sched: speed up context-switches a bit
[linux-2.6/mini2440.git] / kernel / sched_fair.c
blobcea1fa32b3f4f64b35fe2526e5af700547e8c2f7
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length
29 * and have no persistent notion like in traditional, time-slice
30 * based scheduling concepts.
32 * (to see the precise effective timeslice length of your workload,
33 * run vmstat and monitor the context-switches (cs) field)
35 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38 * After fork, child runs first. (default) If set to 0 then
39 * parent will (try to) run first.
41 const_debug unsigned int sysctl_sched_child_runs_first = 1;
44 * Minimal preemption granularity for CPU-bound tasks:
45 * (default: 2 msec, units: nanoseconds)
47 const_debug unsigned int sysctl_sched_nr_latency = 20;
50 * sys_sched_yield() compat mode
52 * This option switches the agressive yield implementation of the
53 * old scheduler back on.
55 unsigned int __read_mostly sysctl_sched_compat_yield;
58 * SCHED_BATCH wake-up granularity.
59 * (default: 10 msec, units: nanoseconds)
61 * This option delays the preemption effects of decoupled workloads
62 * and reduces their over-scheduling. Synchronous workloads will still
63 * have immediate wakeup/sleep latencies.
65 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
68 * SCHED_OTHER wake-up granularity.
69 * (default: 10 msec, units: nanoseconds)
71 * This option delays the preemption effects of decoupled workloads
72 * and reduces their over-scheduling. Synchronous workloads will still
73 * have immediate wakeup/sleep latencies.
75 const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
77 /**************************************************************
78 * CFS operations on generic schedulable entities:
81 #ifdef CONFIG_FAIR_GROUP_SCHED
83 /* cpu runqueue to which this cfs_rq is attached */
84 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86 return cfs_rq->rq;
89 /* An entity is a task if it doesn't "own" a runqueue */
90 #define entity_is_task(se) (!se->my_q)
92 #else /* CONFIG_FAIR_GROUP_SCHED */
94 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
96 return container_of(cfs_rq, struct rq, cfs);
99 #define entity_is_task(se) 1
101 #endif /* CONFIG_FAIR_GROUP_SCHED */
103 static inline struct task_struct *task_of(struct sched_entity *se)
105 return container_of(se, struct task_struct, se);
109 /**************************************************************
110 * Scheduling class tree data structure manipulation methods:
113 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
115 s64 delta = (s64)(vruntime - min_vruntime);
116 if (delta > 0)
117 min_vruntime = vruntime;
119 return min_vruntime;
122 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta < 0)
126 min_vruntime = vruntime;
128 return min_vruntime;
131 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
133 return se->vruntime - cfs_rq->min_vruntime;
137 * Enqueue an entity into the rb-tree:
139 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
141 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
142 struct rb_node *parent = NULL;
143 struct sched_entity *entry;
144 s64 key = entity_key(cfs_rq, se);
145 int leftmost = 1;
148 * Find the right place in the rbtree:
150 while (*link) {
151 parent = *link;
152 entry = rb_entry(parent, struct sched_entity, run_node);
154 * We dont care about collisions. Nodes with
155 * the same key stay together.
157 if (key < entity_key(cfs_rq, entry)) {
158 link = &parent->rb_left;
159 } else {
160 link = &parent->rb_right;
161 leftmost = 0;
166 * Maintain a cache of leftmost tree entries (it is frequently
167 * used):
169 if (leftmost)
170 cfs_rq->rb_leftmost = &se->run_node;
172 rb_link_node(&se->run_node, parent, link);
173 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
176 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
178 if (cfs_rq->rb_leftmost == &se->run_node)
179 cfs_rq->rb_leftmost = rb_next(&se->run_node);
181 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
184 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
186 return cfs_rq->rb_leftmost;
189 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
191 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
194 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
196 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
197 struct sched_entity *se = NULL;
198 struct rb_node *parent;
200 while (*link) {
201 parent = *link;
202 se = rb_entry(parent, struct sched_entity, run_node);
203 link = &parent->rb_right;
206 return se;
209 /**************************************************************
210 * Scheduling class statistics methods:
215 * The idea is to set a period in which each task runs once.
217 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
218 * this period because otherwise the slices get too small.
220 * p = (nr <= nl) ? l : l*nr/nl
222 static u64 __sched_period(unsigned long nr_running)
224 u64 period = sysctl_sched_latency;
225 unsigned long nr_latency = sysctl_sched_nr_latency;
227 if (unlikely(nr_running > nr_latency)) {
228 period *= nr_running;
229 do_div(period, nr_latency);
232 return period;
236 * We calculate the wall-time slice from the period by taking a part
237 * proportional to the weight.
239 * s = p*w/rw
241 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
243 u64 slice = __sched_period(cfs_rq->nr_running);
245 slice *= se->load.weight;
246 do_div(slice, cfs_rq->load.weight);
248 return slice;
252 * We calculate the vruntime slice.
254 * vs = s/w = p/rw
256 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
258 u64 vslice = __sched_period(nr_running);
260 do_div(vslice, rq_weight);
262 return vslice;
265 static u64 sched_vslice(struct cfs_rq *cfs_rq)
267 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
270 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
272 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
273 cfs_rq->nr_running + 1);
277 * Update the current task's runtime statistics. Skip current tasks that
278 * are not in our scheduling class.
280 static inline void
281 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
282 unsigned long delta_exec)
284 unsigned long delta_exec_weighted;
285 u64 vruntime;
287 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
289 curr->sum_exec_runtime += delta_exec;
290 schedstat_add(cfs_rq, exec_clock, delta_exec);
291 delta_exec_weighted = delta_exec;
292 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
293 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
294 &curr->load);
296 curr->vruntime += delta_exec_weighted;
299 * maintain cfs_rq->min_vruntime to be a monotonic increasing
300 * value tracking the leftmost vruntime in the tree.
302 if (first_fair(cfs_rq)) {
303 vruntime = min_vruntime(curr->vruntime,
304 __pick_next_entity(cfs_rq)->vruntime);
305 } else
306 vruntime = curr->vruntime;
308 cfs_rq->min_vruntime =
309 max_vruntime(cfs_rq->min_vruntime, vruntime);
312 static void update_curr(struct cfs_rq *cfs_rq)
314 struct sched_entity *curr = cfs_rq->curr;
315 u64 now = rq_of(cfs_rq)->clock;
316 unsigned long delta_exec;
318 if (unlikely(!curr))
319 return;
322 * Get the amount of time the current task was running
323 * since the last time we changed load (this cannot
324 * overflow on 32 bits):
326 delta_exec = (unsigned long)(now - curr->exec_start);
328 __update_curr(cfs_rq, curr, delta_exec);
329 curr->exec_start = now;
332 static inline void
333 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
335 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
339 * Task is being enqueued - update stats:
341 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
344 * Are we enqueueing a waiting task? (for current tasks
345 * a dequeue/enqueue event is a NOP)
347 if (se != cfs_rq->curr)
348 update_stats_wait_start(cfs_rq, se);
351 static void
352 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
354 schedstat_set(se->wait_max, max(se->wait_max,
355 rq_of(cfs_rq)->clock - se->wait_start));
356 schedstat_set(se->wait_start, 0);
359 static inline void
360 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
363 * Mark the end of the wait period if dequeueing a
364 * waiting task:
366 if (se != cfs_rq->curr)
367 update_stats_wait_end(cfs_rq, se);
371 * We are picking a new current task - update its stats:
373 static inline void
374 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
377 * We are starting a new run period:
379 se->exec_start = rq_of(cfs_rq)->clock;
382 /**************************************************
383 * Scheduling class queueing methods:
386 static void
387 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
389 update_load_add(&cfs_rq->load, se->load.weight);
390 cfs_rq->nr_running++;
391 se->on_rq = 1;
394 static void
395 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
397 update_load_sub(&cfs_rq->load, se->load.weight);
398 cfs_rq->nr_running--;
399 se->on_rq = 0;
402 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
404 #ifdef CONFIG_SCHEDSTATS
405 if (se->sleep_start) {
406 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
408 if ((s64)delta < 0)
409 delta = 0;
411 if (unlikely(delta > se->sleep_max))
412 se->sleep_max = delta;
414 se->sleep_start = 0;
415 se->sum_sleep_runtime += delta;
417 if (se->block_start) {
418 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
420 if ((s64)delta < 0)
421 delta = 0;
423 if (unlikely(delta > se->block_max))
424 se->block_max = delta;
426 se->block_start = 0;
427 se->sum_sleep_runtime += delta;
430 * Blocking time is in units of nanosecs, so shift by 20 to
431 * get a milliseconds-range estimation of the amount of
432 * time that the task spent sleeping:
434 if (unlikely(prof_on == SLEEP_PROFILING)) {
435 struct task_struct *tsk = task_of(se);
437 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
438 delta >> 20);
441 #endif
444 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
446 #ifdef CONFIG_SCHED_DEBUG
447 s64 d = se->vruntime - cfs_rq->min_vruntime;
449 if (d < 0)
450 d = -d;
452 if (d > 3*sysctl_sched_latency)
453 schedstat_inc(cfs_rq, nr_spread_over);
454 #endif
457 static void
458 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
460 u64 vruntime;
462 vruntime = cfs_rq->min_vruntime;
464 if (sched_feat(TREE_AVG)) {
465 struct sched_entity *last = __pick_last_entity(cfs_rq);
466 if (last) {
467 vruntime += last->vruntime;
468 vruntime >>= 1;
470 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
471 vruntime += sched_vslice(cfs_rq)/2;
473 if (initial && sched_feat(START_DEBIT))
474 vruntime += sched_vslice_add(cfs_rq, se);
476 if (!initial) {
477 if (sched_feat(NEW_FAIR_SLEEPERS) && entity_is_task(se) &&
478 task_of(se)->policy != SCHED_BATCH)
479 vruntime -= sysctl_sched_latency;
481 vruntime = max_t(s64, vruntime, se->vruntime);
484 se->vruntime = vruntime;
488 static void
489 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
492 * Update run-time statistics of the 'current'.
494 update_curr(cfs_rq);
496 if (wakeup) {
497 place_entity(cfs_rq, se, 0);
498 enqueue_sleeper(cfs_rq, se);
501 update_stats_enqueue(cfs_rq, se);
502 check_spread(cfs_rq, se);
503 if (se != cfs_rq->curr)
504 __enqueue_entity(cfs_rq, se);
505 account_entity_enqueue(cfs_rq, se);
508 static void
509 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
512 * Update run-time statistics of the 'current'.
514 update_curr(cfs_rq);
516 update_stats_dequeue(cfs_rq, se);
517 if (sleep) {
518 se->peer_preempt = 0;
519 #ifdef CONFIG_SCHEDSTATS
520 if (entity_is_task(se)) {
521 struct task_struct *tsk = task_of(se);
523 if (tsk->state & TASK_INTERRUPTIBLE)
524 se->sleep_start = rq_of(cfs_rq)->clock;
525 if (tsk->state & TASK_UNINTERRUPTIBLE)
526 se->block_start = rq_of(cfs_rq)->clock;
528 #endif
531 if (se != cfs_rq->curr)
532 __dequeue_entity(cfs_rq, se);
533 account_entity_dequeue(cfs_rq, se);
537 * Preempt the current task with a newly woken task if needed:
539 static void
540 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
542 unsigned long ideal_runtime, delta_exec;
544 ideal_runtime = sched_slice(cfs_rq, curr);
545 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
546 if (delta_exec > ideal_runtime ||
547 (sched_feat(PREEMPT_RESTRICT) && curr->peer_preempt))
548 resched_task(rq_of(cfs_rq)->curr);
549 curr->peer_preempt = 0;
552 static void
553 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 /* 'current' is not kept within the tree. */
556 if (se->on_rq) {
558 * Any task has to be enqueued before it get to execute on
559 * a CPU. So account for the time it spent waiting on the
560 * runqueue.
562 update_stats_wait_end(cfs_rq, se);
563 __dequeue_entity(cfs_rq, se);
566 update_stats_curr_start(cfs_rq, se);
567 cfs_rq->curr = se;
568 #ifdef CONFIG_SCHEDSTATS
570 * Track our maximum slice length, if the CPU's load is at
571 * least twice that of our own weight (i.e. dont track it
572 * when there are only lesser-weight tasks around):
574 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
575 se->slice_max = max(se->slice_max,
576 se->sum_exec_runtime - se->prev_sum_exec_runtime);
578 #endif
579 se->prev_sum_exec_runtime = se->sum_exec_runtime;
582 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
584 struct sched_entity *se = NULL;
586 if (first_fair(cfs_rq)) {
587 se = __pick_next_entity(cfs_rq);
588 set_next_entity(cfs_rq, se);
591 return se;
594 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
597 * If still on the runqueue then deactivate_task()
598 * was not called and update_curr() has to be done:
600 if (prev->on_rq)
601 update_curr(cfs_rq);
603 check_spread(cfs_rq, prev);
604 if (prev->on_rq) {
605 update_stats_wait_start(cfs_rq, prev);
606 /* Put 'current' back into the tree. */
607 __enqueue_entity(cfs_rq, prev);
609 cfs_rq->curr = NULL;
612 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
615 * Update run-time statistics of the 'current'.
617 update_curr(cfs_rq);
619 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
620 check_preempt_tick(cfs_rq, curr);
623 /**************************************************
624 * CFS operations on tasks:
627 #ifdef CONFIG_FAIR_GROUP_SCHED
629 /* Walk up scheduling entities hierarchy */
630 #define for_each_sched_entity(se) \
631 for (; se; se = se->parent)
633 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
635 return p->se.cfs_rq;
638 /* runqueue on which this entity is (to be) queued */
639 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
641 return se->cfs_rq;
644 /* runqueue "owned" by this group */
645 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
647 return grp->my_q;
650 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
651 * another cpu ('this_cpu')
653 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
655 return cfs_rq->tg->cfs_rq[this_cpu];
658 /* Iterate thr' all leaf cfs_rq's on a runqueue */
659 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
660 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
662 /* Do the two (enqueued) entities belong to the same group ? */
663 static inline int
664 is_same_group(struct sched_entity *se, struct sched_entity *pse)
666 if (se->cfs_rq == pse->cfs_rq)
667 return 1;
669 return 0;
672 static inline struct sched_entity *parent_entity(struct sched_entity *se)
674 return se->parent;
677 #else /* CONFIG_FAIR_GROUP_SCHED */
679 #define for_each_sched_entity(se) \
680 for (; se; se = NULL)
682 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
684 return &task_rq(p)->cfs;
687 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
689 struct task_struct *p = task_of(se);
690 struct rq *rq = task_rq(p);
692 return &rq->cfs;
695 /* runqueue "owned" by this group */
696 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
698 return NULL;
701 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
703 return &cpu_rq(this_cpu)->cfs;
706 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
707 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
709 static inline int
710 is_same_group(struct sched_entity *se, struct sched_entity *pse)
712 return 1;
715 static inline struct sched_entity *parent_entity(struct sched_entity *se)
717 return NULL;
720 #endif /* CONFIG_FAIR_GROUP_SCHED */
723 * The enqueue_task method is called before nr_running is
724 * increased. Here we update the fair scheduling stats and
725 * then put the task into the rbtree:
727 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
729 struct cfs_rq *cfs_rq;
730 struct sched_entity *se = &p->se;
732 for_each_sched_entity(se) {
733 if (se->on_rq)
734 break;
735 cfs_rq = cfs_rq_of(se);
736 enqueue_entity(cfs_rq, se, wakeup);
737 wakeup = 1;
742 * The dequeue_task method is called before nr_running is
743 * decreased. We remove the task from the rbtree and
744 * update the fair scheduling stats:
746 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
748 struct cfs_rq *cfs_rq;
749 struct sched_entity *se = &p->se;
751 for_each_sched_entity(se) {
752 cfs_rq = cfs_rq_of(se);
753 dequeue_entity(cfs_rq, se, sleep);
754 /* Don't dequeue parent if it has other entities besides us */
755 if (cfs_rq->load.weight)
756 break;
757 sleep = 1;
762 * sched_yield() support is very simple - we dequeue and enqueue.
764 * If compat_yield is turned on then we requeue to the end of the tree.
766 static void yield_task_fair(struct rq *rq)
768 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
769 struct sched_entity *rightmost, *se = &rq->curr->se;
772 * Are we the only task in the tree?
774 if (unlikely(cfs_rq->nr_running == 1))
775 return;
777 if (likely(!sysctl_sched_compat_yield)) {
778 __update_rq_clock(rq);
780 * Update run-time statistics of the 'current'.
782 update_curr(cfs_rq);
784 return;
787 * Find the rightmost entry in the rbtree:
789 rightmost = __pick_last_entity(cfs_rq);
791 * Already in the rightmost position?
793 if (unlikely(rightmost->vruntime < se->vruntime))
794 return;
797 * Minimally necessary key value to be last in the tree:
798 * Upon rescheduling, sched_class::put_prev_task() will place
799 * 'current' within the tree based on its new key value.
801 se->vruntime = rightmost->vruntime + 1;
805 * Preempt the current task with a newly woken task if needed:
807 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
809 struct task_struct *curr = rq->curr;
810 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
811 struct sched_entity *se = &curr->se, *pse = &p->se;
812 s64 delta, gran;
814 if (unlikely(rt_prio(p->prio))) {
815 update_rq_clock(rq);
816 update_curr(cfs_rq);
817 resched_task(curr);
818 return;
821 * Batch tasks do not preempt (their preemption is driven by
822 * the tick):
824 if (unlikely(p->policy == SCHED_BATCH))
825 return;
827 if (sched_feat(WAKEUP_PREEMPT)) {
828 while (!is_same_group(se, pse)) {
829 se = parent_entity(se);
830 pse = parent_entity(pse);
833 delta = se->vruntime - pse->vruntime;
834 gran = sysctl_sched_wakeup_granularity;
835 if (unlikely(se->load.weight != NICE_0_LOAD))
836 gran = calc_delta_fair(gran, &se->load);
838 if (delta > gran) {
839 int now = !sched_feat(PREEMPT_RESTRICT);
841 if (now || p->prio < curr->prio || !se->peer_preempt++)
842 resched_task(curr);
847 static struct task_struct *pick_next_task_fair(struct rq *rq)
849 struct cfs_rq *cfs_rq = &rq->cfs;
850 struct sched_entity *se;
852 if (unlikely(!cfs_rq->nr_running))
853 return NULL;
855 do {
856 se = pick_next_entity(cfs_rq);
857 cfs_rq = group_cfs_rq(se);
858 } while (cfs_rq);
860 return task_of(se);
864 * Account for a descheduled task:
866 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
868 struct sched_entity *se = &prev->se;
869 struct cfs_rq *cfs_rq;
871 for_each_sched_entity(se) {
872 cfs_rq = cfs_rq_of(se);
873 put_prev_entity(cfs_rq, se);
877 /**************************************************
878 * Fair scheduling class load-balancing methods:
882 * Load-balancing iterator. Note: while the runqueue stays locked
883 * during the whole iteration, the current task might be
884 * dequeued so the iterator has to be dequeue-safe. Here we
885 * achieve that by always pre-iterating before returning
886 * the current task:
888 static struct task_struct *
889 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
891 struct task_struct *p;
893 if (!curr)
894 return NULL;
896 p = rb_entry(curr, struct task_struct, se.run_node);
897 cfs_rq->rb_load_balance_curr = rb_next(curr);
899 return p;
902 static struct task_struct *load_balance_start_fair(void *arg)
904 struct cfs_rq *cfs_rq = arg;
906 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
909 static struct task_struct *load_balance_next_fair(void *arg)
911 struct cfs_rq *cfs_rq = arg;
913 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
916 #ifdef CONFIG_FAIR_GROUP_SCHED
917 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
919 struct sched_entity *curr;
920 struct task_struct *p;
922 if (!cfs_rq->nr_running)
923 return MAX_PRIO;
925 curr = cfs_rq->curr;
926 if (!curr)
927 curr = __pick_next_entity(cfs_rq);
929 p = task_of(curr);
931 return p->prio;
933 #endif
935 static unsigned long
936 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
937 unsigned long max_nr_move, unsigned long max_load_move,
938 struct sched_domain *sd, enum cpu_idle_type idle,
939 int *all_pinned, int *this_best_prio)
941 struct cfs_rq *busy_cfs_rq;
942 unsigned long load_moved, total_nr_moved = 0, nr_moved;
943 long rem_load_move = max_load_move;
944 struct rq_iterator cfs_rq_iterator;
946 cfs_rq_iterator.start = load_balance_start_fair;
947 cfs_rq_iterator.next = load_balance_next_fair;
949 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
950 #ifdef CONFIG_FAIR_GROUP_SCHED
951 struct cfs_rq *this_cfs_rq;
952 long imbalance;
953 unsigned long maxload;
955 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
957 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
958 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
959 if (imbalance <= 0)
960 continue;
962 /* Don't pull more than imbalance/2 */
963 imbalance /= 2;
964 maxload = min(rem_load_move, imbalance);
966 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
967 #else
968 # define maxload rem_load_move
969 #endif
970 /* pass busy_cfs_rq argument into
971 * load_balance_[start|next]_fair iterators
973 cfs_rq_iterator.arg = busy_cfs_rq;
974 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
975 max_nr_move, maxload, sd, idle, all_pinned,
976 &load_moved, this_best_prio, &cfs_rq_iterator);
978 total_nr_moved += nr_moved;
979 max_nr_move -= nr_moved;
980 rem_load_move -= load_moved;
982 if (max_nr_move <= 0 || rem_load_move <= 0)
983 break;
986 return max_load_move - rem_load_move;
990 * scheduler tick hitting a task of our scheduling class:
992 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
994 struct cfs_rq *cfs_rq;
995 struct sched_entity *se = &curr->se;
997 for_each_sched_entity(se) {
998 cfs_rq = cfs_rq_of(se);
999 entity_tick(cfs_rq, se);
1003 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1006 * Share the fairness runtime between parent and child, thus the
1007 * total amount of pressure for CPU stays equal - new tasks
1008 * get a chance to run but frequent forkers are not allowed to
1009 * monopolize the CPU. Note: the parent runqueue is locked,
1010 * the child is not running yet.
1012 static void task_new_fair(struct rq *rq, struct task_struct *p)
1014 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1015 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1016 int this_cpu = smp_processor_id();
1018 sched_info_queued(p);
1020 update_curr(cfs_rq);
1021 place_entity(cfs_rq, se, 1);
1023 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1024 curr->vruntime < se->vruntime) {
1026 * Upon rescheduling, sched_class::put_prev_task() will place
1027 * 'current' within the tree based on its new key value.
1029 swap(curr->vruntime, se->vruntime);
1032 update_stats_enqueue(cfs_rq, se);
1033 check_spread(cfs_rq, se);
1034 check_spread(cfs_rq, curr);
1035 __enqueue_entity(cfs_rq, se);
1036 account_entity_enqueue(cfs_rq, se);
1037 se->peer_preempt = 0;
1038 resched_task(rq->curr);
1041 /* Account for a task changing its policy or group.
1043 * This routine is mostly called to set cfs_rq->curr field when a task
1044 * migrates between groups/classes.
1046 static void set_curr_task_fair(struct rq *rq)
1048 struct sched_entity *se = &rq->curr->se;
1050 for_each_sched_entity(se)
1051 set_next_entity(cfs_rq_of(se), se);
1055 * All the scheduling class methods:
1057 static const struct sched_class fair_sched_class = {
1058 .next = &idle_sched_class,
1059 .enqueue_task = enqueue_task_fair,
1060 .dequeue_task = dequeue_task_fair,
1061 .yield_task = yield_task_fair,
1063 .check_preempt_curr = check_preempt_wakeup,
1065 .pick_next_task = pick_next_task_fair,
1066 .put_prev_task = put_prev_task_fair,
1068 .load_balance = load_balance_fair,
1070 .set_curr_task = set_curr_task_fair,
1071 .task_tick = task_tick_fair,
1072 .task_new = task_new_fair,
1075 #ifdef CONFIG_SCHED_DEBUG
1076 static void print_cfs_stats(struct seq_file *m, int cpu)
1078 struct cfs_rq *cfs_rq;
1080 #ifdef CONFIG_FAIR_GROUP_SCHED
1081 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1082 #endif
1083 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1084 print_cfs_rq(m, cpu, cfs_rq);
1086 #endif