4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/module.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
38 #include <linux/compat.h>
39 #include <linux/syscalls.h>
40 #include <linux/kprobes.h>
41 #include <linux/user_namespace.h>
43 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
47 #ifndef SET_UNALIGN_CTL
48 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
50 #ifndef GET_UNALIGN_CTL
51 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
54 # define SET_FPEMU_CTL(a,b) (-EINVAL)
57 # define GET_FPEMU_CTL(a,b) (-EINVAL)
60 # define SET_FPEXC_CTL(a,b) (-EINVAL)
63 # define GET_FPEXC_CTL(a,b) (-EINVAL)
66 # define GET_ENDIAN(a,b) (-EINVAL)
69 # define SET_ENDIAN(a,b) (-EINVAL)
72 # define GET_TSC_CTL(a) (-EINVAL)
75 # define SET_TSC_CTL(a) (-EINVAL)
79 * this is where the system-wide overflow UID and GID are defined, for
80 * architectures that now have 32-bit UID/GID but didn't in the past
83 int overflowuid
= DEFAULT_OVERFLOWUID
;
84 int overflowgid
= DEFAULT_OVERFLOWGID
;
87 EXPORT_SYMBOL(overflowuid
);
88 EXPORT_SYMBOL(overflowgid
);
92 * the same as above, but for filesystems which can only store a 16-bit
93 * UID and GID. as such, this is needed on all architectures
96 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
97 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
99 EXPORT_SYMBOL(fs_overflowuid
);
100 EXPORT_SYMBOL(fs_overflowgid
);
103 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
108 EXPORT_SYMBOL(cad_pid
);
111 * If set, this is used for preparing the system to power off.
114 void (*pm_power_off_prepare
)(void);
117 * set the priority of a task
118 * - the caller must hold the RCU read lock
120 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
122 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
125 if (pcred
->uid
!= cred
->euid
&&
126 pcred
->euid
!= cred
->euid
&& !capable(CAP_SYS_NICE
)) {
130 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
134 no_nice
= security_task_setnice(p
, niceval
);
141 set_user_nice(p
, niceval
);
146 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
148 struct task_struct
*g
, *p
;
149 struct user_struct
*user
;
150 const struct cred
*cred
= current_cred();
154 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
157 /* normalize: avoid signed division (rounding problems) */
164 read_lock(&tasklist_lock
);
168 p
= find_task_by_vpid(who
);
172 error
= set_one_prio(p
, niceval
, error
);
176 pgrp
= find_vpid(who
);
178 pgrp
= task_pgrp(current
);
179 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
180 error
= set_one_prio(p
, niceval
, error
);
181 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
184 user
= (struct user_struct
*) cred
->user
;
187 else if ((who
!= cred
->uid
) &&
188 !(user
= find_user(who
)))
189 goto out_unlock
; /* No processes for this user */
192 if (__task_cred(p
)->uid
== who
)
193 error
= set_one_prio(p
, niceval
, error
);
194 while_each_thread(g
, p
);
195 if (who
!= cred
->uid
)
196 free_uid(user
); /* For find_user() */
200 read_unlock(&tasklist_lock
);
206 * Ugh. To avoid negative return values, "getpriority()" will
207 * not return the normal nice-value, but a negated value that
208 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
209 * to stay compatible.
211 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
213 struct task_struct
*g
, *p
;
214 struct user_struct
*user
;
215 const struct cred
*cred
= current_cred();
216 long niceval
, retval
= -ESRCH
;
219 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
222 read_lock(&tasklist_lock
);
226 p
= find_task_by_vpid(who
);
230 niceval
= 20 - task_nice(p
);
231 if (niceval
> retval
)
237 pgrp
= find_vpid(who
);
239 pgrp
= task_pgrp(current
);
240 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
241 niceval
= 20 - task_nice(p
);
242 if (niceval
> retval
)
244 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
247 user
= (struct user_struct
*) cred
->user
;
250 else if ((who
!= cred
->uid
) &&
251 !(user
= find_user(who
)))
252 goto out_unlock
; /* No processes for this user */
255 if (__task_cred(p
)->uid
== who
) {
256 niceval
= 20 - task_nice(p
);
257 if (niceval
> retval
)
260 while_each_thread(g
, p
);
261 if (who
!= cred
->uid
)
262 free_uid(user
); /* for find_user() */
266 read_unlock(&tasklist_lock
);
272 * emergency_restart - reboot the system
274 * Without shutting down any hardware or taking any locks
275 * reboot the system. This is called when we know we are in
276 * trouble so this is our best effort to reboot. This is
277 * safe to call in interrupt context.
279 void emergency_restart(void)
281 machine_emergency_restart();
283 EXPORT_SYMBOL_GPL(emergency_restart
);
285 void kernel_restart_prepare(char *cmd
)
287 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
288 system_state
= SYSTEM_RESTART
;
294 * kernel_restart - reboot the system
295 * @cmd: pointer to buffer containing command to execute for restart
298 * Shutdown everything and perform a clean reboot.
299 * This is not safe to call in interrupt context.
301 void kernel_restart(char *cmd
)
303 kernel_restart_prepare(cmd
);
305 printk(KERN_EMERG
"Restarting system.\n");
307 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
308 machine_restart(cmd
);
310 EXPORT_SYMBOL_GPL(kernel_restart
);
312 static void kernel_shutdown_prepare(enum system_states state
)
314 blocking_notifier_call_chain(&reboot_notifier_list
,
315 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
316 system_state
= state
;
320 * kernel_halt - halt the system
322 * Shutdown everything and perform a clean system halt.
324 void kernel_halt(void)
326 kernel_shutdown_prepare(SYSTEM_HALT
);
328 printk(KERN_EMERG
"System halted.\n");
332 EXPORT_SYMBOL_GPL(kernel_halt
);
335 * kernel_power_off - power_off the system
337 * Shutdown everything and perform a clean system power_off.
339 void kernel_power_off(void)
341 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
342 if (pm_power_off_prepare
)
343 pm_power_off_prepare();
344 disable_nonboot_cpus();
346 printk(KERN_EMERG
"Power down.\n");
349 EXPORT_SYMBOL_GPL(kernel_power_off
);
351 * Reboot system call: for obvious reasons only root may call it,
352 * and even root needs to set up some magic numbers in the registers
353 * so that some mistake won't make this reboot the whole machine.
354 * You can also set the meaning of the ctrl-alt-del-key here.
356 * reboot doesn't sync: do that yourself before calling this.
358 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
363 /* We only trust the superuser with rebooting the system. */
364 if (!capable(CAP_SYS_BOOT
))
367 /* For safety, we require "magic" arguments. */
368 if (magic1
!= LINUX_REBOOT_MAGIC1
||
369 (magic2
!= LINUX_REBOOT_MAGIC2
&&
370 magic2
!= LINUX_REBOOT_MAGIC2A
&&
371 magic2
!= LINUX_REBOOT_MAGIC2B
&&
372 magic2
!= LINUX_REBOOT_MAGIC2C
))
375 /* Instead of trying to make the power_off code look like
376 * halt when pm_power_off is not set do it the easy way.
378 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
379 cmd
= LINUX_REBOOT_CMD_HALT
;
383 case LINUX_REBOOT_CMD_RESTART
:
384 kernel_restart(NULL
);
387 case LINUX_REBOOT_CMD_CAD_ON
:
391 case LINUX_REBOOT_CMD_CAD_OFF
:
395 case LINUX_REBOOT_CMD_HALT
:
401 case LINUX_REBOOT_CMD_POWER_OFF
:
407 case LINUX_REBOOT_CMD_RESTART2
:
408 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
412 buffer
[sizeof(buffer
) - 1] = '\0';
414 kernel_restart(buffer
);
418 case LINUX_REBOOT_CMD_KEXEC
:
421 ret
= kernel_kexec();
427 #ifdef CONFIG_HIBERNATION
428 case LINUX_REBOOT_CMD_SW_SUSPEND
:
430 int ret
= hibernate();
444 static void deferred_cad(struct work_struct
*dummy
)
446 kernel_restart(NULL
);
450 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451 * As it's called within an interrupt, it may NOT sync: the only choice
452 * is whether to reboot at once, or just ignore the ctrl-alt-del.
454 void ctrl_alt_del(void)
456 static DECLARE_WORK(cad_work
, deferred_cad
);
459 schedule_work(&cad_work
);
461 kill_cad_pid(SIGINT
, 1);
465 * Unprivileged users may change the real gid to the effective gid
466 * or vice versa. (BSD-style)
468 * If you set the real gid at all, or set the effective gid to a value not
469 * equal to the real gid, then the saved gid is set to the new effective gid.
471 * This makes it possible for a setgid program to completely drop its
472 * privileges, which is often a useful assertion to make when you are doing
473 * a security audit over a program.
475 * The general idea is that a program which uses just setregid() will be
476 * 100% compatible with BSD. A program which uses just setgid() will be
477 * 100% compatible with POSIX with saved IDs.
479 * SMP: There are not races, the GIDs are checked only by filesystem
480 * operations (as far as semantic preservation is concerned).
482 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
484 const struct cred
*old
;
488 new = prepare_creds();
491 old
= current_cred();
493 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
498 if (rgid
!= (gid_t
) -1) {
499 if (old
->gid
== rgid
||
506 if (egid
!= (gid_t
) -1) {
507 if (old
->gid
== egid
||
516 if (rgid
!= (gid_t
) -1 ||
517 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
518 new->sgid
= new->egid
;
519 new->fsgid
= new->egid
;
521 return commit_creds(new);
529 * setgid() is implemented like SysV w/ SAVED_IDS
531 * SMP: Same implicit races as above.
533 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
535 const struct cred
*old
;
539 new = prepare_creds();
542 old
= current_cred();
544 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
549 if (capable(CAP_SETGID
))
550 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
551 else if (gid
== old
->gid
|| gid
== old
->sgid
)
552 new->egid
= new->fsgid
= gid
;
556 return commit_creds(new);
564 * change the user struct in a credentials set to match the new UID
566 static int set_user(struct cred
*new)
568 struct user_struct
*new_user
;
570 new_user
= alloc_uid(current_user_ns(), new->uid
);
574 if (!task_can_switch_user(new_user
, current
)) {
579 if (atomic_read(&new_user
->processes
) >=
580 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
581 new_user
!= INIT_USER
) {
587 new->user
= new_user
;
592 * Unprivileged users may change the real uid to the effective uid
593 * or vice versa. (BSD-style)
595 * If you set the real uid at all, or set the effective uid to a value not
596 * equal to the real uid, then the saved uid is set to the new effective uid.
598 * This makes it possible for a setuid program to completely drop its
599 * privileges, which is often a useful assertion to make when you are doing
600 * a security audit over a program.
602 * The general idea is that a program which uses just setreuid() will be
603 * 100% compatible with BSD. A program which uses just setuid() will be
604 * 100% compatible with POSIX with saved IDs.
606 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
608 const struct cred
*old
;
612 new = prepare_creds();
615 old
= current_cred();
617 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
622 if (ruid
!= (uid_t
) -1) {
624 if (old
->uid
!= ruid
&&
626 !capable(CAP_SETUID
))
630 if (euid
!= (uid_t
) -1) {
632 if (old
->uid
!= euid
&&
635 !capable(CAP_SETUID
))
639 if (new->uid
!= old
->uid
) {
640 retval
= set_user(new);
644 if (ruid
!= (uid_t
) -1 ||
645 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
646 new->suid
= new->euid
;
647 new->fsuid
= new->euid
;
649 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
653 return commit_creds(new);
661 * setuid() is implemented like SysV with SAVED_IDS
663 * Note that SAVED_ID's is deficient in that a setuid root program
664 * like sendmail, for example, cannot set its uid to be a normal
665 * user and then switch back, because if you're root, setuid() sets
666 * the saved uid too. If you don't like this, blame the bright people
667 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
668 * will allow a root program to temporarily drop privileges and be able to
669 * regain them by swapping the real and effective uid.
671 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
673 const struct cred
*old
;
677 new = prepare_creds();
680 old
= current_cred();
682 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
687 if (capable(CAP_SETUID
)) {
688 new->suid
= new->uid
= uid
;
689 if (uid
!= old
->uid
) {
690 retval
= set_user(new);
694 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
698 new->fsuid
= new->euid
= uid
;
700 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
704 return commit_creds(new);
713 * This function implements a generic ability to update ruid, euid,
714 * and suid. This allows you to implement the 4.4 compatible seteuid().
716 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
718 const struct cred
*old
;
722 new = prepare_creds();
726 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
729 old
= current_cred();
732 if (!capable(CAP_SETUID
)) {
733 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
734 ruid
!= old
->euid
&& ruid
!= old
->suid
)
736 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
737 euid
!= old
->euid
&& euid
!= old
->suid
)
739 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
740 suid
!= old
->euid
&& suid
!= old
->suid
)
744 if (ruid
!= (uid_t
) -1) {
746 if (ruid
!= old
->uid
) {
747 retval
= set_user(new);
752 if (euid
!= (uid_t
) -1)
754 if (suid
!= (uid_t
) -1)
756 new->fsuid
= new->euid
;
758 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
762 return commit_creds(new);
769 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
771 const struct cred
*cred
= current_cred();
774 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
775 !(retval
= put_user(cred
->euid
, euid
)))
776 retval
= put_user(cred
->suid
, suid
);
782 * Same as above, but for rgid, egid, sgid.
784 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
786 const struct cred
*old
;
790 new = prepare_creds();
793 old
= current_cred();
795 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
800 if (!capable(CAP_SETGID
)) {
801 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
802 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
804 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
805 egid
!= old
->egid
&& egid
!= old
->sgid
)
807 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
808 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
812 if (rgid
!= (gid_t
) -1)
814 if (egid
!= (gid_t
) -1)
816 if (sgid
!= (gid_t
) -1)
818 new->fsgid
= new->egid
;
820 return commit_creds(new);
827 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
829 const struct cred
*cred
= current_cred();
832 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
833 !(retval
= put_user(cred
->egid
, egid
)))
834 retval
= put_user(cred
->sgid
, sgid
);
841 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
842 * is used for "access()" and for the NFS daemon (letting nfsd stay at
843 * whatever uid it wants to). It normally shadows "euid", except when
844 * explicitly set by setfsuid() or for access..
846 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
848 const struct cred
*old
;
852 new = prepare_creds();
854 return current_fsuid();
855 old
= current_cred();
856 old_fsuid
= old
->fsuid
;
858 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
) < 0)
861 if (uid
== old
->uid
|| uid
== old
->euid
||
862 uid
== old
->suid
|| uid
== old
->fsuid
||
863 capable(CAP_SETUID
)) {
864 if (uid
!= old_fsuid
) {
866 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
881 * Samma på svenska..
883 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
885 const struct cred
*old
;
889 new = prepare_creds();
891 return current_fsgid();
892 old
= current_cred();
893 old_fsgid
= old
->fsgid
;
895 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
898 if (gid
== old
->gid
|| gid
== old
->egid
||
899 gid
== old
->sgid
|| gid
== old
->fsgid
||
900 capable(CAP_SETGID
)) {
901 if (gid
!= old_fsgid
) {
916 void do_sys_times(struct tms
*tms
)
918 struct task_cputime cputime
;
919 cputime_t cutime
, cstime
;
921 thread_group_cputime(current
, &cputime
);
922 spin_lock_irq(¤t
->sighand
->siglock
);
923 cutime
= current
->signal
->cutime
;
924 cstime
= current
->signal
->cstime
;
925 spin_unlock_irq(¤t
->sighand
->siglock
);
926 tms
->tms_utime
= cputime_to_clock_t(cputime
.utime
);
927 tms
->tms_stime
= cputime_to_clock_t(cputime
.stime
);
928 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
929 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
932 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
938 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
941 force_successful_syscall_return();
942 return (long) jiffies_64_to_clock_t(get_jiffies_64());
946 * This needs some heavy checking ...
947 * I just haven't the stomach for it. I also don't fully
948 * understand sessions/pgrp etc. Let somebody who does explain it.
950 * OK, I think I have the protection semantics right.... this is really
951 * only important on a multi-user system anyway, to make sure one user
952 * can't send a signal to a process owned by another. -TYT, 12/12/91
954 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
957 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
959 struct task_struct
*p
;
960 struct task_struct
*group_leader
= current
->group_leader
;
965 pid
= task_pid_vnr(group_leader
);
971 /* From this point forward we keep holding onto the tasklist lock
972 * so that our parent does not change from under us. -DaveM
974 write_lock_irq(&tasklist_lock
);
977 p
= find_task_by_vpid(pid
);
982 if (!thread_group_leader(p
))
985 if (same_thread_group(p
->real_parent
, group_leader
)) {
987 if (task_session(p
) != task_session(group_leader
))
994 if (p
!= group_leader
)
999 if (p
->signal
->leader
)
1004 struct task_struct
*g
;
1006 pgrp
= find_vpid(pgid
);
1007 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1008 if (!g
|| task_session(g
) != task_session(group_leader
))
1012 err
= security_task_setpgid(p
, pgid
);
1016 if (task_pgrp(p
) != pgrp
)
1017 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1021 /* All paths lead to here, thus we are safe. -DaveM */
1022 write_unlock_irq(&tasklist_lock
);
1026 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1028 struct task_struct
*p
;
1034 grp
= task_pgrp(current
);
1037 p
= find_task_by_vpid(pid
);
1044 retval
= security_task_getpgid(p
);
1048 retval
= pid_vnr(grp
);
1054 #ifdef __ARCH_WANT_SYS_GETPGRP
1056 SYSCALL_DEFINE0(getpgrp
)
1058 return sys_getpgid(0);
1063 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1065 struct task_struct
*p
;
1071 sid
= task_session(current
);
1074 p
= find_task_by_vpid(pid
);
1077 sid
= task_session(p
);
1081 retval
= security_task_getsid(p
);
1085 retval
= pid_vnr(sid
);
1091 SYSCALL_DEFINE0(setsid
)
1093 struct task_struct
*group_leader
= current
->group_leader
;
1094 struct pid
*sid
= task_pid(group_leader
);
1095 pid_t session
= pid_vnr(sid
);
1098 write_lock_irq(&tasklist_lock
);
1099 /* Fail if I am already a session leader */
1100 if (group_leader
->signal
->leader
)
1103 /* Fail if a process group id already exists that equals the
1104 * proposed session id.
1106 if (pid_task(sid
, PIDTYPE_PGID
))
1109 group_leader
->signal
->leader
= 1;
1110 __set_special_pids(sid
);
1112 proc_clear_tty(group_leader
);
1116 write_unlock_irq(&tasklist_lock
);
1121 * Supplementary group IDs
1124 /* init to 2 - one for init_task, one to ensure it is never freed */
1125 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1127 struct group_info
*groups_alloc(int gidsetsize
)
1129 struct group_info
*group_info
;
1133 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1134 /* Make sure we always allocate at least one indirect block pointer */
1135 nblocks
= nblocks
? : 1;
1136 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1139 group_info
->ngroups
= gidsetsize
;
1140 group_info
->nblocks
= nblocks
;
1141 atomic_set(&group_info
->usage
, 1);
1143 if (gidsetsize
<= NGROUPS_SMALL
)
1144 group_info
->blocks
[0] = group_info
->small_block
;
1146 for (i
= 0; i
< nblocks
; i
++) {
1148 b
= (void *)__get_free_page(GFP_USER
);
1150 goto out_undo_partial_alloc
;
1151 group_info
->blocks
[i
] = b
;
1156 out_undo_partial_alloc
:
1158 free_page((unsigned long)group_info
->blocks
[i
]);
1164 EXPORT_SYMBOL(groups_alloc
);
1166 void groups_free(struct group_info
*group_info
)
1168 if (group_info
->blocks
[0] != group_info
->small_block
) {
1170 for (i
= 0; i
< group_info
->nblocks
; i
++)
1171 free_page((unsigned long)group_info
->blocks
[i
]);
1176 EXPORT_SYMBOL(groups_free
);
1178 /* export the group_info to a user-space array */
1179 static int groups_to_user(gid_t __user
*grouplist
,
1180 const struct group_info
*group_info
)
1183 unsigned int count
= group_info
->ngroups
;
1185 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1186 unsigned int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1187 unsigned int len
= cp_count
* sizeof(*grouplist
);
1189 if (copy_to_user(grouplist
, group_info
->blocks
[i
], len
))
1192 grouplist
+= NGROUPS_PER_BLOCK
;
1198 /* fill a group_info from a user-space array - it must be allocated already */
1199 static int groups_from_user(struct group_info
*group_info
,
1200 gid_t __user
*grouplist
)
1203 unsigned int count
= group_info
->ngroups
;
1205 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1206 unsigned int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1207 unsigned int len
= cp_count
* sizeof(*grouplist
);
1209 if (copy_from_user(group_info
->blocks
[i
], grouplist
, len
))
1212 grouplist
+= NGROUPS_PER_BLOCK
;
1218 /* a simple Shell sort */
1219 static void groups_sort(struct group_info
*group_info
)
1221 int base
, max
, stride
;
1222 int gidsetsize
= group_info
->ngroups
;
1224 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1229 max
= gidsetsize
- stride
;
1230 for (base
= 0; base
< max
; base
++) {
1232 int right
= left
+ stride
;
1233 gid_t tmp
= GROUP_AT(group_info
, right
);
1235 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1236 GROUP_AT(group_info
, right
) =
1237 GROUP_AT(group_info
, left
);
1241 GROUP_AT(group_info
, right
) = tmp
;
1247 /* a simple bsearch */
1248 int groups_search(const struct group_info
*group_info
, gid_t grp
)
1250 unsigned int left
, right
;
1256 right
= group_info
->ngroups
;
1257 while (left
< right
) {
1258 unsigned int mid
= (left
+right
)/2;
1259 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1271 * set_groups - Change a group subscription in a set of credentials
1272 * @new: The newly prepared set of credentials to alter
1273 * @group_info: The group list to install
1275 * Validate a group subscription and, if valid, insert it into a set
1278 int set_groups(struct cred
*new, struct group_info
*group_info
)
1282 retval
= security_task_setgroups(group_info
);
1286 put_group_info(new->group_info
);
1287 groups_sort(group_info
);
1288 get_group_info(group_info
);
1289 new->group_info
= group_info
;
1293 EXPORT_SYMBOL(set_groups
);
1296 * set_current_groups - Change current's group subscription
1297 * @group_info: The group list to impose
1299 * Validate a group subscription and, if valid, impose it upon current's task
1302 int set_current_groups(struct group_info
*group_info
)
1307 new = prepare_creds();
1311 ret
= set_groups(new, group_info
);
1317 return commit_creds(new);
1320 EXPORT_SYMBOL(set_current_groups
);
1322 SYSCALL_DEFINE2(getgroups
, int, gidsetsize
, gid_t __user
*, grouplist
)
1324 const struct cred
*cred
= current_cred();
1330 /* no need to grab task_lock here; it cannot change */
1331 i
= cred
->group_info
->ngroups
;
1333 if (i
> gidsetsize
) {
1337 if (groups_to_user(grouplist
, cred
->group_info
)) {
1347 * SMP: Our groups are copy-on-write. We can set them safely
1348 * without another task interfering.
1351 SYSCALL_DEFINE2(setgroups
, int, gidsetsize
, gid_t __user
*, grouplist
)
1353 struct group_info
*group_info
;
1356 if (!capable(CAP_SETGID
))
1358 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1361 group_info
= groups_alloc(gidsetsize
);
1364 retval
= groups_from_user(group_info
, grouplist
);
1366 put_group_info(group_info
);
1370 retval
= set_current_groups(group_info
);
1371 put_group_info(group_info
);
1377 * Check whether we're fsgid/egid or in the supplemental group..
1379 int in_group_p(gid_t grp
)
1381 const struct cred
*cred
= current_cred();
1384 if (grp
!= cred
->fsgid
)
1385 retval
= groups_search(cred
->group_info
, grp
);
1389 EXPORT_SYMBOL(in_group_p
);
1391 int in_egroup_p(gid_t grp
)
1393 const struct cred
*cred
= current_cred();
1396 if (grp
!= cred
->egid
)
1397 retval
= groups_search(cred
->group_info
, grp
);
1401 EXPORT_SYMBOL(in_egroup_p
);
1403 DECLARE_RWSEM(uts_sem
);
1405 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1409 down_read(&uts_sem
);
1410 if (copy_to_user(name
, utsname(), sizeof *name
))
1416 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1419 char tmp
[__NEW_UTS_LEN
];
1421 if (!capable(CAP_SYS_ADMIN
))
1423 if (len
< 0 || len
> __NEW_UTS_LEN
)
1425 down_write(&uts_sem
);
1427 if (!copy_from_user(tmp
, name
, len
)) {
1428 struct new_utsname
*u
= utsname();
1430 memcpy(u
->nodename
, tmp
, len
);
1431 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1438 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1440 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1443 struct new_utsname
*u
;
1447 down_read(&uts_sem
);
1449 i
= 1 + strlen(u
->nodename
);
1453 if (copy_to_user(name
, u
->nodename
, i
))
1462 * Only setdomainname; getdomainname can be implemented by calling
1465 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1468 char tmp
[__NEW_UTS_LEN
];
1470 if (!capable(CAP_SYS_ADMIN
))
1472 if (len
< 0 || len
> __NEW_UTS_LEN
)
1475 down_write(&uts_sem
);
1477 if (!copy_from_user(tmp
, name
, len
)) {
1478 struct new_utsname
*u
= utsname();
1480 memcpy(u
->domainname
, tmp
, len
);
1481 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1488 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1490 if (resource
>= RLIM_NLIMITS
)
1493 struct rlimit value
;
1494 task_lock(current
->group_leader
);
1495 value
= current
->signal
->rlim
[resource
];
1496 task_unlock(current
->group_leader
);
1497 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1501 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1504 * Back compatibility for getrlimit. Needed for some apps.
1507 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1508 struct rlimit __user
*, rlim
)
1511 if (resource
>= RLIM_NLIMITS
)
1514 task_lock(current
->group_leader
);
1515 x
= current
->signal
->rlim
[resource
];
1516 task_unlock(current
->group_leader
);
1517 if (x
.rlim_cur
> 0x7FFFFFFF)
1518 x
.rlim_cur
= 0x7FFFFFFF;
1519 if (x
.rlim_max
> 0x7FFFFFFF)
1520 x
.rlim_max
= 0x7FFFFFFF;
1521 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1526 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1528 struct rlimit new_rlim
, *old_rlim
;
1531 if (resource
>= RLIM_NLIMITS
)
1533 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1535 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1537 old_rlim
= current
->signal
->rlim
+ resource
;
1538 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1539 !capable(CAP_SYS_RESOURCE
))
1541 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> sysctl_nr_open
)
1544 retval
= security_task_setrlimit(resource
, &new_rlim
);
1548 if (resource
== RLIMIT_CPU
&& new_rlim
.rlim_cur
== 0) {
1550 * The caller is asking for an immediate RLIMIT_CPU
1551 * expiry. But we use the zero value to mean "it was
1552 * never set". So let's cheat and make it one second
1555 new_rlim
.rlim_cur
= 1;
1558 task_lock(current
->group_leader
);
1559 *old_rlim
= new_rlim
;
1560 task_unlock(current
->group_leader
);
1562 if (resource
!= RLIMIT_CPU
)
1566 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1567 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1568 * very long-standing error, and fixing it now risks breakage of
1569 * applications, so we live with it
1571 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1574 update_rlimit_cpu(new_rlim
.rlim_cur
);
1580 * It would make sense to put struct rusage in the task_struct,
1581 * except that would make the task_struct be *really big*. After
1582 * task_struct gets moved into malloc'ed memory, it would
1583 * make sense to do this. It will make moving the rest of the information
1584 * a lot simpler! (Which we're not doing right now because we're not
1585 * measuring them yet).
1587 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1588 * races with threads incrementing their own counters. But since word
1589 * reads are atomic, we either get new values or old values and we don't
1590 * care which for the sums. We always take the siglock to protect reading
1591 * the c* fields from p->signal from races with exit.c updating those
1592 * fields when reaping, so a sample either gets all the additions of a
1593 * given child after it's reaped, or none so this sample is before reaping.
1596 * We need to take the siglock for CHILDEREN, SELF and BOTH
1597 * for the cases current multithreaded, non-current single threaded
1598 * non-current multithreaded. Thread traversal is now safe with
1600 * Strictly speaking, we donot need to take the siglock if we are current and
1601 * single threaded, as no one else can take our signal_struct away, no one
1602 * else can reap the children to update signal->c* counters, and no one else
1603 * can race with the signal-> fields. If we do not take any lock, the
1604 * signal-> fields could be read out of order while another thread was just
1605 * exiting. So we should place a read memory barrier when we avoid the lock.
1606 * On the writer side, write memory barrier is implied in __exit_signal
1607 * as __exit_signal releases the siglock spinlock after updating the signal->
1608 * fields. But we don't do this yet to keep things simple.
1612 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1614 r
->ru_nvcsw
+= t
->nvcsw
;
1615 r
->ru_nivcsw
+= t
->nivcsw
;
1616 r
->ru_minflt
+= t
->min_flt
;
1617 r
->ru_majflt
+= t
->maj_flt
;
1618 r
->ru_inblock
+= task_io_get_inblock(t
);
1619 r
->ru_oublock
+= task_io_get_oublock(t
);
1622 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1624 struct task_struct
*t
;
1625 unsigned long flags
;
1626 cputime_t utime
, stime
;
1627 struct task_cputime cputime
;
1629 memset((char *) r
, 0, sizeof *r
);
1630 utime
= stime
= cputime_zero
;
1632 if (who
== RUSAGE_THREAD
) {
1633 utime
= task_utime(current
);
1634 stime
= task_stime(current
);
1635 accumulate_thread_rusage(p
, r
);
1639 if (!lock_task_sighand(p
, &flags
))
1644 case RUSAGE_CHILDREN
:
1645 utime
= p
->signal
->cutime
;
1646 stime
= p
->signal
->cstime
;
1647 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1648 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1649 r
->ru_minflt
= p
->signal
->cmin_flt
;
1650 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1651 r
->ru_inblock
= p
->signal
->cinblock
;
1652 r
->ru_oublock
= p
->signal
->coublock
;
1654 if (who
== RUSAGE_CHILDREN
)
1658 thread_group_cputime(p
, &cputime
);
1659 utime
= cputime_add(utime
, cputime
.utime
);
1660 stime
= cputime_add(stime
, cputime
.stime
);
1661 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1662 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1663 r
->ru_minflt
+= p
->signal
->min_flt
;
1664 r
->ru_majflt
+= p
->signal
->maj_flt
;
1665 r
->ru_inblock
+= p
->signal
->inblock
;
1666 r
->ru_oublock
+= p
->signal
->oublock
;
1669 accumulate_thread_rusage(t
, r
);
1677 unlock_task_sighand(p
, &flags
);
1680 cputime_to_timeval(utime
, &r
->ru_utime
);
1681 cputime_to_timeval(stime
, &r
->ru_stime
);
1684 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1687 k_getrusage(p
, who
, &r
);
1688 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1691 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1693 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1694 who
!= RUSAGE_THREAD
)
1696 return getrusage(current
, who
, ru
);
1699 SYSCALL_DEFINE1(umask
, int, mask
)
1701 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1705 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1706 unsigned long, arg4
, unsigned long, arg5
)
1708 struct task_struct
*me
= current
;
1709 unsigned char comm
[sizeof(me
->comm
)];
1712 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1713 if (error
!= -ENOSYS
)
1718 case PR_SET_PDEATHSIG
:
1719 if (!valid_signal(arg2
)) {
1723 me
->pdeath_signal
= arg2
;
1726 case PR_GET_PDEATHSIG
:
1727 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1729 case PR_GET_DUMPABLE
:
1730 error
= get_dumpable(me
->mm
);
1732 case PR_SET_DUMPABLE
:
1733 if (arg2
< 0 || arg2
> 1) {
1737 set_dumpable(me
->mm
, arg2
);
1741 case PR_SET_UNALIGN
:
1742 error
= SET_UNALIGN_CTL(me
, arg2
);
1744 case PR_GET_UNALIGN
:
1745 error
= GET_UNALIGN_CTL(me
, arg2
);
1748 error
= SET_FPEMU_CTL(me
, arg2
);
1751 error
= GET_FPEMU_CTL(me
, arg2
);
1754 error
= SET_FPEXC_CTL(me
, arg2
);
1757 error
= GET_FPEXC_CTL(me
, arg2
);
1760 error
= PR_TIMING_STATISTICAL
;
1763 if (arg2
!= PR_TIMING_STATISTICAL
)
1770 comm
[sizeof(me
->comm
)-1] = 0;
1771 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1772 sizeof(me
->comm
) - 1) < 0)
1774 set_task_comm(me
, comm
);
1777 get_task_comm(comm
, me
);
1778 if (copy_to_user((char __user
*)arg2
, comm
,
1783 error
= GET_ENDIAN(me
, arg2
);
1786 error
= SET_ENDIAN(me
, arg2
);
1789 case PR_GET_SECCOMP
:
1790 error
= prctl_get_seccomp();
1792 case PR_SET_SECCOMP
:
1793 error
= prctl_set_seccomp(arg2
);
1796 error
= GET_TSC_CTL(arg2
);
1799 error
= SET_TSC_CTL(arg2
);
1801 case PR_GET_TIMERSLACK
:
1802 error
= current
->timer_slack_ns
;
1804 case PR_SET_TIMERSLACK
:
1806 current
->timer_slack_ns
=
1807 current
->default_timer_slack_ns
;
1809 current
->timer_slack_ns
= arg2
;
1819 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1820 struct getcpu_cache __user
*, unused
)
1823 int cpu
= raw_smp_processor_id();
1825 err
|= put_user(cpu
, cpup
);
1827 err
|= put_user(cpu_to_node(cpu
), nodep
);
1828 return err
? -EFAULT
: 0;
1831 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1833 static void argv_cleanup(char **argv
, char **envp
)
1839 * orderly_poweroff - Trigger an orderly system poweroff
1840 * @force: force poweroff if command execution fails
1842 * This may be called from any context to trigger a system shutdown.
1843 * If the orderly shutdown fails, it will force an immediate shutdown.
1845 int orderly_poweroff(bool force
)
1848 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1849 static char *envp
[] = {
1851 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1855 struct subprocess_info
*info
;
1858 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1859 __func__
, poweroff_cmd
);
1863 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1869 call_usermodehelper_setcleanup(info
, argv_cleanup
);
1871 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1875 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1876 "forcing the issue\n");
1878 /* I guess this should try to kick off some daemon to
1879 sync and poweroff asap. Or not even bother syncing
1880 if we're doing an emergency shutdown? */
1887 EXPORT_SYMBOL_GPL(orderly_poweroff
);