1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/spinlock.h>
33 #include <linux/seq_file.h>
34 #include <linux/vmalloc.h>
36 #include <asm/uaccess.h>
38 struct cgroup_subsys mem_cgroup_subsys
;
39 static const int MEM_CGROUP_RECLAIM_RETRIES
= 5;
40 static struct kmem_cache
*page_cgroup_cache
;
43 * Statistics for memory cgroup.
45 enum mem_cgroup_stat_index
{
47 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
49 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
50 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
51 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
52 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
54 MEM_CGROUP_STAT_NSTATS
,
57 struct mem_cgroup_stat_cpu
{
58 s64 count
[MEM_CGROUP_STAT_NSTATS
];
59 } ____cacheline_aligned_in_smp
;
61 struct mem_cgroup_stat
{
62 struct mem_cgroup_stat_cpu cpustat
[NR_CPUS
];
66 * For accounting under irq disable, no need for increment preempt count.
68 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat
*stat
,
69 enum mem_cgroup_stat_index idx
, int val
)
71 int cpu
= smp_processor_id();
72 stat
->cpustat
[cpu
].count
[idx
] += val
;
75 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
76 enum mem_cgroup_stat_index idx
)
80 for_each_possible_cpu(cpu
)
81 ret
+= stat
->cpustat
[cpu
].count
[idx
];
86 * per-zone information in memory controller.
89 enum mem_cgroup_zstat_index
{
90 MEM_CGROUP_ZSTAT_ACTIVE
,
91 MEM_CGROUP_ZSTAT_INACTIVE
,
96 struct mem_cgroup_per_zone
{
98 * spin_lock to protect the per cgroup LRU
101 struct list_head active_list
;
102 struct list_head inactive_list
;
103 unsigned long count
[NR_MEM_CGROUP_ZSTAT
];
105 /* Macro for accessing counter */
106 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
108 struct mem_cgroup_per_node
{
109 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
112 struct mem_cgroup_lru_info
{
113 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
117 * The memory controller data structure. The memory controller controls both
118 * page cache and RSS per cgroup. We would eventually like to provide
119 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
120 * to help the administrator determine what knobs to tune.
122 * TODO: Add a water mark for the memory controller. Reclaim will begin when
123 * we hit the water mark. May be even add a low water mark, such that
124 * no reclaim occurs from a cgroup at it's low water mark, this is
125 * a feature that will be implemented much later in the future.
128 struct cgroup_subsys_state css
;
130 * the counter to account for memory usage
132 struct res_counter res
;
134 * Per cgroup active and inactive list, similar to the
135 * per zone LRU lists.
137 struct mem_cgroup_lru_info info
;
139 int prev_priority
; /* for recording reclaim priority */
143 struct mem_cgroup_stat stat
;
145 static struct mem_cgroup init_mem_cgroup
;
148 * We use the lower bit of the page->page_cgroup pointer as a bit spin
149 * lock. We need to ensure that page->page_cgroup is at least two
150 * byte aligned (based on comments from Nick Piggin). But since
151 * bit_spin_lock doesn't actually set that lock bit in a non-debug
152 * uniprocessor kernel, we should avoid setting it here too.
154 #define PAGE_CGROUP_LOCK_BIT 0x0
155 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
156 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
158 #define PAGE_CGROUP_LOCK 0x0
162 * A page_cgroup page is associated with every page descriptor. The
163 * page_cgroup helps us identify information about the cgroup
166 struct list_head lru
; /* per cgroup LRU list */
168 struct mem_cgroup
*mem_cgroup
;
169 int ref_cnt
; /* cached, mapped, migrating */
172 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
173 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
175 static int page_cgroup_nid(struct page_cgroup
*pc
)
177 return page_to_nid(pc
->page
);
180 static enum zone_type
page_cgroup_zid(struct page_cgroup
*pc
)
182 return page_zonenum(pc
->page
);
186 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
187 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
191 * Always modified under lru lock. Then, not necessary to preempt_disable()
193 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
, int flags
,
196 int val
= (charge
)? 1 : -1;
197 struct mem_cgroup_stat
*stat
= &mem
->stat
;
199 VM_BUG_ON(!irqs_disabled());
200 if (flags
& PAGE_CGROUP_FLAG_CACHE
)
201 __mem_cgroup_stat_add_safe(stat
, MEM_CGROUP_STAT_CACHE
, val
);
203 __mem_cgroup_stat_add_safe(stat
, MEM_CGROUP_STAT_RSS
, val
);
206 __mem_cgroup_stat_add_safe(stat
,
207 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
209 __mem_cgroup_stat_add_safe(stat
,
210 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
213 static struct mem_cgroup_per_zone
*
214 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
216 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
219 static struct mem_cgroup_per_zone
*
220 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
222 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
223 int nid
= page_cgroup_nid(pc
);
224 int zid
= page_cgroup_zid(pc
);
226 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
229 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup
*mem
,
230 enum mem_cgroup_zstat_index idx
)
233 struct mem_cgroup_per_zone
*mz
;
236 for_each_online_node(nid
)
237 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
238 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
239 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
244 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
246 return container_of(cgroup_subsys_state(cont
,
247 mem_cgroup_subsys_id
), struct mem_cgroup
,
251 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
253 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
254 struct mem_cgroup
, css
);
257 static inline int page_cgroup_locked(struct page
*page
)
259 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
262 static void page_assign_page_cgroup(struct page
*page
, struct page_cgroup
*pc
)
264 VM_BUG_ON(!page_cgroup_locked(page
));
265 page
->page_cgroup
= ((unsigned long)pc
| PAGE_CGROUP_LOCK
);
268 struct page_cgroup
*page_get_page_cgroup(struct page
*page
)
270 return (struct page_cgroup
*) (page
->page_cgroup
& ~PAGE_CGROUP_LOCK
);
273 static void lock_page_cgroup(struct page
*page
)
275 bit_spin_lock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
278 static int try_lock_page_cgroup(struct page
*page
)
280 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
283 static void unlock_page_cgroup(struct page
*page
)
285 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
288 static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone
*mz
,
289 struct page_cgroup
*pc
)
291 int from
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
294 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) -= 1;
296 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) -= 1;
298 mem_cgroup_charge_statistics(pc
->mem_cgroup
, pc
->flags
, false);
299 list_del_init(&pc
->lru
);
302 static void __mem_cgroup_add_list(struct mem_cgroup_per_zone
*mz
,
303 struct page_cgroup
*pc
)
305 int to
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
308 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) += 1;
309 list_add(&pc
->lru
, &mz
->inactive_list
);
311 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) += 1;
312 list_add(&pc
->lru
, &mz
->active_list
);
314 mem_cgroup_charge_statistics(pc
->mem_cgroup
, pc
->flags
, true);
317 static void __mem_cgroup_move_lists(struct page_cgroup
*pc
, bool active
)
319 int from
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
320 struct mem_cgroup_per_zone
*mz
= page_cgroup_zoneinfo(pc
);
323 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) -= 1;
325 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) -= 1;
328 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) += 1;
329 pc
->flags
|= PAGE_CGROUP_FLAG_ACTIVE
;
330 list_move(&pc
->lru
, &mz
->active_list
);
332 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) += 1;
333 pc
->flags
&= ~PAGE_CGROUP_FLAG_ACTIVE
;
334 list_move(&pc
->lru
, &mz
->inactive_list
);
338 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
343 ret
= task
->mm
&& mm_match_cgroup(task
->mm
, mem
);
349 * This routine assumes that the appropriate zone's lru lock is already held
351 void mem_cgroup_move_lists(struct page
*page
, bool active
)
353 struct page_cgroup
*pc
;
354 struct mem_cgroup_per_zone
*mz
;
358 * We cannot lock_page_cgroup while holding zone's lru_lock,
359 * because other holders of lock_page_cgroup can be interrupted
360 * with an attempt to rotate_reclaimable_page. But we cannot
361 * safely get to page_cgroup without it, so just try_lock it:
362 * mem_cgroup_isolate_pages allows for page left on wrong list.
364 if (!try_lock_page_cgroup(page
))
367 pc
= page_get_page_cgroup(page
);
369 mz
= page_cgroup_zoneinfo(pc
);
370 spin_lock_irqsave(&mz
->lru_lock
, flags
);
371 __mem_cgroup_move_lists(pc
, active
);
372 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
374 unlock_page_cgroup(page
);
378 * Calculate mapped_ratio under memory controller. This will be used in
379 * vmscan.c for deteremining we have to reclaim mapped pages.
381 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup
*mem
)
386 * usage is recorded in bytes. But, here, we assume the number of
387 * physical pages can be represented by "long" on any arch.
389 total
= (long) (mem
->res
.usage
>> PAGE_SHIFT
) + 1L;
390 rss
= (long)mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
391 return (int)((rss
* 100L) / total
);
395 * This function is called from vmscan.c. In page reclaiming loop. balance
396 * between active and inactive list is calculated. For memory controller
397 * page reclaiming, we should use using mem_cgroup's imbalance rather than
398 * zone's global lru imbalance.
400 long mem_cgroup_reclaim_imbalance(struct mem_cgroup
*mem
)
402 unsigned long active
, inactive
;
403 /* active and inactive are the number of pages. 'long' is ok.*/
404 active
= mem_cgroup_get_all_zonestat(mem
, MEM_CGROUP_ZSTAT_ACTIVE
);
405 inactive
= mem_cgroup_get_all_zonestat(mem
, MEM_CGROUP_ZSTAT_INACTIVE
);
406 return (long) (active
/ (inactive
+ 1));
410 * prev_priority control...this will be used in memory reclaim path.
412 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
414 return mem
->prev_priority
;
417 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
419 if (priority
< mem
->prev_priority
)
420 mem
->prev_priority
= priority
;
423 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
425 mem
->prev_priority
= priority
;
429 * Calculate # of pages to be scanned in this priority/zone.
432 * priority starts from "DEF_PRIORITY" and decremented in each loop.
433 * (see include/linux/mmzone.h)
436 long mem_cgroup_calc_reclaim_active(struct mem_cgroup
*mem
,
437 struct zone
*zone
, int priority
)
440 int nid
= zone
->zone_pgdat
->node_id
;
441 int zid
= zone_idx(zone
);
442 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
444 nr_active
= MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
);
445 return (nr_active
>> priority
);
448 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup
*mem
,
449 struct zone
*zone
, int priority
)
452 int nid
= zone
->zone_pgdat
->node_id
;
453 int zid
= zone_idx(zone
);
454 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
456 nr_inactive
= MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
);
457 return (nr_inactive
>> priority
);
460 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
461 struct list_head
*dst
,
462 unsigned long *scanned
, int order
,
463 int mode
, struct zone
*z
,
464 struct mem_cgroup
*mem_cont
,
467 unsigned long nr_taken
= 0;
471 struct list_head
*src
;
472 struct page_cgroup
*pc
, *tmp
;
473 int nid
= z
->zone_pgdat
->node_id
;
474 int zid
= zone_idx(z
);
475 struct mem_cgroup_per_zone
*mz
;
478 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
480 src
= &mz
->active_list
;
482 src
= &mz
->inactive_list
;
485 spin_lock(&mz
->lru_lock
);
487 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
488 if (scan
>= nr_to_scan
)
492 if (unlikely(!PageLRU(page
)))
495 if (PageActive(page
) && !active
) {
496 __mem_cgroup_move_lists(pc
, true);
499 if (!PageActive(page
) && active
) {
500 __mem_cgroup_move_lists(pc
, false);
505 list_move(&pc
->lru
, &pc_list
);
507 if (__isolate_lru_page(page
, mode
) == 0) {
508 list_move(&page
->lru
, dst
);
513 list_splice(&pc_list
, src
);
514 spin_unlock(&mz
->lru_lock
);
521 * Charge the memory controller for page usage.
523 * 0 if the charge was successful
524 * < 0 if the cgroup is over its limit
526 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
527 gfp_t gfp_mask
, enum charge_type ctype
)
529 struct mem_cgroup
*mem
;
530 struct page_cgroup
*pc
;
532 unsigned long nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
533 struct mem_cgroup_per_zone
*mz
;
535 if (mem_cgroup_subsys
.disabled
)
539 * Should page_cgroup's go to their own slab?
540 * One could optimize the performance of the charging routine
541 * by saving a bit in the page_flags and using it as a lock
542 * to see if the cgroup page already has a page_cgroup associated
546 lock_page_cgroup(page
);
547 pc
= page_get_page_cgroup(page
);
549 * The page_cgroup exists and
550 * the page has already been accounted.
553 VM_BUG_ON(pc
->page
!= page
);
554 VM_BUG_ON(pc
->ref_cnt
<= 0);
557 unlock_page_cgroup(page
);
560 unlock_page_cgroup(page
);
562 pc
= kmem_cache_zalloc(page_cgroup_cache
, gfp_mask
);
567 * We always charge the cgroup the mm_struct belongs to.
568 * The mm_struct's mem_cgroup changes on task migration if the
569 * thread group leader migrates. It's possible that mm is not
570 * set, if so charge the init_mm (happens for pagecache usage).
576 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
578 * For every charge from the cgroup, increment reference count
583 while (res_counter_charge(&mem
->res
, PAGE_SIZE
)) {
584 if (!(gfp_mask
& __GFP_WAIT
))
587 if (try_to_free_mem_cgroup_pages(mem
, gfp_mask
))
591 * try_to_free_mem_cgroup_pages() might not give us a full
592 * picture of reclaim. Some pages are reclaimed and might be
593 * moved to swap cache or just unmapped from the cgroup.
594 * Check the limit again to see if the reclaim reduced the
595 * current usage of the cgroup before giving up
597 if (res_counter_check_under_limit(&mem
->res
))
601 mem_cgroup_out_of_memory(mem
, gfp_mask
);
607 pc
->mem_cgroup
= mem
;
609 pc
->flags
= PAGE_CGROUP_FLAG_ACTIVE
;
610 if (ctype
== MEM_CGROUP_CHARGE_TYPE_CACHE
)
611 pc
->flags
= PAGE_CGROUP_FLAG_CACHE
;
613 lock_page_cgroup(page
);
614 if (page_get_page_cgroup(page
)) {
615 unlock_page_cgroup(page
);
617 * Another charge has been added to this page already.
618 * We take lock_page_cgroup(page) again and read
619 * page->cgroup, increment refcnt.... just retry is OK.
621 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
623 kmem_cache_free(page_cgroup_cache
, pc
);
626 page_assign_page_cgroup(page
, pc
);
628 mz
= page_cgroup_zoneinfo(pc
);
629 spin_lock_irqsave(&mz
->lru_lock
, flags
);
630 __mem_cgroup_add_list(mz
, pc
);
631 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
633 unlock_page_cgroup(page
);
638 kmem_cache_free(page_cgroup_cache
, pc
);
643 int mem_cgroup_charge(struct page
*page
, struct mm_struct
*mm
, gfp_t gfp_mask
)
645 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
646 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
649 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
654 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
655 MEM_CGROUP_CHARGE_TYPE_CACHE
);
659 * Uncharging is always a welcome operation, we never complain, simply
662 void mem_cgroup_uncharge_page(struct page
*page
)
664 struct page_cgroup
*pc
;
665 struct mem_cgroup
*mem
;
666 struct mem_cgroup_per_zone
*mz
;
669 if (mem_cgroup_subsys
.disabled
)
673 * Check if our page_cgroup is valid
675 lock_page_cgroup(page
);
676 pc
= page_get_page_cgroup(page
);
680 VM_BUG_ON(pc
->page
!= page
);
681 VM_BUG_ON(pc
->ref_cnt
<= 0);
683 if (--(pc
->ref_cnt
) == 0) {
684 mz
= page_cgroup_zoneinfo(pc
);
685 spin_lock_irqsave(&mz
->lru_lock
, flags
);
686 __mem_cgroup_remove_list(mz
, pc
);
687 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
689 page_assign_page_cgroup(page
, NULL
);
690 unlock_page_cgroup(page
);
692 mem
= pc
->mem_cgroup
;
693 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
696 kmem_cache_free(page_cgroup_cache
, pc
);
701 unlock_page_cgroup(page
);
705 * Returns non-zero if a page (under migration) has valid page_cgroup member.
706 * Refcnt of page_cgroup is incremented.
708 int mem_cgroup_prepare_migration(struct page
*page
)
710 struct page_cgroup
*pc
;
712 if (mem_cgroup_subsys
.disabled
)
715 lock_page_cgroup(page
);
716 pc
= page_get_page_cgroup(page
);
719 unlock_page_cgroup(page
);
723 void mem_cgroup_end_migration(struct page
*page
)
725 mem_cgroup_uncharge_page(page
);
729 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
730 * And no race with uncharge() routines because page_cgroup for *page*
731 * has extra one reference by mem_cgroup_prepare_migration.
733 void mem_cgroup_page_migration(struct page
*page
, struct page
*newpage
)
735 struct page_cgroup
*pc
;
736 struct mem_cgroup_per_zone
*mz
;
739 lock_page_cgroup(page
);
740 pc
= page_get_page_cgroup(page
);
742 unlock_page_cgroup(page
);
746 mz
= page_cgroup_zoneinfo(pc
);
747 spin_lock_irqsave(&mz
->lru_lock
, flags
);
748 __mem_cgroup_remove_list(mz
, pc
);
749 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
751 page_assign_page_cgroup(page
, NULL
);
752 unlock_page_cgroup(page
);
755 lock_page_cgroup(newpage
);
756 page_assign_page_cgroup(newpage
, pc
);
758 mz
= page_cgroup_zoneinfo(pc
);
759 spin_lock_irqsave(&mz
->lru_lock
, flags
);
760 __mem_cgroup_add_list(mz
, pc
);
761 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
763 unlock_page_cgroup(newpage
);
767 * This routine traverse page_cgroup in given list and drop them all.
768 * This routine ignores page_cgroup->ref_cnt.
769 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
771 #define FORCE_UNCHARGE_BATCH (128)
772 static void mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
773 struct mem_cgroup_per_zone
*mz
,
776 struct page_cgroup
*pc
;
778 int count
= FORCE_UNCHARGE_BATCH
;
780 struct list_head
*list
;
783 list
= &mz
->active_list
;
785 list
= &mz
->inactive_list
;
787 spin_lock_irqsave(&mz
->lru_lock
, flags
);
788 while (!list_empty(list
)) {
789 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
792 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
793 mem_cgroup_uncharge_page(page
);
796 count
= FORCE_UNCHARGE_BATCH
;
799 spin_lock_irqsave(&mz
->lru_lock
, flags
);
801 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
805 * make mem_cgroup's charge to be 0 if there is no task.
806 * This enables deleting this mem_cgroup.
808 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
)
813 if (mem_cgroup_subsys
.disabled
)
818 * page reclaim code (kswapd etc..) will move pages between
819 * active_list <-> inactive_list while we don't take a lock.
820 * So, we have to do loop here until all lists are empty.
822 while (mem
->res
.usage
> 0) {
823 if (atomic_read(&mem
->css
.cgroup
->count
) > 0)
825 for_each_node_state(node
, N_POSSIBLE
)
826 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
827 struct mem_cgroup_per_zone
*mz
;
828 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
829 /* drop all page_cgroup in active_list */
830 mem_cgroup_force_empty_list(mem
, mz
, 1);
831 /* drop all page_cgroup in inactive_list */
832 mem_cgroup_force_empty_list(mem
, mz
, 0);
841 static int mem_cgroup_write_strategy(char *buf
, unsigned long long *tmp
)
843 *tmp
= memparse(buf
, &buf
);
848 * Round up the value to the closest page size
850 *tmp
= ((*tmp
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
) << PAGE_SHIFT
;
854 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
856 return res_counter_read_u64(&mem_cgroup_from_cont(cont
)->res
,
860 static ssize_t
mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
861 struct file
*file
, const char __user
*userbuf
,
862 size_t nbytes
, loff_t
*ppos
)
864 return res_counter_write(&mem_cgroup_from_cont(cont
)->res
,
865 cft
->private, userbuf
, nbytes
, ppos
,
866 mem_cgroup_write_strategy
);
869 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
871 struct mem_cgroup
*mem
;
873 mem
= mem_cgroup_from_cont(cont
);
876 res_counter_reset_max(&mem
->res
);
879 res_counter_reset_failcnt(&mem
->res
);
885 static int mem_force_empty_write(struct cgroup
*cont
, unsigned int event
)
887 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
));
890 static const struct mem_cgroup_stat_desc
{
893 } mem_cgroup_stat_desc
[] = {
894 [MEM_CGROUP_STAT_CACHE
] = { "cache", PAGE_SIZE
, },
895 [MEM_CGROUP_STAT_RSS
] = { "rss", PAGE_SIZE
, },
896 [MEM_CGROUP_STAT_PGPGIN_COUNT
] = {"pgpgin", 1, },
897 [MEM_CGROUP_STAT_PGPGOUT_COUNT
] = {"pgpgout", 1, },
900 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
901 struct cgroup_map_cb
*cb
)
903 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
904 struct mem_cgroup_stat
*stat
= &mem_cont
->stat
;
907 for (i
= 0; i
< ARRAY_SIZE(stat
->cpustat
[0].count
); i
++) {
910 val
= mem_cgroup_read_stat(stat
, i
);
911 val
*= mem_cgroup_stat_desc
[i
].unit
;
912 cb
->fill(cb
, mem_cgroup_stat_desc
[i
].msg
, val
);
914 /* showing # of active pages */
916 unsigned long active
, inactive
;
918 inactive
= mem_cgroup_get_all_zonestat(mem_cont
,
919 MEM_CGROUP_ZSTAT_INACTIVE
);
920 active
= mem_cgroup_get_all_zonestat(mem_cont
,
921 MEM_CGROUP_ZSTAT_ACTIVE
);
922 cb
->fill(cb
, "active", (active
) * PAGE_SIZE
);
923 cb
->fill(cb
, "inactive", (inactive
) * PAGE_SIZE
);
928 static struct cftype mem_cgroup_files
[] = {
930 .name
= "usage_in_bytes",
931 .private = RES_USAGE
,
932 .read_u64
= mem_cgroup_read
,
935 .name
= "max_usage_in_bytes",
936 .private = RES_MAX_USAGE
,
937 .trigger
= mem_cgroup_reset
,
938 .read_u64
= mem_cgroup_read
,
941 .name
= "limit_in_bytes",
942 .private = RES_LIMIT
,
943 .write
= mem_cgroup_write
,
944 .read_u64
= mem_cgroup_read
,
948 .private = RES_FAILCNT
,
949 .trigger
= mem_cgroup_reset
,
950 .read_u64
= mem_cgroup_read
,
953 .name
= "force_empty",
954 .trigger
= mem_force_empty_write
,
958 .read_map
= mem_control_stat_show
,
962 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
964 struct mem_cgroup_per_node
*pn
;
965 struct mem_cgroup_per_zone
*mz
;
966 int zone
, tmp
= node
;
968 * This routine is called against possible nodes.
969 * But it's BUG to call kmalloc() against offline node.
971 * TODO: this routine can waste much memory for nodes which will
972 * never be onlined. It's better to use memory hotplug callback
975 if (!node_state(node
, N_NORMAL_MEMORY
))
977 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
981 mem
->info
.nodeinfo
[node
] = pn
;
982 memset(pn
, 0, sizeof(*pn
));
984 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
985 mz
= &pn
->zoneinfo
[zone
];
986 INIT_LIST_HEAD(&mz
->active_list
);
987 INIT_LIST_HEAD(&mz
->inactive_list
);
988 spin_lock_init(&mz
->lru_lock
);
993 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
995 kfree(mem
->info
.nodeinfo
[node
]);
998 static struct mem_cgroup
*mem_cgroup_alloc(void)
1000 struct mem_cgroup
*mem
;
1002 if (sizeof(*mem
) < PAGE_SIZE
)
1003 mem
= kmalloc(sizeof(*mem
), GFP_KERNEL
);
1005 mem
= vmalloc(sizeof(*mem
));
1008 memset(mem
, 0, sizeof(*mem
));
1012 static void mem_cgroup_free(struct mem_cgroup
*mem
)
1014 if (sizeof(*mem
) < PAGE_SIZE
)
1021 static struct cgroup_subsys_state
*
1022 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1024 struct mem_cgroup
*mem
;
1027 if (unlikely((cont
->parent
) == NULL
)) {
1028 mem
= &init_mem_cgroup
;
1029 page_cgroup_cache
= KMEM_CACHE(page_cgroup
, SLAB_PANIC
);
1031 mem
= mem_cgroup_alloc();
1033 return ERR_PTR(-ENOMEM
);
1036 res_counter_init(&mem
->res
);
1038 for_each_node_state(node
, N_POSSIBLE
)
1039 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
1044 for_each_node_state(node
, N_POSSIBLE
)
1045 free_mem_cgroup_per_zone_info(mem
, node
);
1046 if (cont
->parent
!= NULL
)
1047 mem_cgroup_free(mem
);
1048 return ERR_PTR(-ENOMEM
);
1051 static void mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
1052 struct cgroup
*cont
)
1054 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1055 mem_cgroup_force_empty(mem
);
1058 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
1059 struct cgroup
*cont
)
1062 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1064 for_each_node_state(node
, N_POSSIBLE
)
1065 free_mem_cgroup_per_zone_info(mem
, node
);
1067 mem_cgroup_free(mem_cgroup_from_cont(cont
));
1070 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
1071 struct cgroup
*cont
)
1073 if (mem_cgroup_subsys
.disabled
)
1075 return cgroup_add_files(cont
, ss
, mem_cgroup_files
,
1076 ARRAY_SIZE(mem_cgroup_files
));
1079 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
1080 struct cgroup
*cont
,
1081 struct cgroup
*old_cont
,
1082 struct task_struct
*p
)
1084 struct mm_struct
*mm
;
1085 struct mem_cgroup
*mem
, *old_mem
;
1087 if (mem_cgroup_subsys
.disabled
)
1090 mm
= get_task_mm(p
);
1094 mem
= mem_cgroup_from_cont(cont
);
1095 old_mem
= mem_cgroup_from_cont(old_cont
);
1101 * Only thread group leaders are allowed to migrate, the mm_struct is
1102 * in effect owned by the leader
1104 if (!thread_group_leader(p
))
1111 struct cgroup_subsys mem_cgroup_subsys
= {
1113 .subsys_id
= mem_cgroup_subsys_id
,
1114 .create
= mem_cgroup_create
,
1115 .pre_destroy
= mem_cgroup_pre_destroy
,
1116 .destroy
= mem_cgroup_destroy
,
1117 .populate
= mem_cgroup_populate
,
1118 .attach
= mem_cgroup_move_task
,