);
1153 spin_unlock(&mmlist_lock);
1154 mmput(prev_mm);
1155 mmput(start_mm);
1156 start_mm = new_start_mm;
1158 if (shmem) {
1159 /* page has already been unlocked and released */
1160 if (shmem > 0)
1161 continue;
1162 retval = shmem;
1163 break;
1165 if (retval) {
1166 unlock_page(page);
1167 page_cache_release(page);
1168 break;
1172 * How could swap count reach 0x7ffe ?
1173 * There's no way to repeat a swap page within an mm
1174 * (except in shmem, where it's the shared object which takes
1175 * the reference count)?
1176 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1177 * short is too small....)
1178 * If that's wrong, then we should worry more about
1179 * exit_mmap() and do_munmap() cases described above:
1180 * we might be resetting SWAP_MAP_MAX too early here.
1181 * We know "Undead"s can happen, they're okay, so don't
1182 * report them; but do report if we reset SWAP_MAP_MAX.
1184 /* We might release the lock_page() in unuse_mm(). */
1185 if (!PageSwapCache(page) || page_private(page) != entry.val)
1186 goto retry;
1188 if (swap_count(*swap_map) == SWAP_MAP_MAX) {
1189 spin_lock(&swap_lock);
1190 *swap_map = encode_swapmap(0, true);
1191 spin_unlock(&swap_lock);
1192 reset_overflow = 1;
1196 * If a reference remains (rare), we would like to leave
1197 * the page in the swap cache; but try_to_unmap could
1198 * then re-duplicate the entry once we drop page lock,
1199 * so we might loop indefinitely; also, that page could
1200 * not be swapped out to other storage meanwhile. So:
1201 * delete from cache even if there's another reference,
1202 * after ensuring that the data has been saved to disk -
1203 * since if the reference remains (rarer), it will be
1204 * read from disk into another page. Splitting into two
1205 * pages would be incorrect if swap supported "shared
1206 * private" pages, but they are handled by tmpfs files.
1208 if (swap_count(*swap_map) &&
1209 PageDirty(page) && PageSwapCache(page)) {
1210 struct writeback_control wbc = {
1211 .sync_mode = WB_SYNC_NONE,
1214 swap_writepage(page, &wbc);
1215 lock_page(page);
1216 wait_on_page_writeback(page);
1220 * It is conceivable that a racing task removed this page from
1221 * swap cache just before we acquired the page lock at the top,
1222 * or while we dropped it in unuse_mm(). The page might even
1223 * be back in swap cache on another swap area: that we must not
1224 * delete, since it may not have been written out to swap yet.
1226 if (PageSwapCache(page) &&
1227 likely(page_private(page) == entry.val))
1228 delete_from_swap_cache(page);
1231 * So we could skip searching mms once swap count went
1232 * to 1, we did not mark any present ptes as dirty: must
1233 * mark page dirty so shrink_page_list will preserve it.
1235 SetPageDirty(page);
1236 retry:
1237 unlock_page(page);
1238 page_cache_release(page);
1241 * Make sure that we aren't completely killing
1242 * interactive performance.
1244 cond_resched();
1247 mmput(start_mm);
1248 if (reset_overflow) {
1249 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1250 swap_overflow = 0;
1252 return retval;
1256 * After a successful try_to_unuse, if no swap is now in use, we know
1257 * we can empty the mmlist. swap_lock must be held on entry and exit.
1258 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1259 * added to the mmlist just after page_duplicate - before would be racy.
1261 static void drain_mmlist(void)
1263 struct list_head *p, *next;
1264 unsigned int i;
1266 for (i = 0; i < nr_swapfiles; i++)
1267 if (swap_info[i].inuse_pages)
1268 return;
1269 spin_lock(&mmlist_lock);
1270 list_for_each_safe(p, next, &init_mm.mmlist)
1271 list_del_init(p);
1272 spin_unlock(&mmlist_lock);
1276 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1277 * corresponds to page offset `offset'.
1279 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1281 struct swap_extent *se = sis->curr_swap_extent;
1282 struct swap_extent *start_se = se;
1284 for ( ; ; ) {
1285 struct list_head *lh;
1287 if (se->start_page <= offset &&
1288 offset < (se->start_page + se->nr_pages)) {
1289 return se->start_block + (offset - se->start_page);
1291 lh = se->list.next;
1292 if (lh == &sis->extent_list)
1293 lh = lh->next;
1294 se = list_entry(lh, struct swap_extent, list);
1295 sis->curr_swap_extent = se;
1296 BUG_ON(se == start_se); /* It *must* be present */
1300 #ifdef CONFIG_HIBERNATION
1302 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1303 * corresponding to given index in swap_info (swap type).
1305 sector_t swapdev_block(int swap_type, pgoff_t offset)
1307 struct swap_info_struct *sis;
1309 if (swap_type >= nr_swapfiles)
1310 return 0;
1312 sis = swap_info + swap_type;
1313 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1315 #endif /* CONFIG_HIBERNATION */
1318 * Free all of a swapdev's extent information
1320 static void destroy_swap_extents(struct swap_info_struct *sis)
1322 while (!list_empty(&sis->extent_list)) {
1323 struct swap_extent *se;
1325 se = list_entry(sis->extent_list.next,
1326 struct swap_extent, list);
1327 list_del(&se->list);
1328 kfree(se);
1333 * Add a block range (and the corresponding page range) into this swapdev's
1334 * extent list. The extent list is kept sorted in page order.
1336 * This function rather assumes that it is called in ascending page order.
1338 static int
1339 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1340 unsigned long nr_pages, sector_t start_block)
1342 struct swap_extent *se;
1343 struct swap_extent *new_se;
1344 struct list_head *lh;
1346 lh = sis->extent_list.prev; /* The highest page extent */
1347 if (lh != &sis->extent_list) {
1348 se = list_entry(lh, struct swap_extent, list);
1349 BUG_ON(se->start_page + se->nr_pages != start_page);
1350 if (se->start_block + se->nr_pages == start_block) {
1351 /* Merge it */
1352 se->nr_pages += nr_pages;
1353 return 0;
1358 * No merge. Insert a new extent, preserving ordering.
1360 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1361 if (new_se == NULL)
1362 return -ENOMEM;
1363 new_se->start_page = start_page;
1364 new_se->nr_pages = nr_pages;
1365 new_se->start_block = start_block;
1367 list_add_tail(&new_se->list, &sis->extent_list);
1368 return 1;
1372 * A `swap extent' is a simple thing which maps a contiguous range of pages
1373 * onto a contiguous range of disk blocks. An ordered list of swap extents
1374 * is built at swapon time and is then used at swap_writepage/swap_readpage
1375 * time for locating where on disk a page belongs.
1377 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1378 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1379 * swap files identically.
1381 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1382 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1383 * swapfiles are handled *identically* after swapon time.
1385 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1386 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1387 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1388 * requirements, they are simply tossed out - we will never use those blocks
1389 * for swapping.
1391 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1392 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1393 * which will scribble on the fs.
1395 * The amount of disk space which a single swap extent represents varies.
1396 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1397 * extents in the list. To avoid much list walking, we cache the previous
1398 * search location in `curr_swap_extent', and start new searches from there.
1399 * This is extremely effective. The average number of iterations in
1400 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1402 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1404 struct inode *inode;
1405 unsigned blocks_per_page;
1406 unsigned long page_no;
1407 unsigned blkbits;
1408 sector_t probe_block;
1409 sector_t last_block;
1410 sector_t lowest_block = -1;
1411 sector_t highest_block = 0;
1412 int nr_extents = 0;
1413 int ret;
1415 inode = sis->swap_file->f_mapping->host;
1416 if (S_ISBLK(inode->i_mode)) {
1417 ret = add_swap_extent(sis, 0, sis->max, 0);
1418 *span = sis->pages;
1419 goto done;
1422 blkbits = inode->i_blkbits;
1423 blocks_per_page = PAGE_SIZE >> blkbits;
1426 * Map all the blocks into the extent list. This code doesn't try
1427 * to be very smart.
1429 probe_block = 0;
1430 page_no = 0;
1431 last_block = i_size_read(inode) >> blkbits;
1432 while ((probe_block + blocks_per_page) <= last_block &&
1433 page_no < sis->max) {
1434 unsigned block_in_page;
1435 sector_t first_block;
1437 first_block = bmap(inode, probe_block);
1438 if (first_block == 0)
1439 goto bad_bmap;
1442 * It must be PAGE_SIZE aligned on-disk
1444 if (first_block & (blocks_per_page - 1)) {
1445 probe_block++;
1446 goto reprobe;
1449 for (block_in_page = 1; block_in_page < blocks_per_page;
1450 block_in_page++) {
1451 sector_t block;
1453 block = bmap(inode, probe_block + block_in_page);
1454 if (block == 0)
1455 goto bad_bmap;
1456 if (block != first_block + block_in_page) {
1457 /* Discontiguity */
1458 probe_block++;
1459 goto reprobe;
1463 first_block >>= (PAGE_SHIFT - blkbits);
1464 if (page_no) { /* exclude the header page */
1465 if (first_block < lowest_block)
1466 lowest_block = first_block;
1467 if (first_block > highest_block)
1468 highest_block = first_block;
1472 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1474 ret = add_swap_extent(sis, page_no, 1, first_block);
1475 if (ret < 0)
1476 goto out;
1477 nr_extents += ret;
1478 page_no++;
1479 probe_block += blocks_per_page;
1480 reprobe:
1481 continue;
1483 ret = nr_extents;
1484 *span = 1 + highest_block - lowest_block;
1485 if (page_no == 0)
1486 page_no = 1; /* force Empty message */
1487 sis->max = page_no;
1488 sis->pages = page_no - 1;
1489 sis->highest_bit = page_no - 1;
1490 done:
1491 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1492 struct swap_extent, list);
1493 goto out;
1494 bad_bmap:
1495 printk(KERN_ERR "swapon: swapfile has holes\n");
1496 ret = -EINVAL;
1497 out:
1498 return ret;
1501 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1503 struct swap_info_struct * p = NULL;
1504 unsigned short *swap_map;
1505 struct file *swap_file, *victim;
1506 struct address_space *mapping;
1507 struct inode *inode;
1508 char * pathname;
1509 int i, type, prev;
1510 int err;
1512 if (!capable(CAP_SYS_ADMIN))
1513 return -EPERM;
1515 pathname = getname(specialfile);
1516 err = PTR_ERR(pathname);
1517 if (IS_ERR(pathname))
1518 goto out;
1520 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1521 putname(pathname);
1522 err = PTR_ERR(victim);
1523 if (IS_ERR(victim))
1524 goto out;
1526 mapping = victim->f_mapping;
1527 prev = -1;
1528 spin_lock(&swap_lock);
1529 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1530 p = swap_info + type;
1531 if (p->flags & SWP_WRITEOK) {
1532 if (p->swap_file->f_mapping == mapping)
1533 break;
1535 prev = type;
1537 if (type < 0) {
1538 err = -EINVAL;
1539 spin_unlock(&swap_lock);
1540 goto out_dput;
1542 if (!security_vm_enough_memory(p->pages))
1543 vm_unacct_memory(p->pages);
1544 else {
1545 err = -ENOMEM;
1546 spin_unlock(&swap_lock);
1547 goto out_dput;
1549 if (prev < 0) {
1550 swap_list.head = p->next;
1551 } else {
1552 swap_info[prev].next = p->next;
1554 if (type == swap_list.next) {
1555 /* just pick something that's safe... */
1556 swap_list.next = swap_list.head;
1558 if (p->prio < 0) {
1559 for (i = p->next; i >= 0; i = swap_info[i].next)
1560 swap_info[i].prio = p->prio--;
1561 least_priority++;
1563 nr_swap_pages -= p->pages;
1564 total_swap_pages -= p->pages;
1565 p->flags &= ~SWP_WRITEOK;
1566 spin_unlock(&swap_lock);
1568 current->flags |= PF_SWAPOFF;
1569 err = try_to_unuse(type);
1570 current->flags &= ~PF_SWAPOFF;
1572 if (err) {
1573 /* re-insert swap space back into swap_list */
1574 spin_lock(&swap_lock);
1575 if (p->prio < 0)
1576 p->prio = --least_priority;
1577 prev = -1;
1578 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1579 if (p->prio >= swap_info[i].prio)
1580 break;
1581 prev = i;
1583 p->next = i;
1584 if (prev < 0)
1585 swap_list.head = swap_list.next = p - swap_info;
1586 else
1587 swap_info[prev].next = p - swap_info;
1588 nr_swap_pages += p->pages;
1589 total_swap_pages += p->pages;
1590 p->flags |= SWP_WRITEOK;
1591 spin_unlock(&swap_lock);
1592 goto out_dput;
1595 /* wait for any unplug function to finish */
1596 down_write(&swap_unplug_sem);
1597 up_write(&swap_unplug_sem);
1599 destroy_swap_extents(p);
1600 mutex_lock(&swapon_mutex);
1601 spin_lock(&swap_lock);
1602 drain_mmlist();
1604 /* wait for anyone still in scan_swap_map */
1605 p->highest_bit = 0; /* cuts scans short */
1606 while (p->flags >= SWP_SCANNING) {
1607 spin_unlock(&swap_lock);
1608 schedule_timeout_uninterruptible(1);
1609 spin_lock(&swap_lock);
1612 swap_file = p->swap_file;
1613 p->swap_file = NULL;
1614 p->max = 0;
1615 swap_map = p->swap_map;
1616 p->swap_map = NULL;
1617 p->flags = 0;
1618 spin_unlock(&swap_lock);
1619 mutex_unlock(&swapon_mutex);
1620 vfree(swap_map);
1621 /* Destroy swap account informatin */
1622 swap_cgroup_swapoff(type);
1624 inode = mapping->host;
1625 if (S_ISBLK(inode->i_mode)) {
1626 struct block_device *bdev = I_BDEV(inode);
1627 set_blocksize(bdev, p->old_block_size);
1628 bd_release(bdev);
1629 } else {
1630 mutex_lock(&inode->i_mutex);
1631 inode->i_flags &= ~S_SWAPFILE;
1632 mutex_unlock(&inode->i_mutex);
1634 filp_close(swap_file, NULL);
1635 err = 0;
1637 out_dput:
1638 filp_close(victim, NULL);
1639 out:
1640 return err;
1643 #ifdef CONFIG_PROC_FS
1644 /* iterator */
1645 static void *swap_start(struct seq_file *swap, loff_t *pos)
1647 struct swap_info_struct *ptr = swap_info;
1648 int i;
1649 loff_t l = *pos;
1651 mutex_lock(&swapon_mutex);
1653 if (!l)
1654 return SEQ_START_TOKEN;
1656 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1657 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1658 continue;
1659 if (!--l)
1660 return ptr;
1663 return NULL;
1666 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1668 struct swap_info_struct *ptr;
1669 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1671 if (v == SEQ_START_TOKEN)
1672 ptr = swap_info;
1673 else {
1674 ptr = v;
1675 ptr++;
1678 for (; ptr < endptr; ptr++) {
1679 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1680 continue;
1681 ++*pos;
1682 return ptr;
1685 return NULL;
1688 static void swap_stop(struct seq_file *swap, void *v)
1690 mutex_unlock(&swapon_mutex);
1693 static int swap_show(struct seq_file *swap, void *v)
1695 struct swap_info_struct *ptr = v;
1696 struct file *file;
1697 int len;
1699 if (ptr == SEQ_START_TOKEN) {
1700 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1701 return 0;
1704 file = ptr->swap_file;
1705 len = seq_path(swap, &file->f_path, " \t\n\\");
1706 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1707 len < 40 ? 40 - len : 1, " ",
1708 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1709 "partition" : "file\t",
1710 ptr->pages << (PAGE_SHIFT - 10),
1711 ptr->inuse_pages << (PAGE_SHIFT - 10),
1712 ptr->prio);
1713 return 0;
1716 static const struct seq_operations swaps_op = {
1717 .start = swap_start,
1718 .next = swap_next,
1719 .stop = swap_stop,
1720 .show = swap_show
1723 static int swaps_open(struct inode *inode, struct file *file)
1725 return seq_open(file, &swaps_op);
1728 static const struct file_operations proc_swaps_operations = {
1729 .open = swaps_open,
1730 .read = seq_read,
1731 .llseek = seq_lseek,
1732 .release = seq_release,
1735 static int __init procswaps_init(void)
1737 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1738 return 0;
1740 __initcall(procswaps_init);
1741 #endif /* CONFIG_PROC_FS */
1743 #ifdef MAX_SWAPFILES_CHECK
1744 static int __init max_swapfiles_check(void)
1746 MAX_SWAPFILES_CHECK();
1747 return 0;
1749 late_initcall(max_swapfiles_check);
1750 #endif
1753 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1755 * The swapon system call
1757 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1759 struct swap_info_struct * p;
1760 char *name = NULL;
1761 struct block_device *bdev = NULL;
1762 struct file *swap_file = NULL;
1763 struct address_space *mapping;
1764 unsigned int type;
1765 int i, prev;
1766 int error;
1767 union swap_header *swap_header = NULL;
1768 unsigned int nr_good_pages = 0;
1769 int nr_extents = 0;
1770 sector_t span;
1771 unsigned long maxpages = 1;
1772 unsigned long swapfilepages;
1773 unsigned short *swap_map = NULL;
1774 struct page *page = NULL;
1775 struct inode *inode = NULL;
1776 int did_down = 0;
1778 if (!capable(CAP_SYS_ADMIN))
1779 return -EPERM;
1780 spin_lock(&swap_lock);
1781 p = swap_info;
1782 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1783 if (!(p->flags & SWP_USED))
1784 break;
1785 error = -EPERM;
1786 if (type >= MAX_SWAPFILES) {
1787 spin_unlock(&swap_lock);
1788 goto out;
1790 if (type >= nr_swapfiles)
1791 nr_swapfiles = type+1;
1792 memset(p, 0, sizeof(*p));
1793 INIT_LIST_HEAD(&p->extent_list);
1794 p->flags = SWP_USED;
1795 p->next = -1;
1796 spin_unlock(&swap_lock);
1797 name = getname(specialfile);
1798 error = PTR_ERR(name);
1799 if (IS_ERR(name)) {
1800 name = NULL;
1801 goto bad_swap_2;
1803 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1804 error = PTR_ERR(swap_file);
1805 if (IS_ERR(swap_file)) {
1806 swap_file = NULL;
1807 goto bad_swap_2;
1810 p->swap_file = swap_file;
1811 mapping = swap_file->f_mapping;
1812 inode = mapping->host;
1814 error = -EBUSY;
1815 for (i = 0; i < nr_swapfiles; i++) {
1816 struct swap_info_struct *q = &swap_info[i];
1818 if (i == type || !q->swap_file)
1819 continue;
1820 if (mapping == q->swap_file->f_mapping)
1821 goto bad_swap;
1824 error = -EINVAL;
1825 if (S_ISBLK(inode->i_mode)) {
1826 bdev = I_BDEV(inode);
1827 error = bd_claim(bdev, sys_swapon);
1828 if (error < 0) {
1829 bdev = NULL;
1830 error = -EINVAL;
1831 goto bad_swap;
1833 p->old_block_size = block_size(bdev);
1834 error = set_blocksize(bdev, PAGE_SIZE);
1835 if (error < 0)
1836 goto bad_swap;
1837 p->bdev = bdev;
1838 } else if (S_ISREG(inode->i_mode)) {
1839 p->bdev = inode->i_sb->s_bdev;
1840 mutex_lock(&inode->i_mutex);
1841 did_down = 1;
1842 if (IS_SWAPFILE(inode)) {
1843 error = -EBUSY;
1844 goto bad_swap;
1846 } else {
1847 goto bad_swap;
1850 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1853 * Read the swap header.
1855 if (!mapping->a_ops->readpage) {
1856 error = -EINVAL;
1857 goto bad_swap;
1859 page = read_mapping_page(mapping, 0, swap_file);
1860 if (IS_ERR(page)) {
1861 error = PTR_ERR(page);
1862 goto bad_swap;
1864 swap_header = kmap(page);
1866 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1867 printk(KERN_ERR "Unable to find swap-space signature\n");
1868 error = -EINVAL;
1869 goto bad_swap;
1872 /* swap partition endianess hack... */
1873 if (swab32(swap_header->info.version) == 1) {
1874 swab32s(&swap_header->info.version);
1875 swab32s(&swap_header->info.last_page);
1876 swab32s(&swap_header->info.nr_badpages);
1877 for (i = 0; i < swap_header->info.nr_badpages; i++)
1878 swab32s(&swap_header->info.badpages[i]);
1880 /* Check the swap header's sub-version */
1881 if (swap_header->info.version != 1) {
1882 printk(KERN_WARNING
1883 "Unable to handle swap header version %d\n",
1884 swap_header->info.version);
1885 error = -EINVAL;
1886 goto bad_swap;
1889 p->lowest_bit = 1;
1890 p->cluster_next = 1;
1893 * Find out how many pages are allowed for a single swap
1894 * device. There are two limiting factors: 1) the number of
1895 * bits for the swap offset in the swp_entry_t type and
1896 * 2) the number of bits in the a swap pte as defined by
1897 * the different architectures. In order to find the
1898 * largest possible bit mask a swap entry with swap type 0
1899 * and swap offset ~0UL is created, encoded to a swap pte,
1900 * decoded to a swp_entry_t again and finally the swap
1901 * offset is extracted. This will mask all the bits from
1902 * the initial ~0UL mask that can't be encoded in either
1903 * the swp_entry_t or the architecture definition of a
1904 * swap pte.
1906 maxpages = swp_offset(pte_to_swp_entry(
1907 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1908 if (maxpages > swap_header->info.last_page)
1909 maxpages = swap_header->info.last_page;
1910 p->highest_bit = maxpages - 1;
1912 error = -EINVAL;
1913 if (!maxpages)
1914 goto bad_swap;
1915 if (swapfilepages && maxpages > swapfilepages) {
1916 printk(KERN_WARNING
1917 "Swap area shorter than signature indicates\n");
1918 goto bad_swap;
1920 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1921 goto bad_swap;
1922 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1923 goto bad_swap;
1925 /* OK, set up the swap map and apply the bad block list */
1926 swap_map = vmalloc(maxpages * sizeof(short));
1927 if (!swap_map) {
1928 error = -ENOMEM;
1929 goto bad_swap;
1932 memset(swap_map, 0, maxpages * sizeof(short));
1933 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1934 int page_nr = swap_header->info.badpages[i];
1935 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1936 error = -EINVAL;
1937 goto bad_swap;
1939 swap_map[page_nr] = SWAP_MAP_BAD;
1942 error = swap_cgroup_swapon(type, maxpages);
1943 if (error)
1944 goto bad_swap;
1946 nr_good_pages = swap_header->info.last_page -
1947 swap_header->info.nr_badpages -
1948 1 /* header page */;
1950 if (nr_good_pages) {
1951 swap_map[0] = SWAP_MAP_BAD;
1952 p->max = maxpages;
1953 p->pages = nr_good_pages;
1954 nr_extents = setup_swap_extents(p, &span);
1955 if (nr_extents < 0) {
1956 error = nr_extents;
1957 goto bad_swap;
1959 nr_good_pages = p->pages;
1961 if (!nr_good_pages) {
1962 printk(KERN_WARNING "Empty swap-file\n");
1963 error = -EINVAL;
1964 goto bad_swap;
1967 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1968 p->flags |= SWP_SOLIDSTATE;
1969 p->cluster_next = 1 + (random32() % p->highest_bit);
1971 if (discard_swap(p) == 0)
1972 p->flags |= SWP_DISCARDABLE;
1974 mutex_lock(&swapon_mutex);
1975 spin_lock(&swap_lock);
1976 if (swap_flags & SWAP_FLAG_PREFER)
1977 p->prio =
1978 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1979 else
1980 p->prio = --least_priority;
1981 p->swap_map = swap_map;
1982 p->flags |= SWP_WRITEOK;
1983 nr_swap_pages += nr_good_pages;
1984 total_swap_pages += nr_good_pages;
1986 printk(KERN_INFO "Adding %uk swap on %s. "
1987 "Priority:%d extents:%d across:%lluk %s%s\n",
1988 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1989 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
1990 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
1991 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1993 /* insert swap space into swap_list: */
1994 prev = -1;
1995 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1996 if (p->prio >= swap_info[i].prio) {
1997 break;
1999 prev = i;
2001 p->next = i;
2002 if (prev < 0) {
2003 swap_list.head = swap_list.next = p - swap_info;
2004 } else {
2005 swap_info[prev].next = p - swap_info;
2007 spin_unlock(&swap_lock);
2008 mutex_unlock(&swapon_mutex);
2009 error = 0;
2010 goto out;
2011 bad_swap:
2012 if (bdev) {
2013 set_blocksize(bdev, p->old_block_size);
2014 bd_release(bdev);
2016 destroy_swap_extents(p);
2017 swap_cgroup_swapoff(type);
2018 bad_swap_2:
2019 spin_lock(&swap_lock);
2020 p->swap_file = NULL;
2021 p->flags = 0;
2022 spin_unlock(&swap_lock);
2023 vfree(swap_map);
2024 if (swap_file)
2025 filp_close(swap_file, NULL);
2026 out:
2027 if (page && !IS_ERR(page)) {
2028 kunmap(page);
2029 page_cache_release(page);
2031 if (name)
2032 putname(name);
2033 if (did_down) {
2034 if (!error)
2035 inode->i_flags |= S_SWAPFILE;
2036 mutex_unlock(&inode->i_mutex);
2038 return error;
2041 void si_swapinfo(struct sysinfo *val)
2043 unsigned int i;
2044 unsigned long nr_to_be_unused = 0;
2046 spin_lock(&swap_lock);
2047 for (i = 0; i < nr_swapfiles; i++) {
2048 if (!(swap_info[i].flags & SWP_USED) ||
2049 (swap_info[i].flags & SWP_WRITEOK))
2050 continue;
2051 nr_to_be_unused += swap_info[i].inuse_pages;
2053 val->freeswap = nr_swap_pages + nr_to_be_unused;
2054 val->totalswap = total_swap_pages + nr_to_be_unused;
2055 spin_unlock(&swap_lock);
2059 * Verify that a swap entry is valid and increment its swap map count.
2061 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2062 * "permanent", but will be reclaimed by the next swapoff.
2063 * Returns error code in following case.
2064 * - success -> 0
2065 * - swp_entry is invalid -> EINVAL
2066 * - swp_entry is migration entry -> EINVAL
2067 * - swap-cache reference is requested but there is already one. -> EEXIST
2068 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2070 static int __swap_duplicate(swp_entry_t entry, bool cache)
2072 struct swap_info_struct * p;
2073 unsigned long offset, type;
2074 int result = -EINVAL;
2075 int count;
2076 bool has_cache;
2078 if (is_migration_entry(entry))
2079 return -EINVAL;
2081 type = swp_type(entry);
2082 if (type >= nr_swapfiles)
2083 goto bad_file;
2084 p = type + swap_info;
2085 offset = swp_offset(entry);
2087 spin_lock(&swap_lock);
2089 if (unlikely(offset >= p->max))
2090 goto unlock_out;
2092 count = swap_count(p->swap_map[offset]);
2093 has_cache = swap_has_cache(p->swap_map[offset]);
2095 if (cache == SWAP_CACHE) { /* called for swapcache/swapin-readahead */
2097 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2098 if (!has_cache && count) {
2099 p->swap_map[offset] = encode_swapmap(count, true);
2100 result = 0;
2101 } else if (has_cache) /* someone added cache */
2102 result = -EEXIST;
2103 else if (!count) /* no users */
2104 result = -ENOENT;
2106 } else if (count || has_cache) {
2107 if (count < SWAP_MAP_MAX - 1) {
2108 p->swap_map[offset] = encode_swapmap(count + 1,
2109 has_cache);
2110 result = 0;
2111 } else if (count <= SWAP_MAP_MAX) {
2112 if (swap_overflow++ < 5)
2113 printk(KERN_WARNING
2114 "swap_dup: swap entry overflow\n");
2115 p->swap_map[offset] = encode_swapmap(SWAP_MAP_MAX,
2116 has_cache);
2117 result = 0;
2119 } else
2120 result = -ENOENT; /* unused swap entry */
2121 unlock_out:
2122 spin_unlock(&swap_lock);
2123 out:
2124 return result;
2126 bad_file:
2127 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2128 goto out;
2131 * increase reference count of swap entry by 1.
2133 void swap_duplicate(swp_entry_t entry)
2135 __swap_duplicate(entry, SWAP_MAP);
2139 * @entry: swap entry for which we allocate swap cache.
2141 * Called when allocating swap cache for exising swap entry,
2142 * This can return error codes. Returns 0 at success.
2143 * -EBUSY means there is a swap cache.
2144 * Note: return code is different from swap_duplicate().
2146 int swapcache_prepare(swp_entry_t entry)
2148 return __swap_duplicate(entry, SWAP_CACHE);
2152 struct swap_info_struct *
2153 get_swap_info_struct(unsigned type)
2155 return &swap_info[type];
2159 * swap_lock prevents swap_map being freed. Don't grab an extra
2160 * reference on the swaphandle, it doesn't matter if it becomes unused.
2162 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2164 struct swap_info_struct *si;
2165 int our_page_cluster = page_cluster;
2166 pgoff_t target, toff;
2167 pgoff_t base, end;
2168 int nr_pages = 0;
2170 if (!our_page_cluster) /* no readahead */
2171 return 0;
2173 si = &swap_info[swp_type(entry)];
2174 target = swp_offset(entry);
2175 base = (target >> our_page_cluster) << our_page_cluster;
2176 end = base + (1 << our_page_cluster);
2177 if (!base) /* first page is swap header */
2178 base++;
2180 spin_lock(&swap_lock);
2181 if (end > si->max) /* don't go beyond end of map */
2182 end = si->max;
2184 /* Count contiguous allocated slots above our target */
2185 for (toff = target; ++toff < end; nr_pages++) {
2186 /* Don't read in free or bad pages */
2187 if (!si->swap_map[toff])
2188 break;
2189 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2190 break;
2192 /* Count contiguous allocated slots below our target */
2193 for (toff = target; --toff >= base; nr_pages++) {
2194 /* Don't read in free or bad pages */
2195 if (!si->swap_map[toff])
2196 break;
2197 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2198 break;
2200 spin_unlock(&swap_lock);
2203 * Indicate starting offset, and return number of pages to get:
2204 * if only 1, say 0, since there's then no readahead to be done.
2206 *offset = ++toff;
2207 return nr_pages? ++nr_pages: 0;