4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
42 #include <asm/tlbflush.h>
43 #include <asm/div64.h>
45 #include <linux/swapops.h>
50 /* Incremented by the number of inactive pages that were scanned */
51 unsigned long nr_scanned
;
53 /* This context's GFP mask */
58 /* Can pages be swapped as part of reclaim? */
61 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
62 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
63 * In this context, it doesn't matter that we scan the
64 * whole list at once. */
69 int all_unreclaimable
;
73 /* Which cgroup do we reclaim from */
74 struct mem_cgroup
*mem_cgroup
;
76 /* Pluggable isolate pages callback */
77 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
78 unsigned long *scanned
, int order
, int mode
,
79 struct zone
*z
, struct mem_cgroup
*mem_cont
,
83 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
85 #ifdef ARCH_HAS_PREFETCH
86 #define prefetch_prev_lru_page(_page, _base, _field) \
88 if ((_page)->lru.prev != _base) { \
91 prev = lru_to_page(&(_page->lru)); \
92 prefetch(&prev->_field); \
96 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
99 #ifdef ARCH_HAS_PREFETCHW
100 #define prefetchw_prev_lru_page(_page, _base, _field) \
102 if ((_page)->lru.prev != _base) { \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetchw(&prev->_field); \
110 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
114 * From 0 .. 100. Higher means more swappy.
116 int vm_swappiness
= 60;
117 long vm_total_pages
; /* The total number of pages which the VM controls */
119 static LIST_HEAD(shrinker_list
);
120 static DECLARE_RWSEM(shrinker_rwsem
);
122 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
123 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
125 #define scan_global_lru(sc) (1)
129 * Add a shrinker callback to be called from the vm
131 void register_shrinker(struct shrinker
*shrinker
)
134 down_write(&shrinker_rwsem
);
135 list_add_tail(&shrinker
->list
, &shrinker_list
);
136 up_write(&shrinker_rwsem
);
138 EXPORT_SYMBOL(register_shrinker
);
143 void unregister_shrinker(struct shrinker
*shrinker
)
145 down_write(&shrinker_rwsem
);
146 list_del(&shrinker
->list
);
147 up_write(&shrinker_rwsem
);
149 EXPORT_SYMBOL(unregister_shrinker
);
151 #define SHRINK_BATCH 128
153 * Call the shrink functions to age shrinkable caches
155 * Here we assume it costs one seek to replace a lru page and that it also
156 * takes a seek to recreate a cache object. With this in mind we age equal
157 * percentages of the lru and ageable caches. This should balance the seeks
158 * generated by these structures.
160 * If the vm encountered mapped pages on the LRU it increase the pressure on
161 * slab to avoid swapping.
163 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
165 * `lru_pages' represents the number of on-LRU pages in all the zones which
166 * are eligible for the caller's allocation attempt. It is used for balancing
167 * slab reclaim versus page reclaim.
169 * Returns the number of slab objects which we shrunk.
171 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
172 unsigned long lru_pages
)
174 struct shrinker
*shrinker
;
175 unsigned long ret
= 0;
178 scanned
= SWAP_CLUSTER_MAX
;
180 if (!down_read_trylock(&shrinker_rwsem
))
181 return 1; /* Assume we'll be able to shrink next time */
183 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
184 unsigned long long delta
;
185 unsigned long total_scan
;
186 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
188 delta
= (4 * scanned
) / shrinker
->seeks
;
190 do_div(delta
, lru_pages
+ 1);
191 shrinker
->nr
+= delta
;
192 if (shrinker
->nr
< 0) {
193 printk(KERN_ERR
"%s: nr=%ld\n",
194 __func__
, shrinker
->nr
);
195 shrinker
->nr
= max_pass
;
199 * Avoid risking looping forever due to too large nr value:
200 * never try to free more than twice the estimate number of
203 if (shrinker
->nr
> max_pass
* 2)
204 shrinker
->nr
= max_pass
* 2;
206 total_scan
= shrinker
->nr
;
209 while (total_scan
>= SHRINK_BATCH
) {
210 long this_scan
= SHRINK_BATCH
;
214 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
215 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
216 if (shrink_ret
== -1)
218 if (shrink_ret
< nr_before
)
219 ret
+= nr_before
- shrink_ret
;
220 count_vm_events(SLABS_SCANNED
, this_scan
);
221 total_scan
-= this_scan
;
226 shrinker
->nr
+= total_scan
;
228 up_read(&shrinker_rwsem
);
232 /* Called without lock on whether page is mapped, so answer is unstable */
233 static inline int page_mapping_inuse(struct page
*page
)
235 struct address_space
*mapping
;
237 /* Page is in somebody's page tables. */
238 if (page_mapped(page
))
241 /* Be more reluctant to reclaim swapcache than pagecache */
242 if (PageSwapCache(page
))
245 mapping
= page_mapping(page
);
249 /* File is mmap'd by somebody? */
250 return mapping_mapped(mapping
);
253 static inline int is_page_cache_freeable(struct page
*page
)
255 return page_count(page
) - !!PagePrivate(page
) == 2;
258 static int may_write_to_queue(struct backing_dev_info
*bdi
)
260 if (current
->flags
& PF_SWAPWRITE
)
262 if (!bdi_write_congested(bdi
))
264 if (bdi
== current
->backing_dev_info
)
270 * We detected a synchronous write error writing a page out. Probably
271 * -ENOSPC. We need to propagate that into the address_space for a subsequent
272 * fsync(), msync() or close().
274 * The tricky part is that after writepage we cannot touch the mapping: nothing
275 * prevents it from being freed up. But we have a ref on the page and once
276 * that page is locked, the mapping is pinned.
278 * We're allowed to run sleeping lock_page() here because we know the caller has
281 static void handle_write_error(struct address_space
*mapping
,
282 struct page
*page
, int error
)
285 if (page_mapping(page
) == mapping
)
286 mapping_set_error(mapping
, error
);
290 /* Request for sync pageout. */
296 /* possible outcome of pageout() */
298 /* failed to write page out, page is locked */
300 /* move page to the active list, page is locked */
302 /* page has been sent to the disk successfully, page is unlocked */
304 /* page is clean and locked */
309 * pageout is called by shrink_page_list() for each dirty page.
310 * Calls ->writepage().
312 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
313 enum pageout_io sync_writeback
)
316 * If the page is dirty, only perform writeback if that write
317 * will be non-blocking. To prevent this allocation from being
318 * stalled by pagecache activity. But note that there may be
319 * stalls if we need to run get_block(). We could test
320 * PagePrivate for that.
322 * If this process is currently in generic_file_write() against
323 * this page's queue, we can perform writeback even if that
326 * If the page is swapcache, write it back even if that would
327 * block, for some throttling. This happens by accident, because
328 * swap_backing_dev_info is bust: it doesn't reflect the
329 * congestion state of the swapdevs. Easy to fix, if needed.
330 * See swapfile.c:page_queue_congested().
332 if (!is_page_cache_freeable(page
))
336 * Some data journaling orphaned pages can have
337 * page->mapping == NULL while being dirty with clean buffers.
339 if (PagePrivate(page
)) {
340 if (try_to_free_buffers(page
)) {
341 ClearPageDirty(page
);
342 printk("%s: orphaned page\n", __func__
);
348 if (mapping
->a_ops
->writepage
== NULL
)
349 return PAGE_ACTIVATE
;
350 if (!may_write_to_queue(mapping
->backing_dev_info
))
353 if (clear_page_dirty_for_io(page
)) {
355 struct writeback_control wbc
= {
356 .sync_mode
= WB_SYNC_NONE
,
357 .nr_to_write
= SWAP_CLUSTER_MAX
,
359 .range_end
= LLONG_MAX
,
364 SetPageReclaim(page
);
365 res
= mapping
->a_ops
->writepage(page
, &wbc
);
367 handle_write_error(mapping
, page
, res
);
368 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
369 ClearPageReclaim(page
);
370 return PAGE_ACTIVATE
;
374 * Wait on writeback if requested to. This happens when
375 * direct reclaiming a large contiguous area and the
376 * first attempt to free a range of pages fails.
378 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
379 wait_on_page_writeback(page
);
381 if (!PageWriteback(page
)) {
382 /* synchronous write or broken a_ops? */
383 ClearPageReclaim(page
);
385 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
393 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
394 * someone else has a ref on the page, abort and return 0. If it was
395 * successfully detached, return 1. Assumes the caller has a single ref on
398 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
400 BUG_ON(!PageLocked(page
));
401 BUG_ON(mapping
!= page_mapping(page
));
403 write_lock_irq(&mapping
->tree_lock
);
405 * The non racy check for a busy page.
407 * Must be careful with the order of the tests. When someone has
408 * a ref to the page, it may be possible that they dirty it then
409 * drop the reference. So if PageDirty is tested before page_count
410 * here, then the following race may occur:
412 * get_user_pages(&page);
413 * [user mapping goes away]
415 * !PageDirty(page) [good]
416 * SetPageDirty(page);
418 * !page_count(page) [good, discard it]
420 * [oops, our write_to data is lost]
422 * Reversing the order of the tests ensures such a situation cannot
423 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424 * load is not satisfied before that of page->_count.
426 * Note that if SetPageDirty is always performed via set_page_dirty,
427 * and thus under tree_lock, then this ordering is not required.
429 if (unlikely(page_count(page
) != 2))
432 if (unlikely(PageDirty(page
)))
435 if (PageSwapCache(page
)) {
436 swp_entry_t swap
= { .val
= page_private(page
) };
437 __delete_from_swap_cache(page
);
438 write_unlock_irq(&mapping
->tree_lock
);
440 __put_page(page
); /* The pagecache ref */
444 __remove_from_page_cache(page
);
445 write_unlock_irq(&mapping
->tree_lock
);
450 write_unlock_irq(&mapping
->tree_lock
);
455 * shrink_page_list() returns the number of reclaimed pages
457 static unsigned long shrink_page_list(struct list_head
*page_list
,
458 struct scan_control
*sc
,
459 enum pageout_io sync_writeback
)
461 LIST_HEAD(ret_pages
);
462 struct pagevec freed_pvec
;
464 unsigned long nr_reclaimed
= 0;
468 pagevec_init(&freed_pvec
, 1);
469 while (!list_empty(page_list
)) {
470 struct address_space
*mapping
;
477 page
= lru_to_page(page_list
);
478 list_del(&page
->lru
);
480 if (TestSetPageLocked(page
))
483 VM_BUG_ON(PageActive(page
));
487 if (!sc
->may_swap
&& page_mapped(page
))
490 /* Double the slab pressure for mapped and swapcache pages */
491 if (page_mapped(page
) || PageSwapCache(page
))
494 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
495 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
497 if (PageWriteback(page
)) {
499 * Synchronous reclaim is performed in two passes,
500 * first an asynchronous pass over the list to
501 * start parallel writeback, and a second synchronous
502 * pass to wait for the IO to complete. Wait here
503 * for any page for which writeback has already
506 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
507 wait_on_page_writeback(page
);
512 referenced
= page_referenced(page
, 1, sc
->mem_cgroup
);
513 /* In active use or really unfreeable? Activate it. */
514 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
515 referenced
&& page_mapping_inuse(page
))
516 goto activate_locked
;
520 * Anonymous process memory has backing store?
521 * Try to allocate it some swap space here.
523 if (PageAnon(page
) && !PageSwapCache(page
))
524 if (!add_to_swap(page
, GFP_ATOMIC
))
525 goto activate_locked
;
526 #endif /* CONFIG_SWAP */
528 mapping
= page_mapping(page
);
531 * The page is mapped into the page tables of one or more
532 * processes. Try to unmap it here.
534 if (page_mapped(page
) && mapping
) {
535 switch (try_to_unmap(page
, 0)) {
537 goto activate_locked
;
541 ; /* try to free the page below */
545 if (PageDirty(page
)) {
546 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
550 if (!sc
->may_writepage
)
553 /* Page is dirty, try to write it out here */
554 switch (pageout(page
, mapping
, sync_writeback
)) {
558 goto activate_locked
;
560 if (PageWriteback(page
) || PageDirty(page
))
563 * A synchronous write - probably a ramdisk. Go
564 * ahead and try to reclaim the page.
566 if (TestSetPageLocked(page
))
568 if (PageDirty(page
) || PageWriteback(page
))
570 mapping
= page_mapping(page
);
572 ; /* try to free the page below */
577 * If the page has buffers, try to free the buffer mappings
578 * associated with this page. If we succeed we try to free
581 * We do this even if the page is PageDirty().
582 * try_to_release_page() does not perform I/O, but it is
583 * possible for a page to have PageDirty set, but it is actually
584 * clean (all its buffers are clean). This happens if the
585 * buffers were written out directly, with submit_bh(). ext3
586 * will do this, as well as the blockdev mapping.
587 * try_to_release_page() will discover that cleanness and will
588 * drop the buffers and mark the page clean - it can be freed.
590 * Rarely, pages can have buffers and no ->mapping. These are
591 * the pages which were not successfully invalidated in
592 * truncate_complete_page(). We try to drop those buffers here
593 * and if that worked, and the page is no longer mapped into
594 * process address space (page_count == 1) it can be freed.
595 * Otherwise, leave the page on the LRU so it is swappable.
597 if (PagePrivate(page
)) {
598 if (!try_to_release_page(page
, sc
->gfp_mask
))
599 goto activate_locked
;
600 if (!mapping
&& page_count(page
) == 1)
604 if (!mapping
|| !remove_mapping(mapping
, page
))
610 if (!pagevec_add(&freed_pvec
, page
))
611 __pagevec_release_nonlru(&freed_pvec
);
620 list_add(&page
->lru
, &ret_pages
);
621 VM_BUG_ON(PageLRU(page
));
623 list_splice(&ret_pages
, page_list
);
624 if (pagevec_count(&freed_pvec
))
625 __pagevec_release_nonlru(&freed_pvec
);
626 count_vm_events(PGACTIVATE
, pgactivate
);
630 /* LRU Isolation modes. */
631 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
632 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
633 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
636 * Attempt to remove the specified page from its LRU. Only take this page
637 * if it is of the appropriate PageActive status. Pages which are being
638 * freed elsewhere are also ignored.
640 * page: page to consider
641 * mode: one of the LRU isolation modes defined above
643 * returns 0 on success, -ve errno on failure.
645 int __isolate_lru_page(struct page
*page
, int mode
)
649 /* Only take pages on the LRU. */
654 * When checking the active state, we need to be sure we are
655 * dealing with comparible boolean values. Take the logical not
658 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
662 if (likely(get_page_unless_zero(page
))) {
664 * Be careful not to clear PageLRU until after we're
665 * sure the page is not being freed elsewhere -- the
666 * page release code relies on it.
676 * zone->lru_lock is heavily contended. Some of the functions that
677 * shrink the lists perform better by taking out a batch of pages
678 * and working on them outside the LRU lock.
680 * For pagecache intensive workloads, this function is the hottest
681 * spot in the kernel (apart from copy_*_user functions).
683 * Appropriate locks must be held before calling this function.
685 * @nr_to_scan: The number of pages to look through on the list.
686 * @src: The LRU list to pull pages off.
687 * @dst: The temp list to put pages on to.
688 * @scanned: The number of pages that were scanned.
689 * @order: The caller's attempted allocation order
690 * @mode: One of the LRU isolation modes
692 * returns how many pages were moved onto *@dst.
694 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
695 struct list_head
*src
, struct list_head
*dst
,
696 unsigned long *scanned
, int order
, int mode
)
698 unsigned long nr_taken
= 0;
701 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
704 unsigned long end_pfn
;
705 unsigned long page_pfn
;
708 page
= lru_to_page(src
);
709 prefetchw_prev_lru_page(page
, src
, flags
);
711 VM_BUG_ON(!PageLRU(page
));
713 switch (__isolate_lru_page(page
, mode
)) {
715 list_move(&page
->lru
, dst
);
720 /* else it is being freed elsewhere */
721 list_move(&page
->lru
, src
);
732 * Attempt to take all pages in the order aligned region
733 * surrounding the tag page. Only take those pages of
734 * the same active state as that tag page. We may safely
735 * round the target page pfn down to the requested order
736 * as the mem_map is guarenteed valid out to MAX_ORDER,
737 * where that page is in a different zone we will detect
738 * it from its zone id and abort this block scan.
740 zone_id
= page_zone_id(page
);
741 page_pfn
= page_to_pfn(page
);
742 pfn
= page_pfn
& ~((1 << order
) - 1);
743 end_pfn
= pfn
+ (1 << order
);
744 for (; pfn
< end_pfn
; pfn
++) {
745 struct page
*cursor_page
;
747 /* The target page is in the block, ignore it. */
748 if (unlikely(pfn
== page_pfn
))
751 /* Avoid holes within the zone. */
752 if (unlikely(!pfn_valid_within(pfn
)))
755 cursor_page
= pfn_to_page(pfn
);
756 /* Check that we have not crossed a zone boundary. */
757 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
759 switch (__isolate_lru_page(cursor_page
, mode
)) {
761 list_move(&cursor_page
->lru
, dst
);
767 /* else it is being freed elsewhere */
768 list_move(&cursor_page
->lru
, src
);
779 static unsigned long isolate_pages_global(unsigned long nr
,
780 struct list_head
*dst
,
781 unsigned long *scanned
, int order
,
782 int mode
, struct zone
*z
,
783 struct mem_cgroup
*mem_cont
,
787 return isolate_lru_pages(nr
, &z
->active_list
, dst
,
788 scanned
, order
, mode
);
790 return isolate_lru_pages(nr
, &z
->inactive_list
, dst
,
791 scanned
, order
, mode
);
795 * clear_active_flags() is a helper for shrink_active_list(), clearing
796 * any active bits from the pages in the list.
798 static unsigned long clear_active_flags(struct list_head
*page_list
)
803 list_for_each_entry(page
, page_list
, lru
)
804 if (PageActive(page
)) {
805 ClearPageActive(page
);
813 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
816 static unsigned long shrink_inactive_list(unsigned long max_scan
,
817 struct zone
*zone
, struct scan_control
*sc
)
819 LIST_HEAD(page_list
);
821 unsigned long nr_scanned
= 0;
822 unsigned long nr_reclaimed
= 0;
824 pagevec_init(&pvec
, 1);
827 spin_lock_irq(&zone
->lru_lock
);
830 unsigned long nr_taken
;
831 unsigned long nr_scan
;
832 unsigned long nr_freed
;
833 unsigned long nr_active
;
835 nr_taken
= sc
->isolate_pages(sc
->swap_cluster_max
,
836 &page_list
, &nr_scan
, sc
->order
,
837 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)?
838 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
839 zone
, sc
->mem_cgroup
, 0);
840 nr_active
= clear_active_flags(&page_list
);
841 __count_vm_events(PGDEACTIVATE
, nr_active
);
843 __mod_zone_page_state(zone
, NR_ACTIVE
, -nr_active
);
844 __mod_zone_page_state(zone
, NR_INACTIVE
,
845 -(nr_taken
- nr_active
));
846 if (scan_global_lru(sc
))
847 zone
->pages_scanned
+= nr_scan
;
848 spin_unlock_irq(&zone
->lru_lock
);
850 nr_scanned
+= nr_scan
;
851 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
854 * If we are direct reclaiming for contiguous pages and we do
855 * not reclaim everything in the list, try again and wait
856 * for IO to complete. This will stall high-order allocations
857 * but that should be acceptable to the caller
859 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
860 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
) {
861 congestion_wait(WRITE
, HZ
/10);
864 * The attempt at page out may have made some
865 * of the pages active, mark them inactive again.
867 nr_active
= clear_active_flags(&page_list
);
868 count_vm_events(PGDEACTIVATE
, nr_active
);
870 nr_freed
+= shrink_page_list(&page_list
, sc
,
874 nr_reclaimed
+= nr_freed
;
876 if (current_is_kswapd()) {
877 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
878 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
879 } else if (scan_global_lru(sc
))
880 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
882 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
887 spin_lock(&zone
->lru_lock
);
889 * Put back any unfreeable pages.
891 while (!list_empty(&page_list
)) {
892 page
= lru_to_page(&page_list
);
893 VM_BUG_ON(PageLRU(page
));
895 list_del(&page
->lru
);
896 if (PageActive(page
))
897 add_page_to_active_list(zone
, page
);
899 add_page_to_inactive_list(zone
, page
);
900 if (!pagevec_add(&pvec
, page
)) {
901 spin_unlock_irq(&zone
->lru_lock
);
902 __pagevec_release(&pvec
);
903 spin_lock_irq(&zone
->lru_lock
);
906 } while (nr_scanned
< max_scan
);
907 spin_unlock(&zone
->lru_lock
);
910 pagevec_release(&pvec
);
915 * We are about to scan this zone at a certain priority level. If that priority
916 * level is smaller (ie: more urgent) than the previous priority, then note
917 * that priority level within the zone. This is done so that when the next
918 * process comes in to scan this zone, it will immediately start out at this
919 * priority level rather than having to build up its own scanning priority.
920 * Here, this priority affects only the reclaim-mapped threshold.
922 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
924 if (priority
< zone
->prev_priority
)
925 zone
->prev_priority
= priority
;
928 static inline int zone_is_near_oom(struct zone
*zone
)
930 return zone
->pages_scanned
>= (zone_page_state(zone
, NR_ACTIVE
)
931 + zone_page_state(zone
, NR_INACTIVE
))*3;
935 * Determine we should try to reclaim mapped pages.
936 * This is called only when sc->mem_cgroup is NULL.
938 static int calc_reclaim_mapped(struct scan_control
*sc
, struct zone
*zone
,
945 int reclaim_mapped
= 0;
948 if (scan_global_lru(sc
) && zone_is_near_oom(zone
))
951 * `distress' is a measure of how much trouble we're having
952 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
954 if (scan_global_lru(sc
))
955 prev_priority
= zone
->prev_priority
;
957 prev_priority
= mem_cgroup_get_reclaim_priority(sc
->mem_cgroup
);
959 distress
= 100 >> min(prev_priority
, priority
);
962 * The point of this algorithm is to decide when to start
963 * reclaiming mapped memory instead of just pagecache. Work out
967 if (scan_global_lru(sc
))
968 mapped_ratio
= ((global_page_state(NR_FILE_MAPPED
) +
969 global_page_state(NR_ANON_PAGES
)) * 100) /
972 mapped_ratio
= mem_cgroup_calc_mapped_ratio(sc
->mem_cgroup
);
975 * Now decide how much we really want to unmap some pages. The
976 * mapped ratio is downgraded - just because there's a lot of
977 * mapped memory doesn't necessarily mean that page reclaim
980 * The distress ratio is important - we don't want to start
983 * A 100% value of vm_swappiness overrides this algorithm
986 swap_tendency
= mapped_ratio
/ 2 + distress
+ sc
->swappiness
;
989 * If there's huge imbalance between active and inactive
990 * (think active 100 times larger than inactive) we should
991 * become more permissive, or the system will take too much
992 * cpu before it start swapping during memory pressure.
993 * Distress is about avoiding early-oom, this is about
994 * making swappiness graceful despite setting it to low
997 * Avoid div by zero with nr_inactive+1, and max resulting
998 * value is vm_total_pages.
1000 if (scan_global_lru(sc
)) {
1001 imbalance
= zone_page_state(zone
, NR_ACTIVE
);
1002 imbalance
/= zone_page_state(zone
, NR_INACTIVE
) + 1;
1004 imbalance
= mem_cgroup_reclaim_imbalance(sc
->mem_cgroup
);
1007 * Reduce the effect of imbalance if swappiness is low,
1008 * this means for a swappiness very low, the imbalance
1009 * must be much higher than 100 for this logic to make
1012 * Max temporary value is vm_total_pages*100.
1014 imbalance
*= (vm_swappiness
+ 1);
1018 * If not much of the ram is mapped, makes the imbalance
1019 * less relevant, it's high priority we refill the inactive
1020 * list with mapped pages only in presence of high ratio of
1023 * Max temporary value is vm_total_pages*100.
1025 imbalance
*= mapped_ratio
;
1028 /* apply imbalance feedback to swap_tendency */
1029 swap_tendency
+= imbalance
;
1032 * Now use this metric to decide whether to start moving mapped
1033 * memory onto the inactive list.
1035 if (swap_tendency
>= 100)
1038 return reclaim_mapped
;
1042 * This moves pages from the active list to the inactive list.
1044 * We move them the other way if the page is referenced by one or more
1045 * processes, from rmap.
1047 * If the pages are mostly unmapped, the processing is fast and it is
1048 * appropriate to hold zone->lru_lock across the whole operation. But if
1049 * the pages are mapped, the processing is slow (page_referenced()) so we
1050 * should drop zone->lru_lock around each page. It's impossible to balance
1051 * this, so instead we remove the pages from the LRU while processing them.
1052 * It is safe to rely on PG_active against the non-LRU pages in here because
1053 * nobody will play with that bit on a non-LRU page.
1055 * The downside is that we have to touch page->_count against each page.
1056 * But we had to alter page->flags anyway.
1060 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1061 struct scan_control
*sc
, int priority
)
1063 unsigned long pgmoved
;
1064 int pgdeactivate
= 0;
1065 unsigned long pgscanned
;
1066 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1067 LIST_HEAD(l_inactive
); /* Pages to go onto the inactive_list */
1068 LIST_HEAD(l_active
); /* Pages to go onto the active_list */
1070 struct pagevec pvec
;
1071 int reclaim_mapped
= 0;
1074 reclaim_mapped
= calc_reclaim_mapped(sc
, zone
, priority
);
1077 spin_lock_irq(&zone
->lru_lock
);
1078 pgmoved
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1079 ISOLATE_ACTIVE
, zone
,
1082 * zone->pages_scanned is used for detect zone's oom
1083 * mem_cgroup remembers nr_scan by itself.
1085 if (scan_global_lru(sc
))
1086 zone
->pages_scanned
+= pgscanned
;
1088 __mod_zone_page_state(zone
, NR_ACTIVE
, -pgmoved
);
1089 spin_unlock_irq(&zone
->lru_lock
);
1091 while (!list_empty(&l_hold
)) {
1093 page
= lru_to_page(&l_hold
);
1094 list_del(&page
->lru
);
1095 if (page_mapped(page
)) {
1096 if (!reclaim_mapped
||
1097 (total_swap_pages
== 0 && PageAnon(page
)) ||
1098 page_referenced(page
, 0, sc
->mem_cgroup
)) {
1099 list_add(&page
->lru
, &l_active
);
1103 list_add(&page
->lru
, &l_inactive
);
1106 pagevec_init(&pvec
, 1);
1108 spin_lock_irq(&zone
->lru_lock
);
1109 while (!list_empty(&l_inactive
)) {
1110 page
= lru_to_page(&l_inactive
);
1111 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
1112 VM_BUG_ON(PageLRU(page
));
1114 VM_BUG_ON(!PageActive(page
));
1115 ClearPageActive(page
);
1117 list_move(&page
->lru
, &zone
->inactive_list
);
1118 mem_cgroup_move_lists(page
, false);
1120 if (!pagevec_add(&pvec
, page
)) {
1121 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
1122 spin_unlock_irq(&zone
->lru_lock
);
1123 pgdeactivate
+= pgmoved
;
1125 if (buffer_heads_over_limit
)
1126 pagevec_strip(&pvec
);
1127 __pagevec_release(&pvec
);
1128 spin_lock_irq(&zone
->lru_lock
);
1131 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
1132 pgdeactivate
+= pgmoved
;
1133 if (buffer_heads_over_limit
) {
1134 spin_unlock_irq(&zone
->lru_lock
);
1135 pagevec_strip(&pvec
);
1136 spin_lock_irq(&zone
->lru_lock
);
1140 while (!list_empty(&l_active
)) {
1141 page
= lru_to_page(&l_active
);
1142 prefetchw_prev_lru_page(page
, &l_active
, flags
);
1143 VM_BUG_ON(PageLRU(page
));
1145 VM_BUG_ON(!PageActive(page
));
1147 list_move(&page
->lru
, &zone
->active_list
);
1148 mem_cgroup_move_lists(page
, true);
1150 if (!pagevec_add(&pvec
, page
)) {
1151 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
1153 spin_unlock_irq(&zone
->lru_lock
);
1154 __pagevec_release(&pvec
);
1155 spin_lock_irq(&zone
->lru_lock
);
1158 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
1160 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1161 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1162 spin_unlock_irq(&zone
->lru_lock
);
1164 pagevec_release(&pvec
);
1168 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1170 static unsigned long shrink_zone(int priority
, struct zone
*zone
,
1171 struct scan_control
*sc
)
1173 unsigned long nr_active
;
1174 unsigned long nr_inactive
;
1175 unsigned long nr_to_scan
;
1176 unsigned long nr_reclaimed
= 0;
1178 if (scan_global_lru(sc
)) {
1180 * Add one to nr_to_scan just to make sure that the kernel
1181 * will slowly sift through the active list.
1183 zone
->nr_scan_active
+=
1184 (zone_page_state(zone
, NR_ACTIVE
) >> priority
) + 1;
1185 nr_active
= zone
->nr_scan_active
;
1186 zone
->nr_scan_inactive
+=
1187 (zone_page_state(zone
, NR_INACTIVE
) >> priority
) + 1;
1188 nr_inactive
= zone
->nr_scan_inactive
;
1189 if (nr_inactive
>= sc
->swap_cluster_max
)
1190 zone
->nr_scan_inactive
= 0;
1194 if (nr_active
>= sc
->swap_cluster_max
)
1195 zone
->nr_scan_active
= 0;
1200 * This reclaim occurs not because zone memory shortage but
1201 * because memory controller hits its limit.
1202 * Then, don't modify zone reclaim related data.
1204 nr_active
= mem_cgroup_calc_reclaim_active(sc
->mem_cgroup
,
1207 nr_inactive
= mem_cgroup_calc_reclaim_inactive(sc
->mem_cgroup
,
1212 while (nr_active
|| nr_inactive
) {
1214 nr_to_scan
= min(nr_active
,
1215 (unsigned long)sc
->swap_cluster_max
);
1216 nr_active
-= nr_to_scan
;
1217 shrink_active_list(nr_to_scan
, zone
, sc
, priority
);
1221 nr_to_scan
= min(nr_inactive
,
1222 (unsigned long)sc
->swap_cluster_max
);
1223 nr_inactive
-= nr_to_scan
;
1224 nr_reclaimed
+= shrink_inactive_list(nr_to_scan
, zone
,
1229 throttle_vm_writeout(sc
->gfp_mask
);
1230 return nr_reclaimed
;
1234 * This is the direct reclaim path, for page-allocating processes. We only
1235 * try to reclaim pages from zones which will satisfy the caller's allocation
1238 * We reclaim from a zone even if that zone is over pages_high. Because:
1239 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1241 * b) The zones may be over pages_high but they must go *over* pages_high to
1242 * satisfy the `incremental min' zone defense algorithm.
1244 * Returns the number of reclaimed pages.
1246 * If a zone is deemed to be full of pinned pages then just give it a light
1247 * scan then give up on it.
1249 static unsigned long shrink_zones(int priority
, struct zonelist
*zonelist
,
1250 struct scan_control
*sc
)
1252 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1253 unsigned long nr_reclaimed
= 0;
1257 sc
->all_unreclaimable
= 1;
1258 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1259 if (!populated_zone(zone
))
1262 * Take care memory controller reclaiming has small influence
1265 if (scan_global_lru(sc
)) {
1266 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1268 note_zone_scanning_priority(zone
, priority
);
1270 if (zone_is_all_unreclaimable(zone
) &&
1271 priority
!= DEF_PRIORITY
)
1272 continue; /* Let kswapd poll it */
1273 sc
->all_unreclaimable
= 0;
1276 * Ignore cpuset limitation here. We just want to reduce
1277 * # of used pages by us regardless of memory shortage.
1279 sc
->all_unreclaimable
= 0;
1280 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1284 nr_reclaimed
+= shrink_zone(priority
, zone
, sc
);
1287 return nr_reclaimed
;
1291 * This is the main entry point to direct page reclaim.
1293 * If a full scan of the inactive list fails to free enough memory then we
1294 * are "out of memory" and something needs to be killed.
1296 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1297 * high - the zone may be full of dirty or under-writeback pages, which this
1298 * caller can't do much about. We kick pdflush and take explicit naps in the
1299 * hope that some of these pages can be written. But if the allocating task
1300 * holds filesystem locks which prevent writeout this might not work, and the
1301 * allocation attempt will fail.
1303 * returns: 0, if no pages reclaimed
1304 * else, the number of pages reclaimed
1306 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1307 struct scan_control
*sc
)
1311 unsigned long total_scanned
= 0;
1312 unsigned long nr_reclaimed
= 0;
1313 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1314 unsigned long lru_pages
= 0;
1317 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1319 if (scan_global_lru(sc
))
1320 count_vm_event(ALLOCSTALL
);
1322 * mem_cgroup will not do shrink_slab.
1324 if (scan_global_lru(sc
)) {
1325 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1327 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1330 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1331 + zone_page_state(zone
, NR_INACTIVE
);
1335 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1338 disable_swap_token();
1339 nr_reclaimed
+= shrink_zones(priority
, zonelist
, sc
);
1341 * Don't shrink slabs when reclaiming memory from
1342 * over limit cgroups
1344 if (scan_global_lru(sc
)) {
1345 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1346 if (reclaim_state
) {
1347 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1348 reclaim_state
->reclaimed_slab
= 0;
1351 total_scanned
+= sc
->nr_scanned
;
1352 if (nr_reclaimed
>= sc
->swap_cluster_max
) {
1358 * Try to write back as many pages as we just scanned. This
1359 * tends to cause slow streaming writers to write data to the
1360 * disk smoothly, at the dirtying rate, which is nice. But
1361 * that's undesirable in laptop mode, where we *want* lumpy
1362 * writeout. So in laptop mode, write out the whole world.
1364 if (total_scanned
> sc
->swap_cluster_max
+
1365 sc
->swap_cluster_max
/ 2) {
1366 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1367 sc
->may_writepage
= 1;
1370 /* Take a nap, wait for some writeback to complete */
1371 if (sc
->nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1372 congestion_wait(WRITE
, HZ
/10);
1374 /* top priority shrink_caches still had more to do? don't OOM, then */
1375 if (!sc
->all_unreclaimable
&& scan_global_lru(sc
))
1379 * Now that we've scanned all the zones at this priority level, note
1380 * that level within the zone so that the next thread which performs
1381 * scanning of this zone will immediately start out at this priority
1382 * level. This affects only the decision whether or not to bring
1383 * mapped pages onto the inactive list.
1388 if (scan_global_lru(sc
)) {
1389 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1391 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1394 zone
->prev_priority
= priority
;
1397 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1402 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1405 struct scan_control sc
= {
1406 .gfp_mask
= gfp_mask
,
1407 .may_writepage
= !laptop_mode
,
1408 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1410 .swappiness
= vm_swappiness
,
1413 .isolate_pages
= isolate_pages_global
,
1416 return do_try_to_free_pages(zonelist
, &sc
);
1419 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1421 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1424 struct scan_control sc
= {
1425 .may_writepage
= !laptop_mode
,
1427 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1428 .swappiness
= vm_swappiness
,
1430 .mem_cgroup
= mem_cont
,
1431 .isolate_pages
= mem_cgroup_isolate_pages
,
1433 struct zonelist
*zonelist
;
1435 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1436 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1437 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1438 return do_try_to_free_pages(zonelist
, &sc
);
1443 * For kswapd, balance_pgdat() will work across all this node's zones until
1444 * they are all at pages_high.
1446 * Returns the number of pages which were actually freed.
1448 * There is special handling here for zones which are full of pinned pages.
1449 * This can happen if the pages are all mlocked, or if they are all used by
1450 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1451 * What we do is to detect the case where all pages in the zone have been
1452 * scanned twice and there has been zero successful reclaim. Mark the zone as
1453 * dead and from now on, only perform a short scan. Basically we're polling
1454 * the zone for when the problem goes away.
1456 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1457 * zones which have free_pages > pages_high, but once a zone is found to have
1458 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1459 * of the number of free pages in the lower zones. This interoperates with
1460 * the page allocator fallback scheme to ensure that aging of pages is balanced
1463 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1468 unsigned long total_scanned
;
1469 unsigned long nr_reclaimed
;
1470 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1471 struct scan_control sc
= {
1472 .gfp_mask
= GFP_KERNEL
,
1474 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1475 .swappiness
= vm_swappiness
,
1478 .isolate_pages
= isolate_pages_global
,
1481 * temp_priority is used to remember the scanning priority at which
1482 * this zone was successfully refilled to free_pages == pages_high.
1484 int temp_priority
[MAX_NR_ZONES
];
1489 sc
.may_writepage
= !laptop_mode
;
1490 count_vm_event(PAGEOUTRUN
);
1492 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1493 temp_priority
[i
] = DEF_PRIORITY
;
1495 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1496 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1497 unsigned long lru_pages
= 0;
1499 /* The swap token gets in the way of swapout... */
1501 disable_swap_token();
1506 * Scan in the highmem->dma direction for the highest
1507 * zone which needs scanning
1509 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1510 struct zone
*zone
= pgdat
->node_zones
+ i
;
1512 if (!populated_zone(zone
))
1515 if (zone_is_all_unreclaimable(zone
) &&
1516 priority
!= DEF_PRIORITY
)
1519 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1528 for (i
= 0; i
<= end_zone
; i
++) {
1529 struct zone
*zone
= pgdat
->node_zones
+ i
;
1531 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1532 + zone_page_state(zone
, NR_INACTIVE
);
1536 * Now scan the zone in the dma->highmem direction, stopping
1537 * at the last zone which needs scanning.
1539 * We do this because the page allocator works in the opposite
1540 * direction. This prevents the page allocator from allocating
1541 * pages behind kswapd's direction of progress, which would
1542 * cause too much scanning of the lower zones.
1544 for (i
= 0; i
<= end_zone
; i
++) {
1545 struct zone
*zone
= pgdat
->node_zones
+ i
;
1548 if (!populated_zone(zone
))
1551 if (zone_is_all_unreclaimable(zone
) &&
1552 priority
!= DEF_PRIORITY
)
1555 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1558 temp_priority
[i
] = priority
;
1560 note_zone_scanning_priority(zone
, priority
);
1562 * We put equal pressure on every zone, unless one
1563 * zone has way too many pages free already.
1565 if (!zone_watermark_ok(zone
, order
, 8*zone
->pages_high
,
1567 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1568 reclaim_state
->reclaimed_slab
= 0;
1569 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1571 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1572 total_scanned
+= sc
.nr_scanned
;
1573 if (zone_is_all_unreclaimable(zone
))
1575 if (nr_slab
== 0 && zone
->pages_scanned
>=
1576 (zone_page_state(zone
, NR_ACTIVE
)
1577 + zone_page_state(zone
, NR_INACTIVE
)) * 6)
1579 ZONE_ALL_UNRECLAIMABLE
);
1581 * If we've done a decent amount of scanning and
1582 * the reclaim ratio is low, start doing writepage
1583 * even in laptop mode
1585 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1586 total_scanned
> nr_reclaimed
+ nr_reclaimed
/ 2)
1587 sc
.may_writepage
= 1;
1590 break; /* kswapd: all done */
1592 * OK, kswapd is getting into trouble. Take a nap, then take
1593 * another pass across the zones.
1595 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1596 congestion_wait(WRITE
, HZ
/10);
1599 * We do this so kswapd doesn't build up large priorities for
1600 * example when it is freeing in parallel with allocators. It
1601 * matches the direct reclaim path behaviour in terms of impact
1602 * on zone->*_priority.
1604 if (nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1609 * Note within each zone the priority level at which this zone was
1610 * brought into a happy state. So that the next thread which scans this
1611 * zone will start out at that priority level.
1613 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1614 struct zone
*zone
= pgdat
->node_zones
+ i
;
1616 zone
->prev_priority
= temp_priority
[i
];
1618 if (!all_zones_ok
) {
1626 return nr_reclaimed
;
1630 * The background pageout daemon, started as a kernel thread
1631 * from the init process.
1633 * This basically trickles out pages so that we have _some_
1634 * free memory available even if there is no other activity
1635 * that frees anything up. This is needed for things like routing
1636 * etc, where we otherwise might have all activity going on in
1637 * asynchronous contexts that cannot page things out.
1639 * If there are applications that are active memory-allocators
1640 * (most normal use), this basically shouldn't matter.
1642 static int kswapd(void *p
)
1644 unsigned long order
;
1645 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1646 struct task_struct
*tsk
= current
;
1648 struct reclaim_state reclaim_state
= {
1649 .reclaimed_slab
= 0,
1651 node_to_cpumask_ptr(cpumask
, pgdat
->node_id
);
1653 if (!cpus_empty(*cpumask
))
1654 set_cpus_allowed_ptr(tsk
, cpumask
);
1655 current
->reclaim_state
= &reclaim_state
;
1658 * Tell the memory management that we're a "memory allocator",
1659 * and that if we need more memory we should get access to it
1660 * regardless (see "__alloc_pages()"). "kswapd" should
1661 * never get caught in the normal page freeing logic.
1663 * (Kswapd normally doesn't need memory anyway, but sometimes
1664 * you need a small amount of memory in order to be able to
1665 * page out something else, and this flag essentially protects
1666 * us from recursively trying to free more memory as we're
1667 * trying to free the first piece of memory in the first place).
1669 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1674 unsigned long new_order
;
1676 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1677 new_order
= pgdat
->kswapd_max_order
;
1678 pgdat
->kswapd_max_order
= 0;
1679 if (order
< new_order
) {
1681 * Don't sleep if someone wants a larger 'order'
1686 if (!freezing(current
))
1689 order
= pgdat
->kswapd_max_order
;
1691 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1693 if (!try_to_freeze()) {
1694 /* We can speed up thawing tasks if we don't call
1695 * balance_pgdat after returning from the refrigerator
1697 balance_pgdat(pgdat
, order
);
1704 * A zone is low on free memory, so wake its kswapd task to service it.
1706 void wakeup_kswapd(struct zone
*zone
, int order
)
1710 if (!populated_zone(zone
))
1713 pgdat
= zone
->zone_pgdat
;
1714 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1716 if (pgdat
->kswapd_max_order
< order
)
1717 pgdat
->kswapd_max_order
= order
;
1718 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1720 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1722 wake_up_interruptible(&pgdat
->kswapd_wait
);
1727 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1728 * from LRU lists system-wide, for given pass and priority, and returns the
1729 * number of reclaimed pages
1731 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1733 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
1734 int pass
, struct scan_control
*sc
)
1737 unsigned long nr_to_scan
, ret
= 0;
1739 for_each_zone(zone
) {
1741 if (!populated_zone(zone
))
1744 if (zone_is_all_unreclaimable(zone
) && prio
!= DEF_PRIORITY
)
1747 /* For pass = 0 we don't shrink the active list */
1749 zone
->nr_scan_active
+=
1750 (zone_page_state(zone
, NR_ACTIVE
) >> prio
) + 1;
1751 if (zone
->nr_scan_active
>= nr_pages
|| pass
> 3) {
1752 zone
->nr_scan_active
= 0;
1753 nr_to_scan
= min(nr_pages
,
1754 zone_page_state(zone
, NR_ACTIVE
));
1755 shrink_active_list(nr_to_scan
, zone
, sc
, prio
);
1759 zone
->nr_scan_inactive
+=
1760 (zone_page_state(zone
, NR_INACTIVE
) >> prio
) + 1;
1761 if (zone
->nr_scan_inactive
>= nr_pages
|| pass
> 3) {
1762 zone
->nr_scan_inactive
= 0;
1763 nr_to_scan
= min(nr_pages
,
1764 zone_page_state(zone
, NR_INACTIVE
));
1765 ret
+= shrink_inactive_list(nr_to_scan
, zone
, sc
);
1766 if (ret
>= nr_pages
)
1774 static unsigned long count_lru_pages(void)
1776 return global_page_state(NR_ACTIVE
) + global_page_state(NR_INACTIVE
);
1780 * Try to free `nr_pages' of memory, system-wide, and return the number of
1783 * Rather than trying to age LRUs the aim is to preserve the overall
1784 * LRU order by reclaiming preferentially
1785 * inactive > active > active referenced > active mapped
1787 unsigned long shrink_all_memory(unsigned long nr_pages
)
1789 unsigned long lru_pages
, nr_slab
;
1790 unsigned long ret
= 0;
1792 struct reclaim_state reclaim_state
;
1793 struct scan_control sc
= {
1794 .gfp_mask
= GFP_KERNEL
,
1796 .swap_cluster_max
= nr_pages
,
1798 .swappiness
= vm_swappiness
,
1799 .isolate_pages
= isolate_pages_global
,
1802 current
->reclaim_state
= &reclaim_state
;
1804 lru_pages
= count_lru_pages();
1805 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
1806 /* If slab caches are huge, it's better to hit them first */
1807 while (nr_slab
>= lru_pages
) {
1808 reclaim_state
.reclaimed_slab
= 0;
1809 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
1810 if (!reclaim_state
.reclaimed_slab
)
1813 ret
+= reclaim_state
.reclaimed_slab
;
1814 if (ret
>= nr_pages
)
1817 nr_slab
-= reclaim_state
.reclaimed_slab
;
1821 * We try to shrink LRUs in 5 passes:
1822 * 0 = Reclaim from inactive_list only
1823 * 1 = Reclaim from active list but don't reclaim mapped
1824 * 2 = 2nd pass of type 1
1825 * 3 = Reclaim mapped (normal reclaim)
1826 * 4 = 2nd pass of type 3
1828 for (pass
= 0; pass
< 5; pass
++) {
1831 /* Force reclaiming mapped pages in the passes #3 and #4 */
1834 sc
.swappiness
= 100;
1837 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
1838 unsigned long nr_to_scan
= nr_pages
- ret
;
1841 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
1842 if (ret
>= nr_pages
)
1845 reclaim_state
.reclaimed_slab
= 0;
1846 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
1848 ret
+= reclaim_state
.reclaimed_slab
;
1849 if (ret
>= nr_pages
)
1852 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
1853 congestion_wait(WRITE
, HZ
/ 10);
1858 * If ret = 0, we could not shrink LRUs, but there may be something
1863 reclaim_state
.reclaimed_slab
= 0;
1864 shrink_slab(nr_pages
, sc
.gfp_mask
, count_lru_pages());
1865 ret
+= reclaim_state
.reclaimed_slab
;
1866 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
1870 current
->reclaim_state
= NULL
;
1876 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1877 not required for correctness. So if the last cpu in a node goes
1878 away, we get changed to run anywhere: as the first one comes back,
1879 restore their cpu bindings. */
1880 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1881 unsigned long action
, void *hcpu
)
1885 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
1886 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1887 pg_data_t
*pgdat
= NODE_DATA(nid
);
1888 node_to_cpumask_ptr(mask
, pgdat
->node_id
);
1890 if (any_online_cpu(*mask
) < nr_cpu_ids
)
1891 /* One of our CPUs online: restore mask */
1892 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
1899 * This kswapd start function will be called by init and node-hot-add.
1900 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1902 int kswapd_run(int nid
)
1904 pg_data_t
*pgdat
= NODE_DATA(nid
);
1910 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
1911 if (IS_ERR(pgdat
->kswapd
)) {
1912 /* failure at boot is fatal */
1913 BUG_ON(system_state
== SYSTEM_BOOTING
);
1914 printk("Failed to start kswapd on node %d\n",nid
);
1920 static int __init
kswapd_init(void)
1925 for_each_node_state(nid
, N_HIGH_MEMORY
)
1927 hotcpu_notifier(cpu_callback
, 0);
1931 module_init(kswapd_init
)
1937 * If non-zero call zone_reclaim when the number of free pages falls below
1940 int zone_reclaim_mode __read_mostly
;
1942 #define RECLAIM_OFF 0
1943 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1944 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1945 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1948 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1949 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1952 #define ZONE_RECLAIM_PRIORITY 4
1955 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1958 int sysctl_min_unmapped_ratio
= 1;
1961 * If the number of slab pages in a zone grows beyond this percentage then
1962 * slab reclaim needs to occur.
1964 int sysctl_min_slab_ratio
= 5;
1967 * Try to free up some pages from this zone through reclaim.
1969 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1971 /* Minimum pages needed in order to stay on node */
1972 const unsigned long nr_pages
= 1 << order
;
1973 struct task_struct
*p
= current
;
1974 struct reclaim_state reclaim_state
;
1976 unsigned long nr_reclaimed
= 0;
1977 struct scan_control sc
= {
1978 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
1979 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
1980 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
1982 .gfp_mask
= gfp_mask
,
1983 .swappiness
= vm_swappiness
,
1984 .isolate_pages
= isolate_pages_global
,
1986 unsigned long slab_reclaimable
;
1988 disable_swap_token();
1991 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1992 * and we also need to be able to write out pages for RECLAIM_WRITE
1995 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
1996 reclaim_state
.reclaimed_slab
= 0;
1997 p
->reclaim_state
= &reclaim_state
;
1999 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2000 zone_page_state(zone
, NR_FILE_MAPPED
) >
2001 zone
->min_unmapped_pages
) {
2003 * Free memory by calling shrink zone with increasing
2004 * priorities until we have enough memory freed.
2006 priority
= ZONE_RECLAIM_PRIORITY
;
2008 note_zone_scanning_priority(zone
, priority
);
2009 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
2011 } while (priority
>= 0 && nr_reclaimed
< nr_pages
);
2014 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2015 if (slab_reclaimable
> zone
->min_slab_pages
) {
2017 * shrink_slab() does not currently allow us to determine how
2018 * many pages were freed in this zone. So we take the current
2019 * number of slab pages and shake the slab until it is reduced
2020 * by the same nr_pages that we used for reclaiming unmapped
2023 * Note that shrink_slab will free memory on all zones and may
2026 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2027 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2028 slab_reclaimable
- nr_pages
)
2032 * Update nr_reclaimed by the number of slab pages we
2033 * reclaimed from this zone.
2035 nr_reclaimed
+= slab_reclaimable
-
2036 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2039 p
->reclaim_state
= NULL
;
2040 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2041 return nr_reclaimed
>= nr_pages
;
2044 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2050 * Zone reclaim reclaims unmapped file backed pages and
2051 * slab pages if we are over the defined limits.
2053 * A small portion of unmapped file backed pages is needed for
2054 * file I/O otherwise pages read by file I/O will be immediately
2055 * thrown out if the zone is overallocated. So we do not reclaim
2056 * if less than a specified percentage of the zone is used by
2057 * unmapped file backed pages.
2059 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2060 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
2061 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
2062 <= zone
->min_slab_pages
)
2065 if (zone_is_all_unreclaimable(zone
))
2069 * Do not scan if the allocation should not be delayed.
2071 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2075 * Only run zone reclaim on the local zone or on zones that do not
2076 * have associated processors. This will favor the local processor
2077 * over remote processors and spread off node memory allocations
2078 * as wide as possible.
2080 node_id
= zone_to_nid(zone
);
2081 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2084 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2086 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2087 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);