page allocator: inline some __alloc_pages() wrappers
[linux-2.6/mini2440.git] / include / asm-frv / pgtable.h
blob83c51aba534b727a363d22559eaa153dd90c9dda
1 /* pgtable.h: FR-V page table mangling
3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * Derived from:
12 * include/asm-m68knommu/pgtable.h
13 * include/asm-i386/pgtable.h
16 #ifndef _ASM_PGTABLE_H
17 #define _ASM_PGTABLE_H
19 #include <asm/mem-layout.h>
20 #include <asm/setup.h>
21 #include <asm/processor.h>
23 #ifndef __ASSEMBLY__
24 #include <linux/threads.h>
25 #include <linux/slab.h>
26 #include <linux/list.h>
27 #include <linux/spinlock.h>
28 #include <linux/sched.h>
29 struct vm_area_struct;
30 #endif
32 #ifndef __ASSEMBLY__
33 #if defined(CONFIG_HIGHPTE)
34 typedef unsigned long pte_addr_t;
35 #else
36 typedef pte_t *pte_addr_t;
37 #endif
38 #endif
40 /*****************************************************************************/
42 * MMU-less operation case first
44 #ifndef CONFIG_MMU
46 #define pgd_present(pgd) (1) /* pages are always present on NO_MM */
47 #define pgd_none(pgd) (0)
48 #define pgd_bad(pgd) (0)
49 #define pgd_clear(pgdp)
50 #define kern_addr_valid(addr) (1)
51 #define pmd_offset(a, b) ((void *) 0)
53 #define PAGE_NONE __pgprot(0) /* these mean nothing to NO_MM */
54 #define PAGE_SHARED __pgprot(0) /* these mean nothing to NO_MM */
55 #define PAGE_COPY __pgprot(0) /* these mean nothing to NO_MM */
56 #define PAGE_READONLY __pgprot(0) /* these mean nothing to NO_MM */
57 #define PAGE_KERNEL __pgprot(0) /* these mean nothing to NO_MM */
59 #define __swp_type(x) (0)
60 #define __swp_offset(x) (0)
61 #define __swp_entry(typ,off) ((swp_entry_t) { ((typ) | ((off) << 7)) })
62 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
63 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
65 #ifndef __ASSEMBLY__
66 static inline int pte_file(pte_t pte) { return 0; }
67 #endif
69 #define ZERO_PAGE(vaddr) ({ BUG(); NULL; })
71 #define swapper_pg_dir ((pgd_t *) NULL)
73 #define pgtable_cache_init() do {} while (0)
74 #define arch_enter_lazy_mmu_mode() do {} while (0)
75 #define arch_leave_lazy_mmu_mode() do {} while (0)
76 #define arch_enter_lazy_cpu_mode() do {} while (0)
77 #define arch_leave_lazy_cpu_mode() do {} while (0)
79 #else /* !CONFIG_MMU */
80 /*****************************************************************************/
82 * then MMU operation
86 * ZERO_PAGE is a global shared page that is always zero: used
87 * for zero-mapped memory areas etc..
89 #ifndef __ASSEMBLY__
90 extern unsigned long empty_zero_page;
91 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
92 #endif
95 * we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry)
96 * [see Documentation/frv/mmu-layout.txt]
98 * Page Directory:
99 * - Size: 16KB
100 * - 64 PGEs per PGD
101 * - Each PGE holds 1 PUD and covers 64MB
103 * Page Upper Directory:
104 * - Size: 256B
105 * - 1 PUE per PUD
106 * - Each PUE holds 1 PMD and covers 64MB
108 * Page Mid-Level Directory
109 * - Size: 256B
110 * - 1 PME per PMD
111 * - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table
112 * - All STEs are instantiated at the same time
114 * Page Table
115 * - Size: 16KB
116 * - 4096 PTEs per PT
117 * - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries
119 * Pages
120 * - Size: 4KB
122 * total PTEs
123 * = 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs
124 * = 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT
125 * = 262144 (or 256 * 1024)
127 #define PGDIR_SHIFT 26
128 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
129 #define PGDIR_MASK (~(PGDIR_SIZE - 1))
130 #define PTRS_PER_PGD 64
132 #define PUD_SHIFT 26
133 #define PTRS_PER_PUD 1
134 #define PUD_SIZE (1UL << PUD_SHIFT)
135 #define PUD_MASK (~(PUD_SIZE - 1))
136 #define PUE_SIZE 256
138 #define PMD_SHIFT 26
139 #define PMD_SIZE (1UL << PMD_SHIFT)
140 #define PMD_MASK (~(PMD_SIZE - 1))
141 #define PTRS_PER_PMD 1
142 #define PME_SIZE 256
144 #define __frv_PT_SIZE 256
146 #define PTRS_PER_PTE 4096
148 #define USER_PGDS_IN_LAST_PML4 (TASK_SIZE / PGDIR_SIZE)
149 #define FIRST_USER_ADDRESS 0
151 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
152 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS)
154 #define TWOLEVEL_PGDIR_SHIFT 26
155 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
156 #define BOOT_KERNEL_PGD_PTRS (PTRS_PER_PGD - BOOT_USER_PGD_PTRS)
158 #ifndef __ASSEMBLY__
160 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
162 #define pte_ERROR(e) \
163 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte)
164 #define pmd_ERROR(e) \
165 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
166 #define pud_ERROR(e) \
167 printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e)))
168 #define pgd_ERROR(e) \
169 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e))))
172 * Certain architectures need to do special things when PTEs
173 * within a page table are directly modified. Thus, the following
174 * hook is made available.
176 #define set_pte(pteptr, pteval) \
177 do { \
178 *(pteptr) = (pteval); \
179 asm volatile("dcf %M0" :: "U"(*pteptr)); \
180 } while(0)
181 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
184 * pgd_offset() returns a (pgd_t *)
185 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
187 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
190 * a shortcut which implies the use of the kernel's pgd, instead
191 * of a process's
193 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
196 * The "pgd_xxx()" functions here are trivial for a folded two-level
197 * setup: the pud is never bad, and a pud always exists (as it's folded
198 * into the pgd entry)
200 static inline int pgd_none(pgd_t pgd) { return 0; }
201 static inline int pgd_bad(pgd_t pgd) { return 0; }
202 static inline int pgd_present(pgd_t pgd) { return 1; }
203 static inline void pgd_clear(pgd_t *pgd) { }
205 #define pgd_populate(mm, pgd, pud) do { } while (0)
207 * (puds are folded into pgds so this doesn't get actually called,
208 * but the define is needed for a generic inline function.)
210 #define set_pgd(pgdptr, pgdval) \
211 do { \
212 memcpy((pgdptr), &(pgdval), sizeof(pgd_t)); \
213 asm volatile("dcf %M0" :: "U"(*(pgdptr))); \
214 } while(0)
216 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
218 return (pud_t *) pgd;
221 #define pgd_page(pgd) (pud_page((pud_t){ pgd }))
222 #define pgd_page_vaddr(pgd) (pud_page_vaddr((pud_t){ pgd }))
225 * allocating and freeing a pud is trivial: the 1-entry pud is
226 * inside the pgd, so has no extra memory associated with it.
228 #define pud_alloc_one(mm, address) NULL
229 #define pud_free(mm, x) do { } while (0)
230 #define __pud_free_tlb(tlb, x) do { } while (0)
233 * The "pud_xxx()" functions here are trivial for a folded two-level
234 * setup: the pmd is never bad, and a pmd always exists (as it's folded
235 * into the pud entry)
237 static inline int pud_none(pud_t pud) { return 0; }
238 static inline int pud_bad(pud_t pud) { return 0; }
239 static inline int pud_present(pud_t pud) { return 1; }
240 static inline void pud_clear(pud_t *pud) { }
242 #define pud_populate(mm, pmd, pte) do { } while (0)
245 * (pmds are folded into puds so this doesn't get actually called,
246 * but the define is needed for a generic inline function.)
248 #define set_pud(pudptr, pudval) set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval })
250 #define pud_page(pud) (pmd_page((pmd_t){ pud }))
251 #define pud_page_vaddr(pud) (pmd_page_vaddr((pmd_t){ pud }))
254 * (pmds are folded into pgds so this doesn't get actually called,
255 * but the define is needed for a generic inline function.)
257 extern void __set_pmd(pmd_t *pmdptr, unsigned long __pmd);
259 #define set_pmd(pmdptr, pmdval) \
260 do { \
261 __set_pmd((pmdptr), (pmdval).ste[0]); \
262 } while(0)
264 #define __pmd_index(address) 0
266 static inline pmd_t *pmd_offset(pud_t *dir, unsigned long address)
268 return (pmd_t *) dir + __pmd_index(address);
271 #define pte_same(a, b) ((a).pte == (b).pte)
272 #define pte_page(x) (mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT))))
273 #define pte_none(x) (!(x).pte)
274 #define pte_pfn(x) ((unsigned long)(((x).pte >> PAGE_SHIFT)))
275 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
276 #define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
278 #define VMALLOC_VMADDR(x) ((unsigned long) (x))
280 #endif /* !__ASSEMBLY__ */
283 * control flags in AMPR registers and TLB entries
285 #define _PAGE_BIT_PRESENT xAMPRx_V_BIT
286 #define _PAGE_BIT_WP DAMPRx_WP_BIT
287 #define _PAGE_BIT_NOCACHE xAMPRx_C_BIT
288 #define _PAGE_BIT_SUPER xAMPRx_S_BIT
289 #define _PAGE_BIT_ACCESSED xAMPRx_RESERVED8_BIT
290 #define _PAGE_BIT_DIRTY xAMPRx_M_BIT
291 #define _PAGE_BIT_NOTGLOBAL xAMPRx_NG_BIT
293 #define _PAGE_PRESENT xAMPRx_V
294 #define _PAGE_WP DAMPRx_WP
295 #define _PAGE_NOCACHE xAMPRx_C
296 #define _PAGE_SUPER xAMPRx_S
297 #define _PAGE_ACCESSED xAMPRx_RESERVED8 /* accessed if set */
298 #define _PAGE_DIRTY xAMPRx_M
299 #define _PAGE_NOTGLOBAL xAMPRx_NG
301 #define _PAGE_RESERVED_MASK (xAMPRx_RESERVED8 | xAMPRx_RESERVED13)
303 #define _PAGE_FILE 0x002 /* set:pagecache unset:swap */
304 #define _PAGE_PROTNONE 0x000 /* If not present */
306 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
308 #define __PGPROT_BASE \
309 (_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED)
311 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
312 #define PAGE_SHARED __pgprot(__PGPROT_BASE)
313 #define PAGE_COPY __pgprot(__PGPROT_BASE | _PAGE_WP)
314 #define PAGE_READONLY __pgprot(__PGPROT_BASE | _PAGE_WP)
316 #define __PAGE_KERNEL (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY)
317 #define __PAGE_KERNEL_NOCACHE (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE)
318 #define __PAGE_KERNEL_RO (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP)
320 #define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL)
322 #define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)
323 #define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)
324 #define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
326 #define _PAGE_TABLE (_PAGE_PRESENT | xAMPRx_SS_16Kb)
328 #ifndef __ASSEMBLY__
331 * The FR451 can do execute protection by virtue of having separate TLB miss handlers for
332 * instruction access and for data access. However, we don't have enough reserved bits to say
333 * "execute only", so we don't bother. If you can read it, you can execute it and vice versa.
335 #define __P000 PAGE_NONE
336 #define __P001 PAGE_READONLY
337 #define __P010 PAGE_COPY
338 #define __P011 PAGE_COPY
339 #define __P100 PAGE_READONLY
340 #define __P101 PAGE_READONLY
341 #define __P110 PAGE_COPY
342 #define __P111 PAGE_COPY
344 #define __S000 PAGE_NONE
345 #define __S001 PAGE_READONLY
346 #define __S010 PAGE_SHARED
347 #define __S011 PAGE_SHARED
348 #define __S100 PAGE_READONLY
349 #define __S101 PAGE_READONLY
350 #define __S110 PAGE_SHARED
351 #define __S111 PAGE_SHARED
354 * Define this to warn about kernel memory accesses that are
355 * done without a 'access_ok(VERIFY_WRITE,..)'
357 #undef TEST_ACCESS_OK
359 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
360 #define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
362 #define pmd_none(x) (!pmd_val(x))
363 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
364 #define pmd_bad(x) (pmd_val(x) & xAMPRx_SS)
365 #define pmd_clear(xp) do { __set_pmd(xp, 0); } while(0)
367 #define pmd_page_vaddr(pmd) \
368 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
370 #ifndef CONFIG_DISCONTIGMEM
371 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
372 #endif
374 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
377 * The following only work if pte_present() is true.
378 * Undefined behaviour if not..
380 static inline int pte_dirty(pte_t pte) { return (pte).pte & _PAGE_DIRTY; }
381 static inline int pte_young(pte_t pte) { return (pte).pte & _PAGE_ACCESSED; }
382 static inline int pte_write(pte_t pte) { return !((pte).pte & _PAGE_WP); }
383 static inline int pte_special(pte_t pte) { return 0; }
385 static inline pte_t pte_mkclean(pte_t pte) { (pte).pte &= ~_PAGE_DIRTY; return pte; }
386 static inline pte_t pte_mkold(pte_t pte) { (pte).pte &= ~_PAGE_ACCESSED; return pte; }
387 static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte |= _PAGE_WP; return pte; }
388 static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte |= _PAGE_DIRTY; return pte; }
389 static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte |= _PAGE_ACCESSED; return pte; }
390 static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte &= ~_PAGE_WP; return pte; }
391 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
393 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
395 int i = test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep);
396 asm volatile("dcf %M0" :: "U"(*ptep));
397 return i;
400 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
402 unsigned long x = xchg(&ptep->pte, 0);
403 asm volatile("dcf %M0" :: "U"(*ptep));
404 return __pte(x);
407 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
409 set_bit(_PAGE_BIT_WP, ptep);
410 asm volatile("dcf %M0" :: "U"(*ptep));
414 * Macro to mark a page protection value as "uncacheable"
416 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE))
419 * Conversion functions: convert a page and protection to a page entry,
420 * and a page entry and page directory to the page they refer to.
423 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
424 #define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE)
426 /* This takes a physical page address that is used by the remapping functions */
427 #define mk_pte_phys(physpage, pgprot) pfn_pte((physpage) >> PAGE_SHIFT, pgprot)
429 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
431 pte.pte &= _PAGE_CHG_MASK;
432 pte.pte |= pgprot_val(newprot);
433 return pte;
436 /* to find an entry in a page-table-directory. */
437 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
438 #define pgd_index_k(addr) pgd_index(addr)
440 /* Find an entry in the bottom-level page table.. */
441 #define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
444 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
446 * this macro returns the index of the entry in the pte page which would
447 * control the given virtual address
449 #define pte_index(address) \
450 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
451 #define pte_offset_kernel(dir, address) \
452 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
454 #if defined(CONFIG_HIGHPTE)
455 #define pte_offset_map(dir, address) \
456 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
457 #define pte_offset_map_nested(dir, address) \
458 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
459 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
460 #define pte_unmap_nested(pte) kunmap_atomic((pte), KM_PTE1)
461 #else
462 #define pte_offset_map(dir, address) \
463 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
464 #define pte_offset_map_nested(dir, address) pte_offset_map((dir), (address))
465 #define pte_unmap(pte) do { } while (0)
466 #define pte_unmap_nested(pte) do { } while (0)
467 #endif
470 * Handle swap and file entries
471 * - the PTE is encoded in the following format:
472 * bit 0: Must be 0 (!_PAGE_PRESENT)
473 * bit 1: Type: 0 for swap, 1 for file (_PAGE_FILE)
474 * bits 2-7: Swap type
475 * bits 8-31: Swap offset
476 * bits 2-31: File pgoff
478 #define __swp_type(x) (((x).val >> 2) & 0x1f)
479 #define __swp_offset(x) ((x).val >> 8)
480 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 8) })
481 #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte })
482 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
484 static inline int pte_file(pte_t pte)
486 return pte.pte & _PAGE_FILE;
489 #define PTE_FILE_MAX_BITS 29
491 #define pte_to_pgoff(PTE) ((PTE).pte >> 2)
492 #define pgoff_to_pte(off) __pte((off) << 2 | _PAGE_FILE)
494 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
495 #define PageSkip(page) (0)
496 #define kern_addr_valid(addr) (1)
498 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
499 remap_pfn_range(vma, vaddr, pfn, size, prot)
501 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
502 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
503 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
504 #define __HAVE_ARCH_PTE_SAME
505 #include <asm-generic/pgtable.h>
508 * preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache
510 static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
512 struct mm_struct *mm;
513 unsigned long ampr;
515 mm = current->mm;
516 if (mm) {
517 pgd_t *pge = pgd_offset(mm, address);
518 pud_t *pue = pud_offset(pge, address);
519 pmd_t *pme = pmd_offset(pue, address);
521 ampr = pme->ste[0] & 0xffffff00;
522 ampr |= xAMPRx_L | xAMPRx_SS_16Kb | xAMPRx_S | xAMPRx_C |
523 xAMPRx_V;
524 } else {
525 address = ULONG_MAX;
526 ampr = 0;
529 asm volatile("movgs %0,scr0\n"
530 "movgs %0,scr1\n"
531 "movgs %1,dampr4\n"
532 "movgs %1,dampr5\n"
534 : "r"(address), "r"(ampr)
538 #ifdef CONFIG_PROC_FS
539 extern char *proc_pid_status_frv_cxnr(struct mm_struct *mm, char *buffer);
540 #endif
542 extern void __init pgtable_cache_init(void);
544 #endif /* !__ASSEMBLY__ */
545 #endif /* !CONFIG_MMU */
547 #ifndef __ASSEMBLY__
548 extern void __init paging_init(void);
549 #endif /* !__ASSEMBLY__ */
551 #endif /* _ASM_PGTABLE_H */