4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr
;
69 EXPORT_SYMBOL(max_mapnr
);
70 EXPORT_SYMBOL(mem_map
);
73 unsigned long num_physpages
;
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
83 EXPORT_SYMBOL(num_physpages
);
84 EXPORT_SYMBOL(high_memory
);
87 * Randomize the address space (stacks, mmaps, brk, etc.).
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 * as ancient (libc5 based) binaries can segfault. )
92 int randomize_va_space __read_mostly
=
93 #ifdef CONFIG_COMPAT_BRK
99 static int __init
disable_randmaps(char *s
)
101 randomize_va_space
= 0;
104 __setup("norandmaps", disable_randmaps
);
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none. Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
113 void pgd_clear_bad(pgd_t
*pgd
)
119 void pud_clear_bad(pud_t
*pud
)
125 void pmd_clear_bad(pmd_t
*pmd
)
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
135 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
137 pgtable_t token
= pmd_pgtable(*pmd
);
139 pte_free_tlb(tlb
, token
);
143 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
144 unsigned long addr
, unsigned long end
,
145 unsigned long floor
, unsigned long ceiling
)
152 pmd
= pmd_offset(pud
, addr
);
154 next
= pmd_addr_end(addr
, end
);
155 if (pmd_none_or_clear_bad(pmd
))
157 free_pte_range(tlb
, pmd
);
158 } while (pmd
++, addr
= next
, addr
!= end
);
168 if (end
- 1 > ceiling
- 1)
171 pmd
= pmd_offset(pud
, start
);
173 pmd_free_tlb(tlb
, pmd
);
176 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
177 unsigned long addr
, unsigned long end
,
178 unsigned long floor
, unsigned long ceiling
)
185 pud
= pud_offset(pgd
, addr
);
187 next
= pud_addr_end(addr
, end
);
188 if (pud_none_or_clear_bad(pud
))
190 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
191 } while (pud
++, addr
= next
, addr
!= end
);
197 ceiling
&= PGDIR_MASK
;
201 if (end
- 1 > ceiling
- 1)
204 pud
= pud_offset(pgd
, start
);
206 pud_free_tlb(tlb
, pud
);
210 * This function frees user-level page tables of a process.
212 * Must be called with pagetable lock held.
214 void free_pgd_range(struct mmu_gather
**tlb
,
215 unsigned long addr
, unsigned long end
,
216 unsigned long floor
, unsigned long ceiling
)
223 * The next few lines have given us lots of grief...
225 * Why are we testing PMD* at this top level? Because often
226 * there will be no work to do at all, and we'd prefer not to
227 * go all the way down to the bottom just to discover that.
229 * Why all these "- 1"s? Because 0 represents both the bottom
230 * of the address space and the top of it (using -1 for the
231 * top wouldn't help much: the masks would do the wrong thing).
232 * The rule is that addr 0 and floor 0 refer to the bottom of
233 * the address space, but end 0 and ceiling 0 refer to the top
234 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235 * that end 0 case should be mythical).
237 * Wherever addr is brought up or ceiling brought down, we must
238 * be careful to reject "the opposite 0" before it confuses the
239 * subsequent tests. But what about where end is brought down
240 * by PMD_SIZE below? no, end can't go down to 0 there.
242 * Whereas we round start (addr) and ceiling down, by different
243 * masks at different levels, in order to test whether a table
244 * now has no other vmas using it, so can be freed, we don't
245 * bother to round floor or end up - the tests don't need that.
259 if (end
- 1 > ceiling
- 1)
265 pgd
= pgd_offset((*tlb
)->mm
, addr
);
267 next
= pgd_addr_end(addr
, end
);
268 if (pgd_none_or_clear_bad(pgd
))
270 free_pud_range(*tlb
, pgd
, addr
, next
, floor
, ceiling
);
271 } while (pgd
++, addr
= next
, addr
!= end
);
274 void free_pgtables(struct mmu_gather
**tlb
, struct vm_area_struct
*vma
,
275 unsigned long floor
, unsigned long ceiling
)
278 struct vm_area_struct
*next
= vma
->vm_next
;
279 unsigned long addr
= vma
->vm_start
;
282 * Hide vma from rmap and vmtruncate before freeing pgtables
284 anon_vma_unlink(vma
);
285 unlink_file_vma(vma
);
287 if (is_vm_hugetlb_page(vma
)) {
288 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
289 floor
, next
? next
->vm_start
: ceiling
);
292 * Optimization: gather nearby vmas into one call down
294 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
295 && !is_vm_hugetlb_page(next
)) {
298 anon_vma_unlink(vma
);
299 unlink_file_vma(vma
);
301 free_pgd_range(tlb
, addr
, vma
->vm_end
,
302 floor
, next
? next
->vm_start
: ceiling
);
308 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
310 pgtable_t
new = pte_alloc_one(mm
, address
);
315 * Ensure all pte setup (eg. pte page lock and page clearing) are
316 * visible before the pte is made visible to other CPUs by being
317 * put into page tables.
319 * The other side of the story is the pointer chasing in the page
320 * table walking code (when walking the page table without locking;
321 * ie. most of the time). Fortunately, these data accesses consist
322 * of a chain of data-dependent loads, meaning most CPUs (alpha
323 * being the notable exception) will already guarantee loads are
324 * seen in-order. See the alpha page table accessors for the
325 * smp_read_barrier_depends() barriers in page table walking code.
327 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
329 spin_lock(&mm
->page_table_lock
);
330 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
332 pmd_populate(mm
, pmd
, new);
335 spin_unlock(&mm
->page_table_lock
);
341 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
343 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
347 smp_wmb(); /* See comment in __pte_alloc */
349 spin_lock(&init_mm
.page_table_lock
);
350 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
351 pmd_populate_kernel(&init_mm
, pmd
, new);
354 spin_unlock(&init_mm
.page_table_lock
);
356 pte_free_kernel(&init_mm
, new);
360 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
363 add_mm_counter(mm
, file_rss
, file_rss
);
365 add_mm_counter(mm
, anon_rss
, anon_rss
);
369 * This function is called to print an error when a bad pte
370 * is found. For example, we might have a PFN-mapped pte in
371 * a region that doesn't allow it.
373 * The calling function must still handle the error.
375 void print_bad_pte(struct vm_area_struct
*vma
, pte_t pte
, unsigned long vaddr
)
377 printk(KERN_ERR
"Bad pte = %08llx, process = %s, "
378 "vm_flags = %lx, vaddr = %lx\n",
379 (long long)pte_val(pte
),
380 (vma
->vm_mm
== current
->mm
? current
->comm
: "???"),
381 vma
->vm_flags
, vaddr
);
385 static inline int is_cow_mapping(unsigned int flags
)
387 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
391 * vm_normal_page -- This function gets the "struct page" associated with a pte.
393 * "Special" mappings do not wish to be associated with a "struct page" (either
394 * it doesn't exist, or it exists but they don't want to touch it). In this
395 * case, NULL is returned here. "Normal" mappings do have a struct page.
397 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
398 * pte bit, in which case this function is trivial. Secondly, an architecture
399 * may not have a spare pte bit, which requires a more complicated scheme,
402 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
403 * special mapping (even if there are underlying and valid "struct pages").
404 * COWed pages of a VM_PFNMAP are always normal.
406 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
407 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
408 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
409 * mapping will always honor the rule
411 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
413 * And for normal mappings this is false.
415 * This restricts such mappings to be a linear translation from virtual address
416 * to pfn. To get around this restriction, we allow arbitrary mappings so long
417 * as the vma is not a COW mapping; in that case, we know that all ptes are
418 * special (because none can have been COWed).
421 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
423 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
424 * page" backing, however the difference is that _all_ pages with a struct
425 * page (that is, those where pfn_valid is true) are refcounted and considered
426 * normal pages by the VM. The disadvantage is that pages are refcounted
427 * (which can be slower and simply not an option for some PFNMAP users). The
428 * advantage is that we don't have to follow the strict linearity rule of
429 * PFNMAP mappings in order to support COWable mappings.
432 #ifdef __HAVE_ARCH_PTE_SPECIAL
433 # define HAVE_PTE_SPECIAL 1
435 # define HAVE_PTE_SPECIAL 0
437 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
442 if (HAVE_PTE_SPECIAL
) {
443 if (likely(!pte_special(pte
))) {
444 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
445 return pte_page(pte
);
447 VM_BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
)));
451 /* !HAVE_PTE_SPECIAL case follows: */
455 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
456 if (vma
->vm_flags
& VM_MIXEDMAP
) {
462 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
463 if (pfn
== vma
->vm_pgoff
+ off
)
465 if (!is_cow_mapping(vma
->vm_flags
))
470 VM_BUG_ON(!pfn_valid(pfn
));
473 * NOTE! We still have PageReserved() pages in the page tables.
475 * eg. VDSO mappings can cause them to exist.
478 return pfn_to_page(pfn
);
482 * copy one vm_area from one task to the other. Assumes the page tables
483 * already present in the new task to be cleared in the whole range
484 * covered by this vma.
488 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
489 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
490 unsigned long addr
, int *rss
)
492 unsigned long vm_flags
= vma
->vm_flags
;
493 pte_t pte
= *src_pte
;
496 /* pte contains position in swap or file, so copy. */
497 if (unlikely(!pte_present(pte
))) {
498 if (!pte_file(pte
)) {
499 swp_entry_t entry
= pte_to_swp_entry(pte
);
501 swap_duplicate(entry
);
502 /* make sure dst_mm is on swapoff's mmlist. */
503 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
504 spin_lock(&mmlist_lock
);
505 if (list_empty(&dst_mm
->mmlist
))
506 list_add(&dst_mm
->mmlist
,
508 spin_unlock(&mmlist_lock
);
510 if (is_write_migration_entry(entry
) &&
511 is_cow_mapping(vm_flags
)) {
513 * COW mappings require pages in both parent
514 * and child to be set to read.
516 make_migration_entry_read(&entry
);
517 pte
= swp_entry_to_pte(entry
);
518 set_pte_at(src_mm
, addr
, src_pte
, pte
);
525 * If it's a COW mapping, write protect it both
526 * in the parent and the child
528 if (is_cow_mapping(vm_flags
)) {
529 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
530 pte
= pte_wrprotect(pte
);
534 * If it's a shared mapping, mark it clean in
537 if (vm_flags
& VM_SHARED
)
538 pte
= pte_mkclean(pte
);
539 pte
= pte_mkold(pte
);
541 page
= vm_normal_page(vma
, addr
, pte
);
544 page_dup_rmap(page
, vma
, addr
);
545 rss
[!!PageAnon(page
)]++;
549 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
552 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
553 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
554 unsigned long addr
, unsigned long end
)
556 pte_t
*src_pte
, *dst_pte
;
557 spinlock_t
*src_ptl
, *dst_ptl
;
563 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
566 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
567 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
568 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
569 arch_enter_lazy_mmu_mode();
573 * We are holding two locks at this point - either of them
574 * could generate latencies in another task on another CPU.
576 if (progress
>= 32) {
578 if (need_resched() ||
579 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
582 if (pte_none(*src_pte
)) {
586 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
588 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
590 arch_leave_lazy_mmu_mode();
591 spin_unlock(src_ptl
);
592 pte_unmap_nested(src_pte
- 1);
593 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
594 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
601 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
602 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
603 unsigned long addr
, unsigned long end
)
605 pmd_t
*src_pmd
, *dst_pmd
;
608 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
611 src_pmd
= pmd_offset(src_pud
, addr
);
613 next
= pmd_addr_end(addr
, end
);
614 if (pmd_none_or_clear_bad(src_pmd
))
616 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
619 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
623 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
624 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
625 unsigned long addr
, unsigned long end
)
627 pud_t
*src_pud
, *dst_pud
;
630 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
633 src_pud
= pud_offset(src_pgd
, addr
);
635 next
= pud_addr_end(addr
, end
);
636 if (pud_none_or_clear_bad(src_pud
))
638 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
641 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
645 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
646 struct vm_area_struct
*vma
)
648 pgd_t
*src_pgd
, *dst_pgd
;
650 unsigned long addr
= vma
->vm_start
;
651 unsigned long end
= vma
->vm_end
;
654 * Don't copy ptes where a page fault will fill them correctly.
655 * Fork becomes much lighter when there are big shared or private
656 * readonly mappings. The tradeoff is that copy_page_range is more
657 * efficient than faulting.
659 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
664 if (is_vm_hugetlb_page(vma
))
665 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
667 dst_pgd
= pgd_offset(dst_mm
, addr
);
668 src_pgd
= pgd_offset(src_mm
, addr
);
670 next
= pgd_addr_end(addr
, end
);
671 if (pgd_none_or_clear_bad(src_pgd
))
673 if (copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
676 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
680 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
681 struct vm_area_struct
*vma
, pmd_t
*pmd
,
682 unsigned long addr
, unsigned long end
,
683 long *zap_work
, struct zap_details
*details
)
685 struct mm_struct
*mm
= tlb
->mm
;
691 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
692 arch_enter_lazy_mmu_mode();
695 if (pte_none(ptent
)) {
700 (*zap_work
) -= PAGE_SIZE
;
702 if (pte_present(ptent
)) {
705 page
= vm_normal_page(vma
, addr
, ptent
);
706 if (unlikely(details
) && page
) {
708 * unmap_shared_mapping_pages() wants to
709 * invalidate cache without truncating:
710 * unmap shared but keep private pages.
712 if (details
->check_mapping
&&
713 details
->check_mapping
!= page
->mapping
)
716 * Each page->index must be checked when
717 * invalidating or truncating nonlinear.
719 if (details
->nonlinear_vma
&&
720 (page
->index
< details
->first_index
||
721 page
->index
> details
->last_index
))
724 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
726 tlb_remove_tlb_entry(tlb
, pte
, addr
);
729 if (unlikely(details
) && details
->nonlinear_vma
730 && linear_page_index(details
->nonlinear_vma
,
731 addr
) != page
->index
)
732 set_pte_at(mm
, addr
, pte
,
733 pgoff_to_pte(page
->index
));
737 if (pte_dirty(ptent
))
738 set_page_dirty(page
);
739 if (pte_young(ptent
))
740 SetPageReferenced(page
);
743 page_remove_rmap(page
, vma
);
744 tlb_remove_page(tlb
, page
);
748 * If details->check_mapping, we leave swap entries;
749 * if details->nonlinear_vma, we leave file entries.
751 if (unlikely(details
))
753 if (!pte_file(ptent
))
754 free_swap_and_cache(pte_to_swp_entry(ptent
));
755 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
756 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
758 add_mm_rss(mm
, file_rss
, anon_rss
);
759 arch_leave_lazy_mmu_mode();
760 pte_unmap_unlock(pte
- 1, ptl
);
765 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
766 struct vm_area_struct
*vma
, pud_t
*pud
,
767 unsigned long addr
, unsigned long end
,
768 long *zap_work
, struct zap_details
*details
)
773 pmd
= pmd_offset(pud
, addr
);
775 next
= pmd_addr_end(addr
, end
);
776 if (pmd_none_or_clear_bad(pmd
)) {
780 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
782 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
787 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
788 struct vm_area_struct
*vma
, pgd_t
*pgd
,
789 unsigned long addr
, unsigned long end
,
790 long *zap_work
, struct zap_details
*details
)
795 pud
= pud_offset(pgd
, addr
);
797 next
= pud_addr_end(addr
, end
);
798 if (pud_none_or_clear_bad(pud
)) {
802 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
804 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
809 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
810 struct vm_area_struct
*vma
,
811 unsigned long addr
, unsigned long end
,
812 long *zap_work
, struct zap_details
*details
)
817 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
821 tlb_start_vma(tlb
, vma
);
822 pgd
= pgd_offset(vma
->vm_mm
, addr
);
824 next
= pgd_addr_end(addr
, end
);
825 if (pgd_none_or_clear_bad(pgd
)) {
829 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
831 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
832 tlb_end_vma(tlb
, vma
);
837 #ifdef CONFIG_PREEMPT
838 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
840 /* No preempt: go for improved straight-line efficiency */
841 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
845 * unmap_vmas - unmap a range of memory covered by a list of vma's
846 * @tlbp: address of the caller's struct mmu_gather
847 * @vma: the starting vma
848 * @start_addr: virtual address at which to start unmapping
849 * @end_addr: virtual address at which to end unmapping
850 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
851 * @details: details of nonlinear truncation or shared cache invalidation
853 * Returns the end address of the unmapping (restart addr if interrupted).
855 * Unmap all pages in the vma list.
857 * We aim to not hold locks for too long (for scheduling latency reasons).
858 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
859 * return the ending mmu_gather to the caller.
861 * Only addresses between `start' and `end' will be unmapped.
863 * The VMA list must be sorted in ascending virtual address order.
865 * unmap_vmas() assumes that the caller will flush the whole unmapped address
866 * range after unmap_vmas() returns. So the only responsibility here is to
867 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
868 * drops the lock and schedules.
870 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
871 struct vm_area_struct
*vma
, unsigned long start_addr
,
872 unsigned long end_addr
, unsigned long *nr_accounted
,
873 struct zap_details
*details
)
875 long zap_work
= ZAP_BLOCK_SIZE
;
876 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
877 int tlb_start_valid
= 0;
878 unsigned long start
= start_addr
;
879 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
880 int fullmm
= (*tlbp
)->fullmm
;
882 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
885 start
= max(vma
->vm_start
, start_addr
);
886 if (start
>= vma
->vm_end
)
888 end
= min(vma
->vm_end
, end_addr
);
889 if (end
<= vma
->vm_start
)
892 if (vma
->vm_flags
& VM_ACCOUNT
)
893 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
895 while (start
!= end
) {
896 if (!tlb_start_valid
) {
901 if (unlikely(is_vm_hugetlb_page(vma
))) {
902 unmap_hugepage_range(vma
, start
, end
);
903 zap_work
-= (end
- start
) /
904 (HPAGE_SIZE
/ PAGE_SIZE
);
907 start
= unmap_page_range(*tlbp
, vma
,
908 start
, end
, &zap_work
, details
);
911 BUG_ON(start
!= end
);
915 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
917 if (need_resched() ||
918 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
926 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
928 zap_work
= ZAP_BLOCK_SIZE
;
932 return start
; /* which is now the end (or restart) address */
936 * zap_page_range - remove user pages in a given range
937 * @vma: vm_area_struct holding the applicable pages
938 * @address: starting address of pages to zap
939 * @size: number of bytes to zap
940 * @details: details of nonlinear truncation or shared cache invalidation
942 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
943 unsigned long size
, struct zap_details
*details
)
945 struct mm_struct
*mm
= vma
->vm_mm
;
946 struct mmu_gather
*tlb
;
947 unsigned long end
= address
+ size
;
948 unsigned long nr_accounted
= 0;
951 tlb
= tlb_gather_mmu(mm
, 0);
952 update_hiwater_rss(mm
);
953 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
955 tlb_finish_mmu(tlb
, address
, end
);
960 * Do a quick page-table lookup for a single page.
962 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
971 struct mm_struct
*mm
= vma
->vm_mm
;
973 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
975 BUG_ON(flags
& FOLL_GET
);
980 pgd
= pgd_offset(mm
, address
);
981 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
984 pud
= pud_offset(pgd
, address
);
985 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
988 pmd
= pmd_offset(pud
, address
);
992 if (pmd_huge(*pmd
)) {
993 BUG_ON(flags
& FOLL_GET
);
994 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
998 if (unlikely(pmd_bad(*pmd
)))
1001 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1004 if (!pte_present(pte
))
1006 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1008 page
= vm_normal_page(vma
, address
, pte
);
1009 if (unlikely(!page
))
1012 if (flags
& FOLL_GET
)
1014 if (flags
& FOLL_TOUCH
) {
1015 if ((flags
& FOLL_WRITE
) &&
1016 !pte_dirty(pte
) && !PageDirty(page
))
1017 set_page_dirty(page
);
1018 mark_page_accessed(page
);
1021 pte_unmap_unlock(ptep
, ptl
);
1026 pte_unmap_unlock(ptep
, ptl
);
1027 return ERR_PTR(-EFAULT
);
1030 pte_unmap_unlock(ptep
, ptl
);
1033 /* Fall through to ZERO_PAGE handling */
1036 * When core dumping an enormous anonymous area that nobody
1037 * has touched so far, we don't want to allocate page tables.
1039 if (flags
& FOLL_ANON
) {
1040 page
= ZERO_PAGE(0);
1041 if (flags
& FOLL_GET
)
1043 BUG_ON(flags
& FOLL_WRITE
);
1048 /* Can we do the FOLL_ANON optimization? */
1049 static inline int use_zero_page(struct vm_area_struct
*vma
)
1052 * We don't want to optimize FOLL_ANON for make_pages_present()
1053 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1054 * we want to get the page from the page tables to make sure
1055 * that we serialize and update with any other user of that
1058 if (vma
->vm_flags
& (VM_LOCKED
| VM_SHARED
))
1061 * And if we have a fault or a nopfn routine, it's not an
1064 return !vma
->vm_ops
||
1065 (!vma
->vm_ops
->fault
&& !vma
->vm_ops
->nopfn
);
1068 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1069 unsigned long start
, int len
, int write
, int force
,
1070 struct page
**pages
, struct vm_area_struct
**vmas
)
1073 unsigned int vm_flags
;
1078 * Require read or write permissions.
1079 * If 'force' is set, we only require the "MAY" flags.
1081 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1082 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1086 struct vm_area_struct
*vma
;
1087 unsigned int foll_flags
;
1089 vma
= find_extend_vma(mm
, start
);
1090 if (!vma
&& in_gate_area(tsk
, start
)) {
1091 unsigned long pg
= start
& PAGE_MASK
;
1092 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1097 if (write
) /* user gate pages are read-only */
1098 return i
? : -EFAULT
;
1100 pgd
= pgd_offset_k(pg
);
1102 pgd
= pgd_offset_gate(mm
, pg
);
1103 BUG_ON(pgd_none(*pgd
));
1104 pud
= pud_offset(pgd
, pg
);
1105 BUG_ON(pud_none(*pud
));
1106 pmd
= pmd_offset(pud
, pg
);
1108 return i
? : -EFAULT
;
1109 pte
= pte_offset_map(pmd
, pg
);
1110 if (pte_none(*pte
)) {
1112 return i
? : -EFAULT
;
1115 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1129 if (!vma
|| (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1130 || !(vm_flags
& vma
->vm_flags
))
1131 return i
? : -EFAULT
;
1133 if (is_vm_hugetlb_page(vma
)) {
1134 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1135 &start
, &len
, i
, write
);
1139 foll_flags
= FOLL_TOUCH
;
1141 foll_flags
|= FOLL_GET
;
1142 if (!write
&& use_zero_page(vma
))
1143 foll_flags
|= FOLL_ANON
;
1149 * If tsk is ooming, cut off its access to large memory
1150 * allocations. It has a pending SIGKILL, but it can't
1151 * be processed until returning to user space.
1153 if (unlikely(test_tsk_thread_flag(tsk
, TIF_MEMDIE
)))
1157 foll_flags
|= FOLL_WRITE
;
1160 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1162 ret
= handle_mm_fault(mm
, vma
, start
,
1163 foll_flags
& FOLL_WRITE
);
1164 if (ret
& VM_FAULT_ERROR
) {
1165 if (ret
& VM_FAULT_OOM
)
1166 return i
? i
: -ENOMEM
;
1167 else if (ret
& VM_FAULT_SIGBUS
)
1168 return i
? i
: -EFAULT
;
1171 if (ret
& VM_FAULT_MAJOR
)
1177 * The VM_FAULT_WRITE bit tells us that
1178 * do_wp_page has broken COW when necessary,
1179 * even if maybe_mkwrite decided not to set
1180 * pte_write. We can thus safely do subsequent
1181 * page lookups as if they were reads.
1183 if (ret
& VM_FAULT_WRITE
)
1184 foll_flags
&= ~FOLL_WRITE
;
1189 return i
? i
: PTR_ERR(page
);
1193 flush_anon_page(vma
, page
, start
);
1194 flush_dcache_page(page
);
1201 } while (len
&& start
< vma
->vm_end
);
1205 EXPORT_SYMBOL(get_user_pages
);
1207 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1210 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1211 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1213 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1215 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1221 * This is the old fallback for page remapping.
1223 * For historical reasons, it only allows reserved pages. Only
1224 * old drivers should use this, and they needed to mark their
1225 * pages reserved for the old functions anyway.
1227 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1228 struct page
*page
, pgprot_t prot
)
1230 struct mm_struct
*mm
= vma
->vm_mm
;
1235 retval
= mem_cgroup_charge(page
, mm
, GFP_KERNEL
);
1243 flush_dcache_page(page
);
1244 pte
= get_locked_pte(mm
, addr
, &ptl
);
1248 if (!pte_none(*pte
))
1251 /* Ok, finally just insert the thing.. */
1253 inc_mm_counter(mm
, file_rss
);
1254 page_add_file_rmap(page
);
1255 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1258 pte_unmap_unlock(pte
, ptl
);
1261 pte_unmap_unlock(pte
, ptl
);
1263 mem_cgroup_uncharge_page(page
);
1269 * vm_insert_page - insert single page into user vma
1270 * @vma: user vma to map to
1271 * @addr: target user address of this page
1272 * @page: source kernel page
1274 * This allows drivers to insert individual pages they've allocated
1277 * The page has to be a nice clean _individual_ kernel allocation.
1278 * If you allocate a compound page, you need to have marked it as
1279 * such (__GFP_COMP), or manually just split the page up yourself
1280 * (see split_page()).
1282 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1283 * took an arbitrary page protection parameter. This doesn't allow
1284 * that. Your vma protection will have to be set up correctly, which
1285 * means that if you want a shared writable mapping, you'd better
1286 * ask for a shared writable mapping!
1288 * The page does not need to be reserved.
1290 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1293 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1295 if (!page_count(page
))
1297 vma
->vm_flags
|= VM_INSERTPAGE
;
1298 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1300 EXPORT_SYMBOL(vm_insert_page
);
1302 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1303 unsigned long pfn
, pgprot_t prot
)
1305 struct mm_struct
*mm
= vma
->vm_mm
;
1311 pte
= get_locked_pte(mm
, addr
, &ptl
);
1315 if (!pte_none(*pte
))
1318 /* Ok, finally just insert the thing.. */
1319 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1320 set_pte_at(mm
, addr
, pte
, entry
);
1321 update_mmu_cache(vma
, addr
, entry
); /* XXX: why not for insert_page? */
1325 pte_unmap_unlock(pte
, ptl
);
1331 * vm_insert_pfn - insert single pfn into user vma
1332 * @vma: user vma to map to
1333 * @addr: target user address of this page
1334 * @pfn: source kernel pfn
1336 * Similar to vm_inert_page, this allows drivers to insert individual pages
1337 * they've allocated into a user vma. Same comments apply.
1339 * This function should only be called from a vm_ops->fault handler, and
1340 * in that case the handler should return NULL.
1342 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1346 * Technically, architectures with pte_special can avoid all these
1347 * restrictions (same for remap_pfn_range). However we would like
1348 * consistency in testing and feature parity among all, so we should
1349 * try to keep these invariants in place for everybody.
1351 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1352 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1353 (VM_PFNMAP
|VM_MIXEDMAP
));
1354 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1355 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1357 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1359 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1361 EXPORT_SYMBOL(vm_insert_pfn
);
1363 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1366 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1368 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1372 * If we don't have pte special, then we have to use the pfn_valid()
1373 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1374 * refcount the page if pfn_valid is true (hence insert_page rather
1377 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1380 page
= pfn_to_page(pfn
);
1381 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1383 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1385 EXPORT_SYMBOL(vm_insert_mixed
);
1388 * maps a range of physical memory into the requested pages. the old
1389 * mappings are removed. any references to nonexistent pages results
1390 * in null mappings (currently treated as "copy-on-access")
1392 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1393 unsigned long addr
, unsigned long end
,
1394 unsigned long pfn
, pgprot_t prot
)
1399 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1402 arch_enter_lazy_mmu_mode();
1404 BUG_ON(!pte_none(*pte
));
1405 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1407 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1408 arch_leave_lazy_mmu_mode();
1409 pte_unmap_unlock(pte
- 1, ptl
);
1413 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1414 unsigned long addr
, unsigned long end
,
1415 unsigned long pfn
, pgprot_t prot
)
1420 pfn
-= addr
>> PAGE_SHIFT
;
1421 pmd
= pmd_alloc(mm
, pud
, addr
);
1425 next
= pmd_addr_end(addr
, end
);
1426 if (remap_pte_range(mm
, pmd
, addr
, next
,
1427 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1429 } while (pmd
++, addr
= next
, addr
!= end
);
1433 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1434 unsigned long addr
, unsigned long end
,
1435 unsigned long pfn
, pgprot_t prot
)
1440 pfn
-= addr
>> PAGE_SHIFT
;
1441 pud
= pud_alloc(mm
, pgd
, addr
);
1445 next
= pud_addr_end(addr
, end
);
1446 if (remap_pmd_range(mm
, pud
, addr
, next
,
1447 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1449 } while (pud
++, addr
= next
, addr
!= end
);
1454 * remap_pfn_range - remap kernel memory to userspace
1455 * @vma: user vma to map to
1456 * @addr: target user address to start at
1457 * @pfn: physical address of kernel memory
1458 * @size: size of map area
1459 * @prot: page protection flags for this mapping
1461 * Note: this is only safe if the mm semaphore is held when called.
1463 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1464 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1468 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1469 struct mm_struct
*mm
= vma
->vm_mm
;
1473 * Physically remapped pages are special. Tell the
1474 * rest of the world about it:
1475 * VM_IO tells people not to look at these pages
1476 * (accesses can have side effects).
1477 * VM_RESERVED is specified all over the place, because
1478 * in 2.4 it kept swapout's vma scan off this vma; but
1479 * in 2.6 the LRU scan won't even find its pages, so this
1480 * flag means no more than count its pages in reserved_vm,
1481 * and omit it from core dump, even when VM_IO turned off.
1482 * VM_PFNMAP tells the core MM that the base pages are just
1483 * raw PFN mappings, and do not have a "struct page" associated
1486 * There's a horrible special case to handle copy-on-write
1487 * behaviour that some programs depend on. We mark the "original"
1488 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1490 if (is_cow_mapping(vma
->vm_flags
)) {
1491 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1493 vma
->vm_pgoff
= pfn
;
1496 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1498 BUG_ON(addr
>= end
);
1499 pfn
-= addr
>> PAGE_SHIFT
;
1500 pgd
= pgd_offset(mm
, addr
);
1501 flush_cache_range(vma
, addr
, end
);
1503 next
= pgd_addr_end(addr
, end
);
1504 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1505 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1508 } while (pgd
++, addr
= next
, addr
!= end
);
1511 EXPORT_SYMBOL(remap_pfn_range
);
1513 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1514 unsigned long addr
, unsigned long end
,
1515 pte_fn_t fn
, void *data
)
1520 spinlock_t
*uninitialized_var(ptl
);
1522 pte
= (mm
== &init_mm
) ?
1523 pte_alloc_kernel(pmd
, addr
) :
1524 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1528 BUG_ON(pmd_huge(*pmd
));
1530 token
= pmd_pgtable(*pmd
);
1533 err
= fn(pte
, token
, addr
, data
);
1536 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1539 pte_unmap_unlock(pte
-1, ptl
);
1543 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1544 unsigned long addr
, unsigned long end
,
1545 pte_fn_t fn
, void *data
)
1551 pmd
= pmd_alloc(mm
, pud
, addr
);
1555 next
= pmd_addr_end(addr
, end
);
1556 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1559 } while (pmd
++, addr
= next
, addr
!= end
);
1563 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1564 unsigned long addr
, unsigned long end
,
1565 pte_fn_t fn
, void *data
)
1571 pud
= pud_alloc(mm
, pgd
, addr
);
1575 next
= pud_addr_end(addr
, end
);
1576 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1579 } while (pud
++, addr
= next
, addr
!= end
);
1584 * Scan a region of virtual memory, filling in page tables as necessary
1585 * and calling a provided function on each leaf page table.
1587 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1588 unsigned long size
, pte_fn_t fn
, void *data
)
1592 unsigned long end
= addr
+ size
;
1595 BUG_ON(addr
>= end
);
1596 pgd
= pgd_offset(mm
, addr
);
1598 next
= pgd_addr_end(addr
, end
);
1599 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1602 } while (pgd
++, addr
= next
, addr
!= end
);
1605 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1608 * handle_pte_fault chooses page fault handler according to an entry
1609 * which was read non-atomically. Before making any commitment, on
1610 * those architectures or configurations (e.g. i386 with PAE) which
1611 * might give a mix of unmatched parts, do_swap_page and do_file_page
1612 * must check under lock before unmapping the pte and proceeding
1613 * (but do_wp_page is only called after already making such a check;
1614 * and do_anonymous_page and do_no_page can safely check later on).
1616 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1617 pte_t
*page_table
, pte_t orig_pte
)
1620 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1621 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1622 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1624 same
= pte_same(*page_table
, orig_pte
);
1628 pte_unmap(page_table
);
1633 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1634 * servicing faults for write access. In the normal case, do always want
1635 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1636 * that do not have writing enabled, when used by access_process_vm.
1638 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1640 if (likely(vma
->vm_flags
& VM_WRITE
))
1641 pte
= pte_mkwrite(pte
);
1645 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1648 * If the source page was a PFN mapping, we don't have
1649 * a "struct page" for it. We do a best-effort copy by
1650 * just copying from the original user address. If that
1651 * fails, we just zero-fill it. Live with it.
1653 if (unlikely(!src
)) {
1654 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1655 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1658 * This really shouldn't fail, because the page is there
1659 * in the page tables. But it might just be unreadable,
1660 * in which case we just give up and fill the result with
1663 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1664 memset(kaddr
, 0, PAGE_SIZE
);
1665 kunmap_atomic(kaddr
, KM_USER0
);
1666 flush_dcache_page(dst
);
1668 copy_user_highpage(dst
, src
, va
, vma
);
1672 * This routine handles present pages, when users try to write
1673 * to a shared page. It is done by copying the page to a new address
1674 * and decrementing the shared-page counter for the old page.
1676 * Note that this routine assumes that the protection checks have been
1677 * done by the caller (the low-level page fault routine in most cases).
1678 * Thus we can safely just mark it writable once we've done any necessary
1681 * We also mark the page dirty at this point even though the page will
1682 * change only once the write actually happens. This avoids a few races,
1683 * and potentially makes it more efficient.
1685 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1686 * but allow concurrent faults), with pte both mapped and locked.
1687 * We return with mmap_sem still held, but pte unmapped and unlocked.
1689 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1690 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1691 spinlock_t
*ptl
, pte_t orig_pte
)
1693 struct page
*old_page
, *new_page
;
1695 int reuse
= 0, ret
= 0;
1696 int page_mkwrite
= 0;
1697 struct page
*dirty_page
= NULL
;
1699 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1704 * Take out anonymous pages first, anonymous shared vmas are
1705 * not dirty accountable.
1707 if (PageAnon(old_page
)) {
1708 if (!TestSetPageLocked(old_page
)) {
1709 reuse
= can_share_swap_page(old_page
);
1710 unlock_page(old_page
);
1712 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1713 (VM_WRITE
|VM_SHARED
))) {
1715 * Only catch write-faults on shared writable pages,
1716 * read-only shared pages can get COWed by
1717 * get_user_pages(.write=1, .force=1).
1719 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
1721 * Notify the address space that the page is about to
1722 * become writable so that it can prohibit this or wait
1723 * for the page to get into an appropriate state.
1725 * We do this without the lock held, so that it can
1726 * sleep if it needs to.
1728 page_cache_get(old_page
);
1729 pte_unmap_unlock(page_table
, ptl
);
1731 if (vma
->vm_ops
->page_mkwrite(vma
, old_page
) < 0)
1732 goto unwritable_page
;
1735 * Since we dropped the lock we need to revalidate
1736 * the PTE as someone else may have changed it. If
1737 * they did, we just return, as we can count on the
1738 * MMU to tell us if they didn't also make it writable.
1740 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1742 page_cache_release(old_page
);
1743 if (!pte_same(*page_table
, orig_pte
))
1748 dirty_page
= old_page
;
1749 get_page(dirty_page
);
1754 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1755 entry
= pte_mkyoung(orig_pte
);
1756 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1757 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
1758 update_mmu_cache(vma
, address
, entry
);
1759 ret
|= VM_FAULT_WRITE
;
1764 * Ok, we need to copy. Oh, well..
1766 page_cache_get(old_page
);
1768 pte_unmap_unlock(page_table
, ptl
);
1770 if (unlikely(anon_vma_prepare(vma
)))
1772 VM_BUG_ON(old_page
== ZERO_PAGE(0));
1773 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1776 cow_user_page(new_page
, old_page
, address
, vma
);
1777 __SetPageUptodate(new_page
);
1779 if (mem_cgroup_charge(new_page
, mm
, GFP_KERNEL
))
1783 * Re-check the pte - we dropped the lock
1785 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1786 if (likely(pte_same(*page_table
, orig_pte
))) {
1788 if (!PageAnon(old_page
)) {
1789 dec_mm_counter(mm
, file_rss
);
1790 inc_mm_counter(mm
, anon_rss
);
1793 inc_mm_counter(mm
, anon_rss
);
1794 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1795 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
1796 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1798 * Clear the pte entry and flush it first, before updating the
1799 * pte with the new entry. This will avoid a race condition
1800 * seen in the presence of one thread doing SMC and another
1803 ptep_clear_flush(vma
, address
, page_table
);
1804 set_pte_at(mm
, address
, page_table
, entry
);
1805 update_mmu_cache(vma
, address
, entry
);
1806 lru_cache_add_active(new_page
);
1807 page_add_new_anon_rmap(new_page
, vma
, address
);
1811 * Only after switching the pte to the new page may
1812 * we remove the mapcount here. Otherwise another
1813 * process may come and find the rmap count decremented
1814 * before the pte is switched to the new page, and
1815 * "reuse" the old page writing into it while our pte
1816 * here still points into it and can be read by other
1819 * The critical issue is to order this
1820 * page_remove_rmap with the ptp_clear_flush above.
1821 * Those stores are ordered by (if nothing else,)
1822 * the barrier present in the atomic_add_negative
1823 * in page_remove_rmap.
1825 * Then the TLB flush in ptep_clear_flush ensures that
1826 * no process can access the old page before the
1827 * decremented mapcount is visible. And the old page
1828 * cannot be reused until after the decremented
1829 * mapcount is visible. So transitively, TLBs to
1830 * old page will be flushed before it can be reused.
1832 page_remove_rmap(old_page
, vma
);
1835 /* Free the old page.. */
1836 new_page
= old_page
;
1837 ret
|= VM_FAULT_WRITE
;
1839 mem_cgroup_uncharge_page(new_page
);
1842 page_cache_release(new_page
);
1844 page_cache_release(old_page
);
1846 pte_unmap_unlock(page_table
, ptl
);
1849 file_update_time(vma
->vm_file
);
1852 * Yes, Virginia, this is actually required to prevent a race
1853 * with clear_page_dirty_for_io() from clearing the page dirty
1854 * bit after it clear all dirty ptes, but before a racing
1855 * do_wp_page installs a dirty pte.
1857 * do_no_page is protected similarly.
1859 wait_on_page_locked(dirty_page
);
1860 set_page_dirty_balance(dirty_page
, page_mkwrite
);
1861 put_page(dirty_page
);
1865 page_cache_release(new_page
);
1868 page_cache_release(old_page
);
1869 return VM_FAULT_OOM
;
1872 page_cache_release(old_page
);
1873 return VM_FAULT_SIGBUS
;
1877 * Helper functions for unmap_mapping_range().
1879 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1881 * We have to restart searching the prio_tree whenever we drop the lock,
1882 * since the iterator is only valid while the lock is held, and anyway
1883 * a later vma might be split and reinserted earlier while lock dropped.
1885 * The list of nonlinear vmas could be handled more efficiently, using
1886 * a placeholder, but handle it in the same way until a need is shown.
1887 * It is important to search the prio_tree before nonlinear list: a vma
1888 * may become nonlinear and be shifted from prio_tree to nonlinear list
1889 * while the lock is dropped; but never shifted from list to prio_tree.
1891 * In order to make forward progress despite restarting the search,
1892 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1893 * quickly skip it next time around. Since the prio_tree search only
1894 * shows us those vmas affected by unmapping the range in question, we
1895 * can't efficiently keep all vmas in step with mapping->truncate_count:
1896 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1897 * mapping->truncate_count and vma->vm_truncate_count are protected by
1900 * In order to make forward progress despite repeatedly restarting some
1901 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1902 * and restart from that address when we reach that vma again. It might
1903 * have been split or merged, shrunk or extended, but never shifted: so
1904 * restart_addr remains valid so long as it remains in the vma's range.
1905 * unmap_mapping_range forces truncate_count to leap over page-aligned
1906 * values so we can save vma's restart_addr in its truncate_count field.
1908 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1910 static void reset_vma_truncate_counts(struct address_space
*mapping
)
1912 struct vm_area_struct
*vma
;
1913 struct prio_tree_iter iter
;
1915 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
1916 vma
->vm_truncate_count
= 0;
1917 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1918 vma
->vm_truncate_count
= 0;
1921 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
1922 unsigned long start_addr
, unsigned long end_addr
,
1923 struct zap_details
*details
)
1925 unsigned long restart_addr
;
1929 * files that support invalidating or truncating portions of the
1930 * file from under mmaped areas must have their ->fault function
1931 * return a locked page (and set VM_FAULT_LOCKED in the return).
1932 * This provides synchronisation against concurrent unmapping here.
1936 restart_addr
= vma
->vm_truncate_count
;
1937 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
1938 start_addr
= restart_addr
;
1939 if (start_addr
>= end_addr
) {
1940 /* Top of vma has been split off since last time */
1941 vma
->vm_truncate_count
= details
->truncate_count
;
1946 restart_addr
= zap_page_range(vma
, start_addr
,
1947 end_addr
- start_addr
, details
);
1948 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
1950 if (restart_addr
>= end_addr
) {
1951 /* We have now completed this vma: mark it so */
1952 vma
->vm_truncate_count
= details
->truncate_count
;
1956 /* Note restart_addr in vma's truncate_count field */
1957 vma
->vm_truncate_count
= restart_addr
;
1962 spin_unlock(details
->i_mmap_lock
);
1964 spin_lock(details
->i_mmap_lock
);
1968 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
1969 struct zap_details
*details
)
1971 struct vm_area_struct
*vma
;
1972 struct prio_tree_iter iter
;
1973 pgoff_t vba
, vea
, zba
, zea
;
1976 vma_prio_tree_foreach(vma
, &iter
, root
,
1977 details
->first_index
, details
->last_index
) {
1978 /* Skip quickly over those we have already dealt with */
1979 if (vma
->vm_truncate_count
== details
->truncate_count
)
1982 vba
= vma
->vm_pgoff
;
1983 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
1984 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1985 zba
= details
->first_index
;
1988 zea
= details
->last_index
;
1992 if (unmap_mapping_range_vma(vma
,
1993 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
1994 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2000 static inline void unmap_mapping_range_list(struct list_head
*head
,
2001 struct zap_details
*details
)
2003 struct vm_area_struct
*vma
;
2006 * In nonlinear VMAs there is no correspondence between virtual address
2007 * offset and file offset. So we must perform an exhaustive search
2008 * across *all* the pages in each nonlinear VMA, not just the pages
2009 * whose virtual address lies outside the file truncation point.
2012 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2013 /* Skip quickly over those we have already dealt with */
2014 if (vma
->vm_truncate_count
== details
->truncate_count
)
2016 details
->nonlinear_vma
= vma
;
2017 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2018 vma
->vm_end
, details
) < 0)
2024 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2025 * @mapping: the address space containing mmaps to be unmapped.
2026 * @holebegin: byte in first page to unmap, relative to the start of
2027 * the underlying file. This will be rounded down to a PAGE_SIZE
2028 * boundary. Note that this is different from vmtruncate(), which
2029 * must keep the partial page. In contrast, we must get rid of
2031 * @holelen: size of prospective hole in bytes. This will be rounded
2032 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2034 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2035 * but 0 when invalidating pagecache, don't throw away private data.
2037 void unmap_mapping_range(struct address_space
*mapping
,
2038 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2040 struct zap_details details
;
2041 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2042 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2044 /* Check for overflow. */
2045 if (sizeof(holelen
) > sizeof(hlen
)) {
2047 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2048 if (holeend
& ~(long long)ULONG_MAX
)
2049 hlen
= ULONG_MAX
- hba
+ 1;
2052 details
.check_mapping
= even_cows
? NULL
: mapping
;
2053 details
.nonlinear_vma
= NULL
;
2054 details
.first_index
= hba
;
2055 details
.last_index
= hba
+ hlen
- 1;
2056 if (details
.last_index
< details
.first_index
)
2057 details
.last_index
= ULONG_MAX
;
2058 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2060 spin_lock(&mapping
->i_mmap_lock
);
2062 /* Protect against endless unmapping loops */
2063 mapping
->truncate_count
++;
2064 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2065 if (mapping
->truncate_count
== 0)
2066 reset_vma_truncate_counts(mapping
);
2067 mapping
->truncate_count
++;
2069 details
.truncate_count
= mapping
->truncate_count
;
2071 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2072 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2073 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2074 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2075 spin_unlock(&mapping
->i_mmap_lock
);
2077 EXPORT_SYMBOL(unmap_mapping_range
);
2080 * vmtruncate - unmap mappings "freed" by truncate() syscall
2081 * @inode: inode of the file used
2082 * @offset: file offset to start truncating
2084 * NOTE! We have to be ready to update the memory sharing
2085 * between the file and the memory map for a potential last
2086 * incomplete page. Ugly, but necessary.
2088 int vmtruncate(struct inode
* inode
, loff_t offset
)
2090 if (inode
->i_size
< offset
) {
2091 unsigned long limit
;
2093 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2094 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
2096 if (offset
> inode
->i_sb
->s_maxbytes
)
2098 i_size_write(inode
, offset
);
2100 struct address_space
*mapping
= inode
->i_mapping
;
2103 * truncation of in-use swapfiles is disallowed - it would
2104 * cause subsequent swapout to scribble on the now-freed
2107 if (IS_SWAPFILE(inode
))
2109 i_size_write(inode
, offset
);
2112 * unmap_mapping_range is called twice, first simply for
2113 * efficiency so that truncate_inode_pages does fewer
2114 * single-page unmaps. However after this first call, and
2115 * before truncate_inode_pages finishes, it is possible for
2116 * private pages to be COWed, which remain after
2117 * truncate_inode_pages finishes, hence the second
2118 * unmap_mapping_range call must be made for correctness.
2120 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2121 truncate_inode_pages(mapping
, offset
);
2122 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2125 if (inode
->i_op
&& inode
->i_op
->truncate
)
2126 inode
->i_op
->truncate(inode
);
2130 send_sig(SIGXFSZ
, current
, 0);
2134 EXPORT_SYMBOL(vmtruncate
);
2136 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2138 struct address_space
*mapping
= inode
->i_mapping
;
2141 * If the underlying filesystem is not going to provide
2142 * a way to truncate a range of blocks (punch a hole) -
2143 * we should return failure right now.
2145 if (!inode
->i_op
|| !inode
->i_op
->truncate_range
)
2148 mutex_lock(&inode
->i_mutex
);
2149 down_write(&inode
->i_alloc_sem
);
2150 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2151 truncate_inode_pages_range(mapping
, offset
, end
);
2152 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2153 inode
->i_op
->truncate_range(inode
, offset
, end
);
2154 up_write(&inode
->i_alloc_sem
);
2155 mutex_unlock(&inode
->i_mutex
);
2161 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2162 * but allow concurrent faults), and pte mapped but not yet locked.
2163 * We return with mmap_sem still held, but pte unmapped and unlocked.
2165 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2166 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2167 int write_access
, pte_t orig_pte
)
2175 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2178 entry
= pte_to_swp_entry(orig_pte
);
2179 if (is_migration_entry(entry
)) {
2180 migration_entry_wait(mm
, pmd
, address
);
2183 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2184 page
= lookup_swap_cache(entry
);
2186 grab_swap_token(); /* Contend for token _before_ read-in */
2187 page
= swapin_readahead(entry
,
2188 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2191 * Back out if somebody else faulted in this pte
2192 * while we released the pte lock.
2194 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2195 if (likely(pte_same(*page_table
, orig_pte
)))
2197 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2201 /* Had to read the page from swap area: Major fault */
2202 ret
= VM_FAULT_MAJOR
;
2203 count_vm_event(PGMAJFAULT
);
2206 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
)) {
2207 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2212 mark_page_accessed(page
);
2214 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2217 * Back out if somebody else already faulted in this pte.
2219 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2220 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2223 if (unlikely(!PageUptodate(page
))) {
2224 ret
= VM_FAULT_SIGBUS
;
2228 /* The page isn't present yet, go ahead with the fault. */
2230 inc_mm_counter(mm
, anon_rss
);
2231 pte
= mk_pte(page
, vma
->vm_page_prot
);
2232 if (write_access
&& can_share_swap_page(page
)) {
2233 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2237 flush_icache_page(vma
, page
);
2238 set_pte_at(mm
, address
, page_table
, pte
);
2239 page_add_anon_rmap(page
, vma
, address
);
2243 remove_exclusive_swap_page(page
);
2247 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2248 if (ret
& VM_FAULT_ERROR
)
2249 ret
&= VM_FAULT_ERROR
;
2253 /* No need to invalidate - it was non-present before */
2254 update_mmu_cache(vma
, address
, pte
);
2256 pte_unmap_unlock(page_table
, ptl
);
2260 mem_cgroup_uncharge_page(page
);
2261 pte_unmap_unlock(page_table
, ptl
);
2263 page_cache_release(page
);
2268 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2269 * but allow concurrent faults), and pte mapped but not yet locked.
2270 * We return with mmap_sem still held, but pte unmapped and unlocked.
2272 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2273 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2280 /* Allocate our own private page. */
2281 pte_unmap(page_table
);
2283 if (unlikely(anon_vma_prepare(vma
)))
2285 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2288 __SetPageUptodate(page
);
2290 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
))
2293 entry
= mk_pte(page
, vma
->vm_page_prot
);
2294 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2296 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2297 if (!pte_none(*page_table
))
2299 inc_mm_counter(mm
, anon_rss
);
2300 lru_cache_add_active(page
);
2301 page_add_new_anon_rmap(page
, vma
, address
);
2302 set_pte_at(mm
, address
, page_table
, entry
);
2304 /* No need to invalidate - it was non-present before */
2305 update_mmu_cache(vma
, address
, entry
);
2307 pte_unmap_unlock(page_table
, ptl
);
2310 mem_cgroup_uncharge_page(page
);
2311 page_cache_release(page
);
2314 page_cache_release(page
);
2316 return VM_FAULT_OOM
;
2320 * __do_fault() tries to create a new page mapping. It aggressively
2321 * tries to share with existing pages, but makes a separate copy if
2322 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2323 * the next page fault.
2325 * As this is called only for pages that do not currently exist, we
2326 * do not need to flush old virtual caches or the TLB.
2328 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2329 * but allow concurrent faults), and pte neither mapped nor locked.
2330 * We return with mmap_sem still held, but pte unmapped and unlocked.
2332 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2333 unsigned long address
, pmd_t
*pmd
,
2334 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2341 struct page
*dirty_page
= NULL
;
2342 struct vm_fault vmf
;
2344 int page_mkwrite
= 0;
2346 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2351 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2352 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2356 * For consistency in subsequent calls, make the faulted page always
2359 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2360 lock_page(vmf
.page
);
2362 VM_BUG_ON(!PageLocked(vmf
.page
));
2365 * Should we do an early C-O-W break?
2368 if (flags
& FAULT_FLAG_WRITE
) {
2369 if (!(vma
->vm_flags
& VM_SHARED
)) {
2371 if (unlikely(anon_vma_prepare(vma
))) {
2375 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2381 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2382 __SetPageUptodate(page
);
2385 * If the page will be shareable, see if the backing
2386 * address space wants to know that the page is about
2387 * to become writable
2389 if (vma
->vm_ops
->page_mkwrite
) {
2391 if (vma
->vm_ops
->page_mkwrite(vma
, page
) < 0) {
2392 ret
= VM_FAULT_SIGBUS
;
2393 anon
= 1; /* no anon but release vmf.page */
2398 * XXX: this is not quite right (racy vs
2399 * invalidate) to unlock and relock the page
2400 * like this, however a better fix requires
2401 * reworking page_mkwrite locking API, which
2402 * is better done later.
2404 if (!page
->mapping
) {
2406 anon
= 1; /* no anon but release vmf.page */
2415 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
)) {
2420 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2423 * This silly early PAGE_DIRTY setting removes a race
2424 * due to the bad i386 page protection. But it's valid
2425 * for other architectures too.
2427 * Note that if write_access is true, we either now have
2428 * an exclusive copy of the page, or this is a shared mapping,
2429 * so we can make it writable and dirty to avoid having to
2430 * handle that later.
2432 /* Only go through if we didn't race with anybody else... */
2433 if (likely(pte_same(*page_table
, orig_pte
))) {
2434 flush_icache_page(vma
, page
);
2435 entry
= mk_pte(page
, vma
->vm_page_prot
);
2436 if (flags
& FAULT_FLAG_WRITE
)
2437 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2438 set_pte_at(mm
, address
, page_table
, entry
);
2440 inc_mm_counter(mm
, anon_rss
);
2441 lru_cache_add_active(page
);
2442 page_add_new_anon_rmap(page
, vma
, address
);
2444 inc_mm_counter(mm
, file_rss
);
2445 page_add_file_rmap(page
);
2446 if (flags
& FAULT_FLAG_WRITE
) {
2448 get_page(dirty_page
);
2452 /* no need to invalidate: a not-present page won't be cached */
2453 update_mmu_cache(vma
, address
, entry
);
2455 mem_cgroup_uncharge_page(page
);
2457 page_cache_release(page
);
2459 anon
= 1; /* no anon but release faulted_page */
2462 pte_unmap_unlock(page_table
, ptl
);
2465 unlock_page(vmf
.page
);
2468 page_cache_release(vmf
.page
);
2469 else if (dirty_page
) {
2471 file_update_time(vma
->vm_file
);
2473 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2474 put_page(dirty_page
);
2480 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2481 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2482 int write_access
, pte_t orig_pte
)
2484 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2485 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2486 unsigned int flags
= (write_access
? FAULT_FLAG_WRITE
: 0);
2488 pte_unmap(page_table
);
2489 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2494 * do_no_pfn() tries to create a new page mapping for a page without
2495 * a struct_page backing it
2497 * As this is called only for pages that do not currently exist, we
2498 * do not need to flush old virtual caches or the TLB.
2500 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2501 * but allow concurrent faults), and pte mapped but not yet locked.
2502 * We return with mmap_sem still held, but pte unmapped and unlocked.
2504 * It is expected that the ->nopfn handler always returns the same pfn
2505 * for a given virtual mapping.
2507 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2509 static noinline
int do_no_pfn(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2510 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2517 pte_unmap(page_table
);
2518 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2519 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2521 pfn
= vma
->vm_ops
->nopfn(vma
, address
& PAGE_MASK
);
2523 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2525 if (unlikely(pfn
== NOPFN_OOM
))
2526 return VM_FAULT_OOM
;
2527 else if (unlikely(pfn
== NOPFN_SIGBUS
))
2528 return VM_FAULT_SIGBUS
;
2529 else if (unlikely(pfn
== NOPFN_REFAULT
))
2532 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2534 /* Only go through if we didn't race with anybody else... */
2535 if (pte_none(*page_table
)) {
2536 entry
= pfn_pte(pfn
, vma
->vm_page_prot
);
2538 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2539 set_pte_at(mm
, address
, page_table
, entry
);
2541 pte_unmap_unlock(page_table
, ptl
);
2546 * Fault of a previously existing named mapping. Repopulate the pte
2547 * from the encoded file_pte if possible. This enables swappable
2550 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2551 * but allow concurrent faults), and pte mapped but not yet locked.
2552 * We return with mmap_sem still held, but pte unmapped and unlocked.
2554 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2555 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2556 int write_access
, pte_t orig_pte
)
2558 unsigned int flags
= FAULT_FLAG_NONLINEAR
|
2559 (write_access
? FAULT_FLAG_WRITE
: 0);
2562 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2565 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
) ||
2566 !(vma
->vm_flags
& VM_CAN_NONLINEAR
))) {
2568 * Page table corrupted: show pte and kill process.
2570 print_bad_pte(vma
, orig_pte
, address
);
2571 return VM_FAULT_OOM
;
2574 pgoff
= pte_to_pgoff(orig_pte
);
2575 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2579 * These routines also need to handle stuff like marking pages dirty
2580 * and/or accessed for architectures that don't do it in hardware (most
2581 * RISC architectures). The early dirtying is also good on the i386.
2583 * There is also a hook called "update_mmu_cache()" that architectures
2584 * with external mmu caches can use to update those (ie the Sparc or
2585 * PowerPC hashed page tables that act as extended TLBs).
2587 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2588 * but allow concurrent faults), and pte mapped but not yet locked.
2589 * We return with mmap_sem still held, but pte unmapped and unlocked.
2591 static inline int handle_pte_fault(struct mm_struct
*mm
,
2592 struct vm_area_struct
*vma
, unsigned long address
,
2593 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2599 if (!pte_present(entry
)) {
2600 if (pte_none(entry
)) {
2602 if (likely(vma
->vm_ops
->fault
))
2603 return do_linear_fault(mm
, vma
, address
,
2604 pte
, pmd
, write_access
, entry
);
2605 if (unlikely(vma
->vm_ops
->nopfn
))
2606 return do_no_pfn(mm
, vma
, address
, pte
,
2609 return do_anonymous_page(mm
, vma
, address
,
2610 pte
, pmd
, write_access
);
2612 if (pte_file(entry
))
2613 return do_nonlinear_fault(mm
, vma
, address
,
2614 pte
, pmd
, write_access
, entry
);
2615 return do_swap_page(mm
, vma
, address
,
2616 pte
, pmd
, write_access
, entry
);
2619 ptl
= pte_lockptr(mm
, pmd
);
2621 if (unlikely(!pte_same(*pte
, entry
)))
2624 if (!pte_write(entry
))
2625 return do_wp_page(mm
, vma
, address
,
2626 pte
, pmd
, ptl
, entry
);
2627 entry
= pte_mkdirty(entry
);
2629 entry
= pte_mkyoung(entry
);
2630 if (ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
)) {
2631 update_mmu_cache(vma
, address
, entry
);
2634 * This is needed only for protection faults but the arch code
2635 * is not yet telling us if this is a protection fault or not.
2636 * This still avoids useless tlb flushes for .text page faults
2640 flush_tlb_page(vma
, address
);
2643 pte_unmap_unlock(pte
, ptl
);
2648 * By the time we get here, we already hold the mm semaphore
2650 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2651 unsigned long address
, int write_access
)
2658 __set_current_state(TASK_RUNNING
);
2660 count_vm_event(PGFAULT
);
2662 if (unlikely(is_vm_hugetlb_page(vma
)))
2663 return hugetlb_fault(mm
, vma
, address
, write_access
);
2665 pgd
= pgd_offset(mm
, address
);
2666 pud
= pud_alloc(mm
, pgd
, address
);
2668 return VM_FAULT_OOM
;
2669 pmd
= pmd_alloc(mm
, pud
, address
);
2671 return VM_FAULT_OOM
;
2672 pte
= pte_alloc_map(mm
, pmd
, address
);
2674 return VM_FAULT_OOM
;
2676 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2679 #ifndef __PAGETABLE_PUD_FOLDED
2681 * Allocate page upper directory.
2682 * We've already handled the fast-path in-line.
2684 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2686 pud_t
*new = pud_alloc_one(mm
, address
);
2690 smp_wmb(); /* See comment in __pte_alloc */
2692 spin_lock(&mm
->page_table_lock
);
2693 if (pgd_present(*pgd
)) /* Another has populated it */
2696 pgd_populate(mm
, pgd
, new);
2697 spin_unlock(&mm
->page_table_lock
);
2700 #endif /* __PAGETABLE_PUD_FOLDED */
2702 #ifndef __PAGETABLE_PMD_FOLDED
2704 * Allocate page middle directory.
2705 * We've already handled the fast-path in-line.
2707 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2709 pmd_t
*new = pmd_alloc_one(mm
, address
);
2713 smp_wmb(); /* See comment in __pte_alloc */
2715 spin_lock(&mm
->page_table_lock
);
2716 #ifndef __ARCH_HAS_4LEVEL_HACK
2717 if (pud_present(*pud
)) /* Another has populated it */
2720 pud_populate(mm
, pud
, new);
2722 if (pgd_present(*pud
)) /* Another has populated it */
2725 pgd_populate(mm
, pud
, new);
2726 #endif /* __ARCH_HAS_4LEVEL_HACK */
2727 spin_unlock(&mm
->page_table_lock
);
2730 #endif /* __PAGETABLE_PMD_FOLDED */
2732 int make_pages_present(unsigned long addr
, unsigned long end
)
2734 int ret
, len
, write
;
2735 struct vm_area_struct
* vma
;
2737 vma
= find_vma(current
->mm
, addr
);
2740 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
2741 BUG_ON(addr
>= end
);
2742 BUG_ON(end
> vma
->vm_end
);
2743 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
2744 ret
= get_user_pages(current
, current
->mm
, addr
,
2745 len
, write
, 0, NULL
, NULL
);
2748 return ret
== len
? 0 : -1;
2751 #if !defined(__HAVE_ARCH_GATE_AREA)
2753 #if defined(AT_SYSINFO_EHDR)
2754 static struct vm_area_struct gate_vma
;
2756 static int __init
gate_vma_init(void)
2758 gate_vma
.vm_mm
= NULL
;
2759 gate_vma
.vm_start
= FIXADDR_USER_START
;
2760 gate_vma
.vm_end
= FIXADDR_USER_END
;
2761 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
2762 gate_vma
.vm_page_prot
= __P101
;
2764 * Make sure the vDSO gets into every core dump.
2765 * Dumping its contents makes post-mortem fully interpretable later
2766 * without matching up the same kernel and hardware config to see
2767 * what PC values meant.
2769 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
2772 __initcall(gate_vma_init
);
2775 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
2777 #ifdef AT_SYSINFO_EHDR
2784 int in_gate_area_no_task(unsigned long addr
)
2786 #ifdef AT_SYSINFO_EHDR
2787 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
2793 #endif /* __HAVE_ARCH_GATE_AREA */
2796 * Access another process' address space.
2797 * Source/target buffer must be kernel space,
2798 * Do not walk the page table directly, use get_user_pages
2800 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2802 struct mm_struct
*mm
;
2803 struct vm_area_struct
*vma
;
2805 void *old_buf
= buf
;
2807 mm
= get_task_mm(tsk
);
2811 down_read(&mm
->mmap_sem
);
2812 /* ignore errors, just check how much was successfully transferred */
2814 int bytes
, ret
, offset
;
2817 ret
= get_user_pages(tsk
, mm
, addr
, 1,
2818 write
, 1, &page
, &vma
);
2823 offset
= addr
& (PAGE_SIZE
-1);
2824 if (bytes
> PAGE_SIZE
-offset
)
2825 bytes
= PAGE_SIZE
-offset
;
2829 copy_to_user_page(vma
, page
, addr
,
2830 maddr
+ offset
, buf
, bytes
);
2831 set_page_dirty_lock(page
);
2833 copy_from_user_page(vma
, page
, addr
,
2834 buf
, maddr
+ offset
, bytes
);
2837 page_cache_release(page
);
2842 up_read(&mm
->mmap_sem
);
2845 return buf
- old_buf
;
2849 * Print the name of a VMA.
2851 void print_vma_addr(char *prefix
, unsigned long ip
)
2853 struct mm_struct
*mm
= current
->mm
;
2854 struct vm_area_struct
*vma
;
2857 * Do not print if we are in atomic
2858 * contexts (in exception stacks, etc.):
2860 if (preempt_count())
2863 down_read(&mm
->mmap_sem
);
2864 vma
= find_vma(mm
, ip
);
2865 if (vma
&& vma
->vm_file
) {
2866 struct file
*f
= vma
->vm_file
;
2867 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
2871 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
2874 s
= strrchr(p
, '/');
2877 printk("%s%s[%lx+%lx]", prefix
, p
,
2879 vma
->vm_end
- vma
->vm_start
);
2880 free_page((unsigned long)buf
);
2883 up_read(¤t
->mm
->mmap_sem
);