Make GPE disable more robust
[linux-2.6/mini2440.git] / net / ipv4 / fib_trie.c
blobe1600ad8fb0e44fbd33657589ba84040b0ac8333
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
28 * Code from fib_hash has been reused which includes the following header:
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
35 * IPv4 FIB: lookup engine and maintenance routines.
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
45 * Substantial contributions to this work comes from:
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
53 #define VERSION "0.408"
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <linux/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/mm.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
65 #include <linux/in.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
85 #define MAX_STAT_DEPTH 32
87 #define KEYLENGTH (8*sizeof(t_key))
89 typedef unsigned int t_key;
91 #define T_TNODE 0
92 #define T_LEAF 1
93 #define NODE_TYPE_MASK 0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
99 struct node {
100 unsigned long parent;
101 t_key key;
104 struct leaf {
105 unsigned long parent;
106 t_key key;
107 struct hlist_head list;
108 struct rcu_head rcu;
111 struct leaf_info {
112 struct hlist_node hlist;
113 struct rcu_head rcu;
114 int plen;
115 struct list_head falh;
118 struct tnode {
119 unsigned long parent;
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
125 union {
126 struct rcu_head rcu;
127 struct work_struct work;
129 struct node *child[0];
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
141 #endif
143 struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
153 struct trie {
154 struct node *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157 #endif
160 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
162 int wasfull);
163 static struct node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
167 static struct kmem_cache *fn_alias_kmem __read_mostly;
168 static struct kmem_cache *trie_leaf_kmem __read_mostly;
170 static inline struct tnode *node_parent(struct node *node)
172 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
175 static inline struct tnode *node_parent_rcu(struct node *node)
177 struct tnode *ret = node_parent(node);
179 return rcu_dereference(ret);
182 /* Same as rcu_assign_pointer
183 * but that macro() assumes that value is a pointer.
185 static inline void node_set_parent(struct node *node, struct tnode *ptr)
187 smp_wmb();
188 node->parent = (unsigned long)ptr | NODE_TYPE(node);
191 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
193 BUG_ON(i >= 1U << tn->bits);
195 return tn->child[i];
198 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
200 struct node *ret = tnode_get_child(tn, i);
202 return rcu_dereference(ret);
205 static inline int tnode_child_length(const struct tnode *tn)
207 return 1 << tn->bits;
210 static inline t_key mask_pfx(t_key k, unsigned short l)
212 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
215 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
217 if (offset < KEYLENGTH)
218 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
219 else
220 return 0;
223 static inline int tkey_equals(t_key a, t_key b)
225 return a == b;
228 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
230 if (bits == 0 || offset >= KEYLENGTH)
231 return 1;
232 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
233 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
236 static inline int tkey_mismatch(t_key a, int offset, t_key b)
238 t_key diff = a ^ b;
239 int i = offset;
241 if (!diff)
242 return 0;
243 while ((diff << i) >> (KEYLENGTH-1) == 0)
244 i++;
245 return i;
249 To understand this stuff, an understanding of keys and all their bits is
250 necessary. Every node in the trie has a key associated with it, but not
251 all of the bits in that key are significant.
253 Consider a node 'n' and its parent 'tp'.
255 If n is a leaf, every bit in its key is significant. Its presence is
256 necessitated by path compression, since during a tree traversal (when
257 searching for a leaf - unless we are doing an insertion) we will completely
258 ignore all skipped bits we encounter. Thus we need to verify, at the end of
259 a potentially successful search, that we have indeed been walking the
260 correct key path.
262 Note that we can never "miss" the correct key in the tree if present by
263 following the wrong path. Path compression ensures that segments of the key
264 that are the same for all keys with a given prefix are skipped, but the
265 skipped part *is* identical for each node in the subtrie below the skipped
266 bit! trie_insert() in this implementation takes care of that - note the
267 call to tkey_sub_equals() in trie_insert().
269 if n is an internal node - a 'tnode' here, the various parts of its key
270 have many different meanings.
272 Example:
273 _________________________________________________________________
274 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
275 -----------------------------------------------------------------
276 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
278 _________________________________________________________________
279 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
280 -----------------------------------------------------------------
281 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
283 tp->pos = 7
284 tp->bits = 3
285 n->pos = 15
286 n->bits = 4
288 First, let's just ignore the bits that come before the parent tp, that is
289 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
290 not use them for anything.
292 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
293 index into the parent's child array. That is, they will be used to find
294 'n' among tp's children.
296 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
297 for the node n.
299 All the bits we have seen so far are significant to the node n. The rest
300 of the bits are really not needed or indeed known in n->key.
302 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
303 n's child array, and will of course be different for each child.
306 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
307 at this point.
311 static inline void check_tnode(const struct tnode *tn)
313 WARN_ON(tn && tn->pos+tn->bits > 32);
316 static const int halve_threshold = 25;
317 static const int inflate_threshold = 50;
318 static const int halve_threshold_root = 8;
319 static const int inflate_threshold_root = 15;
322 static void __alias_free_mem(struct rcu_head *head)
324 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
325 kmem_cache_free(fn_alias_kmem, fa);
328 static inline void alias_free_mem_rcu(struct fib_alias *fa)
330 call_rcu(&fa->rcu, __alias_free_mem);
333 static void __leaf_free_rcu(struct rcu_head *head)
335 struct leaf *l = container_of(head, struct leaf, rcu);
336 kmem_cache_free(trie_leaf_kmem, l);
339 static inline void free_leaf(struct leaf *l)
341 call_rcu_bh(&l->rcu, __leaf_free_rcu);
344 static void __leaf_info_free_rcu(struct rcu_head *head)
346 kfree(container_of(head, struct leaf_info, rcu));
349 static inline void free_leaf_info(struct leaf_info *leaf)
351 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
354 static struct tnode *tnode_alloc(size_t size)
356 if (size <= PAGE_SIZE)
357 return kzalloc(size, GFP_KERNEL);
358 else
359 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
362 static void __tnode_vfree(struct work_struct *arg)
364 struct tnode *tn = container_of(arg, struct tnode, work);
365 vfree(tn);
368 static void __tnode_free_rcu(struct rcu_head *head)
370 struct tnode *tn = container_of(head, struct tnode, rcu);
371 size_t size = sizeof(struct tnode) +
372 (sizeof(struct node *) << tn->bits);
374 if (size <= PAGE_SIZE)
375 kfree(tn);
376 else {
377 INIT_WORK(&tn->work, __tnode_vfree);
378 schedule_work(&tn->work);
382 static inline void tnode_free(struct tnode *tn)
384 if (IS_LEAF(tn))
385 free_leaf((struct leaf *) tn);
386 else
387 call_rcu(&tn->rcu, __tnode_free_rcu);
390 static struct leaf *leaf_new(void)
392 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
393 if (l) {
394 l->parent = T_LEAF;
395 INIT_HLIST_HEAD(&l->list);
397 return l;
400 static struct leaf_info *leaf_info_new(int plen)
402 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
403 if (li) {
404 li->plen = plen;
405 INIT_LIST_HEAD(&li->falh);
407 return li;
410 static struct tnode *tnode_new(t_key key, int pos, int bits)
412 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
413 struct tnode *tn = tnode_alloc(sz);
415 if (tn) {
416 tn->parent = T_TNODE;
417 tn->pos = pos;
418 tn->bits = bits;
419 tn->key = key;
420 tn->full_children = 0;
421 tn->empty_children = 1<<bits;
424 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
425 (unsigned long) (sizeof(struct node) << bits));
426 return tn;
430 * Check whether a tnode 'n' is "full", i.e. it is an internal node
431 * and no bits are skipped. See discussion in dyntree paper p. 6
434 static inline int tnode_full(const struct tnode *tn, const struct node *n)
436 if (n == NULL || IS_LEAF(n))
437 return 0;
439 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
442 static inline void put_child(struct trie *t, struct tnode *tn, int i,
443 struct node *n)
445 tnode_put_child_reorg(tn, i, n, -1);
449 * Add a child at position i overwriting the old value.
450 * Update the value of full_children and empty_children.
453 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
454 int wasfull)
456 struct node *chi = tn->child[i];
457 int isfull;
459 BUG_ON(i >= 1<<tn->bits);
461 /* update emptyChildren */
462 if (n == NULL && chi != NULL)
463 tn->empty_children++;
464 else if (n != NULL && chi == NULL)
465 tn->empty_children--;
467 /* update fullChildren */
468 if (wasfull == -1)
469 wasfull = tnode_full(tn, chi);
471 isfull = tnode_full(tn, n);
472 if (wasfull && !isfull)
473 tn->full_children--;
474 else if (!wasfull && isfull)
475 tn->full_children++;
477 if (n)
478 node_set_parent(n, tn);
480 rcu_assign_pointer(tn->child[i], n);
483 static struct node *resize(struct trie *t, struct tnode *tn)
485 int i;
486 int err = 0;
487 struct tnode *old_tn;
488 int inflate_threshold_use;
489 int halve_threshold_use;
490 int max_resize;
492 if (!tn)
493 return NULL;
495 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
496 tn, inflate_threshold, halve_threshold);
498 /* No children */
499 if (tn->empty_children == tnode_child_length(tn)) {
500 tnode_free(tn);
501 return NULL;
503 /* One child */
504 if (tn->empty_children == tnode_child_length(tn) - 1)
505 for (i = 0; i < tnode_child_length(tn); i++) {
506 struct node *n;
508 n = tn->child[i];
509 if (!n)
510 continue;
512 /* compress one level */
513 node_set_parent(n, NULL);
514 tnode_free(tn);
515 return n;
518 * Double as long as the resulting node has a number of
519 * nonempty nodes that are above the threshold.
523 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
524 * the Helsinki University of Technology and Matti Tikkanen of Nokia
525 * Telecommunications, page 6:
526 * "A node is doubled if the ratio of non-empty children to all
527 * children in the *doubled* node is at least 'high'."
529 * 'high' in this instance is the variable 'inflate_threshold'. It
530 * is expressed as a percentage, so we multiply it with
531 * tnode_child_length() and instead of multiplying by 2 (since the
532 * child array will be doubled by inflate()) and multiplying
533 * the left-hand side by 100 (to handle the percentage thing) we
534 * multiply the left-hand side by 50.
536 * The left-hand side may look a bit weird: tnode_child_length(tn)
537 * - tn->empty_children is of course the number of non-null children
538 * in the current node. tn->full_children is the number of "full"
539 * children, that is non-null tnodes with a skip value of 0.
540 * All of those will be doubled in the resulting inflated tnode, so
541 * we just count them one extra time here.
543 * A clearer way to write this would be:
545 * to_be_doubled = tn->full_children;
546 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
547 * tn->full_children;
549 * new_child_length = tnode_child_length(tn) * 2;
551 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
552 * new_child_length;
553 * if (new_fill_factor >= inflate_threshold)
555 * ...and so on, tho it would mess up the while () loop.
557 * anyway,
558 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
559 * inflate_threshold
561 * avoid a division:
562 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
563 * inflate_threshold * new_child_length
565 * expand not_to_be_doubled and to_be_doubled, and shorten:
566 * 100 * (tnode_child_length(tn) - tn->empty_children +
567 * tn->full_children) >= inflate_threshold * new_child_length
569 * expand new_child_length:
570 * 100 * (tnode_child_length(tn) - tn->empty_children +
571 * tn->full_children) >=
572 * inflate_threshold * tnode_child_length(tn) * 2
574 * shorten again:
575 * 50 * (tn->full_children + tnode_child_length(tn) -
576 * tn->empty_children) >= inflate_threshold *
577 * tnode_child_length(tn)
581 check_tnode(tn);
583 /* Keep root node larger */
585 if (!tn->parent)
586 inflate_threshold_use = inflate_threshold_root;
587 else
588 inflate_threshold_use = inflate_threshold;
590 err = 0;
591 max_resize = 10;
592 while ((tn->full_children > 0 && max_resize-- &&
593 50 * (tn->full_children + tnode_child_length(tn)
594 - tn->empty_children)
595 >= inflate_threshold_use * tnode_child_length(tn))) {
597 old_tn = tn;
598 tn = inflate(t, tn);
600 if (IS_ERR(tn)) {
601 tn = old_tn;
602 #ifdef CONFIG_IP_FIB_TRIE_STATS
603 t->stats.resize_node_skipped++;
604 #endif
605 break;
609 if (max_resize < 0) {
610 if (!tn->parent)
611 pr_warning("Fix inflate_threshold_root."
612 " Now=%d size=%d bits\n",
613 inflate_threshold_root, tn->bits);
614 else
615 pr_warning("Fix inflate_threshold."
616 " Now=%d size=%d bits\n",
617 inflate_threshold, tn->bits);
620 check_tnode(tn);
623 * Halve as long as the number of empty children in this
624 * node is above threshold.
628 /* Keep root node larger */
630 if (!tn->parent)
631 halve_threshold_use = halve_threshold_root;
632 else
633 halve_threshold_use = halve_threshold;
635 err = 0;
636 max_resize = 10;
637 while (tn->bits > 1 && max_resize-- &&
638 100 * (tnode_child_length(tn) - tn->empty_children) <
639 halve_threshold_use * tnode_child_length(tn)) {
641 old_tn = tn;
642 tn = halve(t, tn);
643 if (IS_ERR(tn)) {
644 tn = old_tn;
645 #ifdef CONFIG_IP_FIB_TRIE_STATS
646 t->stats.resize_node_skipped++;
647 #endif
648 break;
652 if (max_resize < 0) {
653 if (!tn->parent)
654 pr_warning("Fix halve_threshold_root."
655 " Now=%d size=%d bits\n",
656 halve_threshold_root, tn->bits);
657 else
658 pr_warning("Fix halve_threshold."
659 " Now=%d size=%d bits\n",
660 halve_threshold, tn->bits);
663 /* Only one child remains */
664 if (tn->empty_children == tnode_child_length(tn) - 1)
665 for (i = 0; i < tnode_child_length(tn); i++) {
666 struct node *n;
668 n = tn->child[i];
669 if (!n)
670 continue;
672 /* compress one level */
674 node_set_parent(n, NULL);
675 tnode_free(tn);
676 return n;
679 return (struct node *) tn;
682 static struct tnode *inflate(struct trie *t, struct tnode *tn)
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
688 pr_debug("In inflate\n");
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
692 if (!tn)
693 return ERR_PTR(-ENOMEM);
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
699 * of tnode is ignored.
702 for (i = 0; i < olen; i++) {
703 struct tnode *inode;
705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
715 if (!left)
716 goto nomem;
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
721 if (!right) {
722 tnode_free(left);
723 goto nomem;
726 put_child(t, tn, 2*i, (struct node *) left);
727 put_child(t, tn, 2*i+1, (struct node *) right);
731 for (i = 0; i < olen; i++) {
732 struct tnode *inode;
733 struct node *node = tnode_get_child(oldtnode, i);
734 struct tnode *left, *right;
735 int size, j;
737 /* An empty child */
738 if (node == NULL)
739 continue;
741 /* A leaf or an internal node with skipped bits */
743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
744 tn->pos + tn->bits - 1) {
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
761 tnode_free(inode);
762 continue;
765 /* An internal node with more than two children */
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
784 /* Use the old key, but set the new significant
785 * bit to zero.
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
791 BUG_ON(!left);
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
796 BUG_ON(!right);
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
806 tnode_free(inode);
808 tnode_free(oldtnode);
809 return tn;
810 nomem:
812 int size = tnode_child_length(tn);
813 int j;
815 for (j = 0; j < size; j++)
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
819 tnode_free(tn);
821 return ERR_PTR(-ENOMEM);
825 static struct tnode *halve(struct trie *t, struct tnode *tn)
827 struct tnode *oldtnode = tn;
828 struct node *left, *right;
829 int i;
830 int olen = tnode_child_length(tn);
832 pr_debug("In halve\n");
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
843 * of tnode is ignored.
846 for (i = 0; i < olen; i += 2) {
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
850 /* Two nonempty children */
851 if (left && right) {
852 struct tnode *newn;
854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
856 if (!newn)
857 goto nomem;
859 put_child(t, tn, i/2, (struct node *)newn);
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
875 continue;
878 if (right == NULL) {
879 put_child(t, tn, i/2, left);
880 continue;
883 /* Two nonempty children */
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
890 tnode_free(oldtnode);
891 return tn;
892 nomem:
894 int size = tnode_child_length(tn);
895 int j;
897 for (j = 0; j < size; j++)
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
901 tnode_free(tn);
903 return ERR_PTR(-ENOMEM);
907 /* readside must use rcu_read_lock currently dump routines
908 via get_fa_head and dump */
910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
912 struct hlist_head *head = &l->list;
913 struct hlist_node *node;
914 struct leaf_info *li;
916 hlist_for_each_entry_rcu(li, node, head, hlist)
917 if (li->plen == plen)
918 return li;
920 return NULL;
923 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
925 struct leaf_info *li = find_leaf_info(l, plen);
927 if (!li)
928 return NULL;
930 return &li->falh;
933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
945 last = li;
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
954 /* rcu_read_lock needs to be hold by caller from readside */
956 static struct leaf *
957 fib_find_node(struct trie *t, u32 key)
959 int pos;
960 struct tnode *tn;
961 struct node *n;
963 pos = 0;
964 n = rcu_dereference(t->trie);
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
969 check_tnode(tn);
971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
972 pos = tn->pos + tn->bits;
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
977 } else
978 break;
980 /* Case we have found a leaf. Compare prefixes */
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
985 return NULL;
988 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
990 int wasfull;
991 t_key cindex, key = tn->key;
992 struct tnode *tp;
994 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
995 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
996 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
997 tn = (struct tnode *) resize(t, (struct tnode *)tn);
999 tnode_put_child_reorg((struct tnode *)tp, cindex,
1000 (struct node *)tn, wasfull);
1002 tp = node_parent((struct node *) tn);
1003 if (!tp)
1004 break;
1005 tn = tp;
1008 /* Handle last (top) tnode */
1009 if (IS_TNODE(tn))
1010 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1012 return (struct node *)tn;
1015 /* only used from updater-side */
1017 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1019 int pos, newpos;
1020 struct tnode *tp = NULL, *tn = NULL;
1021 struct node *n;
1022 struct leaf *l;
1023 int missbit;
1024 struct list_head *fa_head = NULL;
1025 struct leaf_info *li;
1026 t_key cindex;
1028 pos = 0;
1029 n = t->trie;
1031 /* If we point to NULL, stop. Either the tree is empty and we should
1032 * just put a new leaf in if, or we have reached an empty child slot,
1033 * and we should just put our new leaf in that.
1034 * If we point to a T_TNODE, check if it matches our key. Note that
1035 * a T_TNODE might be skipping any number of bits - its 'pos' need
1036 * not be the parent's 'pos'+'bits'!
1038 * If it does match the current key, get pos/bits from it, extract
1039 * the index from our key, push the T_TNODE and walk the tree.
1041 * If it doesn't, we have to replace it with a new T_TNODE.
1043 * If we point to a T_LEAF, it might or might not have the same key
1044 * as we do. If it does, just change the value, update the T_LEAF's
1045 * value, and return it.
1046 * If it doesn't, we need to replace it with a T_TNODE.
1049 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1050 tn = (struct tnode *) n;
1052 check_tnode(tn);
1054 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1055 tp = tn;
1056 pos = tn->pos + tn->bits;
1057 n = tnode_get_child(tn,
1058 tkey_extract_bits(key,
1059 tn->pos,
1060 tn->bits));
1062 BUG_ON(n && node_parent(n) != tn);
1063 } else
1064 break;
1068 * n ----> NULL, LEAF or TNODE
1070 * tp is n's (parent) ----> NULL or TNODE
1073 BUG_ON(tp && IS_LEAF(tp));
1075 /* Case 1: n is a leaf. Compare prefixes */
1077 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1078 l = (struct leaf *) n;
1079 li = leaf_info_new(plen);
1081 if (!li)
1082 return NULL;
1084 fa_head = &li->falh;
1085 insert_leaf_info(&l->list, li);
1086 goto done;
1088 l = leaf_new();
1090 if (!l)
1091 return NULL;
1093 l->key = key;
1094 li = leaf_info_new(plen);
1096 if (!li) {
1097 free_leaf(l);
1098 return NULL;
1101 fa_head = &li->falh;
1102 insert_leaf_info(&l->list, li);
1104 if (t->trie && n == NULL) {
1105 /* Case 2: n is NULL, and will just insert a new leaf */
1107 node_set_parent((struct node *)l, tp);
1109 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1110 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1111 } else {
1112 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1114 * Add a new tnode here
1115 * first tnode need some special handling
1118 if (tp)
1119 pos = tp->pos+tp->bits;
1120 else
1121 pos = 0;
1123 if (n) {
1124 newpos = tkey_mismatch(key, pos, n->key);
1125 tn = tnode_new(n->key, newpos, 1);
1126 } else {
1127 newpos = 0;
1128 tn = tnode_new(key, newpos, 1); /* First tnode */
1131 if (!tn) {
1132 free_leaf_info(li);
1133 free_leaf(l);
1134 return NULL;
1137 node_set_parent((struct node *)tn, tp);
1139 missbit = tkey_extract_bits(key, newpos, 1);
1140 put_child(t, tn, missbit, (struct node *)l);
1141 put_child(t, tn, 1-missbit, n);
1143 if (tp) {
1144 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1145 put_child(t, (struct tnode *)tp, cindex,
1146 (struct node *)tn);
1147 } else {
1148 rcu_assign_pointer(t->trie, (struct node *)tn);
1149 tp = tn;
1153 if (tp && tp->pos + tp->bits > 32)
1154 pr_warning("fib_trie"
1155 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1156 tp, tp->pos, tp->bits, key, plen);
1158 /* Rebalance the trie */
1160 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1161 done:
1162 return fa_head;
1166 * Caller must hold RTNL.
1168 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1170 struct trie *t = (struct trie *) tb->tb_data;
1171 struct fib_alias *fa, *new_fa;
1172 struct list_head *fa_head = NULL;
1173 struct fib_info *fi;
1174 int plen = cfg->fc_dst_len;
1175 u8 tos = cfg->fc_tos;
1176 u32 key, mask;
1177 int err;
1178 struct leaf *l;
1180 if (plen > 32)
1181 return -EINVAL;
1183 key = ntohl(cfg->fc_dst);
1185 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1187 mask = ntohl(inet_make_mask(plen));
1189 if (key & ~mask)
1190 return -EINVAL;
1192 key = key & mask;
1194 fi = fib_create_info(cfg);
1195 if (IS_ERR(fi)) {
1196 err = PTR_ERR(fi);
1197 goto err;
1200 l = fib_find_node(t, key);
1201 fa = NULL;
1203 if (l) {
1204 fa_head = get_fa_head(l, plen);
1205 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1208 /* Now fa, if non-NULL, points to the first fib alias
1209 * with the same keys [prefix,tos,priority], if such key already
1210 * exists or to the node before which we will insert new one.
1212 * If fa is NULL, we will need to allocate a new one and
1213 * insert to the head of f.
1215 * If f is NULL, no fib node matched the destination key
1216 * and we need to allocate a new one of those as well.
1219 if (fa && fa->fa_tos == tos &&
1220 fa->fa_info->fib_priority == fi->fib_priority) {
1221 struct fib_alias *fa_first, *fa_match;
1223 err = -EEXIST;
1224 if (cfg->fc_nlflags & NLM_F_EXCL)
1225 goto out;
1227 /* We have 2 goals:
1228 * 1. Find exact match for type, scope, fib_info to avoid
1229 * duplicate routes
1230 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1232 fa_match = NULL;
1233 fa_first = fa;
1234 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1235 list_for_each_entry_continue(fa, fa_head, fa_list) {
1236 if (fa->fa_tos != tos)
1237 break;
1238 if (fa->fa_info->fib_priority != fi->fib_priority)
1239 break;
1240 if (fa->fa_type == cfg->fc_type &&
1241 fa->fa_scope == cfg->fc_scope &&
1242 fa->fa_info == fi) {
1243 fa_match = fa;
1244 break;
1248 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1249 struct fib_info *fi_drop;
1250 u8 state;
1252 fa = fa_first;
1253 if (fa_match) {
1254 if (fa == fa_match)
1255 err = 0;
1256 goto out;
1258 err = -ENOBUFS;
1259 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1260 if (new_fa == NULL)
1261 goto out;
1263 fi_drop = fa->fa_info;
1264 new_fa->fa_tos = fa->fa_tos;
1265 new_fa->fa_info = fi;
1266 new_fa->fa_type = cfg->fc_type;
1267 new_fa->fa_scope = cfg->fc_scope;
1268 state = fa->fa_state;
1269 new_fa->fa_state = state & ~FA_S_ACCESSED;
1271 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1272 alias_free_mem_rcu(fa);
1274 fib_release_info(fi_drop);
1275 if (state & FA_S_ACCESSED)
1276 rt_cache_flush(-1);
1277 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1278 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1280 goto succeeded;
1282 /* Error if we find a perfect match which
1283 * uses the same scope, type, and nexthop
1284 * information.
1286 if (fa_match)
1287 goto out;
1289 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1290 fa = fa_first;
1292 err = -ENOENT;
1293 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1294 goto out;
1296 err = -ENOBUFS;
1297 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1298 if (new_fa == NULL)
1299 goto out;
1301 new_fa->fa_info = fi;
1302 new_fa->fa_tos = tos;
1303 new_fa->fa_type = cfg->fc_type;
1304 new_fa->fa_scope = cfg->fc_scope;
1305 new_fa->fa_state = 0;
1307 * Insert new entry to the list.
1310 if (!fa_head) {
1311 fa_head = fib_insert_node(t, key, plen);
1312 if (unlikely(!fa_head)) {
1313 err = -ENOMEM;
1314 goto out_free_new_fa;
1318 list_add_tail_rcu(&new_fa->fa_list,
1319 (fa ? &fa->fa_list : fa_head));
1321 rt_cache_flush(-1);
1322 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1323 &cfg->fc_nlinfo, 0);
1324 succeeded:
1325 return 0;
1327 out_free_new_fa:
1328 kmem_cache_free(fn_alias_kmem, new_fa);
1329 out:
1330 fib_release_info(fi);
1331 err:
1332 return err;
1335 /* should be called with rcu_read_lock */
1336 static int check_leaf(struct trie *t, struct leaf *l,
1337 t_key key, const struct flowi *flp,
1338 struct fib_result *res)
1340 struct leaf_info *li;
1341 struct hlist_head *hhead = &l->list;
1342 struct hlist_node *node;
1344 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1345 int err;
1346 int plen = li->plen;
1347 __be32 mask = inet_make_mask(plen);
1349 if (l->key != (key & ntohl(mask)))
1350 continue;
1352 err = fib_semantic_match(&li->falh, flp, res,
1353 htonl(l->key), mask, plen);
1355 #ifdef CONFIG_IP_FIB_TRIE_STATS
1356 if (err <= 0)
1357 t->stats.semantic_match_passed++;
1358 else
1359 t->stats.semantic_match_miss++;
1360 #endif
1361 if (err <= 0)
1362 return err;
1365 return 1;
1368 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1369 struct fib_result *res)
1371 struct trie *t = (struct trie *) tb->tb_data;
1372 int ret;
1373 struct node *n;
1374 struct tnode *pn;
1375 int pos, bits;
1376 t_key key = ntohl(flp->fl4_dst);
1377 int chopped_off;
1378 t_key cindex = 0;
1379 int current_prefix_length = KEYLENGTH;
1380 struct tnode *cn;
1381 t_key node_prefix, key_prefix, pref_mismatch;
1382 int mp;
1384 rcu_read_lock();
1386 n = rcu_dereference(t->trie);
1387 if (!n)
1388 goto failed;
1390 #ifdef CONFIG_IP_FIB_TRIE_STATS
1391 t->stats.gets++;
1392 #endif
1394 /* Just a leaf? */
1395 if (IS_LEAF(n)) {
1396 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1397 goto found;
1400 pn = (struct tnode *) n;
1401 chopped_off = 0;
1403 while (pn) {
1404 pos = pn->pos;
1405 bits = pn->bits;
1407 if (!chopped_off)
1408 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1409 pos, bits);
1411 n = tnode_get_child(pn, cindex);
1413 if (n == NULL) {
1414 #ifdef CONFIG_IP_FIB_TRIE_STATS
1415 t->stats.null_node_hit++;
1416 #endif
1417 goto backtrace;
1420 if (IS_LEAF(n)) {
1421 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1422 if (ret > 0)
1423 goto backtrace;
1424 goto found;
1427 cn = (struct tnode *)n;
1430 * It's a tnode, and we can do some extra checks here if we
1431 * like, to avoid descending into a dead-end branch.
1432 * This tnode is in the parent's child array at index
1433 * key[p_pos..p_pos+p_bits] but potentially with some bits
1434 * chopped off, so in reality the index may be just a
1435 * subprefix, padded with zero at the end.
1436 * We can also take a look at any skipped bits in this
1437 * tnode - everything up to p_pos is supposed to be ok,
1438 * and the non-chopped bits of the index (se previous
1439 * paragraph) are also guaranteed ok, but the rest is
1440 * considered unknown.
1442 * The skipped bits are key[pos+bits..cn->pos].
1445 /* If current_prefix_length < pos+bits, we are already doing
1446 * actual prefix matching, which means everything from
1447 * pos+(bits-chopped_off) onward must be zero along some
1448 * branch of this subtree - otherwise there is *no* valid
1449 * prefix present. Here we can only check the skipped
1450 * bits. Remember, since we have already indexed into the
1451 * parent's child array, we know that the bits we chopped of
1452 * *are* zero.
1455 /* NOTA BENE: Checking only skipped bits
1456 for the new node here */
1458 if (current_prefix_length < pos+bits) {
1459 if (tkey_extract_bits(cn->key, current_prefix_length,
1460 cn->pos - current_prefix_length)
1461 || !(cn->child[0]))
1462 goto backtrace;
1466 * If chopped_off=0, the index is fully validated and we
1467 * only need to look at the skipped bits for this, the new,
1468 * tnode. What we actually want to do is to find out if
1469 * these skipped bits match our key perfectly, or if we will
1470 * have to count on finding a matching prefix further down,
1471 * because if we do, we would like to have some way of
1472 * verifying the existence of such a prefix at this point.
1475 /* The only thing we can do at this point is to verify that
1476 * any such matching prefix can indeed be a prefix to our
1477 * key, and if the bits in the node we are inspecting that
1478 * do not match our key are not ZERO, this cannot be true.
1479 * Thus, find out where there is a mismatch (before cn->pos)
1480 * and verify that all the mismatching bits are zero in the
1481 * new tnode's key.
1485 * Note: We aren't very concerned about the piece of
1486 * the key that precede pn->pos+pn->bits, since these
1487 * have already been checked. The bits after cn->pos
1488 * aren't checked since these are by definition
1489 * "unknown" at this point. Thus, what we want to see
1490 * is if we are about to enter the "prefix matching"
1491 * state, and in that case verify that the skipped
1492 * bits that will prevail throughout this subtree are
1493 * zero, as they have to be if we are to find a
1494 * matching prefix.
1497 node_prefix = mask_pfx(cn->key, cn->pos);
1498 key_prefix = mask_pfx(key, cn->pos);
1499 pref_mismatch = key_prefix^node_prefix;
1500 mp = 0;
1503 * In short: If skipped bits in this node do not match
1504 * the search key, enter the "prefix matching"
1505 * state.directly.
1507 if (pref_mismatch) {
1508 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1509 mp++;
1510 pref_mismatch = pref_mismatch << 1;
1512 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1514 if (key_prefix != 0)
1515 goto backtrace;
1517 if (current_prefix_length >= cn->pos)
1518 current_prefix_length = mp;
1521 pn = (struct tnode *)n; /* Descend */
1522 chopped_off = 0;
1523 continue;
1525 backtrace:
1526 chopped_off++;
1528 /* As zero don't change the child key (cindex) */
1529 while ((chopped_off <= pn->bits)
1530 && !(cindex & (1<<(chopped_off-1))))
1531 chopped_off++;
1533 /* Decrease current_... with bits chopped off */
1534 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1535 current_prefix_length = pn->pos + pn->bits
1536 - chopped_off;
1539 * Either we do the actual chop off according or if we have
1540 * chopped off all bits in this tnode walk up to our parent.
1543 if (chopped_off <= pn->bits) {
1544 cindex &= ~(1 << (chopped_off-1));
1545 } else {
1546 struct tnode *parent = node_parent((struct node *) pn);
1547 if (!parent)
1548 goto failed;
1550 /* Get Child's index */
1551 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1552 pn = parent;
1553 chopped_off = 0;
1555 #ifdef CONFIG_IP_FIB_TRIE_STATS
1556 t->stats.backtrack++;
1557 #endif
1558 goto backtrace;
1561 failed:
1562 ret = 1;
1563 found:
1564 rcu_read_unlock();
1565 return ret;
1569 * Remove the leaf and return parent.
1571 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1573 struct tnode *tp = node_parent((struct node *) l);
1575 pr_debug("entering trie_leaf_remove(%p)\n", l);
1577 if (tp) {
1578 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1579 put_child(t, (struct tnode *)tp, cindex, NULL);
1580 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1581 } else
1582 rcu_assign_pointer(t->trie, NULL);
1584 free_leaf(l);
1588 * Caller must hold RTNL.
1590 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1592 struct trie *t = (struct trie *) tb->tb_data;
1593 u32 key, mask;
1594 int plen = cfg->fc_dst_len;
1595 u8 tos = cfg->fc_tos;
1596 struct fib_alias *fa, *fa_to_delete;
1597 struct list_head *fa_head;
1598 struct leaf *l;
1599 struct leaf_info *li;
1601 if (plen > 32)
1602 return -EINVAL;
1604 key = ntohl(cfg->fc_dst);
1605 mask = ntohl(inet_make_mask(plen));
1607 if (key & ~mask)
1608 return -EINVAL;
1610 key = key & mask;
1611 l = fib_find_node(t, key);
1613 if (!l)
1614 return -ESRCH;
1616 fa_head = get_fa_head(l, plen);
1617 fa = fib_find_alias(fa_head, tos, 0);
1619 if (!fa)
1620 return -ESRCH;
1622 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1624 fa_to_delete = NULL;
1625 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1626 list_for_each_entry_continue(fa, fa_head, fa_list) {
1627 struct fib_info *fi = fa->fa_info;
1629 if (fa->fa_tos != tos)
1630 break;
1632 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1633 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1634 fa->fa_scope == cfg->fc_scope) &&
1635 (!cfg->fc_protocol ||
1636 fi->fib_protocol == cfg->fc_protocol) &&
1637 fib_nh_match(cfg, fi) == 0) {
1638 fa_to_delete = fa;
1639 break;
1643 if (!fa_to_delete)
1644 return -ESRCH;
1646 fa = fa_to_delete;
1647 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1648 &cfg->fc_nlinfo, 0);
1650 l = fib_find_node(t, key);
1651 li = find_leaf_info(l, plen);
1653 list_del_rcu(&fa->fa_list);
1655 if (list_empty(fa_head)) {
1656 hlist_del_rcu(&li->hlist);
1657 free_leaf_info(li);
1660 if (hlist_empty(&l->list))
1661 trie_leaf_remove(t, l);
1663 if (fa->fa_state & FA_S_ACCESSED)
1664 rt_cache_flush(-1);
1666 fib_release_info(fa->fa_info);
1667 alias_free_mem_rcu(fa);
1668 return 0;
1671 static int trie_flush_list(struct list_head *head)
1673 struct fib_alias *fa, *fa_node;
1674 int found = 0;
1676 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1677 struct fib_info *fi = fa->fa_info;
1679 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1680 list_del_rcu(&fa->fa_list);
1681 fib_release_info(fa->fa_info);
1682 alias_free_mem_rcu(fa);
1683 found++;
1686 return found;
1689 static int trie_flush_leaf(struct leaf *l)
1691 int found = 0;
1692 struct hlist_head *lih = &l->list;
1693 struct hlist_node *node, *tmp;
1694 struct leaf_info *li = NULL;
1696 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1697 found += trie_flush_list(&li->falh);
1699 if (list_empty(&li->falh)) {
1700 hlist_del_rcu(&li->hlist);
1701 free_leaf_info(li);
1704 return found;
1708 * Scan for the next right leaf starting at node p->child[idx]
1709 * Since we have back pointer, no recursion necessary.
1711 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1713 do {
1714 t_key idx;
1716 if (c)
1717 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1718 else
1719 idx = 0;
1721 while (idx < 1u << p->bits) {
1722 c = tnode_get_child_rcu(p, idx++);
1723 if (!c)
1724 continue;
1726 if (IS_LEAF(c)) {
1727 prefetch(p->child[idx]);
1728 return (struct leaf *) c;
1731 /* Rescan start scanning in new node */
1732 p = (struct tnode *) c;
1733 idx = 0;
1736 /* Node empty, walk back up to parent */
1737 c = (struct node *) p;
1738 } while ( (p = node_parent_rcu(c)) != NULL);
1740 return NULL; /* Root of trie */
1743 static struct leaf *trie_firstleaf(struct trie *t)
1745 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1747 if (!n)
1748 return NULL;
1750 if (IS_LEAF(n)) /* trie is just a leaf */
1751 return (struct leaf *) n;
1753 return leaf_walk_rcu(n, NULL);
1756 static struct leaf *trie_nextleaf(struct leaf *l)
1758 struct node *c = (struct node *) l;
1759 struct tnode *p = node_parent(c);
1761 if (!p)
1762 return NULL; /* trie with just one leaf */
1764 return leaf_walk_rcu(p, c);
1767 static struct leaf *trie_leafindex(struct trie *t, int index)
1769 struct leaf *l = trie_firstleaf(t);
1771 while (l && index-- > 0)
1772 l = trie_nextleaf(l);
1774 return l;
1779 * Caller must hold RTNL.
1781 static int fn_trie_flush(struct fib_table *tb)
1783 struct trie *t = (struct trie *) tb->tb_data;
1784 struct leaf *l, *ll = NULL;
1785 int found = 0;
1787 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1788 found += trie_flush_leaf(l);
1790 if (ll && hlist_empty(&ll->list))
1791 trie_leaf_remove(t, ll);
1792 ll = l;
1795 if (ll && hlist_empty(&ll->list))
1796 trie_leaf_remove(t, ll);
1798 pr_debug("trie_flush found=%d\n", found);
1799 return found;
1802 static void fn_trie_select_default(struct fib_table *tb,
1803 const struct flowi *flp,
1804 struct fib_result *res)
1806 struct trie *t = (struct trie *) tb->tb_data;
1807 int order, last_idx;
1808 struct fib_info *fi = NULL;
1809 struct fib_info *last_resort;
1810 struct fib_alias *fa = NULL;
1811 struct list_head *fa_head;
1812 struct leaf *l;
1814 last_idx = -1;
1815 last_resort = NULL;
1816 order = -1;
1818 rcu_read_lock();
1820 l = fib_find_node(t, 0);
1821 if (!l)
1822 goto out;
1824 fa_head = get_fa_head(l, 0);
1825 if (!fa_head)
1826 goto out;
1828 if (list_empty(fa_head))
1829 goto out;
1831 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1832 struct fib_info *next_fi = fa->fa_info;
1834 if (fa->fa_scope != res->scope ||
1835 fa->fa_type != RTN_UNICAST)
1836 continue;
1838 if (next_fi->fib_priority > res->fi->fib_priority)
1839 break;
1840 if (!next_fi->fib_nh[0].nh_gw ||
1841 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1842 continue;
1843 fa->fa_state |= FA_S_ACCESSED;
1845 if (fi == NULL) {
1846 if (next_fi != res->fi)
1847 break;
1848 } else if (!fib_detect_death(fi, order, &last_resort,
1849 &last_idx, tb->tb_default)) {
1850 fib_result_assign(res, fi);
1851 tb->tb_default = order;
1852 goto out;
1854 fi = next_fi;
1855 order++;
1857 if (order <= 0 || fi == NULL) {
1858 tb->tb_default = -1;
1859 goto out;
1862 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1863 tb->tb_default)) {
1864 fib_result_assign(res, fi);
1865 tb->tb_default = order;
1866 goto out;
1868 if (last_idx >= 0)
1869 fib_result_assign(res, last_resort);
1870 tb->tb_default = last_idx;
1871 out:
1872 rcu_read_unlock();
1875 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1876 struct fib_table *tb,
1877 struct sk_buff *skb, struct netlink_callback *cb)
1879 int i, s_i;
1880 struct fib_alias *fa;
1881 __be32 xkey = htonl(key);
1883 s_i = cb->args[5];
1884 i = 0;
1886 /* rcu_read_lock is hold by caller */
1888 list_for_each_entry_rcu(fa, fah, fa_list) {
1889 if (i < s_i) {
1890 i++;
1891 continue;
1894 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1895 cb->nlh->nlmsg_seq,
1896 RTM_NEWROUTE,
1897 tb->tb_id,
1898 fa->fa_type,
1899 fa->fa_scope,
1900 xkey,
1901 plen,
1902 fa->fa_tos,
1903 fa->fa_info, NLM_F_MULTI) < 0) {
1904 cb->args[5] = i;
1905 return -1;
1907 i++;
1909 cb->args[5] = i;
1910 return skb->len;
1913 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1914 struct sk_buff *skb, struct netlink_callback *cb)
1916 struct leaf_info *li;
1917 struct hlist_node *node;
1918 int i, s_i;
1920 s_i = cb->args[4];
1921 i = 0;
1923 /* rcu_read_lock is hold by caller */
1924 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1925 if (i < s_i) {
1926 i++;
1927 continue;
1930 if (i > s_i)
1931 cb->args[5] = 0;
1933 if (list_empty(&li->falh))
1934 continue;
1936 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1937 cb->args[4] = i;
1938 return -1;
1940 i++;
1943 cb->args[4] = i;
1944 return skb->len;
1947 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1948 struct netlink_callback *cb)
1950 struct leaf *l;
1951 struct trie *t = (struct trie *) tb->tb_data;
1952 t_key key = cb->args[2];
1953 int count = cb->args[3];
1955 rcu_read_lock();
1956 /* Dump starting at last key.
1957 * Note: 0.0.0.0/0 (ie default) is first key.
1959 if (count == 0)
1960 l = trie_firstleaf(t);
1961 else {
1962 /* Normally, continue from last key, but if that is missing
1963 * fallback to using slow rescan
1965 l = fib_find_node(t, key);
1966 if (!l)
1967 l = trie_leafindex(t, count);
1970 while (l) {
1971 cb->args[2] = l->key;
1972 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1973 cb->args[3] = count;
1974 rcu_read_unlock();
1975 return -1;
1978 ++count;
1979 l = trie_nextleaf(l);
1980 memset(&cb->args[4], 0,
1981 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1983 cb->args[3] = count;
1984 rcu_read_unlock();
1986 return skb->len;
1989 void __init fib_hash_init(void)
1991 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1992 sizeof(struct fib_alias),
1993 0, SLAB_PANIC, NULL);
1995 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1996 max(sizeof(struct leaf),
1997 sizeof(struct leaf_info)),
1998 0, SLAB_PANIC, NULL);
2002 /* Fix more generic FIB names for init later */
2003 struct fib_table *fib_hash_table(u32 id)
2005 struct fib_table *tb;
2006 struct trie *t;
2008 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2009 GFP_KERNEL);
2010 if (tb == NULL)
2011 return NULL;
2013 tb->tb_id = id;
2014 tb->tb_default = -1;
2015 tb->tb_lookup = fn_trie_lookup;
2016 tb->tb_insert = fn_trie_insert;
2017 tb->tb_delete = fn_trie_delete;
2018 tb->tb_flush = fn_trie_flush;
2019 tb->tb_select_default = fn_trie_select_default;
2020 tb->tb_dump = fn_trie_dump;
2022 t = (struct trie *) tb->tb_data;
2023 memset(t, 0, sizeof(*t));
2025 if (id == RT_TABLE_LOCAL)
2026 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2028 return tb;
2031 #ifdef CONFIG_PROC_FS
2032 /* Depth first Trie walk iterator */
2033 struct fib_trie_iter {
2034 struct seq_net_private p;
2035 struct fib_table *tb;
2036 struct tnode *tnode;
2037 unsigned index;
2038 unsigned depth;
2041 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2043 struct tnode *tn = iter->tnode;
2044 unsigned cindex = iter->index;
2045 struct tnode *p;
2047 /* A single entry routing table */
2048 if (!tn)
2049 return NULL;
2051 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2052 iter->tnode, iter->index, iter->depth);
2053 rescan:
2054 while (cindex < (1<<tn->bits)) {
2055 struct node *n = tnode_get_child_rcu(tn, cindex);
2057 if (n) {
2058 if (IS_LEAF(n)) {
2059 iter->tnode = tn;
2060 iter->index = cindex + 1;
2061 } else {
2062 /* push down one level */
2063 iter->tnode = (struct tnode *) n;
2064 iter->index = 0;
2065 ++iter->depth;
2067 return n;
2070 ++cindex;
2073 /* Current node exhausted, pop back up */
2074 p = node_parent_rcu((struct node *)tn);
2075 if (p) {
2076 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2077 tn = p;
2078 --iter->depth;
2079 goto rescan;
2082 /* got root? */
2083 return NULL;
2086 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2087 struct trie *t)
2089 struct node *n;
2091 if (!t)
2092 return NULL;
2094 n = rcu_dereference(t->trie);
2095 if (!n)
2096 return NULL;
2098 if (IS_TNODE(n)) {
2099 iter->tnode = (struct tnode *) n;
2100 iter->index = 0;
2101 iter->depth = 1;
2102 } else {
2103 iter->tnode = NULL;
2104 iter->index = 0;
2105 iter->depth = 0;
2108 return n;
2111 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2113 struct node *n;
2114 struct fib_trie_iter iter;
2116 memset(s, 0, sizeof(*s));
2118 rcu_read_lock();
2119 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2120 if (IS_LEAF(n)) {
2121 struct leaf *l = (struct leaf *)n;
2122 struct leaf_info *li;
2123 struct hlist_node *tmp;
2125 s->leaves++;
2126 s->totdepth += iter.depth;
2127 if (iter.depth > s->maxdepth)
2128 s->maxdepth = iter.depth;
2130 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2131 ++s->prefixes;
2132 } else {
2133 const struct tnode *tn = (const struct tnode *) n;
2134 int i;
2136 s->tnodes++;
2137 if (tn->bits < MAX_STAT_DEPTH)
2138 s->nodesizes[tn->bits]++;
2140 for (i = 0; i < (1<<tn->bits); i++)
2141 if (!tn->child[i])
2142 s->nullpointers++;
2145 rcu_read_unlock();
2149 * This outputs /proc/net/fib_triestats
2151 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2153 unsigned i, max, pointers, bytes, avdepth;
2155 if (stat->leaves)
2156 avdepth = stat->totdepth*100 / stat->leaves;
2157 else
2158 avdepth = 0;
2160 seq_printf(seq, "\tAver depth: %u.%02d\n",
2161 avdepth / 100, avdepth % 100);
2162 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2164 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2165 bytes = sizeof(struct leaf) * stat->leaves;
2167 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2168 bytes += sizeof(struct leaf_info) * stat->prefixes;
2170 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2171 bytes += sizeof(struct tnode) * stat->tnodes;
2173 max = MAX_STAT_DEPTH;
2174 while (max > 0 && stat->nodesizes[max-1] == 0)
2175 max--;
2177 pointers = 0;
2178 for (i = 1; i <= max; i++)
2179 if (stat->nodesizes[i] != 0) {
2180 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2181 pointers += (1<<i) * stat->nodesizes[i];
2183 seq_putc(seq, '\n');
2184 seq_printf(seq, "\tPointers: %u\n", pointers);
2186 bytes += sizeof(struct node *) * pointers;
2187 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2188 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2191 #ifdef CONFIG_IP_FIB_TRIE_STATS
2192 static void trie_show_usage(struct seq_file *seq,
2193 const struct trie_use_stats *stats)
2195 seq_printf(seq, "\nCounters:\n---------\n");
2196 seq_printf(seq, "gets = %u\n", stats->gets);
2197 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2198 seq_printf(seq, "semantic match passed = %u\n",
2199 stats->semantic_match_passed);
2200 seq_printf(seq, "semantic match miss = %u\n",
2201 stats->semantic_match_miss);
2202 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2203 seq_printf(seq, "skipped node resize = %u\n\n",
2204 stats->resize_node_skipped);
2206 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2208 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2210 if (tb->tb_id == RT_TABLE_LOCAL)
2211 seq_puts(seq, "Local:\n");
2212 else if (tb->tb_id == RT_TABLE_MAIN)
2213 seq_puts(seq, "Main:\n");
2214 else
2215 seq_printf(seq, "Id %d:\n", tb->tb_id);
2219 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2221 struct net *net = (struct net *)seq->private;
2222 unsigned int h;
2224 seq_printf(seq,
2225 "Basic info: size of leaf:"
2226 " %Zd bytes, size of tnode: %Zd bytes.\n",
2227 sizeof(struct leaf), sizeof(struct tnode));
2229 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2230 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2231 struct hlist_node *node;
2232 struct fib_table *tb;
2234 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2235 struct trie *t = (struct trie *) tb->tb_data;
2236 struct trie_stat stat;
2238 if (!t)
2239 continue;
2241 fib_table_print(seq, tb);
2243 trie_collect_stats(t, &stat);
2244 trie_show_stats(seq, &stat);
2245 #ifdef CONFIG_IP_FIB_TRIE_STATS
2246 trie_show_usage(seq, &t->stats);
2247 #endif
2251 return 0;
2254 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2256 int err;
2257 struct net *net;
2259 net = get_proc_net(inode);
2260 if (net == NULL)
2261 return -ENXIO;
2262 err = single_open(file, fib_triestat_seq_show, net);
2263 if (err < 0) {
2264 put_net(net);
2265 return err;
2267 return 0;
2270 static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2272 struct seq_file *seq = f->private_data;
2273 put_net(seq->private);
2274 return single_release(ino, f);
2277 static const struct file_operations fib_triestat_fops = {
2278 .owner = THIS_MODULE,
2279 .open = fib_triestat_seq_open,
2280 .read = seq_read,
2281 .llseek = seq_lseek,
2282 .release = fib_triestat_seq_release,
2285 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2287 struct fib_trie_iter *iter = seq->private;
2288 struct net *net = seq_file_net(seq);
2289 loff_t idx = 0;
2290 unsigned int h;
2292 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2293 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2294 struct hlist_node *node;
2295 struct fib_table *tb;
2297 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2298 struct node *n;
2300 for (n = fib_trie_get_first(iter,
2301 (struct trie *) tb->tb_data);
2302 n; n = fib_trie_get_next(iter))
2303 if (pos == idx++) {
2304 iter->tb = tb;
2305 return n;
2310 return NULL;
2313 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2314 __acquires(RCU)
2316 rcu_read_lock();
2317 return fib_trie_get_idx(seq, *pos);
2320 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2322 struct fib_trie_iter *iter = seq->private;
2323 struct net *net = seq_file_net(seq);
2324 struct fib_table *tb = iter->tb;
2325 struct hlist_node *tb_node;
2326 unsigned int h;
2327 struct node *n;
2329 ++*pos;
2330 /* next node in same table */
2331 n = fib_trie_get_next(iter);
2332 if (n)
2333 return n;
2335 /* walk rest of this hash chain */
2336 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2337 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2338 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2339 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2340 if (n)
2341 goto found;
2344 /* new hash chain */
2345 while (++h < FIB_TABLE_HASHSZ) {
2346 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2347 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2348 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2349 if (n)
2350 goto found;
2353 return NULL;
2355 found:
2356 iter->tb = tb;
2357 return n;
2360 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2361 __releases(RCU)
2363 rcu_read_unlock();
2366 static void seq_indent(struct seq_file *seq, int n)
2368 while (n-- > 0) seq_puts(seq, " ");
2371 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2373 switch (s) {
2374 case RT_SCOPE_UNIVERSE: return "universe";
2375 case RT_SCOPE_SITE: return "site";
2376 case RT_SCOPE_LINK: return "link";
2377 case RT_SCOPE_HOST: return "host";
2378 case RT_SCOPE_NOWHERE: return "nowhere";
2379 default:
2380 snprintf(buf, len, "scope=%d", s);
2381 return buf;
2385 static const char *rtn_type_names[__RTN_MAX] = {
2386 [RTN_UNSPEC] = "UNSPEC",
2387 [RTN_UNICAST] = "UNICAST",
2388 [RTN_LOCAL] = "LOCAL",
2389 [RTN_BROADCAST] = "BROADCAST",
2390 [RTN_ANYCAST] = "ANYCAST",
2391 [RTN_MULTICAST] = "MULTICAST",
2392 [RTN_BLACKHOLE] = "BLACKHOLE",
2393 [RTN_UNREACHABLE] = "UNREACHABLE",
2394 [RTN_PROHIBIT] = "PROHIBIT",
2395 [RTN_THROW] = "THROW",
2396 [RTN_NAT] = "NAT",
2397 [RTN_XRESOLVE] = "XRESOLVE",
2400 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2402 if (t < __RTN_MAX && rtn_type_names[t])
2403 return rtn_type_names[t];
2404 snprintf(buf, len, "type %u", t);
2405 return buf;
2408 /* Pretty print the trie */
2409 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2411 const struct fib_trie_iter *iter = seq->private;
2412 struct node *n = v;
2414 if (!node_parent_rcu(n))
2415 fib_table_print(seq, iter->tb);
2417 if (IS_TNODE(n)) {
2418 struct tnode *tn = (struct tnode *) n;
2419 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2421 seq_indent(seq, iter->depth-1);
2422 seq_printf(seq, " +-- " NIPQUAD_FMT "/%d %d %d %d\n",
2423 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2424 tn->empty_children);
2426 } else {
2427 struct leaf *l = (struct leaf *) n;
2428 struct leaf_info *li;
2429 struct hlist_node *node;
2430 __be32 val = htonl(l->key);
2432 seq_indent(seq, iter->depth);
2433 seq_printf(seq, " |-- " NIPQUAD_FMT "\n", NIPQUAD(val));
2435 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2436 struct fib_alias *fa;
2438 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2439 char buf1[32], buf2[32];
2441 seq_indent(seq, iter->depth+1);
2442 seq_printf(seq, " /%d %s %s", li->plen,
2443 rtn_scope(buf1, sizeof(buf1),
2444 fa->fa_scope),
2445 rtn_type(buf2, sizeof(buf2),
2446 fa->fa_type));
2447 if (fa->fa_tos)
2448 seq_printf(seq, " tos=%d", fa->fa_tos);
2449 seq_putc(seq, '\n');
2454 return 0;
2457 static const struct seq_operations fib_trie_seq_ops = {
2458 .start = fib_trie_seq_start,
2459 .next = fib_trie_seq_next,
2460 .stop = fib_trie_seq_stop,
2461 .show = fib_trie_seq_show,
2464 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2466 return seq_open_net(inode, file, &fib_trie_seq_ops,
2467 sizeof(struct fib_trie_iter));
2470 static const struct file_operations fib_trie_fops = {
2471 .owner = THIS_MODULE,
2472 .open = fib_trie_seq_open,
2473 .read = seq_read,
2474 .llseek = seq_lseek,
2475 .release = seq_release_net,
2478 struct fib_route_iter {
2479 struct seq_net_private p;
2480 struct trie *main_trie;
2481 loff_t pos;
2482 t_key key;
2485 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2487 struct leaf *l = NULL;
2488 struct trie *t = iter->main_trie;
2490 /* use cache location of last found key */
2491 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2492 pos -= iter->pos;
2493 else {
2494 iter->pos = 0;
2495 l = trie_firstleaf(t);
2498 while (l && pos-- > 0) {
2499 iter->pos++;
2500 l = trie_nextleaf(l);
2503 if (l)
2504 iter->key = pos; /* remember it */
2505 else
2506 iter->pos = 0; /* forget it */
2508 return l;
2511 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2512 __acquires(RCU)
2514 struct fib_route_iter *iter = seq->private;
2515 struct fib_table *tb;
2517 rcu_read_lock();
2518 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2519 if (!tb)
2520 return NULL;
2522 iter->main_trie = (struct trie *) tb->tb_data;
2523 if (*pos == 0)
2524 return SEQ_START_TOKEN;
2525 else
2526 return fib_route_get_idx(iter, *pos - 1);
2529 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2531 struct fib_route_iter *iter = seq->private;
2532 struct leaf *l = v;
2534 ++*pos;
2535 if (v == SEQ_START_TOKEN) {
2536 iter->pos = 0;
2537 l = trie_firstleaf(iter->main_trie);
2538 } else {
2539 iter->pos++;
2540 l = trie_nextleaf(l);
2543 if (l)
2544 iter->key = l->key;
2545 else
2546 iter->pos = 0;
2547 return l;
2550 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2551 __releases(RCU)
2553 rcu_read_unlock();
2556 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2558 static unsigned type2flags[RTN_MAX + 1] = {
2559 [7] = RTF_REJECT, [8] = RTF_REJECT,
2561 unsigned flags = type2flags[type];
2563 if (fi && fi->fib_nh->nh_gw)
2564 flags |= RTF_GATEWAY;
2565 if (mask == htonl(0xFFFFFFFF))
2566 flags |= RTF_HOST;
2567 flags |= RTF_UP;
2568 return flags;
2572 * This outputs /proc/net/route.
2573 * The format of the file is not supposed to be changed
2574 * and needs to be same as fib_hash output to avoid breaking
2575 * legacy utilities
2577 static int fib_route_seq_show(struct seq_file *seq, void *v)
2579 struct leaf *l = v;
2580 struct leaf_info *li;
2581 struct hlist_node *node;
2583 if (v == SEQ_START_TOKEN) {
2584 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2585 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2586 "\tWindow\tIRTT");
2587 return 0;
2590 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2591 struct fib_alias *fa;
2592 __be32 mask, prefix;
2594 mask = inet_make_mask(li->plen);
2595 prefix = htonl(l->key);
2597 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2598 const struct fib_info *fi = fa->fa_info;
2599 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2600 int len;
2602 if (fa->fa_type == RTN_BROADCAST
2603 || fa->fa_type == RTN_MULTICAST)
2604 continue;
2606 if (fi)
2607 seq_printf(seq,
2608 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2609 "%d\t%08X\t%d\t%u\t%u%n",
2610 fi->fib_dev ? fi->fib_dev->name : "*",
2611 prefix,
2612 fi->fib_nh->nh_gw, flags, 0, 0,
2613 fi->fib_priority,
2614 mask,
2615 (fi->fib_advmss ?
2616 fi->fib_advmss + 40 : 0),
2617 fi->fib_window,
2618 fi->fib_rtt >> 3, &len);
2619 else
2620 seq_printf(seq,
2621 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2622 "%d\t%08X\t%d\t%u\t%u%n",
2623 prefix, 0, flags, 0, 0, 0,
2624 mask, 0, 0, 0, &len);
2626 seq_printf(seq, "%*s\n", 127 - len, "");
2630 return 0;
2633 static const struct seq_operations fib_route_seq_ops = {
2634 .start = fib_route_seq_start,
2635 .next = fib_route_seq_next,
2636 .stop = fib_route_seq_stop,
2637 .show = fib_route_seq_show,
2640 static int fib_route_seq_open(struct inode *inode, struct file *file)
2642 return seq_open_net(inode, file, &fib_route_seq_ops,
2643 sizeof(struct fib_route_iter));
2646 static const struct file_operations fib_route_fops = {
2647 .owner = THIS_MODULE,
2648 .open = fib_route_seq_open,
2649 .read = seq_read,
2650 .llseek = seq_lseek,
2651 .release = seq_release_net,
2654 int __net_init fib_proc_init(struct net *net)
2656 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2657 goto out1;
2659 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2660 &fib_triestat_fops))
2661 goto out2;
2663 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2664 goto out3;
2666 return 0;
2668 out3:
2669 proc_net_remove(net, "fib_triestat");
2670 out2:
2671 proc_net_remove(net, "fib_trie");
2672 out1:
2673 return -ENOMEM;
2676 void __net_exit fib_proc_exit(struct net *net)
2678 proc_net_remove(net, "fib_trie");
2679 proc_net_remove(net, "fib_triestat");
2680 proc_net_remove(net, "route");
2683 #endif /* CONFIG_PROC_FS */