[IA64] set_thread_area fails in IA32 chroot
[linux-2.6/mini2440.git] / arch / ia64 / kernel / process.c
blob7377d323131dfcc6565678dad9c0e4d8ab1e6f63
1 /*
2 * Architecture-specific setup.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/personality.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
32 #include <asm/cpu.h>
33 #include <asm/delay.h>
34 #include <asm/elf.h>
35 #include <asm/ia32.h>
36 #include <asm/irq.h>
37 #include <asm/kexec.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sal.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/unwind.h>
44 #include <asm/user.h>
46 #include "entry.h"
48 #ifdef CONFIG_PERFMON
49 # include <asm/perfmon.h>
50 #endif
52 #include "sigframe.h"
54 void (*ia64_mark_idle)(int);
55 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
57 unsigned long boot_option_idle_override = 0;
58 EXPORT_SYMBOL(boot_option_idle_override);
60 void
61 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
63 unsigned long ip, sp, bsp;
64 char buf[128]; /* don't make it so big that it overflows the stack! */
66 printk("\nCall Trace:\n");
67 do {
68 unw_get_ip(info, &ip);
69 if (ip == 0)
70 break;
72 unw_get_sp(info, &sp);
73 unw_get_bsp(info, &bsp);
74 snprintf(buf, sizeof(buf),
75 " [<%016lx>] %%s\n"
76 " sp=%016lx bsp=%016lx\n",
77 ip, sp, bsp);
78 print_symbol(buf, ip);
79 } while (unw_unwind(info) >= 0);
82 void
83 show_stack (struct task_struct *task, unsigned long *sp)
85 if (!task)
86 unw_init_running(ia64_do_show_stack, NULL);
87 else {
88 struct unw_frame_info info;
90 unw_init_from_blocked_task(&info, task);
91 ia64_do_show_stack(&info, NULL);
95 void
96 dump_stack (void)
98 show_stack(NULL, NULL);
101 EXPORT_SYMBOL(dump_stack);
103 void
104 show_regs (struct pt_regs *regs)
106 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
108 print_modules();
109 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
110 smp_processor_id(), current->comm);
111 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
112 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
113 init_utsname()->release);
114 print_symbol("ip is at %s\n", ip);
115 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
116 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
117 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
118 regs->ar_rnat, regs->ar_bspstore, regs->pr);
119 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
120 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
121 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
122 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
123 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
124 regs->f6.u.bits[1], regs->f6.u.bits[0],
125 regs->f7.u.bits[1], regs->f7.u.bits[0]);
126 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
127 regs->f8.u.bits[1], regs->f8.u.bits[0],
128 regs->f9.u.bits[1], regs->f9.u.bits[0]);
129 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
130 regs->f10.u.bits[1], regs->f10.u.bits[0],
131 regs->f11.u.bits[1], regs->f11.u.bits[0]);
133 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
134 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
135 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
136 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
137 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
138 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
139 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
140 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
141 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
143 if (user_mode(regs)) {
144 /* print the stacked registers */
145 unsigned long val, *bsp, ndirty;
146 int i, sof, is_nat = 0;
148 sof = regs->cr_ifs & 0x7f; /* size of frame */
149 ndirty = (regs->loadrs >> 19);
150 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
151 for (i = 0; i < sof; ++i) {
152 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
153 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
154 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
156 } else
157 show_stack(NULL, NULL);
160 void
161 do_notify_resume_user (sigset_t *unused, struct sigscratch *scr, long in_syscall)
163 if (fsys_mode(current, &scr->pt)) {
164 /* defer signal-handling etc. until we return to privilege-level 0. */
165 if (!ia64_psr(&scr->pt)->lp)
166 ia64_psr(&scr->pt)->lp = 1;
167 return;
170 #ifdef CONFIG_PERFMON
171 if (current->thread.pfm_needs_checking)
172 pfm_handle_work();
173 #endif
175 /* deal with pending signal delivery */
176 if (test_thread_flag(TIF_SIGPENDING)||test_thread_flag(TIF_RESTORE_SIGMASK))
177 ia64_do_signal(scr, in_syscall);
180 static int pal_halt = 1;
181 static int can_do_pal_halt = 1;
183 static int __init nohalt_setup(char * str)
185 pal_halt = can_do_pal_halt = 0;
186 return 1;
188 __setup("nohalt", nohalt_setup);
190 void
191 update_pal_halt_status(int status)
193 can_do_pal_halt = pal_halt && status;
197 * We use this if we don't have any better idle routine..
199 void
200 default_idle (void)
202 local_irq_enable();
203 while (!need_resched()) {
204 if (can_do_pal_halt) {
205 local_irq_disable();
206 if (!need_resched()) {
207 safe_halt();
209 local_irq_enable();
210 } else
211 cpu_relax();
215 #ifdef CONFIG_HOTPLUG_CPU
216 /* We don't actually take CPU down, just spin without interrupts. */
217 static inline void play_dead(void)
219 extern void ia64_cpu_local_tick (void);
220 unsigned int this_cpu = smp_processor_id();
222 /* Ack it */
223 __get_cpu_var(cpu_state) = CPU_DEAD;
225 max_xtp();
226 local_irq_disable();
227 idle_task_exit();
228 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
230 * The above is a point of no-return, the processor is
231 * expected to be in SAL loop now.
233 BUG();
235 #else
236 static inline void play_dead(void)
238 BUG();
240 #endif /* CONFIG_HOTPLUG_CPU */
242 void cpu_idle_wait(void)
244 unsigned int cpu, this_cpu = get_cpu();
245 cpumask_t map;
246 cpumask_t tmp = current->cpus_allowed;
248 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
249 put_cpu();
251 cpus_clear(map);
252 for_each_online_cpu(cpu) {
253 per_cpu(cpu_idle_state, cpu) = 1;
254 cpu_set(cpu, map);
257 __get_cpu_var(cpu_idle_state) = 0;
259 wmb();
260 do {
261 ssleep(1);
262 for_each_online_cpu(cpu) {
263 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
264 cpu_clear(cpu, map);
266 cpus_and(map, map, cpu_online_map);
267 } while (!cpus_empty(map));
268 set_cpus_allowed(current, tmp);
270 EXPORT_SYMBOL_GPL(cpu_idle_wait);
272 void __attribute__((noreturn))
273 cpu_idle (void)
275 void (*mark_idle)(int) = ia64_mark_idle;
276 int cpu = smp_processor_id();
278 /* endless idle loop with no priority at all */
279 while (1) {
280 if (can_do_pal_halt) {
281 current_thread_info()->status &= ~TS_POLLING;
283 * TS_POLLING-cleared state must be visible before we
284 * test NEED_RESCHED:
286 smp_mb();
287 } else {
288 current_thread_info()->status |= TS_POLLING;
291 if (!need_resched()) {
292 void (*idle)(void);
293 #ifdef CONFIG_SMP
294 min_xtp();
295 #endif
296 if (__get_cpu_var(cpu_idle_state))
297 __get_cpu_var(cpu_idle_state) = 0;
299 rmb();
300 if (mark_idle)
301 (*mark_idle)(1);
303 idle = pm_idle;
304 if (!idle)
305 idle = default_idle;
306 (*idle)();
307 if (mark_idle)
308 (*mark_idle)(0);
309 #ifdef CONFIG_SMP
310 normal_xtp();
311 #endif
313 preempt_enable_no_resched();
314 schedule();
315 preempt_disable();
316 check_pgt_cache();
317 if (cpu_is_offline(cpu))
318 play_dead();
322 void
323 ia64_save_extra (struct task_struct *task)
325 #ifdef CONFIG_PERFMON
326 unsigned long info;
327 #endif
329 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
330 ia64_save_debug_regs(&task->thread.dbr[0]);
332 #ifdef CONFIG_PERFMON
333 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
334 pfm_save_regs(task);
336 info = __get_cpu_var(pfm_syst_info);
337 if (info & PFM_CPUINFO_SYST_WIDE)
338 pfm_syst_wide_update_task(task, info, 0);
339 #endif
341 #ifdef CONFIG_IA32_SUPPORT
342 if (IS_IA32_PROCESS(task_pt_regs(task)))
343 ia32_save_state(task);
344 #endif
347 void
348 ia64_load_extra (struct task_struct *task)
350 #ifdef CONFIG_PERFMON
351 unsigned long info;
352 #endif
354 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
355 ia64_load_debug_regs(&task->thread.dbr[0]);
357 #ifdef CONFIG_PERFMON
358 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
359 pfm_load_regs(task);
361 info = __get_cpu_var(pfm_syst_info);
362 if (info & PFM_CPUINFO_SYST_WIDE)
363 pfm_syst_wide_update_task(task, info, 1);
364 #endif
366 #ifdef CONFIG_IA32_SUPPORT
367 if (IS_IA32_PROCESS(task_pt_regs(task)))
368 ia32_load_state(task);
369 #endif
373 * Copy the state of an ia-64 thread.
375 * We get here through the following call chain:
377 * from user-level: from kernel:
379 * <clone syscall> <some kernel call frames>
380 * sys_clone :
381 * do_fork do_fork
382 * copy_thread copy_thread
384 * This means that the stack layout is as follows:
386 * +---------------------+ (highest addr)
387 * | struct pt_regs |
388 * +---------------------+
389 * | struct switch_stack |
390 * +---------------------+
391 * | |
392 * | memory stack |
393 * | | <-- sp (lowest addr)
394 * +---------------------+
396 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
397 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
398 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
399 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
400 * the stack is page aligned and the page size is at least 4KB, this is always the case,
401 * so there is nothing to worry about.
404 copy_thread (int nr, unsigned long clone_flags,
405 unsigned long user_stack_base, unsigned long user_stack_size,
406 struct task_struct *p, struct pt_regs *regs)
408 extern char ia64_ret_from_clone, ia32_ret_from_clone;
409 struct switch_stack *child_stack, *stack;
410 unsigned long rbs, child_rbs, rbs_size;
411 struct pt_regs *child_ptregs;
412 int retval = 0;
414 #ifdef CONFIG_SMP
416 * For SMP idle threads, fork_by_hand() calls do_fork with
417 * NULL regs.
419 if (!regs)
420 return 0;
421 #endif
423 stack = ((struct switch_stack *) regs) - 1;
425 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
426 child_stack = (struct switch_stack *) child_ptregs - 1;
428 /* copy parent's switch_stack & pt_regs to child: */
429 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
431 rbs = (unsigned long) current + IA64_RBS_OFFSET;
432 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
433 rbs_size = stack->ar_bspstore - rbs;
435 /* copy the parent's register backing store to the child: */
436 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
438 if (likely(user_mode(child_ptregs))) {
439 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
440 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
441 if (user_stack_base) {
442 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
443 child_ptregs->ar_bspstore = user_stack_base;
444 child_ptregs->ar_rnat = 0;
445 child_ptregs->loadrs = 0;
447 } else {
449 * Note: we simply preserve the relative position of
450 * the stack pointer here. There is no need to
451 * allocate a scratch area here, since that will have
452 * been taken care of by the caller of sys_clone()
453 * already.
455 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
456 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
458 child_stack->ar_bspstore = child_rbs + rbs_size;
459 if (IS_IA32_PROCESS(regs))
460 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
461 else
462 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
464 /* copy parts of thread_struct: */
465 p->thread.ksp = (unsigned long) child_stack - 16;
467 /* stop some PSR bits from being inherited.
468 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
469 * therefore we must specify them explicitly here and not include them in
470 * IA64_PSR_BITS_TO_CLEAR.
472 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
473 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
476 * NOTE: The calling convention considers all floating point
477 * registers in the high partition (fph) to be scratch. Since
478 * the only way to get to this point is through a system call,
479 * we know that the values in fph are all dead. Hence, there
480 * is no need to inherit the fph state from the parent to the
481 * child and all we have to do is to make sure that
482 * IA64_THREAD_FPH_VALID is cleared in the child.
484 * XXX We could push this optimization a bit further by
485 * clearing IA64_THREAD_FPH_VALID on ANY system call.
486 * However, it's not clear this is worth doing. Also, it
487 * would be a slight deviation from the normal Linux system
488 * call behavior where scratch registers are preserved across
489 * system calls (unless used by the system call itself).
491 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
492 | IA64_THREAD_PM_VALID)
493 # define THREAD_FLAGS_TO_SET 0
494 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
495 | THREAD_FLAGS_TO_SET);
496 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
497 #ifdef CONFIG_IA32_SUPPORT
499 * If we're cloning an IA32 task then save the IA32 extra
500 * state from the current task to the new task
502 if (IS_IA32_PROCESS(task_pt_regs(current))) {
503 ia32_save_state(p);
504 if (clone_flags & CLONE_SETTLS)
505 retval = ia32_clone_tls(p, child_ptregs);
507 /* Copy partially mapped page list */
508 if (!retval)
509 retval = ia32_copy_ia64_partial_page_list(p,
510 clone_flags);
512 #endif
514 #ifdef CONFIG_PERFMON
515 if (current->thread.pfm_context)
516 pfm_inherit(p, child_ptregs);
517 #endif
518 return retval;
521 static void
522 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
524 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
525 unsigned long uninitialized_var(ip); /* GCC be quiet */
526 elf_greg_t *dst = arg;
527 struct pt_regs *pt;
528 char nat;
529 int i;
531 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
533 if (unw_unwind_to_user(info) < 0)
534 return;
536 unw_get_sp(info, &sp);
537 pt = (struct pt_regs *) (sp + 16);
539 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
541 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
542 return;
544 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
545 &ar_rnat);
548 * coredump format:
549 * r0-r31
550 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
551 * predicate registers (p0-p63)
552 * b0-b7
553 * ip cfm user-mask
554 * ar.rsc ar.bsp ar.bspstore ar.rnat
555 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
558 /* r0 is zero */
559 for (i = 1, mask = (1UL << i); i < 32; ++i) {
560 unw_get_gr(info, i, &dst[i], &nat);
561 if (nat)
562 nat_bits |= mask;
563 mask <<= 1;
565 dst[32] = nat_bits;
566 unw_get_pr(info, &dst[33]);
568 for (i = 0; i < 8; ++i)
569 unw_get_br(info, i, &dst[34 + i]);
571 unw_get_rp(info, &ip);
572 dst[42] = ip + ia64_psr(pt)->ri;
573 dst[43] = cfm;
574 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
576 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
578 * For bsp and bspstore, unw_get_ar() would return the kernel
579 * addresses, but we need the user-level addresses instead:
581 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
582 dst[47] = pt->ar_bspstore;
583 dst[48] = ar_rnat;
584 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
585 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
586 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
587 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
588 unw_get_ar(info, UNW_AR_LC, &dst[53]);
589 unw_get_ar(info, UNW_AR_EC, &dst[54]);
590 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
591 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
594 void
595 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
597 elf_fpreg_t *dst = arg;
598 int i;
600 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
602 if (unw_unwind_to_user(info) < 0)
603 return;
605 /* f0 is 0.0, f1 is 1.0 */
607 for (i = 2; i < 32; ++i)
608 unw_get_fr(info, i, dst + i);
610 ia64_flush_fph(task);
611 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
612 memcpy(dst + 32, task->thread.fph, 96*16);
615 void
616 do_copy_regs (struct unw_frame_info *info, void *arg)
618 do_copy_task_regs(current, info, arg);
621 void
622 do_dump_fpu (struct unw_frame_info *info, void *arg)
624 do_dump_task_fpu(current, info, arg);
628 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
630 struct unw_frame_info tcore_info;
632 if (current == task) {
633 unw_init_running(do_copy_regs, regs);
634 } else {
635 memset(&tcore_info, 0, sizeof(tcore_info));
636 unw_init_from_blocked_task(&tcore_info, task);
637 do_copy_task_regs(task, &tcore_info, regs);
639 return 1;
642 void
643 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
645 unw_init_running(do_copy_regs, dst);
649 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
651 struct unw_frame_info tcore_info;
653 if (current == task) {
654 unw_init_running(do_dump_fpu, dst);
655 } else {
656 memset(&tcore_info, 0, sizeof(tcore_info));
657 unw_init_from_blocked_task(&tcore_info, task);
658 do_dump_task_fpu(task, &tcore_info, dst);
660 return 1;
664 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
666 unw_init_running(do_dump_fpu, dst);
667 return 1; /* f0-f31 are always valid so we always return 1 */
670 long
671 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
672 struct pt_regs *regs)
674 char *fname;
675 int error;
677 fname = getname(filename);
678 error = PTR_ERR(fname);
679 if (IS_ERR(fname))
680 goto out;
681 error = do_execve(fname, argv, envp, regs);
682 putname(fname);
683 out:
684 return error;
687 pid_t
688 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
690 extern void start_kernel_thread (void);
691 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
692 struct {
693 struct switch_stack sw;
694 struct pt_regs pt;
695 } regs;
697 memset(&regs, 0, sizeof(regs));
698 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
699 regs.pt.r1 = helper_fptr[1]; /* set GP */
700 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
701 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
702 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
703 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
704 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
705 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
706 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
707 regs.sw.pr = (1 << PRED_KERNEL_STACK);
708 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
710 EXPORT_SYMBOL(kernel_thread);
712 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
714 kernel_thread_helper (int (*fn)(void *), void *arg)
716 #ifdef CONFIG_IA32_SUPPORT
717 if (IS_IA32_PROCESS(task_pt_regs(current))) {
718 /* A kernel thread is always a 64-bit process. */
719 current->thread.map_base = DEFAULT_MAP_BASE;
720 current->thread.task_size = DEFAULT_TASK_SIZE;
721 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
722 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
724 #endif
725 return (*fn)(arg);
729 * Flush thread state. This is called when a thread does an execve().
731 void
732 flush_thread (void)
734 /* drop floating-point and debug-register state if it exists: */
735 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
736 ia64_drop_fpu(current);
737 #ifdef CONFIG_IA32_SUPPORT
738 if (IS_IA32_PROCESS(task_pt_regs(current))) {
739 ia32_drop_ia64_partial_page_list(current);
740 current->thread.task_size = IA32_PAGE_OFFSET;
741 set_fs(USER_DS);
742 memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array));
744 #endif
748 * Clean up state associated with current thread. This is called when
749 * the thread calls exit().
751 void
752 exit_thread (void)
755 ia64_drop_fpu(current);
756 #ifdef CONFIG_PERFMON
757 /* if needed, stop monitoring and flush state to perfmon context */
758 if (current->thread.pfm_context)
759 pfm_exit_thread(current);
761 /* free debug register resources */
762 if (current->thread.flags & IA64_THREAD_DBG_VALID)
763 pfm_release_debug_registers(current);
764 #endif
765 if (IS_IA32_PROCESS(task_pt_regs(current)))
766 ia32_drop_ia64_partial_page_list(current);
769 unsigned long
770 get_wchan (struct task_struct *p)
772 struct unw_frame_info info;
773 unsigned long ip;
774 int count = 0;
776 if (!p || p == current || p->state == TASK_RUNNING)
777 return 0;
780 * Note: p may not be a blocked task (it could be current or
781 * another process running on some other CPU. Rather than
782 * trying to determine if p is really blocked, we just assume
783 * it's blocked and rely on the unwind routines to fail
784 * gracefully if the process wasn't really blocked after all.
785 * --davidm 99/12/15
787 unw_init_from_blocked_task(&info, p);
788 do {
789 if (p->state == TASK_RUNNING)
790 return 0;
791 if (unw_unwind(&info) < 0)
792 return 0;
793 unw_get_ip(&info, &ip);
794 if (!in_sched_functions(ip))
795 return ip;
796 } while (count++ < 16);
797 return 0;
800 void
801 cpu_halt (void)
803 pal_power_mgmt_info_u_t power_info[8];
804 unsigned long min_power;
805 int i, min_power_state;
807 if (ia64_pal_halt_info(power_info) != 0)
808 return;
810 min_power_state = 0;
811 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
812 for (i = 1; i < 8; ++i)
813 if (power_info[i].pal_power_mgmt_info_s.im
814 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
815 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
816 min_power_state = i;
819 while (1)
820 ia64_pal_halt(min_power_state);
823 void machine_shutdown(void)
825 #ifdef CONFIG_HOTPLUG_CPU
826 int cpu;
828 for_each_online_cpu(cpu) {
829 if (cpu != smp_processor_id())
830 cpu_down(cpu);
832 #endif
833 #ifdef CONFIG_KEXEC
834 kexec_disable_iosapic();
835 #endif
838 void
839 machine_restart (char *restart_cmd)
841 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
842 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
845 void
846 machine_halt (void)
848 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
849 cpu_halt();
852 void
853 machine_power_off (void)
855 if (pm_power_off)
856 pm_power_off();
857 machine_halt();