e1000e: check return code from NVM accesses and fix bank detection
[linux-2.6/mini2440.git] / drivers / net / e1000e / netdev.c
blobca5d3f58329d8c46a6e3ca14f7ebb6be83bdb161
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
48 #include "e1000.h"
50 #define DRV_VERSION "0.3.3.3-k6"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
54 static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
58 [board_82574] = &e1000_82574_info,
59 [board_80003es2lan] = &e1000_es2_info,
60 [board_ich8lan] = &e1000_ich8_info,
61 [board_ich9lan] = &e1000_ich9_info,
62 [board_ich10lan] = &e1000_ich10_info,
65 #ifdef DEBUG
66 /**
67 * e1000_get_hw_dev_name - return device name string
68 * used by hardware layer to print debugging information
69 **/
70 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
72 return hw->adapter->netdev->name;
74 #endif
76 /**
77 * e1000_desc_unused - calculate if we have unused descriptors
78 **/
79 static int e1000_desc_unused(struct e1000_ring *ring)
81 if (ring->next_to_clean > ring->next_to_use)
82 return ring->next_to_clean - ring->next_to_use - 1;
84 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
87 /**
88 * e1000_receive_skb - helper function to handle Rx indications
89 * @adapter: board private structure
90 * @status: descriptor status field as written by hardware
91 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
92 * @skb: pointer to sk_buff to be indicated to stack
93 **/
94 static void e1000_receive_skb(struct e1000_adapter *adapter,
95 struct net_device *netdev,
96 struct sk_buff *skb,
97 u8 status, __le16 vlan)
99 skb->protocol = eth_type_trans(skb, netdev);
101 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
102 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
103 le16_to_cpu(vlan));
104 else
105 netif_receive_skb(skb);
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
124 return;
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
129 return;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134 return;
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
140 } else {
142 * IP fragment with UDP payload
143 * Hardware complements the payload checksum, so we undo it
144 * and then put the value in host order for further stack use.
146 __sum16 sum = (__force __sum16)htons(csum);
147 skb->csum = csum_unfold(~sum);
148 skb->ip_summed = CHECKSUM_COMPLETE;
150 adapter->hw_csum_good++;
154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155 * @adapter: address of board private structure
157 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
158 int cleaned_count)
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 struct e1000_ring *rx_ring = adapter->rx_ring;
163 struct e1000_rx_desc *rx_desc;
164 struct e1000_buffer *buffer_info;
165 struct sk_buff *skb;
166 unsigned int i;
167 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
172 while (cleaned_count--) {
173 skb = buffer_info->skb;
174 if (skb) {
175 skb_trim(skb, 0);
176 goto map_skb;
179 skb = netdev_alloc_skb(netdev, bufsz);
180 if (!skb) {
181 /* Better luck next round */
182 adapter->alloc_rx_buff_failed++;
183 break;
187 * Make buffer alignment 2 beyond a 16 byte boundary
188 * this will result in a 16 byte aligned IP header after
189 * the 14 byte MAC header is removed
191 skb_reserve(skb, NET_IP_ALIGN);
193 buffer_info->skb = skb;
194 map_skb:
195 buffer_info->dma = pci_map_single(pdev, skb->data,
196 adapter->rx_buffer_len,
197 PCI_DMA_FROMDEVICE);
198 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 adapter->rx_dma_failed++;
201 break;
204 rx_desc = E1000_RX_DESC(*rx_ring, i);
205 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
207 i++;
208 if (i == rx_ring->count)
209 i = 0;
210 buffer_info = &rx_ring->buffer_info[i];
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
215 if (i-- == 0)
216 i = (rx_ring->count - 1);
219 * Force memory writes to complete before letting h/w
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
222 * such as IA-64).
224 wmb();
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231 * @adapter: address of board private structure
233 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
234 int cleaned_count)
236 struct net_device *netdev = adapter->netdev;
237 struct pci_dev *pdev = adapter->pdev;
238 union e1000_rx_desc_packet_split *rx_desc;
239 struct e1000_ring *rx_ring = adapter->rx_ring;
240 struct e1000_buffer *buffer_info;
241 struct e1000_ps_page *ps_page;
242 struct sk_buff *skb;
243 unsigned int i, j;
245 i = rx_ring->next_to_use;
246 buffer_info = &rx_ring->buffer_info[i];
248 while (cleaned_count--) {
249 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
251 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
252 ps_page = &buffer_info->ps_pages[j];
253 if (j >= adapter->rx_ps_pages) {
254 /* all unused desc entries get hw null ptr */
255 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
256 continue;
258 if (!ps_page->page) {
259 ps_page->page = alloc_page(GFP_ATOMIC);
260 if (!ps_page->page) {
261 adapter->alloc_rx_buff_failed++;
262 goto no_buffers;
264 ps_page->dma = pci_map_page(pdev,
265 ps_page->page,
266 0, PAGE_SIZE,
267 PCI_DMA_FROMDEVICE);
268 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
269 dev_err(&adapter->pdev->dev,
270 "RX DMA page map failed\n");
271 adapter->rx_dma_failed++;
272 goto no_buffers;
276 * Refresh the desc even if buffer_addrs
277 * didn't change because each write-back
278 * erases this info.
280 rx_desc->read.buffer_addr[j+1] =
281 cpu_to_le64(ps_page->dma);
284 skb = netdev_alloc_skb(netdev,
285 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
287 if (!skb) {
288 adapter->alloc_rx_buff_failed++;
289 break;
293 * Make buffer alignment 2 beyond a 16 byte boundary
294 * this will result in a 16 byte aligned IP header after
295 * the 14 byte MAC header is removed
297 skb_reserve(skb, NET_IP_ALIGN);
299 buffer_info->skb = skb;
300 buffer_info->dma = pci_map_single(pdev, skb->data,
301 adapter->rx_ps_bsize0,
302 PCI_DMA_FROMDEVICE);
303 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
304 dev_err(&pdev->dev, "RX DMA map failed\n");
305 adapter->rx_dma_failed++;
306 /* cleanup skb */
307 dev_kfree_skb_any(skb);
308 buffer_info->skb = NULL;
309 break;
312 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
314 i++;
315 if (i == rx_ring->count)
316 i = 0;
317 buffer_info = &rx_ring->buffer_info[i];
320 no_buffers:
321 if (rx_ring->next_to_use != i) {
322 rx_ring->next_to_use = i;
324 if (!(i--))
325 i = (rx_ring->count - 1);
328 * Force memory writes to complete before letting h/w
329 * know there are new descriptors to fetch. (Only
330 * applicable for weak-ordered memory model archs,
331 * such as IA-64).
333 wmb();
335 * Hardware increments by 16 bytes, but packet split
336 * descriptors are 32 bytes...so we increment tail
337 * twice as much.
339 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
344 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
345 * @adapter: address of board private structure
346 * @rx_ring: pointer to receive ring structure
347 * @cleaned_count: number of buffers to allocate this pass
350 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
351 int cleaned_count)
353 struct net_device *netdev = adapter->netdev;
354 struct pci_dev *pdev = adapter->pdev;
355 struct e1000_rx_desc *rx_desc;
356 struct e1000_ring *rx_ring = adapter->rx_ring;
357 struct e1000_buffer *buffer_info;
358 struct sk_buff *skb;
359 unsigned int i;
360 unsigned int bufsz = 256 -
361 16 /* for skb_reserve */ -
362 NET_IP_ALIGN;
364 i = rx_ring->next_to_use;
365 buffer_info = &rx_ring->buffer_info[i];
367 while (cleaned_count--) {
368 skb = buffer_info->skb;
369 if (skb) {
370 skb_trim(skb, 0);
371 goto check_page;
374 skb = netdev_alloc_skb(netdev, bufsz);
375 if (unlikely(!skb)) {
376 /* Better luck next round */
377 adapter->alloc_rx_buff_failed++;
378 break;
381 /* Make buffer alignment 2 beyond a 16 byte boundary
382 * this will result in a 16 byte aligned IP header after
383 * the 14 byte MAC header is removed
385 skb_reserve(skb, NET_IP_ALIGN);
387 buffer_info->skb = skb;
388 check_page:
389 /* allocate a new page if necessary */
390 if (!buffer_info->page) {
391 buffer_info->page = alloc_page(GFP_ATOMIC);
392 if (unlikely(!buffer_info->page)) {
393 adapter->alloc_rx_buff_failed++;
394 break;
398 if (!buffer_info->dma)
399 buffer_info->dma = pci_map_page(pdev,
400 buffer_info->page, 0,
401 PAGE_SIZE,
402 PCI_DMA_FROMDEVICE);
404 rx_desc = E1000_RX_DESC(*rx_ring, i);
405 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
407 if (unlikely(++i == rx_ring->count))
408 i = 0;
409 buffer_info = &rx_ring->buffer_info[i];
412 if (likely(rx_ring->next_to_use != i)) {
413 rx_ring->next_to_use = i;
414 if (unlikely(i-- == 0))
415 i = (rx_ring->count - 1);
417 /* Force memory writes to complete before letting h/w
418 * know there are new descriptors to fetch. (Only
419 * applicable for weak-ordered memory model archs,
420 * such as IA-64). */
421 wmb();
422 writel(i, adapter->hw.hw_addr + rx_ring->tail);
427 * e1000_clean_rx_irq - Send received data up the network stack; legacy
428 * @adapter: board private structure
430 * the return value indicates whether actual cleaning was done, there
431 * is no guarantee that everything was cleaned
433 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
434 int *work_done, int work_to_do)
436 struct net_device *netdev = adapter->netdev;
437 struct pci_dev *pdev = adapter->pdev;
438 struct e1000_ring *rx_ring = adapter->rx_ring;
439 struct e1000_rx_desc *rx_desc, *next_rxd;
440 struct e1000_buffer *buffer_info, *next_buffer;
441 u32 length;
442 unsigned int i;
443 int cleaned_count = 0;
444 bool cleaned = 0;
445 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
447 i = rx_ring->next_to_clean;
448 rx_desc = E1000_RX_DESC(*rx_ring, i);
449 buffer_info = &rx_ring->buffer_info[i];
451 while (rx_desc->status & E1000_RXD_STAT_DD) {
452 struct sk_buff *skb;
453 u8 status;
455 if (*work_done >= work_to_do)
456 break;
457 (*work_done)++;
459 status = rx_desc->status;
460 skb = buffer_info->skb;
461 buffer_info->skb = NULL;
463 prefetch(skb->data - NET_IP_ALIGN);
465 i++;
466 if (i == rx_ring->count)
467 i = 0;
468 next_rxd = E1000_RX_DESC(*rx_ring, i);
469 prefetch(next_rxd);
471 next_buffer = &rx_ring->buffer_info[i];
473 cleaned = 1;
474 cleaned_count++;
475 pci_unmap_single(pdev,
476 buffer_info->dma,
477 adapter->rx_buffer_len,
478 PCI_DMA_FROMDEVICE);
479 buffer_info->dma = 0;
481 length = le16_to_cpu(rx_desc->length);
483 /* !EOP means multiple descriptors were used to store a single
484 * packet, also make sure the frame isn't just CRC only */
485 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
486 /* All receives must fit into a single buffer */
487 e_dbg("%s: Receive packet consumed multiple buffers\n",
488 netdev->name);
489 /* recycle */
490 buffer_info->skb = skb;
491 goto next_desc;
494 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
495 /* recycle */
496 buffer_info->skb = skb;
497 goto next_desc;
500 /* adjust length to remove Ethernet CRC */
501 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
502 length -= 4;
504 total_rx_bytes += length;
505 total_rx_packets++;
508 * code added for copybreak, this should improve
509 * performance for small packets with large amounts
510 * of reassembly being done in the stack
512 if (length < copybreak) {
513 struct sk_buff *new_skb =
514 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
515 if (new_skb) {
516 skb_reserve(new_skb, NET_IP_ALIGN);
517 skb_copy_to_linear_data_offset(new_skb,
518 -NET_IP_ALIGN,
519 (skb->data -
520 NET_IP_ALIGN),
521 (length +
522 NET_IP_ALIGN));
523 /* save the skb in buffer_info as good */
524 buffer_info->skb = skb;
525 skb = new_skb;
527 /* else just continue with the old one */
529 /* end copybreak code */
530 skb_put(skb, length);
532 /* Receive Checksum Offload */
533 e1000_rx_checksum(adapter,
534 (u32)(status) |
535 ((u32)(rx_desc->errors) << 24),
536 le16_to_cpu(rx_desc->csum), skb);
538 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
540 next_desc:
541 rx_desc->status = 0;
543 /* return some buffers to hardware, one at a time is too slow */
544 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
545 adapter->alloc_rx_buf(adapter, cleaned_count);
546 cleaned_count = 0;
549 /* use prefetched values */
550 rx_desc = next_rxd;
551 buffer_info = next_buffer;
553 rx_ring->next_to_clean = i;
555 cleaned_count = e1000_desc_unused(rx_ring);
556 if (cleaned_count)
557 adapter->alloc_rx_buf(adapter, cleaned_count);
559 adapter->total_rx_bytes += total_rx_bytes;
560 adapter->total_rx_packets += total_rx_packets;
561 adapter->net_stats.rx_bytes += total_rx_bytes;
562 adapter->net_stats.rx_packets += total_rx_packets;
563 return cleaned;
566 static void e1000_put_txbuf(struct e1000_adapter *adapter,
567 struct e1000_buffer *buffer_info)
569 if (buffer_info->dma) {
570 pci_unmap_page(adapter->pdev, buffer_info->dma,
571 buffer_info->length, PCI_DMA_TODEVICE);
572 buffer_info->dma = 0;
574 if (buffer_info->skb) {
575 dev_kfree_skb_any(buffer_info->skb);
576 buffer_info->skb = NULL;
580 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
582 struct e1000_ring *tx_ring = adapter->tx_ring;
583 unsigned int i = tx_ring->next_to_clean;
584 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
585 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
587 /* detected Tx unit hang */
588 e_err("Detected Tx Unit Hang:\n"
589 " TDH <%x>\n"
590 " TDT <%x>\n"
591 " next_to_use <%x>\n"
592 " next_to_clean <%x>\n"
593 "buffer_info[next_to_clean]:\n"
594 " time_stamp <%lx>\n"
595 " next_to_watch <%x>\n"
596 " jiffies <%lx>\n"
597 " next_to_watch.status <%x>\n",
598 readl(adapter->hw.hw_addr + tx_ring->head),
599 readl(adapter->hw.hw_addr + tx_ring->tail),
600 tx_ring->next_to_use,
601 tx_ring->next_to_clean,
602 tx_ring->buffer_info[eop].time_stamp,
603 eop,
604 jiffies,
605 eop_desc->upper.fields.status);
609 * e1000_clean_tx_irq - Reclaim resources after transmit completes
610 * @adapter: board private structure
612 * the return value indicates whether actual cleaning was done, there
613 * is no guarantee that everything was cleaned
615 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
617 struct net_device *netdev = adapter->netdev;
618 struct e1000_hw *hw = &adapter->hw;
619 struct e1000_ring *tx_ring = adapter->tx_ring;
620 struct e1000_tx_desc *tx_desc, *eop_desc;
621 struct e1000_buffer *buffer_info;
622 unsigned int i, eop;
623 unsigned int count = 0;
624 bool cleaned = 0;
625 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
627 i = tx_ring->next_to_clean;
628 eop = tx_ring->buffer_info[i].next_to_watch;
629 eop_desc = E1000_TX_DESC(*tx_ring, eop);
631 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
632 for (cleaned = 0; !cleaned; ) {
633 tx_desc = E1000_TX_DESC(*tx_ring, i);
634 buffer_info = &tx_ring->buffer_info[i];
635 cleaned = (i == eop);
637 if (cleaned) {
638 struct sk_buff *skb = buffer_info->skb;
639 unsigned int segs, bytecount;
640 segs = skb_shinfo(skb)->gso_segs ?: 1;
641 /* multiply data chunks by size of headers */
642 bytecount = ((segs - 1) * skb_headlen(skb)) +
643 skb->len;
644 total_tx_packets += segs;
645 total_tx_bytes += bytecount;
648 e1000_put_txbuf(adapter, buffer_info);
649 tx_desc->upper.data = 0;
651 i++;
652 if (i == tx_ring->count)
653 i = 0;
656 eop = tx_ring->buffer_info[i].next_to_watch;
657 eop_desc = E1000_TX_DESC(*tx_ring, eop);
658 #define E1000_TX_WEIGHT 64
659 /* weight of a sort for tx, to avoid endless transmit cleanup */
660 if (count++ == E1000_TX_WEIGHT)
661 break;
664 tx_ring->next_to_clean = i;
666 #define TX_WAKE_THRESHOLD 32
667 if (cleaned && netif_carrier_ok(netdev) &&
668 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
669 /* Make sure that anybody stopping the queue after this
670 * sees the new next_to_clean.
672 smp_mb();
674 if (netif_queue_stopped(netdev) &&
675 !(test_bit(__E1000_DOWN, &adapter->state))) {
676 netif_wake_queue(netdev);
677 ++adapter->restart_queue;
681 if (adapter->detect_tx_hung) {
683 * Detect a transmit hang in hardware, this serializes the
684 * check with the clearing of time_stamp and movement of i
686 adapter->detect_tx_hung = 0;
687 if (tx_ring->buffer_info[eop].dma &&
688 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
689 + (adapter->tx_timeout_factor * HZ))
690 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
691 e1000_print_tx_hang(adapter);
692 netif_stop_queue(netdev);
695 adapter->total_tx_bytes += total_tx_bytes;
696 adapter->total_tx_packets += total_tx_packets;
697 adapter->net_stats.tx_bytes += total_tx_bytes;
698 adapter->net_stats.tx_packets += total_tx_packets;
699 return cleaned;
703 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
704 * @adapter: board private structure
706 * the return value indicates whether actual cleaning was done, there
707 * is no guarantee that everything was cleaned
709 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
710 int *work_done, int work_to_do)
712 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
713 struct net_device *netdev = adapter->netdev;
714 struct pci_dev *pdev = adapter->pdev;
715 struct e1000_ring *rx_ring = adapter->rx_ring;
716 struct e1000_buffer *buffer_info, *next_buffer;
717 struct e1000_ps_page *ps_page;
718 struct sk_buff *skb;
719 unsigned int i, j;
720 u32 length, staterr;
721 int cleaned_count = 0;
722 bool cleaned = 0;
723 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
725 i = rx_ring->next_to_clean;
726 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
727 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
728 buffer_info = &rx_ring->buffer_info[i];
730 while (staterr & E1000_RXD_STAT_DD) {
731 if (*work_done >= work_to_do)
732 break;
733 (*work_done)++;
734 skb = buffer_info->skb;
736 /* in the packet split case this is header only */
737 prefetch(skb->data - NET_IP_ALIGN);
739 i++;
740 if (i == rx_ring->count)
741 i = 0;
742 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
743 prefetch(next_rxd);
745 next_buffer = &rx_ring->buffer_info[i];
747 cleaned = 1;
748 cleaned_count++;
749 pci_unmap_single(pdev, buffer_info->dma,
750 adapter->rx_ps_bsize0,
751 PCI_DMA_FROMDEVICE);
752 buffer_info->dma = 0;
754 if (!(staterr & E1000_RXD_STAT_EOP)) {
755 e_dbg("%s: Packet Split buffers didn't pick up the "
756 "full packet\n", netdev->name);
757 dev_kfree_skb_irq(skb);
758 goto next_desc;
761 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
762 dev_kfree_skb_irq(skb);
763 goto next_desc;
766 length = le16_to_cpu(rx_desc->wb.middle.length0);
768 if (!length) {
769 e_dbg("%s: Last part of the packet spanning multiple "
770 "descriptors\n", netdev->name);
771 dev_kfree_skb_irq(skb);
772 goto next_desc;
775 /* Good Receive */
776 skb_put(skb, length);
780 * this looks ugly, but it seems compiler issues make it
781 * more efficient than reusing j
783 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
786 * page alloc/put takes too long and effects small packet
787 * throughput, so unsplit small packets and save the alloc/put
788 * only valid in softirq (napi) context to call kmap_*
790 if (l1 && (l1 <= copybreak) &&
791 ((length + l1) <= adapter->rx_ps_bsize0)) {
792 u8 *vaddr;
794 ps_page = &buffer_info->ps_pages[0];
797 * there is no documentation about how to call
798 * kmap_atomic, so we can't hold the mapping
799 * very long
801 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
802 PAGE_SIZE, PCI_DMA_FROMDEVICE);
803 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
804 memcpy(skb_tail_pointer(skb), vaddr, l1);
805 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
806 pci_dma_sync_single_for_device(pdev, ps_page->dma,
807 PAGE_SIZE, PCI_DMA_FROMDEVICE);
809 /* remove the CRC */
810 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
811 l1 -= 4;
813 skb_put(skb, l1);
814 goto copydone;
815 } /* if */
818 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
819 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
820 if (!length)
821 break;
823 ps_page = &buffer_info->ps_pages[j];
824 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
825 PCI_DMA_FROMDEVICE);
826 ps_page->dma = 0;
827 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
828 ps_page->page = NULL;
829 skb->len += length;
830 skb->data_len += length;
831 skb->truesize += length;
834 /* strip the ethernet crc, problem is we're using pages now so
835 * this whole operation can get a little cpu intensive
837 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
838 pskb_trim(skb, skb->len - 4);
840 copydone:
841 total_rx_bytes += skb->len;
842 total_rx_packets++;
844 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
845 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
847 if (rx_desc->wb.upper.header_status &
848 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
849 adapter->rx_hdr_split++;
851 e1000_receive_skb(adapter, netdev, skb,
852 staterr, rx_desc->wb.middle.vlan);
854 next_desc:
855 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
856 buffer_info->skb = NULL;
858 /* return some buffers to hardware, one at a time is too slow */
859 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
860 adapter->alloc_rx_buf(adapter, cleaned_count);
861 cleaned_count = 0;
864 /* use prefetched values */
865 rx_desc = next_rxd;
866 buffer_info = next_buffer;
868 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
870 rx_ring->next_to_clean = i;
872 cleaned_count = e1000_desc_unused(rx_ring);
873 if (cleaned_count)
874 adapter->alloc_rx_buf(adapter, cleaned_count);
876 adapter->total_rx_bytes += total_rx_bytes;
877 adapter->total_rx_packets += total_rx_packets;
878 adapter->net_stats.rx_bytes += total_rx_bytes;
879 adapter->net_stats.rx_packets += total_rx_packets;
880 return cleaned;
884 * e1000_consume_page - helper function
886 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
887 u16 length)
889 bi->page = NULL;
890 skb->len += length;
891 skb->data_len += length;
892 skb->truesize += length;
896 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
897 * @adapter: board private structure
899 * the return value indicates whether actual cleaning was done, there
900 * is no guarantee that everything was cleaned
903 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
904 int *work_done, int work_to_do)
906 struct net_device *netdev = adapter->netdev;
907 struct pci_dev *pdev = adapter->pdev;
908 struct e1000_ring *rx_ring = adapter->rx_ring;
909 struct e1000_rx_desc *rx_desc, *next_rxd;
910 struct e1000_buffer *buffer_info, *next_buffer;
911 u32 length;
912 unsigned int i;
913 int cleaned_count = 0;
914 bool cleaned = false;
915 unsigned int total_rx_bytes=0, total_rx_packets=0;
917 i = rx_ring->next_to_clean;
918 rx_desc = E1000_RX_DESC(*rx_ring, i);
919 buffer_info = &rx_ring->buffer_info[i];
921 while (rx_desc->status & E1000_RXD_STAT_DD) {
922 struct sk_buff *skb;
923 u8 status;
925 if (*work_done >= work_to_do)
926 break;
927 (*work_done)++;
929 status = rx_desc->status;
930 skb = buffer_info->skb;
931 buffer_info->skb = NULL;
933 ++i;
934 if (i == rx_ring->count)
935 i = 0;
936 next_rxd = E1000_RX_DESC(*rx_ring, i);
937 prefetch(next_rxd);
939 next_buffer = &rx_ring->buffer_info[i];
941 cleaned = true;
942 cleaned_count++;
943 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
944 PCI_DMA_FROMDEVICE);
945 buffer_info->dma = 0;
947 length = le16_to_cpu(rx_desc->length);
949 /* errors is only valid for DD + EOP descriptors */
950 if (unlikely((status & E1000_RXD_STAT_EOP) &&
951 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
952 /* recycle both page and skb */
953 buffer_info->skb = skb;
954 /* an error means any chain goes out the window
955 * too */
956 if (rx_ring->rx_skb_top)
957 dev_kfree_skb(rx_ring->rx_skb_top);
958 rx_ring->rx_skb_top = NULL;
959 goto next_desc;
962 #define rxtop rx_ring->rx_skb_top
963 if (!(status & E1000_RXD_STAT_EOP)) {
964 /* this descriptor is only the beginning (or middle) */
965 if (!rxtop) {
966 /* this is the beginning of a chain */
967 rxtop = skb;
968 skb_fill_page_desc(rxtop, 0, buffer_info->page,
969 0, length);
970 } else {
971 /* this is the middle of a chain */
972 skb_fill_page_desc(rxtop,
973 skb_shinfo(rxtop)->nr_frags,
974 buffer_info->page, 0, length);
975 /* re-use the skb, only consumed the page */
976 buffer_info->skb = skb;
978 e1000_consume_page(buffer_info, rxtop, length);
979 goto next_desc;
980 } else {
981 if (rxtop) {
982 /* end of the chain */
983 skb_fill_page_desc(rxtop,
984 skb_shinfo(rxtop)->nr_frags,
985 buffer_info->page, 0, length);
986 /* re-use the current skb, we only consumed the
987 * page */
988 buffer_info->skb = skb;
989 skb = rxtop;
990 rxtop = NULL;
991 e1000_consume_page(buffer_info, skb, length);
992 } else {
993 /* no chain, got EOP, this buf is the packet
994 * copybreak to save the put_page/alloc_page */
995 if (length <= copybreak &&
996 skb_tailroom(skb) >= length) {
997 u8 *vaddr;
998 vaddr = kmap_atomic(buffer_info->page,
999 KM_SKB_DATA_SOFTIRQ);
1000 memcpy(skb_tail_pointer(skb), vaddr,
1001 length);
1002 kunmap_atomic(vaddr,
1003 KM_SKB_DATA_SOFTIRQ);
1004 /* re-use the page, so don't erase
1005 * buffer_info->page */
1006 skb_put(skb, length);
1007 } else {
1008 skb_fill_page_desc(skb, 0,
1009 buffer_info->page, 0,
1010 length);
1011 e1000_consume_page(buffer_info, skb,
1012 length);
1017 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1018 e1000_rx_checksum(adapter,
1019 (u32)(status) |
1020 ((u32)(rx_desc->errors) << 24),
1021 le16_to_cpu(rx_desc->csum), skb);
1023 /* probably a little skewed due to removing CRC */
1024 total_rx_bytes += skb->len;
1025 total_rx_packets++;
1027 /* eth type trans needs skb->data to point to something */
1028 if (!pskb_may_pull(skb, ETH_HLEN)) {
1029 e_err("pskb_may_pull failed.\n");
1030 dev_kfree_skb(skb);
1031 goto next_desc;
1034 e1000_receive_skb(adapter, netdev, skb, status,
1035 rx_desc->special);
1037 next_desc:
1038 rx_desc->status = 0;
1040 /* return some buffers to hardware, one at a time is too slow */
1041 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1042 adapter->alloc_rx_buf(adapter, cleaned_count);
1043 cleaned_count = 0;
1046 /* use prefetched values */
1047 rx_desc = next_rxd;
1048 buffer_info = next_buffer;
1050 rx_ring->next_to_clean = i;
1052 cleaned_count = e1000_desc_unused(rx_ring);
1053 if (cleaned_count)
1054 adapter->alloc_rx_buf(adapter, cleaned_count);
1056 adapter->total_rx_bytes += total_rx_bytes;
1057 adapter->total_rx_packets += total_rx_packets;
1058 adapter->net_stats.rx_bytes += total_rx_bytes;
1059 adapter->net_stats.rx_packets += total_rx_packets;
1060 return cleaned;
1064 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1065 * @adapter: board private structure
1067 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1069 struct e1000_ring *rx_ring = adapter->rx_ring;
1070 struct e1000_buffer *buffer_info;
1071 struct e1000_ps_page *ps_page;
1072 struct pci_dev *pdev = adapter->pdev;
1073 unsigned int i, j;
1075 /* Free all the Rx ring sk_buffs */
1076 for (i = 0; i < rx_ring->count; i++) {
1077 buffer_info = &rx_ring->buffer_info[i];
1078 if (buffer_info->dma) {
1079 if (adapter->clean_rx == e1000_clean_rx_irq)
1080 pci_unmap_single(pdev, buffer_info->dma,
1081 adapter->rx_buffer_len,
1082 PCI_DMA_FROMDEVICE);
1083 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1084 pci_unmap_page(pdev, buffer_info->dma,
1085 PAGE_SIZE,
1086 PCI_DMA_FROMDEVICE);
1087 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1088 pci_unmap_single(pdev, buffer_info->dma,
1089 adapter->rx_ps_bsize0,
1090 PCI_DMA_FROMDEVICE);
1091 buffer_info->dma = 0;
1094 if (buffer_info->page) {
1095 put_page(buffer_info->page);
1096 buffer_info->page = NULL;
1099 if (buffer_info->skb) {
1100 dev_kfree_skb(buffer_info->skb);
1101 buffer_info->skb = NULL;
1104 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1105 ps_page = &buffer_info->ps_pages[j];
1106 if (!ps_page->page)
1107 break;
1108 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1109 PCI_DMA_FROMDEVICE);
1110 ps_page->dma = 0;
1111 put_page(ps_page->page);
1112 ps_page->page = NULL;
1116 /* there also may be some cached data from a chained receive */
1117 if (rx_ring->rx_skb_top) {
1118 dev_kfree_skb(rx_ring->rx_skb_top);
1119 rx_ring->rx_skb_top = NULL;
1122 /* Zero out the descriptor ring */
1123 memset(rx_ring->desc, 0, rx_ring->size);
1125 rx_ring->next_to_clean = 0;
1126 rx_ring->next_to_use = 0;
1128 writel(0, adapter->hw.hw_addr + rx_ring->head);
1129 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1132 static void e1000e_downshift_workaround(struct work_struct *work)
1134 struct e1000_adapter *adapter = container_of(work,
1135 struct e1000_adapter, downshift_task);
1137 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1141 * e1000_intr_msi - Interrupt Handler
1142 * @irq: interrupt number
1143 * @data: pointer to a network interface device structure
1145 static irqreturn_t e1000_intr_msi(int irq, void *data)
1147 struct net_device *netdev = data;
1148 struct e1000_adapter *adapter = netdev_priv(netdev);
1149 struct e1000_hw *hw = &adapter->hw;
1150 u32 icr = er32(ICR);
1153 * read ICR disables interrupts using IAM
1156 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1157 hw->mac.get_link_status = 1;
1159 * ICH8 workaround-- Call gig speed drop workaround on cable
1160 * disconnect (LSC) before accessing any PHY registers
1162 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1163 (!(er32(STATUS) & E1000_STATUS_LU)))
1164 schedule_work(&adapter->downshift_task);
1167 * 80003ES2LAN workaround-- For packet buffer work-around on
1168 * link down event; disable receives here in the ISR and reset
1169 * adapter in watchdog
1171 if (netif_carrier_ok(netdev) &&
1172 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1173 /* disable receives */
1174 u32 rctl = er32(RCTL);
1175 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1176 adapter->flags |= FLAG_RX_RESTART_NOW;
1178 /* guard against interrupt when we're going down */
1179 if (!test_bit(__E1000_DOWN, &adapter->state))
1180 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1183 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1184 adapter->total_tx_bytes = 0;
1185 adapter->total_tx_packets = 0;
1186 adapter->total_rx_bytes = 0;
1187 adapter->total_rx_packets = 0;
1188 __netif_rx_schedule(netdev, &adapter->napi);
1191 return IRQ_HANDLED;
1195 * e1000_intr - Interrupt Handler
1196 * @irq: interrupt number
1197 * @data: pointer to a network interface device structure
1199 static irqreturn_t e1000_intr(int irq, void *data)
1201 struct net_device *netdev = data;
1202 struct e1000_adapter *adapter = netdev_priv(netdev);
1203 struct e1000_hw *hw = &adapter->hw;
1204 u32 rctl, icr = er32(ICR);
1206 if (!icr)
1207 return IRQ_NONE; /* Not our interrupt */
1210 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1211 * not set, then the adapter didn't send an interrupt
1213 if (!(icr & E1000_ICR_INT_ASSERTED))
1214 return IRQ_NONE;
1217 * Interrupt Auto-Mask...upon reading ICR,
1218 * interrupts are masked. No need for the
1219 * IMC write
1222 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1223 hw->mac.get_link_status = 1;
1225 * ICH8 workaround-- Call gig speed drop workaround on cable
1226 * disconnect (LSC) before accessing any PHY registers
1228 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1229 (!(er32(STATUS) & E1000_STATUS_LU)))
1230 schedule_work(&adapter->downshift_task);
1233 * 80003ES2LAN workaround--
1234 * For packet buffer work-around on link down event;
1235 * disable receives here in the ISR and
1236 * reset adapter in watchdog
1238 if (netif_carrier_ok(netdev) &&
1239 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1240 /* disable receives */
1241 rctl = er32(RCTL);
1242 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1243 adapter->flags |= FLAG_RX_RESTART_NOW;
1245 /* guard against interrupt when we're going down */
1246 if (!test_bit(__E1000_DOWN, &adapter->state))
1247 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1250 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1251 adapter->total_tx_bytes = 0;
1252 adapter->total_tx_packets = 0;
1253 adapter->total_rx_bytes = 0;
1254 adapter->total_rx_packets = 0;
1255 __netif_rx_schedule(netdev, &adapter->napi);
1258 return IRQ_HANDLED;
1261 static irqreturn_t e1000_msix_other(int irq, void *data)
1263 struct net_device *netdev = data;
1264 struct e1000_adapter *adapter = netdev_priv(netdev);
1265 struct e1000_hw *hw = &adapter->hw;
1266 u32 icr = er32(ICR);
1268 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1269 ew32(IMS, E1000_IMS_OTHER);
1270 return IRQ_NONE;
1273 if (icr & adapter->eiac_mask)
1274 ew32(ICS, (icr & adapter->eiac_mask));
1276 if (icr & E1000_ICR_OTHER) {
1277 if (!(icr & E1000_ICR_LSC))
1278 goto no_link_interrupt;
1279 hw->mac.get_link_status = 1;
1280 /* guard against interrupt when we're going down */
1281 if (!test_bit(__E1000_DOWN, &adapter->state))
1282 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1285 no_link_interrupt:
1286 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1288 return IRQ_HANDLED;
1292 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1294 struct net_device *netdev = data;
1295 struct e1000_adapter *adapter = netdev_priv(netdev);
1296 struct e1000_hw *hw = &adapter->hw;
1297 struct e1000_ring *tx_ring = adapter->tx_ring;
1300 adapter->total_tx_bytes = 0;
1301 adapter->total_tx_packets = 0;
1303 if (!e1000_clean_tx_irq(adapter))
1304 /* Ring was not completely cleaned, so fire another interrupt */
1305 ew32(ICS, tx_ring->ims_val);
1307 return IRQ_HANDLED;
1310 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1312 struct net_device *netdev = data;
1313 struct e1000_adapter *adapter = netdev_priv(netdev);
1315 /* Write the ITR value calculated at the end of the
1316 * previous interrupt.
1318 if (adapter->rx_ring->set_itr) {
1319 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1320 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1321 adapter->rx_ring->set_itr = 0;
1324 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1325 adapter->total_rx_bytes = 0;
1326 adapter->total_rx_packets = 0;
1327 __netif_rx_schedule(netdev, &adapter->napi);
1329 return IRQ_HANDLED;
1333 * e1000_configure_msix - Configure MSI-X hardware
1335 * e1000_configure_msix sets up the hardware to properly
1336 * generate MSI-X interrupts.
1338 static void e1000_configure_msix(struct e1000_adapter *adapter)
1340 struct e1000_hw *hw = &adapter->hw;
1341 struct e1000_ring *rx_ring = adapter->rx_ring;
1342 struct e1000_ring *tx_ring = adapter->tx_ring;
1343 int vector = 0;
1344 u32 ctrl_ext, ivar = 0;
1346 adapter->eiac_mask = 0;
1348 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1349 if (hw->mac.type == e1000_82574) {
1350 u32 rfctl = er32(RFCTL);
1351 rfctl |= E1000_RFCTL_ACK_DIS;
1352 ew32(RFCTL, rfctl);
1355 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1356 /* Configure Rx vector */
1357 rx_ring->ims_val = E1000_IMS_RXQ0;
1358 adapter->eiac_mask |= rx_ring->ims_val;
1359 if (rx_ring->itr_val)
1360 writel(1000000000 / (rx_ring->itr_val * 256),
1361 hw->hw_addr + rx_ring->itr_register);
1362 else
1363 writel(1, hw->hw_addr + rx_ring->itr_register);
1364 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1366 /* Configure Tx vector */
1367 tx_ring->ims_val = E1000_IMS_TXQ0;
1368 vector++;
1369 if (tx_ring->itr_val)
1370 writel(1000000000 / (tx_ring->itr_val * 256),
1371 hw->hw_addr + tx_ring->itr_register);
1372 else
1373 writel(1, hw->hw_addr + tx_ring->itr_register);
1374 adapter->eiac_mask |= tx_ring->ims_val;
1375 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1377 /* set vector for Other Causes, e.g. link changes */
1378 vector++;
1379 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1380 if (rx_ring->itr_val)
1381 writel(1000000000 / (rx_ring->itr_val * 256),
1382 hw->hw_addr + E1000_EITR_82574(vector));
1383 else
1384 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1386 /* Cause Tx interrupts on every write back */
1387 ivar |= (1 << 31);
1389 ew32(IVAR, ivar);
1391 /* enable MSI-X PBA support */
1392 ctrl_ext = er32(CTRL_EXT);
1393 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1395 /* Auto-Mask Other interrupts upon ICR read */
1396 #define E1000_EIAC_MASK_82574 0x01F00000
1397 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1398 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1399 ew32(CTRL_EXT, ctrl_ext);
1400 e1e_flush();
1403 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1405 if (adapter->msix_entries) {
1406 pci_disable_msix(adapter->pdev);
1407 kfree(adapter->msix_entries);
1408 adapter->msix_entries = NULL;
1409 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1410 pci_disable_msi(adapter->pdev);
1411 adapter->flags &= ~FLAG_MSI_ENABLED;
1414 return;
1418 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1420 * Attempt to configure interrupts using the best available
1421 * capabilities of the hardware and kernel.
1423 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1425 int err;
1426 int numvecs, i;
1429 switch (adapter->int_mode) {
1430 case E1000E_INT_MODE_MSIX:
1431 if (adapter->flags & FLAG_HAS_MSIX) {
1432 numvecs = 3; /* RxQ0, TxQ0 and other */
1433 adapter->msix_entries = kcalloc(numvecs,
1434 sizeof(struct msix_entry),
1435 GFP_KERNEL);
1436 if (adapter->msix_entries) {
1437 for (i = 0; i < numvecs; i++)
1438 adapter->msix_entries[i].entry = i;
1440 err = pci_enable_msix(adapter->pdev,
1441 adapter->msix_entries,
1442 numvecs);
1443 if (err == 0)
1444 return;
1446 /* MSI-X failed, so fall through and try MSI */
1447 e_err("Failed to initialize MSI-X interrupts. "
1448 "Falling back to MSI interrupts.\n");
1449 e1000e_reset_interrupt_capability(adapter);
1451 adapter->int_mode = E1000E_INT_MODE_MSI;
1452 /* Fall through */
1453 case E1000E_INT_MODE_MSI:
1454 if (!pci_enable_msi(adapter->pdev)) {
1455 adapter->flags |= FLAG_MSI_ENABLED;
1456 } else {
1457 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1458 e_err("Failed to initialize MSI interrupts. Falling "
1459 "back to legacy interrupts.\n");
1461 /* Fall through */
1462 case E1000E_INT_MODE_LEGACY:
1463 /* Don't do anything; this is the system default */
1464 break;
1467 return;
1471 * e1000_request_msix - Initialize MSI-X interrupts
1473 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1474 * kernel.
1476 static int e1000_request_msix(struct e1000_adapter *adapter)
1478 struct net_device *netdev = adapter->netdev;
1479 int err = 0, vector = 0;
1481 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1482 sprintf(adapter->rx_ring->name, "%s-rx0", netdev->name);
1483 else
1484 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1485 err = request_irq(adapter->msix_entries[vector].vector,
1486 &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1487 netdev);
1488 if (err)
1489 goto out;
1490 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1491 adapter->rx_ring->itr_val = adapter->itr;
1492 vector++;
1494 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1495 sprintf(adapter->tx_ring->name, "%s-tx0", netdev->name);
1496 else
1497 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1498 err = request_irq(adapter->msix_entries[vector].vector,
1499 &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1500 netdev);
1501 if (err)
1502 goto out;
1503 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1504 adapter->tx_ring->itr_val = adapter->itr;
1505 vector++;
1507 err = request_irq(adapter->msix_entries[vector].vector,
1508 &e1000_msix_other, 0, netdev->name, netdev);
1509 if (err)
1510 goto out;
1512 e1000_configure_msix(adapter);
1513 return 0;
1514 out:
1515 return err;
1519 * e1000_request_irq - initialize interrupts
1521 * Attempts to configure interrupts using the best available
1522 * capabilities of the hardware and kernel.
1524 static int e1000_request_irq(struct e1000_adapter *adapter)
1526 struct net_device *netdev = adapter->netdev;
1527 int err;
1529 if (adapter->msix_entries) {
1530 err = e1000_request_msix(adapter);
1531 if (!err)
1532 return err;
1533 /* fall back to MSI */
1534 e1000e_reset_interrupt_capability(adapter);
1535 adapter->int_mode = E1000E_INT_MODE_MSI;
1536 e1000e_set_interrupt_capability(adapter);
1538 if (adapter->flags & FLAG_MSI_ENABLED) {
1539 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1540 netdev->name, netdev);
1541 if (!err)
1542 return err;
1544 /* fall back to legacy interrupt */
1545 e1000e_reset_interrupt_capability(adapter);
1546 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1549 err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1550 netdev->name, netdev);
1551 if (err)
1552 e_err("Unable to allocate interrupt, Error: %d\n", err);
1554 return err;
1557 static void e1000_free_irq(struct e1000_adapter *adapter)
1559 struct net_device *netdev = adapter->netdev;
1561 if (adapter->msix_entries) {
1562 int vector = 0;
1564 free_irq(adapter->msix_entries[vector].vector, netdev);
1565 vector++;
1567 free_irq(adapter->msix_entries[vector].vector, netdev);
1568 vector++;
1570 /* Other Causes interrupt vector */
1571 free_irq(adapter->msix_entries[vector].vector, netdev);
1572 return;
1575 free_irq(adapter->pdev->irq, netdev);
1579 * e1000_irq_disable - Mask off interrupt generation on the NIC
1581 static void e1000_irq_disable(struct e1000_adapter *adapter)
1583 struct e1000_hw *hw = &adapter->hw;
1585 ew32(IMC, ~0);
1586 if (adapter->msix_entries)
1587 ew32(EIAC_82574, 0);
1588 e1e_flush();
1589 synchronize_irq(adapter->pdev->irq);
1593 * e1000_irq_enable - Enable default interrupt generation settings
1595 static void e1000_irq_enable(struct e1000_adapter *adapter)
1597 struct e1000_hw *hw = &adapter->hw;
1599 if (adapter->msix_entries) {
1600 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1601 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1602 } else {
1603 ew32(IMS, IMS_ENABLE_MASK);
1605 e1e_flush();
1609 * e1000_get_hw_control - get control of the h/w from f/w
1610 * @adapter: address of board private structure
1612 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1613 * For ASF and Pass Through versions of f/w this means that
1614 * the driver is loaded. For AMT version (only with 82573)
1615 * of the f/w this means that the network i/f is open.
1617 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1619 struct e1000_hw *hw = &adapter->hw;
1620 u32 ctrl_ext;
1621 u32 swsm;
1623 /* Let firmware know the driver has taken over */
1624 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1625 swsm = er32(SWSM);
1626 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1627 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1628 ctrl_ext = er32(CTRL_EXT);
1629 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1634 * e1000_release_hw_control - release control of the h/w to f/w
1635 * @adapter: address of board private structure
1637 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1638 * For ASF and Pass Through versions of f/w this means that the
1639 * driver is no longer loaded. For AMT version (only with 82573) i
1640 * of the f/w this means that the network i/f is closed.
1643 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1645 struct e1000_hw *hw = &adapter->hw;
1646 u32 ctrl_ext;
1647 u32 swsm;
1649 /* Let firmware taken over control of h/w */
1650 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1651 swsm = er32(SWSM);
1652 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1653 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1654 ctrl_ext = er32(CTRL_EXT);
1655 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1660 * @e1000_alloc_ring - allocate memory for a ring structure
1662 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1663 struct e1000_ring *ring)
1665 struct pci_dev *pdev = adapter->pdev;
1667 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1668 GFP_KERNEL);
1669 if (!ring->desc)
1670 return -ENOMEM;
1672 return 0;
1676 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1677 * @adapter: board private structure
1679 * Return 0 on success, negative on failure
1681 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1683 struct e1000_ring *tx_ring = adapter->tx_ring;
1684 int err = -ENOMEM, size;
1686 size = sizeof(struct e1000_buffer) * tx_ring->count;
1687 tx_ring->buffer_info = vmalloc(size);
1688 if (!tx_ring->buffer_info)
1689 goto err;
1690 memset(tx_ring->buffer_info, 0, size);
1692 /* round up to nearest 4K */
1693 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1694 tx_ring->size = ALIGN(tx_ring->size, 4096);
1696 err = e1000_alloc_ring_dma(adapter, tx_ring);
1697 if (err)
1698 goto err;
1700 tx_ring->next_to_use = 0;
1701 tx_ring->next_to_clean = 0;
1702 spin_lock_init(&adapter->tx_queue_lock);
1704 return 0;
1705 err:
1706 vfree(tx_ring->buffer_info);
1707 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1708 return err;
1712 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1713 * @adapter: board private structure
1715 * Returns 0 on success, negative on failure
1717 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1719 struct e1000_ring *rx_ring = adapter->rx_ring;
1720 struct e1000_buffer *buffer_info;
1721 int i, size, desc_len, err = -ENOMEM;
1723 size = sizeof(struct e1000_buffer) * rx_ring->count;
1724 rx_ring->buffer_info = vmalloc(size);
1725 if (!rx_ring->buffer_info)
1726 goto err;
1727 memset(rx_ring->buffer_info, 0, size);
1729 for (i = 0; i < rx_ring->count; i++) {
1730 buffer_info = &rx_ring->buffer_info[i];
1731 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1732 sizeof(struct e1000_ps_page),
1733 GFP_KERNEL);
1734 if (!buffer_info->ps_pages)
1735 goto err_pages;
1738 desc_len = sizeof(union e1000_rx_desc_packet_split);
1740 /* Round up to nearest 4K */
1741 rx_ring->size = rx_ring->count * desc_len;
1742 rx_ring->size = ALIGN(rx_ring->size, 4096);
1744 err = e1000_alloc_ring_dma(adapter, rx_ring);
1745 if (err)
1746 goto err_pages;
1748 rx_ring->next_to_clean = 0;
1749 rx_ring->next_to_use = 0;
1750 rx_ring->rx_skb_top = NULL;
1752 return 0;
1754 err_pages:
1755 for (i = 0; i < rx_ring->count; i++) {
1756 buffer_info = &rx_ring->buffer_info[i];
1757 kfree(buffer_info->ps_pages);
1759 err:
1760 vfree(rx_ring->buffer_info);
1761 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1762 return err;
1766 * e1000_clean_tx_ring - Free Tx Buffers
1767 * @adapter: board private structure
1769 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1771 struct e1000_ring *tx_ring = adapter->tx_ring;
1772 struct e1000_buffer *buffer_info;
1773 unsigned long size;
1774 unsigned int i;
1776 for (i = 0; i < tx_ring->count; i++) {
1777 buffer_info = &tx_ring->buffer_info[i];
1778 e1000_put_txbuf(adapter, buffer_info);
1781 size = sizeof(struct e1000_buffer) * tx_ring->count;
1782 memset(tx_ring->buffer_info, 0, size);
1784 memset(tx_ring->desc, 0, tx_ring->size);
1786 tx_ring->next_to_use = 0;
1787 tx_ring->next_to_clean = 0;
1789 writel(0, adapter->hw.hw_addr + tx_ring->head);
1790 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1794 * e1000e_free_tx_resources - Free Tx Resources per Queue
1795 * @adapter: board private structure
1797 * Free all transmit software resources
1799 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1801 struct pci_dev *pdev = adapter->pdev;
1802 struct e1000_ring *tx_ring = adapter->tx_ring;
1804 e1000_clean_tx_ring(adapter);
1806 vfree(tx_ring->buffer_info);
1807 tx_ring->buffer_info = NULL;
1809 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1810 tx_ring->dma);
1811 tx_ring->desc = NULL;
1815 * e1000e_free_rx_resources - Free Rx Resources
1816 * @adapter: board private structure
1818 * Free all receive software resources
1821 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1823 struct pci_dev *pdev = adapter->pdev;
1824 struct e1000_ring *rx_ring = adapter->rx_ring;
1825 int i;
1827 e1000_clean_rx_ring(adapter);
1829 for (i = 0; i < rx_ring->count; i++) {
1830 kfree(rx_ring->buffer_info[i].ps_pages);
1833 vfree(rx_ring->buffer_info);
1834 rx_ring->buffer_info = NULL;
1836 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1837 rx_ring->dma);
1838 rx_ring->desc = NULL;
1842 * e1000_update_itr - update the dynamic ITR value based on statistics
1843 * @adapter: pointer to adapter
1844 * @itr_setting: current adapter->itr
1845 * @packets: the number of packets during this measurement interval
1846 * @bytes: the number of bytes during this measurement interval
1848 * Stores a new ITR value based on packets and byte
1849 * counts during the last interrupt. The advantage of per interrupt
1850 * computation is faster updates and more accurate ITR for the current
1851 * traffic pattern. Constants in this function were computed
1852 * based on theoretical maximum wire speed and thresholds were set based
1853 * on testing data as well as attempting to minimize response time
1854 * while increasing bulk throughput. This functionality is controlled
1855 * by the InterruptThrottleRate module parameter.
1857 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1858 u16 itr_setting, int packets,
1859 int bytes)
1861 unsigned int retval = itr_setting;
1863 if (packets == 0)
1864 goto update_itr_done;
1866 switch (itr_setting) {
1867 case lowest_latency:
1868 /* handle TSO and jumbo frames */
1869 if (bytes/packets > 8000)
1870 retval = bulk_latency;
1871 else if ((packets < 5) && (bytes > 512)) {
1872 retval = low_latency;
1874 break;
1875 case low_latency: /* 50 usec aka 20000 ints/s */
1876 if (bytes > 10000) {
1877 /* this if handles the TSO accounting */
1878 if (bytes/packets > 8000) {
1879 retval = bulk_latency;
1880 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1881 retval = bulk_latency;
1882 } else if ((packets > 35)) {
1883 retval = lowest_latency;
1885 } else if (bytes/packets > 2000) {
1886 retval = bulk_latency;
1887 } else if (packets <= 2 && bytes < 512) {
1888 retval = lowest_latency;
1890 break;
1891 case bulk_latency: /* 250 usec aka 4000 ints/s */
1892 if (bytes > 25000) {
1893 if (packets > 35) {
1894 retval = low_latency;
1896 } else if (bytes < 6000) {
1897 retval = low_latency;
1899 break;
1902 update_itr_done:
1903 return retval;
1906 static void e1000_set_itr(struct e1000_adapter *adapter)
1908 struct e1000_hw *hw = &adapter->hw;
1909 u16 current_itr;
1910 u32 new_itr = adapter->itr;
1912 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1913 if (adapter->link_speed != SPEED_1000) {
1914 current_itr = 0;
1915 new_itr = 4000;
1916 goto set_itr_now;
1919 adapter->tx_itr = e1000_update_itr(adapter,
1920 adapter->tx_itr,
1921 adapter->total_tx_packets,
1922 adapter->total_tx_bytes);
1923 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1924 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1925 adapter->tx_itr = low_latency;
1927 adapter->rx_itr = e1000_update_itr(adapter,
1928 adapter->rx_itr,
1929 adapter->total_rx_packets,
1930 adapter->total_rx_bytes);
1931 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1932 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1933 adapter->rx_itr = low_latency;
1935 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1937 switch (current_itr) {
1938 /* counts and packets in update_itr are dependent on these numbers */
1939 case lowest_latency:
1940 new_itr = 70000;
1941 break;
1942 case low_latency:
1943 new_itr = 20000; /* aka hwitr = ~200 */
1944 break;
1945 case bulk_latency:
1946 new_itr = 4000;
1947 break;
1948 default:
1949 break;
1952 set_itr_now:
1953 if (new_itr != adapter->itr) {
1955 * this attempts to bias the interrupt rate towards Bulk
1956 * by adding intermediate steps when interrupt rate is
1957 * increasing
1959 new_itr = new_itr > adapter->itr ?
1960 min(adapter->itr + (new_itr >> 2), new_itr) :
1961 new_itr;
1962 adapter->itr = new_itr;
1963 adapter->rx_ring->itr_val = new_itr;
1964 if (adapter->msix_entries)
1965 adapter->rx_ring->set_itr = 1;
1966 else
1967 ew32(ITR, 1000000000 / (new_itr * 256));
1972 * e1000_alloc_queues - Allocate memory for all rings
1973 * @adapter: board private structure to initialize
1975 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1977 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1978 if (!adapter->tx_ring)
1979 goto err;
1981 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1982 if (!adapter->rx_ring)
1983 goto err;
1985 return 0;
1986 err:
1987 e_err("Unable to allocate memory for queues\n");
1988 kfree(adapter->rx_ring);
1989 kfree(adapter->tx_ring);
1990 return -ENOMEM;
1994 * e1000_clean - NAPI Rx polling callback
1995 * @napi: struct associated with this polling callback
1996 * @budget: amount of packets driver is allowed to process this poll
1998 static int e1000_clean(struct napi_struct *napi, int budget)
2000 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2001 struct e1000_hw *hw = &adapter->hw;
2002 struct net_device *poll_dev = adapter->netdev;
2003 int tx_cleaned = 0, work_done = 0;
2005 adapter = netdev_priv(poll_dev);
2007 if (adapter->msix_entries &&
2008 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2009 goto clean_rx;
2012 * e1000_clean is called per-cpu. This lock protects
2013 * tx_ring from being cleaned by multiple cpus
2014 * simultaneously. A failure obtaining the lock means
2015 * tx_ring is currently being cleaned anyway.
2017 if (spin_trylock(&adapter->tx_queue_lock)) {
2018 tx_cleaned = e1000_clean_tx_irq(adapter);
2019 spin_unlock(&adapter->tx_queue_lock);
2022 clean_rx:
2023 adapter->clean_rx(adapter, &work_done, budget);
2025 if (tx_cleaned)
2026 work_done = budget;
2028 /* If budget not fully consumed, exit the polling mode */
2029 if (work_done < budget) {
2030 if (adapter->itr_setting & 3)
2031 e1000_set_itr(adapter);
2032 netif_rx_complete(poll_dev, napi);
2033 if (adapter->msix_entries)
2034 ew32(IMS, adapter->rx_ring->ims_val);
2035 else
2036 e1000_irq_enable(adapter);
2039 return work_done;
2042 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2044 struct e1000_adapter *adapter = netdev_priv(netdev);
2045 struct e1000_hw *hw = &adapter->hw;
2046 u32 vfta, index;
2048 /* don't update vlan cookie if already programmed */
2049 if ((adapter->hw.mng_cookie.status &
2050 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2051 (vid == adapter->mng_vlan_id))
2052 return;
2053 /* add VID to filter table */
2054 index = (vid >> 5) & 0x7F;
2055 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2056 vfta |= (1 << (vid & 0x1F));
2057 e1000e_write_vfta(hw, index, vfta);
2060 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2062 struct e1000_adapter *adapter = netdev_priv(netdev);
2063 struct e1000_hw *hw = &adapter->hw;
2064 u32 vfta, index;
2066 if (!test_bit(__E1000_DOWN, &adapter->state))
2067 e1000_irq_disable(adapter);
2068 vlan_group_set_device(adapter->vlgrp, vid, NULL);
2070 if (!test_bit(__E1000_DOWN, &adapter->state))
2071 e1000_irq_enable(adapter);
2073 if ((adapter->hw.mng_cookie.status &
2074 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2075 (vid == adapter->mng_vlan_id)) {
2076 /* release control to f/w */
2077 e1000_release_hw_control(adapter);
2078 return;
2081 /* remove VID from filter table */
2082 index = (vid >> 5) & 0x7F;
2083 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2084 vfta &= ~(1 << (vid & 0x1F));
2085 e1000e_write_vfta(hw, index, vfta);
2088 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2090 struct net_device *netdev = adapter->netdev;
2091 u16 vid = adapter->hw.mng_cookie.vlan_id;
2092 u16 old_vid = adapter->mng_vlan_id;
2094 if (!adapter->vlgrp)
2095 return;
2097 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2098 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2099 if (adapter->hw.mng_cookie.status &
2100 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2101 e1000_vlan_rx_add_vid(netdev, vid);
2102 adapter->mng_vlan_id = vid;
2105 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2106 (vid != old_vid) &&
2107 !vlan_group_get_device(adapter->vlgrp, old_vid))
2108 e1000_vlan_rx_kill_vid(netdev, old_vid);
2109 } else {
2110 adapter->mng_vlan_id = vid;
2115 static void e1000_vlan_rx_register(struct net_device *netdev,
2116 struct vlan_group *grp)
2118 struct e1000_adapter *adapter = netdev_priv(netdev);
2119 struct e1000_hw *hw = &adapter->hw;
2120 u32 ctrl, rctl;
2122 if (!test_bit(__E1000_DOWN, &adapter->state))
2123 e1000_irq_disable(adapter);
2124 adapter->vlgrp = grp;
2126 if (grp) {
2127 /* enable VLAN tag insert/strip */
2128 ctrl = er32(CTRL);
2129 ctrl |= E1000_CTRL_VME;
2130 ew32(CTRL, ctrl);
2132 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2133 /* enable VLAN receive filtering */
2134 rctl = er32(RCTL);
2135 rctl &= ~E1000_RCTL_CFIEN;
2136 ew32(RCTL, rctl);
2137 e1000_update_mng_vlan(adapter);
2139 } else {
2140 /* disable VLAN tag insert/strip */
2141 ctrl = er32(CTRL);
2142 ctrl &= ~E1000_CTRL_VME;
2143 ew32(CTRL, ctrl);
2145 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2146 if (adapter->mng_vlan_id !=
2147 (u16)E1000_MNG_VLAN_NONE) {
2148 e1000_vlan_rx_kill_vid(netdev,
2149 adapter->mng_vlan_id);
2150 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2155 if (!test_bit(__E1000_DOWN, &adapter->state))
2156 e1000_irq_enable(adapter);
2159 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2161 u16 vid;
2163 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2165 if (!adapter->vlgrp)
2166 return;
2168 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2169 if (!vlan_group_get_device(adapter->vlgrp, vid))
2170 continue;
2171 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2175 static void e1000_init_manageability(struct e1000_adapter *adapter)
2177 struct e1000_hw *hw = &adapter->hw;
2178 u32 manc, manc2h;
2180 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2181 return;
2183 manc = er32(MANC);
2186 * enable receiving management packets to the host. this will probably
2187 * generate destination unreachable messages from the host OS, but
2188 * the packets will be handled on SMBUS
2190 manc |= E1000_MANC_EN_MNG2HOST;
2191 manc2h = er32(MANC2H);
2192 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2193 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2194 manc2h |= E1000_MNG2HOST_PORT_623;
2195 manc2h |= E1000_MNG2HOST_PORT_664;
2196 ew32(MANC2H, manc2h);
2197 ew32(MANC, manc);
2201 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2202 * @adapter: board private structure
2204 * Configure the Tx unit of the MAC after a reset.
2206 static void e1000_configure_tx(struct e1000_adapter *adapter)
2208 struct e1000_hw *hw = &adapter->hw;
2209 struct e1000_ring *tx_ring = adapter->tx_ring;
2210 u64 tdba;
2211 u32 tdlen, tctl, tipg, tarc;
2212 u32 ipgr1, ipgr2;
2214 /* Setup the HW Tx Head and Tail descriptor pointers */
2215 tdba = tx_ring->dma;
2216 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2217 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
2218 ew32(TDBAH, (tdba >> 32));
2219 ew32(TDLEN, tdlen);
2220 ew32(TDH, 0);
2221 ew32(TDT, 0);
2222 tx_ring->head = E1000_TDH;
2223 tx_ring->tail = E1000_TDT;
2225 /* Set the default values for the Tx Inter Packet Gap timer */
2226 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2227 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2228 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2230 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2231 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2233 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2234 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2235 ew32(TIPG, tipg);
2237 /* Set the Tx Interrupt Delay register */
2238 ew32(TIDV, adapter->tx_int_delay);
2239 /* Tx irq moderation */
2240 ew32(TADV, adapter->tx_abs_int_delay);
2242 /* Program the Transmit Control Register */
2243 tctl = er32(TCTL);
2244 tctl &= ~E1000_TCTL_CT;
2245 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2246 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2248 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2249 tarc = er32(TARC(0));
2251 * set the speed mode bit, we'll clear it if we're not at
2252 * gigabit link later
2254 #define SPEED_MODE_BIT (1 << 21)
2255 tarc |= SPEED_MODE_BIT;
2256 ew32(TARC(0), tarc);
2259 /* errata: program both queues to unweighted RR */
2260 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2261 tarc = er32(TARC(0));
2262 tarc |= 1;
2263 ew32(TARC(0), tarc);
2264 tarc = er32(TARC(1));
2265 tarc |= 1;
2266 ew32(TARC(1), tarc);
2269 e1000e_config_collision_dist(hw);
2271 /* Setup Transmit Descriptor Settings for eop descriptor */
2272 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2274 /* only set IDE if we are delaying interrupts using the timers */
2275 if (adapter->tx_int_delay)
2276 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2278 /* enable Report Status bit */
2279 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2281 ew32(TCTL, tctl);
2283 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2287 * e1000_setup_rctl - configure the receive control registers
2288 * @adapter: Board private structure
2290 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2291 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2292 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2294 struct e1000_hw *hw = &adapter->hw;
2295 u32 rctl, rfctl;
2296 u32 psrctl = 0;
2297 u32 pages = 0;
2299 /* Program MC offset vector base */
2300 rctl = er32(RCTL);
2301 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2302 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2303 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2304 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2306 /* Do not Store bad packets */
2307 rctl &= ~E1000_RCTL_SBP;
2309 /* Enable Long Packet receive */
2310 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2311 rctl &= ~E1000_RCTL_LPE;
2312 else
2313 rctl |= E1000_RCTL_LPE;
2315 /* Some systems expect that the CRC is included in SMBUS traffic. The
2316 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2317 * host memory when this is enabled
2319 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2320 rctl |= E1000_RCTL_SECRC;
2322 /* Setup buffer sizes */
2323 rctl &= ~E1000_RCTL_SZ_4096;
2324 rctl |= E1000_RCTL_BSEX;
2325 switch (adapter->rx_buffer_len) {
2326 case 256:
2327 rctl |= E1000_RCTL_SZ_256;
2328 rctl &= ~E1000_RCTL_BSEX;
2329 break;
2330 case 512:
2331 rctl |= E1000_RCTL_SZ_512;
2332 rctl &= ~E1000_RCTL_BSEX;
2333 break;
2334 case 1024:
2335 rctl |= E1000_RCTL_SZ_1024;
2336 rctl &= ~E1000_RCTL_BSEX;
2337 break;
2338 case 2048:
2339 default:
2340 rctl |= E1000_RCTL_SZ_2048;
2341 rctl &= ~E1000_RCTL_BSEX;
2342 break;
2343 case 4096:
2344 rctl |= E1000_RCTL_SZ_4096;
2345 break;
2346 case 8192:
2347 rctl |= E1000_RCTL_SZ_8192;
2348 break;
2349 case 16384:
2350 rctl |= E1000_RCTL_SZ_16384;
2351 break;
2355 * 82571 and greater support packet-split where the protocol
2356 * header is placed in skb->data and the packet data is
2357 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2358 * In the case of a non-split, skb->data is linearly filled,
2359 * followed by the page buffers. Therefore, skb->data is
2360 * sized to hold the largest protocol header.
2362 * allocations using alloc_page take too long for regular MTU
2363 * so only enable packet split for jumbo frames
2365 * Using pages when the page size is greater than 16k wastes
2366 * a lot of memory, since we allocate 3 pages at all times
2367 * per packet.
2369 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2370 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2371 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2372 adapter->rx_ps_pages = pages;
2373 else
2374 adapter->rx_ps_pages = 0;
2376 if (adapter->rx_ps_pages) {
2377 /* Configure extra packet-split registers */
2378 rfctl = er32(RFCTL);
2379 rfctl |= E1000_RFCTL_EXTEN;
2381 * disable packet split support for IPv6 extension headers,
2382 * because some malformed IPv6 headers can hang the Rx
2384 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2385 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2387 ew32(RFCTL, rfctl);
2389 /* Enable Packet split descriptors */
2390 rctl |= E1000_RCTL_DTYP_PS;
2392 psrctl |= adapter->rx_ps_bsize0 >>
2393 E1000_PSRCTL_BSIZE0_SHIFT;
2395 switch (adapter->rx_ps_pages) {
2396 case 3:
2397 psrctl |= PAGE_SIZE <<
2398 E1000_PSRCTL_BSIZE3_SHIFT;
2399 case 2:
2400 psrctl |= PAGE_SIZE <<
2401 E1000_PSRCTL_BSIZE2_SHIFT;
2402 case 1:
2403 psrctl |= PAGE_SIZE >>
2404 E1000_PSRCTL_BSIZE1_SHIFT;
2405 break;
2408 ew32(PSRCTL, psrctl);
2411 ew32(RCTL, rctl);
2412 /* just started the receive unit, no need to restart */
2413 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2417 * e1000_configure_rx - Configure Receive Unit after Reset
2418 * @adapter: board private structure
2420 * Configure the Rx unit of the MAC after a reset.
2422 static void e1000_configure_rx(struct e1000_adapter *adapter)
2424 struct e1000_hw *hw = &adapter->hw;
2425 struct e1000_ring *rx_ring = adapter->rx_ring;
2426 u64 rdba;
2427 u32 rdlen, rctl, rxcsum, ctrl_ext;
2429 if (adapter->rx_ps_pages) {
2430 /* this is a 32 byte descriptor */
2431 rdlen = rx_ring->count *
2432 sizeof(union e1000_rx_desc_packet_split);
2433 adapter->clean_rx = e1000_clean_rx_irq_ps;
2434 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2435 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2436 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2437 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2438 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2439 } else {
2440 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2441 adapter->clean_rx = e1000_clean_rx_irq;
2442 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2445 /* disable receives while setting up the descriptors */
2446 rctl = er32(RCTL);
2447 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2448 e1e_flush();
2449 msleep(10);
2451 /* set the Receive Delay Timer Register */
2452 ew32(RDTR, adapter->rx_int_delay);
2454 /* irq moderation */
2455 ew32(RADV, adapter->rx_abs_int_delay);
2456 if (adapter->itr_setting != 0)
2457 ew32(ITR, 1000000000 / (adapter->itr * 256));
2459 ctrl_ext = er32(CTRL_EXT);
2460 /* Reset delay timers after every interrupt */
2461 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2462 /* Auto-Mask interrupts upon ICR access */
2463 ctrl_ext |= E1000_CTRL_EXT_IAME;
2464 ew32(IAM, 0xffffffff);
2465 ew32(CTRL_EXT, ctrl_ext);
2466 e1e_flush();
2469 * Setup the HW Rx Head and Tail Descriptor Pointers and
2470 * the Base and Length of the Rx Descriptor Ring
2472 rdba = rx_ring->dma;
2473 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2474 ew32(RDBAH, (rdba >> 32));
2475 ew32(RDLEN, rdlen);
2476 ew32(RDH, 0);
2477 ew32(RDT, 0);
2478 rx_ring->head = E1000_RDH;
2479 rx_ring->tail = E1000_RDT;
2481 /* Enable Receive Checksum Offload for TCP and UDP */
2482 rxcsum = er32(RXCSUM);
2483 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2484 rxcsum |= E1000_RXCSUM_TUOFL;
2487 * IPv4 payload checksum for UDP fragments must be
2488 * used in conjunction with packet-split.
2490 if (adapter->rx_ps_pages)
2491 rxcsum |= E1000_RXCSUM_IPPCSE;
2492 } else {
2493 rxcsum &= ~E1000_RXCSUM_TUOFL;
2494 /* no need to clear IPPCSE as it defaults to 0 */
2496 ew32(RXCSUM, rxcsum);
2499 * Enable early receives on supported devices, only takes effect when
2500 * packet size is equal or larger than the specified value (in 8 byte
2501 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2503 if ((adapter->flags & FLAG_HAS_ERT) &&
2504 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2505 u32 rxdctl = er32(RXDCTL(0));
2506 ew32(RXDCTL(0), rxdctl | 0x3);
2507 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2509 * With jumbo frames and early-receive enabled, excessive
2510 * C4->C2 latencies result in dropped transactions.
2512 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2513 e1000e_driver_name, 55);
2514 } else {
2515 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2516 e1000e_driver_name,
2517 PM_QOS_DEFAULT_VALUE);
2520 /* Enable Receives */
2521 ew32(RCTL, rctl);
2525 * e1000_update_mc_addr_list - Update Multicast addresses
2526 * @hw: pointer to the HW structure
2527 * @mc_addr_list: array of multicast addresses to program
2528 * @mc_addr_count: number of multicast addresses to program
2529 * @rar_used_count: the first RAR register free to program
2530 * @rar_count: total number of supported Receive Address Registers
2532 * Updates the Receive Address Registers and Multicast Table Array.
2533 * The caller must have a packed mc_addr_list of multicast addresses.
2534 * The parameter rar_count will usually be hw->mac.rar_entry_count
2535 * unless there are workarounds that change this. Currently no func pointer
2536 * exists and all implementations are handled in the generic version of this
2537 * function.
2539 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2540 u32 mc_addr_count, u32 rar_used_count,
2541 u32 rar_count)
2543 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2544 rar_used_count, rar_count);
2548 * e1000_set_multi - Multicast and Promiscuous mode set
2549 * @netdev: network interface device structure
2551 * The set_multi entry point is called whenever the multicast address
2552 * list or the network interface flags are updated. This routine is
2553 * responsible for configuring the hardware for proper multicast,
2554 * promiscuous mode, and all-multi behavior.
2556 static void e1000_set_multi(struct net_device *netdev)
2558 struct e1000_adapter *adapter = netdev_priv(netdev);
2559 struct e1000_hw *hw = &adapter->hw;
2560 struct e1000_mac_info *mac = &hw->mac;
2561 struct dev_mc_list *mc_ptr;
2562 u8 *mta_list;
2563 u32 rctl;
2564 int i;
2566 /* Check for Promiscuous and All Multicast modes */
2568 rctl = er32(RCTL);
2570 if (netdev->flags & IFF_PROMISC) {
2571 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2572 rctl &= ~E1000_RCTL_VFE;
2573 } else {
2574 if (netdev->flags & IFF_ALLMULTI) {
2575 rctl |= E1000_RCTL_MPE;
2576 rctl &= ~E1000_RCTL_UPE;
2577 } else {
2578 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2580 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2581 rctl |= E1000_RCTL_VFE;
2584 ew32(RCTL, rctl);
2586 if (netdev->mc_count) {
2587 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2588 if (!mta_list)
2589 return;
2591 /* prepare a packed array of only addresses. */
2592 mc_ptr = netdev->mc_list;
2594 for (i = 0; i < netdev->mc_count; i++) {
2595 if (!mc_ptr)
2596 break;
2597 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2598 ETH_ALEN);
2599 mc_ptr = mc_ptr->next;
2602 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2603 mac->rar_entry_count);
2604 kfree(mta_list);
2605 } else {
2607 * if we're called from probe, we might not have
2608 * anything to do here, so clear out the list
2610 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2615 * e1000_configure - configure the hardware for Rx and Tx
2616 * @adapter: private board structure
2618 static void e1000_configure(struct e1000_adapter *adapter)
2620 e1000_set_multi(adapter->netdev);
2622 e1000_restore_vlan(adapter);
2623 e1000_init_manageability(adapter);
2625 e1000_configure_tx(adapter);
2626 e1000_setup_rctl(adapter);
2627 e1000_configure_rx(adapter);
2628 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2632 * e1000e_power_up_phy - restore link in case the phy was powered down
2633 * @adapter: address of board private structure
2635 * The phy may be powered down to save power and turn off link when the
2636 * driver is unloaded and wake on lan is not enabled (among others)
2637 * *** this routine MUST be followed by a call to e1000e_reset ***
2639 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2641 u16 mii_reg = 0;
2643 /* Just clear the power down bit to wake the phy back up */
2644 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2646 * According to the manual, the phy will retain its
2647 * settings across a power-down/up cycle
2649 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2650 mii_reg &= ~MII_CR_POWER_DOWN;
2651 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2654 adapter->hw.mac.ops.setup_link(&adapter->hw);
2658 * e1000_power_down_phy - Power down the PHY
2660 * Power down the PHY so no link is implied when interface is down
2661 * The PHY cannot be powered down is management or WoL is active
2663 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2665 struct e1000_hw *hw = &adapter->hw;
2666 u16 mii_reg;
2668 /* WoL is enabled */
2669 if (adapter->wol)
2670 return;
2672 /* non-copper PHY? */
2673 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2674 return;
2676 /* reset is blocked because of a SoL/IDER session */
2677 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2678 return;
2680 /* manageability (AMT) is enabled */
2681 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2682 return;
2684 /* power down the PHY */
2685 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2686 mii_reg |= MII_CR_POWER_DOWN;
2687 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2688 mdelay(1);
2692 * e1000e_reset - bring the hardware into a known good state
2694 * This function boots the hardware and enables some settings that
2695 * require a configuration cycle of the hardware - those cannot be
2696 * set/changed during runtime. After reset the device needs to be
2697 * properly configured for Rx, Tx etc.
2699 void e1000e_reset(struct e1000_adapter *adapter)
2701 struct e1000_mac_info *mac = &adapter->hw.mac;
2702 struct e1000_fc_info *fc = &adapter->hw.fc;
2703 struct e1000_hw *hw = &adapter->hw;
2704 u32 tx_space, min_tx_space, min_rx_space;
2705 u32 pba = adapter->pba;
2706 u16 hwm;
2708 /* reset Packet Buffer Allocation to default */
2709 ew32(PBA, pba);
2711 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2713 * To maintain wire speed transmits, the Tx FIFO should be
2714 * large enough to accommodate two full transmit packets,
2715 * rounded up to the next 1KB and expressed in KB. Likewise,
2716 * the Rx FIFO should be large enough to accommodate at least
2717 * one full receive packet and is similarly rounded up and
2718 * expressed in KB.
2720 pba = er32(PBA);
2721 /* upper 16 bits has Tx packet buffer allocation size in KB */
2722 tx_space = pba >> 16;
2723 /* lower 16 bits has Rx packet buffer allocation size in KB */
2724 pba &= 0xffff;
2726 * the Tx fifo also stores 16 bytes of information about the tx
2727 * but don't include ethernet FCS because hardware appends it
2729 min_tx_space = (adapter->max_frame_size +
2730 sizeof(struct e1000_tx_desc) -
2731 ETH_FCS_LEN) * 2;
2732 min_tx_space = ALIGN(min_tx_space, 1024);
2733 min_tx_space >>= 10;
2734 /* software strips receive CRC, so leave room for it */
2735 min_rx_space = adapter->max_frame_size;
2736 min_rx_space = ALIGN(min_rx_space, 1024);
2737 min_rx_space >>= 10;
2740 * If current Tx allocation is less than the min Tx FIFO size,
2741 * and the min Tx FIFO size is less than the current Rx FIFO
2742 * allocation, take space away from current Rx allocation
2744 if ((tx_space < min_tx_space) &&
2745 ((min_tx_space - tx_space) < pba)) {
2746 pba -= min_tx_space - tx_space;
2749 * if short on Rx space, Rx wins and must trump tx
2750 * adjustment or use Early Receive if available
2752 if ((pba < min_rx_space) &&
2753 (!(adapter->flags & FLAG_HAS_ERT)))
2754 /* ERT enabled in e1000_configure_rx */
2755 pba = min_rx_space;
2758 ew32(PBA, pba);
2763 * flow control settings
2765 * The high water mark must be low enough to fit one full frame
2766 * (or the size used for early receive) above it in the Rx FIFO.
2767 * Set it to the lower of:
2768 * - 90% of the Rx FIFO size, and
2769 * - the full Rx FIFO size minus the early receive size (for parts
2770 * with ERT support assuming ERT set to E1000_ERT_2048), or
2771 * - the full Rx FIFO size minus one full frame
2773 if (adapter->flags & FLAG_HAS_ERT)
2774 hwm = min(((pba << 10) * 9 / 10),
2775 ((pba << 10) - (E1000_ERT_2048 << 3)));
2776 else
2777 hwm = min(((pba << 10) * 9 / 10),
2778 ((pba << 10) - adapter->max_frame_size));
2780 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2781 fc->low_water = fc->high_water - 8;
2783 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2784 fc->pause_time = 0xFFFF;
2785 else
2786 fc->pause_time = E1000_FC_PAUSE_TIME;
2787 fc->send_xon = 1;
2788 fc->current_mode = fc->requested_mode;
2790 /* Allow time for pending master requests to run */
2791 mac->ops.reset_hw(hw);
2794 * For parts with AMT enabled, let the firmware know
2795 * that the network interface is in control
2797 if (adapter->flags & FLAG_HAS_AMT)
2798 e1000_get_hw_control(adapter);
2800 ew32(WUC, 0);
2802 if (mac->ops.init_hw(hw))
2803 e_err("Hardware Error\n");
2805 e1000_update_mng_vlan(adapter);
2807 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2808 ew32(VET, ETH_P_8021Q);
2810 e1000e_reset_adaptive(hw);
2811 e1000_get_phy_info(hw);
2813 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2814 u16 phy_data = 0;
2816 * speed up time to link by disabling smart power down, ignore
2817 * the return value of this function because there is nothing
2818 * different we would do if it failed
2820 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2821 phy_data &= ~IGP02E1000_PM_SPD;
2822 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2826 int e1000e_up(struct e1000_adapter *adapter)
2828 struct e1000_hw *hw = &adapter->hw;
2830 /* hardware has been reset, we need to reload some things */
2831 e1000_configure(adapter);
2833 clear_bit(__E1000_DOWN, &adapter->state);
2835 napi_enable(&adapter->napi);
2836 if (adapter->msix_entries)
2837 e1000_configure_msix(adapter);
2838 e1000_irq_enable(adapter);
2840 /* fire a link change interrupt to start the watchdog */
2841 ew32(ICS, E1000_ICS_LSC);
2842 return 0;
2845 void e1000e_down(struct e1000_adapter *adapter)
2847 struct net_device *netdev = adapter->netdev;
2848 struct e1000_hw *hw = &adapter->hw;
2849 u32 tctl, rctl;
2852 * signal that we're down so the interrupt handler does not
2853 * reschedule our watchdog timer
2855 set_bit(__E1000_DOWN, &adapter->state);
2857 /* disable receives in the hardware */
2858 rctl = er32(RCTL);
2859 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2860 /* flush and sleep below */
2862 netif_tx_stop_all_queues(netdev);
2864 /* disable transmits in the hardware */
2865 tctl = er32(TCTL);
2866 tctl &= ~E1000_TCTL_EN;
2867 ew32(TCTL, tctl);
2868 /* flush both disables and wait for them to finish */
2869 e1e_flush();
2870 msleep(10);
2872 napi_disable(&adapter->napi);
2873 e1000_irq_disable(adapter);
2875 del_timer_sync(&adapter->watchdog_timer);
2876 del_timer_sync(&adapter->phy_info_timer);
2878 netdev->tx_queue_len = adapter->tx_queue_len;
2879 netif_carrier_off(netdev);
2880 adapter->link_speed = 0;
2881 adapter->link_duplex = 0;
2883 if (!pci_channel_offline(adapter->pdev))
2884 e1000e_reset(adapter);
2885 e1000_clean_tx_ring(adapter);
2886 e1000_clean_rx_ring(adapter);
2889 * TODO: for power management, we could drop the link and
2890 * pci_disable_device here.
2894 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2896 might_sleep();
2897 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2898 msleep(1);
2899 e1000e_down(adapter);
2900 e1000e_up(adapter);
2901 clear_bit(__E1000_RESETTING, &adapter->state);
2905 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2906 * @adapter: board private structure to initialize
2908 * e1000_sw_init initializes the Adapter private data structure.
2909 * Fields are initialized based on PCI device information and
2910 * OS network device settings (MTU size).
2912 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2914 struct net_device *netdev = adapter->netdev;
2916 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2917 adapter->rx_ps_bsize0 = 128;
2918 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2919 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2921 e1000e_set_interrupt_capability(adapter);
2923 if (e1000_alloc_queues(adapter))
2924 return -ENOMEM;
2926 spin_lock_init(&adapter->tx_queue_lock);
2928 /* Explicitly disable IRQ since the NIC can be in any state. */
2929 e1000_irq_disable(adapter);
2931 set_bit(__E1000_DOWN, &adapter->state);
2932 return 0;
2936 * e1000_intr_msi_test - Interrupt Handler
2937 * @irq: interrupt number
2938 * @data: pointer to a network interface device structure
2940 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2942 struct net_device *netdev = data;
2943 struct e1000_adapter *adapter = netdev_priv(netdev);
2944 struct e1000_hw *hw = &adapter->hw;
2945 u32 icr = er32(ICR);
2947 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2948 if (icr & E1000_ICR_RXSEQ) {
2949 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2950 wmb();
2953 return IRQ_HANDLED;
2957 * e1000_test_msi_interrupt - Returns 0 for successful test
2958 * @adapter: board private struct
2960 * code flow taken from tg3.c
2962 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2964 struct net_device *netdev = adapter->netdev;
2965 struct e1000_hw *hw = &adapter->hw;
2966 int err;
2968 /* poll_enable hasn't been called yet, so don't need disable */
2969 /* clear any pending events */
2970 er32(ICR);
2972 /* free the real vector and request a test handler */
2973 e1000_free_irq(adapter);
2974 e1000e_reset_interrupt_capability(adapter);
2976 /* Assume that the test fails, if it succeeds then the test
2977 * MSI irq handler will unset this flag */
2978 adapter->flags |= FLAG_MSI_TEST_FAILED;
2980 err = pci_enable_msi(adapter->pdev);
2981 if (err)
2982 goto msi_test_failed;
2984 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2985 netdev->name, netdev);
2986 if (err) {
2987 pci_disable_msi(adapter->pdev);
2988 goto msi_test_failed;
2991 wmb();
2993 e1000_irq_enable(adapter);
2995 /* fire an unusual interrupt on the test handler */
2996 ew32(ICS, E1000_ICS_RXSEQ);
2997 e1e_flush();
2998 msleep(50);
3000 e1000_irq_disable(adapter);
3002 rmb();
3004 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3005 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3006 err = -EIO;
3007 e_info("MSI interrupt test failed!\n");
3010 free_irq(adapter->pdev->irq, netdev);
3011 pci_disable_msi(adapter->pdev);
3013 if (err == -EIO)
3014 goto msi_test_failed;
3016 /* okay so the test worked, restore settings */
3017 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
3018 msi_test_failed:
3019 e1000e_set_interrupt_capability(adapter);
3020 e1000_request_irq(adapter);
3021 return err;
3025 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3026 * @adapter: board private struct
3028 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3030 static int e1000_test_msi(struct e1000_adapter *adapter)
3032 int err;
3033 u16 pci_cmd;
3035 if (!(adapter->flags & FLAG_MSI_ENABLED))
3036 return 0;
3038 /* disable SERR in case the MSI write causes a master abort */
3039 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3040 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3041 pci_cmd & ~PCI_COMMAND_SERR);
3043 err = e1000_test_msi_interrupt(adapter);
3045 /* restore previous setting of command word */
3046 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3048 /* success ! */
3049 if (!err)
3050 return 0;
3052 /* EIO means MSI test failed */
3053 if (err != -EIO)
3054 return err;
3056 /* back to INTx mode */
3057 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3059 e1000_free_irq(adapter);
3061 err = e1000_request_irq(adapter);
3063 return err;
3067 * e1000_open - Called when a network interface is made active
3068 * @netdev: network interface device structure
3070 * Returns 0 on success, negative value on failure
3072 * The open entry point is called when a network interface is made
3073 * active by the system (IFF_UP). At this point all resources needed
3074 * for transmit and receive operations are allocated, the interrupt
3075 * handler is registered with the OS, the watchdog timer is started,
3076 * and the stack is notified that the interface is ready.
3078 static int e1000_open(struct net_device *netdev)
3080 struct e1000_adapter *adapter = netdev_priv(netdev);
3081 struct e1000_hw *hw = &adapter->hw;
3082 int err;
3084 /* disallow open during test */
3085 if (test_bit(__E1000_TESTING, &adapter->state))
3086 return -EBUSY;
3088 /* allocate transmit descriptors */
3089 err = e1000e_setup_tx_resources(adapter);
3090 if (err)
3091 goto err_setup_tx;
3093 /* allocate receive descriptors */
3094 err = e1000e_setup_rx_resources(adapter);
3095 if (err)
3096 goto err_setup_rx;
3098 e1000e_power_up_phy(adapter);
3100 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3101 if ((adapter->hw.mng_cookie.status &
3102 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3103 e1000_update_mng_vlan(adapter);
3106 * If AMT is enabled, let the firmware know that the network
3107 * interface is now open
3109 if (adapter->flags & FLAG_HAS_AMT)
3110 e1000_get_hw_control(adapter);
3113 * before we allocate an interrupt, we must be ready to handle it.
3114 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3115 * as soon as we call pci_request_irq, so we have to setup our
3116 * clean_rx handler before we do so.
3118 e1000_configure(adapter);
3120 err = e1000_request_irq(adapter);
3121 if (err)
3122 goto err_req_irq;
3125 * Work around PCIe errata with MSI interrupts causing some chipsets to
3126 * ignore e1000e MSI messages, which means we need to test our MSI
3127 * interrupt now
3129 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3130 err = e1000_test_msi(adapter);
3131 if (err) {
3132 e_err("Interrupt allocation failed\n");
3133 goto err_req_irq;
3137 /* From here on the code is the same as e1000e_up() */
3138 clear_bit(__E1000_DOWN, &adapter->state);
3140 napi_enable(&adapter->napi);
3142 e1000_irq_enable(adapter);
3144 netif_tx_start_all_queues(netdev);
3146 /* fire a link status change interrupt to start the watchdog */
3147 ew32(ICS, E1000_ICS_LSC);
3149 return 0;
3151 err_req_irq:
3152 e1000_release_hw_control(adapter);
3153 e1000_power_down_phy(adapter);
3154 e1000e_free_rx_resources(adapter);
3155 err_setup_rx:
3156 e1000e_free_tx_resources(adapter);
3157 err_setup_tx:
3158 e1000e_reset(adapter);
3160 return err;
3164 * e1000_close - Disables a network interface
3165 * @netdev: network interface device structure
3167 * Returns 0, this is not allowed to fail
3169 * The close entry point is called when an interface is de-activated
3170 * by the OS. The hardware is still under the drivers control, but
3171 * needs to be disabled. A global MAC reset is issued to stop the
3172 * hardware, and all transmit and receive resources are freed.
3174 static int e1000_close(struct net_device *netdev)
3176 struct e1000_adapter *adapter = netdev_priv(netdev);
3178 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3179 e1000e_down(adapter);
3180 e1000_power_down_phy(adapter);
3181 e1000_free_irq(adapter);
3183 e1000e_free_tx_resources(adapter);
3184 e1000e_free_rx_resources(adapter);
3187 * kill manageability vlan ID if supported, but not if a vlan with
3188 * the same ID is registered on the host OS (let 8021q kill it)
3190 if ((adapter->hw.mng_cookie.status &
3191 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3192 !(adapter->vlgrp &&
3193 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3194 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3197 * If AMT is enabled, let the firmware know that the network
3198 * interface is now closed
3200 if (adapter->flags & FLAG_HAS_AMT)
3201 e1000_release_hw_control(adapter);
3203 return 0;
3206 * e1000_set_mac - Change the Ethernet Address of the NIC
3207 * @netdev: network interface device structure
3208 * @p: pointer to an address structure
3210 * Returns 0 on success, negative on failure
3212 static int e1000_set_mac(struct net_device *netdev, void *p)
3214 struct e1000_adapter *adapter = netdev_priv(netdev);
3215 struct sockaddr *addr = p;
3217 if (!is_valid_ether_addr(addr->sa_data))
3218 return -EADDRNOTAVAIL;
3220 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3221 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3223 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3225 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3226 /* activate the work around */
3227 e1000e_set_laa_state_82571(&adapter->hw, 1);
3230 * Hold a copy of the LAA in RAR[14] This is done so that
3231 * between the time RAR[0] gets clobbered and the time it
3232 * gets fixed (in e1000_watchdog), the actual LAA is in one
3233 * of the RARs and no incoming packets directed to this port
3234 * are dropped. Eventually the LAA will be in RAR[0] and
3235 * RAR[14]
3237 e1000e_rar_set(&adapter->hw,
3238 adapter->hw.mac.addr,
3239 adapter->hw.mac.rar_entry_count - 1);
3242 return 0;
3246 * e1000e_update_phy_task - work thread to update phy
3247 * @work: pointer to our work struct
3249 * this worker thread exists because we must acquire a
3250 * semaphore to read the phy, which we could msleep while
3251 * waiting for it, and we can't msleep in a timer.
3253 static void e1000e_update_phy_task(struct work_struct *work)
3255 struct e1000_adapter *adapter = container_of(work,
3256 struct e1000_adapter, update_phy_task);
3257 e1000_get_phy_info(&adapter->hw);
3261 * Need to wait a few seconds after link up to get diagnostic information from
3262 * the phy
3264 static void e1000_update_phy_info(unsigned long data)
3266 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3267 schedule_work(&adapter->update_phy_task);
3271 * e1000e_update_stats - Update the board statistics counters
3272 * @adapter: board private structure
3274 void e1000e_update_stats(struct e1000_adapter *adapter)
3276 struct e1000_hw *hw = &adapter->hw;
3277 struct pci_dev *pdev = adapter->pdev;
3280 * Prevent stats update while adapter is being reset, or if the pci
3281 * connection is down.
3283 if (adapter->link_speed == 0)
3284 return;
3285 if (pci_channel_offline(pdev))
3286 return;
3288 adapter->stats.crcerrs += er32(CRCERRS);
3289 adapter->stats.gprc += er32(GPRC);
3290 adapter->stats.gorc += er32(GORCL);
3291 er32(GORCH); /* Clear gorc */
3292 adapter->stats.bprc += er32(BPRC);
3293 adapter->stats.mprc += er32(MPRC);
3294 adapter->stats.roc += er32(ROC);
3296 adapter->stats.mpc += er32(MPC);
3297 adapter->stats.scc += er32(SCC);
3298 adapter->stats.ecol += er32(ECOL);
3299 adapter->stats.mcc += er32(MCC);
3300 adapter->stats.latecol += er32(LATECOL);
3301 adapter->stats.dc += er32(DC);
3302 adapter->stats.xonrxc += er32(XONRXC);
3303 adapter->stats.xontxc += er32(XONTXC);
3304 adapter->stats.xoffrxc += er32(XOFFRXC);
3305 adapter->stats.xofftxc += er32(XOFFTXC);
3306 adapter->stats.gptc += er32(GPTC);
3307 adapter->stats.gotc += er32(GOTCL);
3308 er32(GOTCH); /* Clear gotc */
3309 adapter->stats.rnbc += er32(RNBC);
3310 adapter->stats.ruc += er32(RUC);
3312 adapter->stats.mptc += er32(MPTC);
3313 adapter->stats.bptc += er32(BPTC);
3315 /* used for adaptive IFS */
3317 hw->mac.tx_packet_delta = er32(TPT);
3318 adapter->stats.tpt += hw->mac.tx_packet_delta;
3319 hw->mac.collision_delta = er32(COLC);
3320 adapter->stats.colc += hw->mac.collision_delta;
3322 adapter->stats.algnerrc += er32(ALGNERRC);
3323 adapter->stats.rxerrc += er32(RXERRC);
3324 if (hw->mac.type != e1000_82574)
3325 adapter->stats.tncrs += er32(TNCRS);
3326 adapter->stats.cexterr += er32(CEXTERR);
3327 adapter->stats.tsctc += er32(TSCTC);
3328 adapter->stats.tsctfc += er32(TSCTFC);
3330 /* Fill out the OS statistics structure */
3331 adapter->net_stats.multicast = adapter->stats.mprc;
3332 adapter->net_stats.collisions = adapter->stats.colc;
3334 /* Rx Errors */
3337 * RLEC on some newer hardware can be incorrect so build
3338 * our own version based on RUC and ROC
3340 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3341 adapter->stats.crcerrs + adapter->stats.algnerrc +
3342 adapter->stats.ruc + adapter->stats.roc +
3343 adapter->stats.cexterr;
3344 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3345 adapter->stats.roc;
3346 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3347 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3348 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3350 /* Tx Errors */
3351 adapter->net_stats.tx_errors = adapter->stats.ecol +
3352 adapter->stats.latecol;
3353 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3354 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3355 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3357 /* Tx Dropped needs to be maintained elsewhere */
3359 /* Management Stats */
3360 adapter->stats.mgptc += er32(MGTPTC);
3361 adapter->stats.mgprc += er32(MGTPRC);
3362 adapter->stats.mgpdc += er32(MGTPDC);
3366 * e1000_phy_read_status - Update the PHY register status snapshot
3367 * @adapter: board private structure
3369 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3371 struct e1000_hw *hw = &adapter->hw;
3372 struct e1000_phy_regs *phy = &adapter->phy_regs;
3373 int ret_val;
3375 if ((er32(STATUS) & E1000_STATUS_LU) &&
3376 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3377 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3378 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3379 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3380 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3381 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3382 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3383 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3384 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3385 if (ret_val)
3386 e_warn("Error reading PHY register\n");
3387 } else {
3389 * Do not read PHY registers if link is not up
3390 * Set values to typical power-on defaults
3392 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3393 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3394 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3395 BMSR_ERCAP);
3396 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3397 ADVERTISE_ALL | ADVERTISE_CSMA);
3398 phy->lpa = 0;
3399 phy->expansion = EXPANSION_ENABLENPAGE;
3400 phy->ctrl1000 = ADVERTISE_1000FULL;
3401 phy->stat1000 = 0;
3402 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3406 static void e1000_print_link_info(struct e1000_adapter *adapter)
3408 struct e1000_hw *hw = &adapter->hw;
3409 u32 ctrl = er32(CTRL);
3411 /* Link status message must follow this format for user tools */
3412 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3413 "Flow Control: %s\n",
3414 adapter->netdev->name,
3415 adapter->link_speed,
3416 (adapter->link_duplex == FULL_DUPLEX) ?
3417 "Full Duplex" : "Half Duplex",
3418 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3419 "RX/TX" :
3420 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3421 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3424 bool e1000_has_link(struct e1000_adapter *adapter)
3426 struct e1000_hw *hw = &adapter->hw;
3427 bool link_active = 0;
3428 s32 ret_val = 0;
3431 * get_link_status is set on LSC (link status) interrupt or
3432 * Rx sequence error interrupt. get_link_status will stay
3433 * false until the check_for_link establishes link
3434 * for copper adapters ONLY
3436 switch (hw->phy.media_type) {
3437 case e1000_media_type_copper:
3438 if (hw->mac.get_link_status) {
3439 ret_val = hw->mac.ops.check_for_link(hw);
3440 link_active = !hw->mac.get_link_status;
3441 } else {
3442 link_active = 1;
3444 break;
3445 case e1000_media_type_fiber:
3446 ret_val = hw->mac.ops.check_for_link(hw);
3447 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3448 break;
3449 case e1000_media_type_internal_serdes:
3450 ret_val = hw->mac.ops.check_for_link(hw);
3451 link_active = adapter->hw.mac.serdes_has_link;
3452 break;
3453 default:
3454 case e1000_media_type_unknown:
3455 break;
3458 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3459 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3460 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3461 e_info("Gigabit has been disabled, downgrading speed\n");
3464 return link_active;
3467 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3469 /* make sure the receive unit is started */
3470 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3471 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3472 struct e1000_hw *hw = &adapter->hw;
3473 u32 rctl = er32(RCTL);
3474 ew32(RCTL, rctl | E1000_RCTL_EN);
3475 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3480 * e1000_watchdog - Timer Call-back
3481 * @data: pointer to adapter cast into an unsigned long
3483 static void e1000_watchdog(unsigned long data)
3485 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3487 /* Do the rest outside of interrupt context */
3488 schedule_work(&adapter->watchdog_task);
3490 /* TODO: make this use queue_delayed_work() */
3493 static void e1000_watchdog_task(struct work_struct *work)
3495 struct e1000_adapter *adapter = container_of(work,
3496 struct e1000_adapter, watchdog_task);
3497 struct net_device *netdev = adapter->netdev;
3498 struct e1000_mac_info *mac = &adapter->hw.mac;
3499 struct e1000_phy_info *phy = &adapter->hw.phy;
3500 struct e1000_ring *tx_ring = adapter->tx_ring;
3501 struct e1000_hw *hw = &adapter->hw;
3502 u32 link, tctl;
3503 int tx_pending = 0;
3505 link = e1000_has_link(adapter);
3506 if ((netif_carrier_ok(netdev)) && link) {
3507 e1000e_enable_receives(adapter);
3508 goto link_up;
3511 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3512 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3513 e1000_update_mng_vlan(adapter);
3515 if (link) {
3516 if (!netif_carrier_ok(netdev)) {
3517 bool txb2b = 1;
3518 /* update snapshot of PHY registers on LSC */
3519 e1000_phy_read_status(adapter);
3520 mac->ops.get_link_up_info(&adapter->hw,
3521 &adapter->link_speed,
3522 &adapter->link_duplex);
3523 e1000_print_link_info(adapter);
3525 * On supported PHYs, check for duplex mismatch only
3526 * if link has autonegotiated at 10/100 half
3528 if ((hw->phy.type == e1000_phy_igp_3 ||
3529 hw->phy.type == e1000_phy_bm) &&
3530 (hw->mac.autoneg == true) &&
3531 (adapter->link_speed == SPEED_10 ||
3532 adapter->link_speed == SPEED_100) &&
3533 (adapter->link_duplex == HALF_DUPLEX)) {
3534 u16 autoneg_exp;
3536 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3538 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3539 e_info("Autonegotiated half duplex but"
3540 " link partner cannot autoneg. "
3541 " Try forcing full duplex if "
3542 "link gets many collisions.\n");
3546 * tweak tx_queue_len according to speed/duplex
3547 * and adjust the timeout factor
3549 netdev->tx_queue_len = adapter->tx_queue_len;
3550 adapter->tx_timeout_factor = 1;
3551 switch (adapter->link_speed) {
3552 case SPEED_10:
3553 txb2b = 0;
3554 netdev->tx_queue_len = 10;
3555 adapter->tx_timeout_factor = 16;
3556 break;
3557 case SPEED_100:
3558 txb2b = 0;
3559 netdev->tx_queue_len = 100;
3560 /* maybe add some timeout factor ? */
3561 break;
3565 * workaround: re-program speed mode bit after
3566 * link-up event
3568 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3569 !txb2b) {
3570 u32 tarc0;
3571 tarc0 = er32(TARC(0));
3572 tarc0 &= ~SPEED_MODE_BIT;
3573 ew32(TARC(0), tarc0);
3577 * disable TSO for pcie and 10/100 speeds, to avoid
3578 * some hardware issues
3580 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3581 switch (adapter->link_speed) {
3582 case SPEED_10:
3583 case SPEED_100:
3584 e_info("10/100 speed: disabling TSO\n");
3585 netdev->features &= ~NETIF_F_TSO;
3586 netdev->features &= ~NETIF_F_TSO6;
3587 break;
3588 case SPEED_1000:
3589 netdev->features |= NETIF_F_TSO;
3590 netdev->features |= NETIF_F_TSO6;
3591 break;
3592 default:
3593 /* oops */
3594 break;
3599 * enable transmits in the hardware, need to do this
3600 * after setting TARC(0)
3602 tctl = er32(TCTL);
3603 tctl |= E1000_TCTL_EN;
3604 ew32(TCTL, tctl);
3607 * Perform any post-link-up configuration before
3608 * reporting link up.
3610 if (phy->ops.cfg_on_link_up)
3611 phy->ops.cfg_on_link_up(hw);
3613 netif_carrier_on(netdev);
3614 netif_tx_wake_all_queues(netdev);
3616 if (!test_bit(__E1000_DOWN, &adapter->state))
3617 mod_timer(&adapter->phy_info_timer,
3618 round_jiffies(jiffies + 2 * HZ));
3620 } else {
3621 if (netif_carrier_ok(netdev)) {
3622 adapter->link_speed = 0;
3623 adapter->link_duplex = 0;
3624 /* Link status message must follow this format */
3625 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3626 adapter->netdev->name);
3627 netif_carrier_off(netdev);
3628 netif_tx_stop_all_queues(netdev);
3629 if (!test_bit(__E1000_DOWN, &adapter->state))
3630 mod_timer(&adapter->phy_info_timer,
3631 round_jiffies(jiffies + 2 * HZ));
3633 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3634 schedule_work(&adapter->reset_task);
3638 link_up:
3639 e1000e_update_stats(adapter);
3641 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3642 adapter->tpt_old = adapter->stats.tpt;
3643 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3644 adapter->colc_old = adapter->stats.colc;
3646 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3647 adapter->gorc_old = adapter->stats.gorc;
3648 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3649 adapter->gotc_old = adapter->stats.gotc;
3651 e1000e_update_adaptive(&adapter->hw);
3653 if (!netif_carrier_ok(netdev)) {
3654 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3655 tx_ring->count);
3656 if (tx_pending) {
3658 * We've lost link, so the controller stops DMA,
3659 * but we've got queued Tx work that's never going
3660 * to get done, so reset controller to flush Tx.
3661 * (Do the reset outside of interrupt context).
3663 adapter->tx_timeout_count++;
3664 schedule_work(&adapter->reset_task);
3668 /* Cause software interrupt to ensure Rx ring is cleaned */
3669 if (adapter->msix_entries)
3670 ew32(ICS, adapter->rx_ring->ims_val);
3671 else
3672 ew32(ICS, E1000_ICS_RXDMT0);
3674 /* Force detection of hung controller every watchdog period */
3675 adapter->detect_tx_hung = 1;
3678 * With 82571 controllers, LAA may be overwritten due to controller
3679 * reset from the other port. Set the appropriate LAA in RAR[0]
3681 if (e1000e_get_laa_state_82571(hw))
3682 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3684 /* Reset the timer */
3685 if (!test_bit(__E1000_DOWN, &adapter->state))
3686 mod_timer(&adapter->watchdog_timer,
3687 round_jiffies(jiffies + 2 * HZ));
3690 #define E1000_TX_FLAGS_CSUM 0x00000001
3691 #define E1000_TX_FLAGS_VLAN 0x00000002
3692 #define E1000_TX_FLAGS_TSO 0x00000004
3693 #define E1000_TX_FLAGS_IPV4 0x00000008
3694 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3695 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3697 static int e1000_tso(struct e1000_adapter *adapter,
3698 struct sk_buff *skb)
3700 struct e1000_ring *tx_ring = adapter->tx_ring;
3701 struct e1000_context_desc *context_desc;
3702 struct e1000_buffer *buffer_info;
3703 unsigned int i;
3704 u32 cmd_length = 0;
3705 u16 ipcse = 0, tucse, mss;
3706 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3707 int err;
3709 if (skb_is_gso(skb)) {
3710 if (skb_header_cloned(skb)) {
3711 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3712 if (err)
3713 return err;
3716 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3717 mss = skb_shinfo(skb)->gso_size;
3718 if (skb->protocol == htons(ETH_P_IP)) {
3719 struct iphdr *iph = ip_hdr(skb);
3720 iph->tot_len = 0;
3721 iph->check = 0;
3722 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3723 iph->daddr, 0,
3724 IPPROTO_TCP,
3726 cmd_length = E1000_TXD_CMD_IP;
3727 ipcse = skb_transport_offset(skb) - 1;
3728 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3729 ipv6_hdr(skb)->payload_len = 0;
3730 tcp_hdr(skb)->check =
3731 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3732 &ipv6_hdr(skb)->daddr,
3733 0, IPPROTO_TCP, 0);
3734 ipcse = 0;
3736 ipcss = skb_network_offset(skb);
3737 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3738 tucss = skb_transport_offset(skb);
3739 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3740 tucse = 0;
3742 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3743 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3745 i = tx_ring->next_to_use;
3746 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3747 buffer_info = &tx_ring->buffer_info[i];
3749 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3750 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3751 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3752 context_desc->upper_setup.tcp_fields.tucss = tucss;
3753 context_desc->upper_setup.tcp_fields.tucso = tucso;
3754 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3755 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3756 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3757 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3759 buffer_info->time_stamp = jiffies;
3760 buffer_info->next_to_watch = i;
3762 i++;
3763 if (i == tx_ring->count)
3764 i = 0;
3765 tx_ring->next_to_use = i;
3767 return 1;
3770 return 0;
3773 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3775 struct e1000_ring *tx_ring = adapter->tx_ring;
3776 struct e1000_context_desc *context_desc;
3777 struct e1000_buffer *buffer_info;
3778 unsigned int i;
3779 u8 css;
3780 u32 cmd_len = E1000_TXD_CMD_DEXT;
3782 if (skb->ip_summed != CHECKSUM_PARTIAL)
3783 return 0;
3785 switch (skb->protocol) {
3786 case __constant_htons(ETH_P_IP):
3787 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3788 cmd_len |= E1000_TXD_CMD_TCP;
3789 break;
3790 case __constant_htons(ETH_P_IPV6):
3791 /* XXX not handling all IPV6 headers */
3792 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3793 cmd_len |= E1000_TXD_CMD_TCP;
3794 break;
3795 default:
3796 if (unlikely(net_ratelimit()))
3797 e_warn("checksum_partial proto=%x!\n", skb->protocol);
3798 break;
3801 css = skb_transport_offset(skb);
3803 i = tx_ring->next_to_use;
3804 buffer_info = &tx_ring->buffer_info[i];
3805 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3807 context_desc->lower_setup.ip_config = 0;
3808 context_desc->upper_setup.tcp_fields.tucss = css;
3809 context_desc->upper_setup.tcp_fields.tucso =
3810 css + skb->csum_offset;
3811 context_desc->upper_setup.tcp_fields.tucse = 0;
3812 context_desc->tcp_seg_setup.data = 0;
3813 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3815 buffer_info->time_stamp = jiffies;
3816 buffer_info->next_to_watch = i;
3818 i++;
3819 if (i == tx_ring->count)
3820 i = 0;
3821 tx_ring->next_to_use = i;
3823 return 1;
3826 #define E1000_MAX_PER_TXD 8192
3827 #define E1000_MAX_TXD_PWR 12
3829 static int e1000_tx_map(struct e1000_adapter *adapter,
3830 struct sk_buff *skb, unsigned int first,
3831 unsigned int max_per_txd, unsigned int nr_frags,
3832 unsigned int mss)
3834 struct e1000_ring *tx_ring = adapter->tx_ring;
3835 struct e1000_buffer *buffer_info;
3836 unsigned int len = skb->len - skb->data_len;
3837 unsigned int offset = 0, size, count = 0, i;
3838 unsigned int f;
3840 i = tx_ring->next_to_use;
3842 while (len) {
3843 buffer_info = &tx_ring->buffer_info[i];
3844 size = min(len, max_per_txd);
3846 /* Workaround for premature desc write-backs
3847 * in TSO mode. Append 4-byte sentinel desc */
3848 if (mss && !nr_frags && size == len && size > 8)
3849 size -= 4;
3851 buffer_info->length = size;
3852 /* set time_stamp *before* dma to help avoid a possible race */
3853 buffer_info->time_stamp = jiffies;
3854 buffer_info->dma =
3855 pci_map_single(adapter->pdev,
3856 skb->data + offset,
3857 size,
3858 PCI_DMA_TODEVICE);
3859 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
3860 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3861 adapter->tx_dma_failed++;
3862 return -1;
3864 buffer_info->next_to_watch = i;
3866 len -= size;
3867 offset += size;
3868 count++;
3869 i++;
3870 if (i == tx_ring->count)
3871 i = 0;
3874 for (f = 0; f < nr_frags; f++) {
3875 struct skb_frag_struct *frag;
3877 frag = &skb_shinfo(skb)->frags[f];
3878 len = frag->size;
3879 offset = frag->page_offset;
3881 while (len) {
3882 buffer_info = &tx_ring->buffer_info[i];
3883 size = min(len, max_per_txd);
3884 /* Workaround for premature desc write-backs
3885 * in TSO mode. Append 4-byte sentinel desc */
3886 if (mss && f == (nr_frags-1) && size == len && size > 8)
3887 size -= 4;
3889 buffer_info->length = size;
3890 buffer_info->time_stamp = jiffies;
3891 buffer_info->dma =
3892 pci_map_page(adapter->pdev,
3893 frag->page,
3894 offset,
3895 size,
3896 PCI_DMA_TODEVICE);
3897 if (pci_dma_mapping_error(adapter->pdev,
3898 buffer_info->dma)) {
3899 dev_err(&adapter->pdev->dev,
3900 "TX DMA page map failed\n");
3901 adapter->tx_dma_failed++;
3902 return -1;
3905 buffer_info->next_to_watch = i;
3907 len -= size;
3908 offset += size;
3909 count++;
3911 i++;
3912 if (i == tx_ring->count)
3913 i = 0;
3917 if (i == 0)
3918 i = tx_ring->count - 1;
3919 else
3920 i--;
3922 tx_ring->buffer_info[i].skb = skb;
3923 tx_ring->buffer_info[first].next_to_watch = i;
3925 return count;
3928 static void e1000_tx_queue(struct e1000_adapter *adapter,
3929 int tx_flags, int count)
3931 struct e1000_ring *tx_ring = adapter->tx_ring;
3932 struct e1000_tx_desc *tx_desc = NULL;
3933 struct e1000_buffer *buffer_info;
3934 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3935 unsigned int i;
3937 if (tx_flags & E1000_TX_FLAGS_TSO) {
3938 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3939 E1000_TXD_CMD_TSE;
3940 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3942 if (tx_flags & E1000_TX_FLAGS_IPV4)
3943 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3946 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3947 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3948 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3951 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3952 txd_lower |= E1000_TXD_CMD_VLE;
3953 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3956 i = tx_ring->next_to_use;
3958 while (count--) {
3959 buffer_info = &tx_ring->buffer_info[i];
3960 tx_desc = E1000_TX_DESC(*tx_ring, i);
3961 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3962 tx_desc->lower.data =
3963 cpu_to_le32(txd_lower | buffer_info->length);
3964 tx_desc->upper.data = cpu_to_le32(txd_upper);
3966 i++;
3967 if (i == tx_ring->count)
3968 i = 0;
3971 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3974 * Force memory writes to complete before letting h/w
3975 * know there are new descriptors to fetch. (Only
3976 * applicable for weak-ordered memory model archs,
3977 * such as IA-64).
3979 wmb();
3981 tx_ring->next_to_use = i;
3982 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3984 * we need this if more than one processor can write to our tail
3985 * at a time, it synchronizes IO on IA64/Altix systems
3987 mmiowb();
3990 #define MINIMUM_DHCP_PACKET_SIZE 282
3991 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3992 struct sk_buff *skb)
3994 struct e1000_hw *hw = &adapter->hw;
3995 u16 length, offset;
3997 if (vlan_tx_tag_present(skb)) {
3998 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3999 && (adapter->hw.mng_cookie.status &
4000 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4001 return 0;
4004 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4005 return 0;
4007 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4008 return 0;
4011 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4012 struct udphdr *udp;
4014 if (ip->protocol != IPPROTO_UDP)
4015 return 0;
4017 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4018 if (ntohs(udp->dest) != 67)
4019 return 0;
4021 offset = (u8 *)udp + 8 - skb->data;
4022 length = skb->len - offset;
4023 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4026 return 0;
4029 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4031 struct e1000_adapter *adapter = netdev_priv(netdev);
4033 netif_stop_queue(netdev);
4035 * Herbert's original patch had:
4036 * smp_mb__after_netif_stop_queue();
4037 * but since that doesn't exist yet, just open code it.
4039 smp_mb();
4042 * We need to check again in a case another CPU has just
4043 * made room available.
4045 if (e1000_desc_unused(adapter->tx_ring) < size)
4046 return -EBUSY;
4048 /* A reprieve! */
4049 netif_start_queue(netdev);
4050 ++adapter->restart_queue;
4051 return 0;
4054 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4056 struct e1000_adapter *adapter = netdev_priv(netdev);
4058 if (e1000_desc_unused(adapter->tx_ring) >= size)
4059 return 0;
4060 return __e1000_maybe_stop_tx(netdev, size);
4063 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4064 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4066 struct e1000_adapter *adapter = netdev_priv(netdev);
4067 struct e1000_ring *tx_ring = adapter->tx_ring;
4068 unsigned int first;
4069 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4070 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4071 unsigned int tx_flags = 0;
4072 unsigned int len = skb->len - skb->data_len;
4073 unsigned long irq_flags;
4074 unsigned int nr_frags;
4075 unsigned int mss;
4076 int count = 0;
4077 int tso;
4078 unsigned int f;
4080 if (test_bit(__E1000_DOWN, &adapter->state)) {
4081 dev_kfree_skb_any(skb);
4082 return NETDEV_TX_OK;
4085 if (skb->len <= 0) {
4086 dev_kfree_skb_any(skb);
4087 return NETDEV_TX_OK;
4090 mss = skb_shinfo(skb)->gso_size;
4092 * The controller does a simple calculation to
4093 * make sure there is enough room in the FIFO before
4094 * initiating the DMA for each buffer. The calc is:
4095 * 4 = ceil(buffer len/mss). To make sure we don't
4096 * overrun the FIFO, adjust the max buffer len if mss
4097 * drops.
4099 if (mss) {
4100 u8 hdr_len;
4101 max_per_txd = min(mss << 2, max_per_txd);
4102 max_txd_pwr = fls(max_per_txd) - 1;
4105 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4106 * points to just header, pull a few bytes of payload from
4107 * frags into skb->data
4109 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4111 * we do this workaround for ES2LAN, but it is un-necessary,
4112 * avoiding it could save a lot of cycles
4114 if (skb->data_len && (hdr_len == len)) {
4115 unsigned int pull_size;
4117 pull_size = min((unsigned int)4, skb->data_len);
4118 if (!__pskb_pull_tail(skb, pull_size)) {
4119 e_err("__pskb_pull_tail failed.\n");
4120 dev_kfree_skb_any(skb);
4121 return NETDEV_TX_OK;
4123 len = skb->len - skb->data_len;
4127 /* reserve a descriptor for the offload context */
4128 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4129 count++;
4130 count++;
4132 count += TXD_USE_COUNT(len, max_txd_pwr);
4134 nr_frags = skb_shinfo(skb)->nr_frags;
4135 for (f = 0; f < nr_frags; f++)
4136 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4137 max_txd_pwr);
4139 if (adapter->hw.mac.tx_pkt_filtering)
4140 e1000_transfer_dhcp_info(adapter, skb);
4142 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
4143 /* Collision - tell upper layer to requeue */
4144 return NETDEV_TX_LOCKED;
4147 * need: count + 2 desc gap to keep tail from touching
4148 * head, otherwise try next time
4150 if (e1000_maybe_stop_tx(netdev, count + 2)) {
4151 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4152 return NETDEV_TX_BUSY;
4155 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4156 tx_flags |= E1000_TX_FLAGS_VLAN;
4157 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4160 first = tx_ring->next_to_use;
4162 tso = e1000_tso(adapter, skb);
4163 if (tso < 0) {
4164 dev_kfree_skb_any(skb);
4165 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4166 return NETDEV_TX_OK;
4169 if (tso)
4170 tx_flags |= E1000_TX_FLAGS_TSO;
4171 else if (e1000_tx_csum(adapter, skb))
4172 tx_flags |= E1000_TX_FLAGS_CSUM;
4175 * Old method was to assume IPv4 packet by default if TSO was enabled.
4176 * 82571 hardware supports TSO capabilities for IPv6 as well...
4177 * no longer assume, we must.
4179 if (skb->protocol == htons(ETH_P_IP))
4180 tx_flags |= E1000_TX_FLAGS_IPV4;
4182 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4183 if (count < 0) {
4184 /* handle pci_map_single() error in e1000_tx_map */
4185 dev_kfree_skb_any(skb);
4186 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4187 return NETDEV_TX_OK;
4190 e1000_tx_queue(adapter, tx_flags, count);
4192 netdev->trans_start = jiffies;
4194 /* Make sure there is space in the ring for the next send. */
4195 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4197 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4198 return NETDEV_TX_OK;
4202 * e1000_tx_timeout - Respond to a Tx Hang
4203 * @netdev: network interface device structure
4205 static void e1000_tx_timeout(struct net_device *netdev)
4207 struct e1000_adapter *adapter = netdev_priv(netdev);
4209 /* Do the reset outside of interrupt context */
4210 adapter->tx_timeout_count++;
4211 schedule_work(&adapter->reset_task);
4214 static void e1000_reset_task(struct work_struct *work)
4216 struct e1000_adapter *adapter;
4217 adapter = container_of(work, struct e1000_adapter, reset_task);
4219 e1000e_reinit_locked(adapter);
4223 * e1000_get_stats - Get System Network Statistics
4224 * @netdev: network interface device structure
4226 * Returns the address of the device statistics structure.
4227 * The statistics are actually updated from the timer callback.
4229 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4231 struct e1000_adapter *adapter = netdev_priv(netdev);
4233 /* only return the current stats */
4234 return &adapter->net_stats;
4238 * e1000_change_mtu - Change the Maximum Transfer Unit
4239 * @netdev: network interface device structure
4240 * @new_mtu: new value for maximum frame size
4242 * Returns 0 on success, negative on failure
4244 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4246 struct e1000_adapter *adapter = netdev_priv(netdev);
4247 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4249 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4250 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4251 e_err("Invalid MTU setting\n");
4252 return -EINVAL;
4255 /* Jumbo frame size limits */
4256 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4257 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4258 e_err("Jumbo Frames not supported.\n");
4259 return -EINVAL;
4261 if (adapter->hw.phy.type == e1000_phy_ife) {
4262 e_err("Jumbo Frames not supported.\n");
4263 return -EINVAL;
4267 #define MAX_STD_JUMBO_FRAME_SIZE 9234
4268 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4269 e_err("MTU > 9216 not supported.\n");
4270 return -EINVAL;
4273 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4274 msleep(1);
4275 /* e1000e_down has a dependency on max_frame_size */
4276 adapter->max_frame_size = max_frame;
4277 if (netif_running(netdev))
4278 e1000e_down(adapter);
4281 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4282 * means we reserve 2 more, this pushes us to allocate from the next
4283 * larger slab size.
4284 * i.e. RXBUFFER_2048 --> size-4096 slab
4285 * However with the new *_jumbo_rx* routines, jumbo receives will use
4286 * fragmented skbs
4289 if (max_frame <= 256)
4290 adapter->rx_buffer_len = 256;
4291 else if (max_frame <= 512)
4292 adapter->rx_buffer_len = 512;
4293 else if (max_frame <= 1024)
4294 adapter->rx_buffer_len = 1024;
4295 else if (max_frame <= 2048)
4296 adapter->rx_buffer_len = 2048;
4297 else
4298 adapter->rx_buffer_len = 4096;
4300 /* adjust allocation if LPE protects us, and we aren't using SBP */
4301 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4302 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4303 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4304 + ETH_FCS_LEN;
4306 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4307 netdev->mtu = new_mtu;
4309 if (netif_running(netdev))
4310 e1000e_up(adapter);
4311 else
4312 e1000e_reset(adapter);
4314 clear_bit(__E1000_RESETTING, &adapter->state);
4316 return 0;
4319 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4320 int cmd)
4322 struct e1000_adapter *adapter = netdev_priv(netdev);
4323 struct mii_ioctl_data *data = if_mii(ifr);
4325 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4326 return -EOPNOTSUPP;
4328 switch (cmd) {
4329 case SIOCGMIIPHY:
4330 data->phy_id = adapter->hw.phy.addr;
4331 break;
4332 case SIOCGMIIREG:
4333 if (!capable(CAP_NET_ADMIN))
4334 return -EPERM;
4335 switch (data->reg_num & 0x1F) {
4336 case MII_BMCR:
4337 data->val_out = adapter->phy_regs.bmcr;
4338 break;
4339 case MII_BMSR:
4340 data->val_out = adapter->phy_regs.bmsr;
4341 break;
4342 case MII_PHYSID1:
4343 data->val_out = (adapter->hw.phy.id >> 16);
4344 break;
4345 case MII_PHYSID2:
4346 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4347 break;
4348 case MII_ADVERTISE:
4349 data->val_out = adapter->phy_regs.advertise;
4350 break;
4351 case MII_LPA:
4352 data->val_out = adapter->phy_regs.lpa;
4353 break;
4354 case MII_EXPANSION:
4355 data->val_out = adapter->phy_regs.expansion;
4356 break;
4357 case MII_CTRL1000:
4358 data->val_out = adapter->phy_regs.ctrl1000;
4359 break;
4360 case MII_STAT1000:
4361 data->val_out = adapter->phy_regs.stat1000;
4362 break;
4363 case MII_ESTATUS:
4364 data->val_out = adapter->phy_regs.estatus;
4365 break;
4366 default:
4367 return -EIO;
4369 break;
4370 case SIOCSMIIREG:
4371 default:
4372 return -EOPNOTSUPP;
4374 return 0;
4377 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4379 switch (cmd) {
4380 case SIOCGMIIPHY:
4381 case SIOCGMIIREG:
4382 case SIOCSMIIREG:
4383 return e1000_mii_ioctl(netdev, ifr, cmd);
4384 default:
4385 return -EOPNOTSUPP;
4389 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4391 struct net_device *netdev = pci_get_drvdata(pdev);
4392 struct e1000_adapter *adapter = netdev_priv(netdev);
4393 struct e1000_hw *hw = &adapter->hw;
4394 u32 ctrl, ctrl_ext, rctl, status;
4395 u32 wufc = adapter->wol;
4396 int retval = 0;
4398 netif_device_detach(netdev);
4400 if (netif_running(netdev)) {
4401 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4402 e1000e_down(adapter);
4403 e1000_free_irq(adapter);
4405 e1000e_reset_interrupt_capability(adapter);
4407 retval = pci_save_state(pdev);
4408 if (retval)
4409 return retval;
4411 status = er32(STATUS);
4412 if (status & E1000_STATUS_LU)
4413 wufc &= ~E1000_WUFC_LNKC;
4415 if (wufc) {
4416 e1000_setup_rctl(adapter);
4417 e1000_set_multi(netdev);
4419 /* turn on all-multi mode if wake on multicast is enabled */
4420 if (wufc & E1000_WUFC_MC) {
4421 rctl = er32(RCTL);
4422 rctl |= E1000_RCTL_MPE;
4423 ew32(RCTL, rctl);
4426 ctrl = er32(CTRL);
4427 /* advertise wake from D3Cold */
4428 #define E1000_CTRL_ADVD3WUC 0x00100000
4429 /* phy power management enable */
4430 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4431 ctrl |= E1000_CTRL_ADVD3WUC |
4432 E1000_CTRL_EN_PHY_PWR_MGMT;
4433 ew32(CTRL, ctrl);
4435 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4436 adapter->hw.phy.media_type ==
4437 e1000_media_type_internal_serdes) {
4438 /* keep the laser running in D3 */
4439 ctrl_ext = er32(CTRL_EXT);
4440 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4441 ew32(CTRL_EXT, ctrl_ext);
4444 if (adapter->flags & FLAG_IS_ICH)
4445 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4447 /* Allow time for pending master requests to run */
4448 e1000e_disable_pcie_master(&adapter->hw);
4450 ew32(WUC, E1000_WUC_PME_EN);
4451 ew32(WUFC, wufc);
4452 pci_enable_wake(pdev, PCI_D3hot, 1);
4453 pci_enable_wake(pdev, PCI_D3cold, 1);
4454 } else {
4455 ew32(WUC, 0);
4456 ew32(WUFC, 0);
4457 pci_enable_wake(pdev, PCI_D3hot, 0);
4458 pci_enable_wake(pdev, PCI_D3cold, 0);
4461 /* make sure adapter isn't asleep if manageability is enabled */
4462 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4463 pci_enable_wake(pdev, PCI_D3hot, 1);
4464 pci_enable_wake(pdev, PCI_D3cold, 1);
4467 if (adapter->hw.phy.type == e1000_phy_igp_3)
4468 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4471 * Release control of h/w to f/w. If f/w is AMT enabled, this
4472 * would have already happened in close and is redundant.
4474 e1000_release_hw_control(adapter);
4476 pci_disable_device(pdev);
4479 * The pci-e switch on some quad port adapters will report a
4480 * correctable error when the MAC transitions from D0 to D3. To
4481 * prevent this we need to mask off the correctable errors on the
4482 * downstream port of the pci-e switch.
4484 if (adapter->flags & FLAG_IS_QUAD_PORT) {
4485 struct pci_dev *us_dev = pdev->bus->self;
4486 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4487 u16 devctl;
4489 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4490 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4491 (devctl & ~PCI_EXP_DEVCTL_CERE));
4493 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4495 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4496 } else {
4497 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4500 return 0;
4503 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4505 int pos;
4506 u16 val;
4509 * 82573 workaround - disable L1 ASPM on mobile chipsets
4511 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4512 * resulting in lost data or garbage information on the pci-e link
4513 * level. This could result in (false) bad EEPROM checksum errors,
4514 * long ping times (up to 2s) or even a system freeze/hang.
4516 * Unfortunately this feature saves about 1W power consumption when
4517 * active.
4519 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4520 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4521 if (val & 0x2) {
4522 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4523 val &= ~0x2;
4524 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4528 #ifdef CONFIG_PM
4529 static int e1000_resume(struct pci_dev *pdev)
4531 struct net_device *netdev = pci_get_drvdata(pdev);
4532 struct e1000_adapter *adapter = netdev_priv(netdev);
4533 struct e1000_hw *hw = &adapter->hw;
4534 u32 err;
4536 pci_set_power_state(pdev, PCI_D0);
4537 pci_restore_state(pdev);
4538 e1000e_disable_l1aspm(pdev);
4540 err = pci_enable_device_mem(pdev);
4541 if (err) {
4542 dev_err(&pdev->dev,
4543 "Cannot enable PCI device from suspend\n");
4544 return err;
4547 pci_set_master(pdev);
4549 pci_enable_wake(pdev, PCI_D3hot, 0);
4550 pci_enable_wake(pdev, PCI_D3cold, 0);
4552 e1000e_set_interrupt_capability(adapter);
4553 if (netif_running(netdev)) {
4554 err = e1000_request_irq(adapter);
4555 if (err)
4556 return err;
4559 e1000e_power_up_phy(adapter);
4560 e1000e_reset(adapter);
4561 ew32(WUS, ~0);
4563 e1000_init_manageability(adapter);
4565 if (netif_running(netdev))
4566 e1000e_up(adapter);
4568 netif_device_attach(netdev);
4571 * If the controller has AMT, do not set DRV_LOAD until the interface
4572 * is up. For all other cases, let the f/w know that the h/w is now
4573 * under the control of the driver.
4575 if (!(adapter->flags & FLAG_HAS_AMT))
4576 e1000_get_hw_control(adapter);
4578 return 0;
4580 #endif
4582 static void e1000_shutdown(struct pci_dev *pdev)
4584 e1000_suspend(pdev, PMSG_SUSPEND);
4587 #ifdef CONFIG_NET_POLL_CONTROLLER
4589 * Polling 'interrupt' - used by things like netconsole to send skbs
4590 * without having to re-enable interrupts. It's not called while
4591 * the interrupt routine is executing.
4593 static void e1000_netpoll(struct net_device *netdev)
4595 struct e1000_adapter *adapter = netdev_priv(netdev);
4597 disable_irq(adapter->pdev->irq);
4598 e1000_intr(adapter->pdev->irq, netdev);
4600 enable_irq(adapter->pdev->irq);
4602 #endif
4605 * e1000_io_error_detected - called when PCI error is detected
4606 * @pdev: Pointer to PCI device
4607 * @state: The current pci connection state
4609 * This function is called after a PCI bus error affecting
4610 * this device has been detected.
4612 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4613 pci_channel_state_t state)
4615 struct net_device *netdev = pci_get_drvdata(pdev);
4616 struct e1000_adapter *adapter = netdev_priv(netdev);
4618 netif_device_detach(netdev);
4620 if (netif_running(netdev))
4621 e1000e_down(adapter);
4622 pci_disable_device(pdev);
4624 /* Request a slot slot reset. */
4625 return PCI_ERS_RESULT_NEED_RESET;
4629 * e1000_io_slot_reset - called after the pci bus has been reset.
4630 * @pdev: Pointer to PCI device
4632 * Restart the card from scratch, as if from a cold-boot. Implementation
4633 * resembles the first-half of the e1000_resume routine.
4635 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4637 struct net_device *netdev = pci_get_drvdata(pdev);
4638 struct e1000_adapter *adapter = netdev_priv(netdev);
4639 struct e1000_hw *hw = &adapter->hw;
4640 int err;
4642 e1000e_disable_l1aspm(pdev);
4643 err = pci_enable_device_mem(pdev);
4644 if (err) {
4645 dev_err(&pdev->dev,
4646 "Cannot re-enable PCI device after reset.\n");
4647 return PCI_ERS_RESULT_DISCONNECT;
4649 pci_set_master(pdev);
4650 pci_restore_state(pdev);
4652 pci_enable_wake(pdev, PCI_D3hot, 0);
4653 pci_enable_wake(pdev, PCI_D3cold, 0);
4655 e1000e_reset(adapter);
4656 ew32(WUS, ~0);
4658 return PCI_ERS_RESULT_RECOVERED;
4662 * e1000_io_resume - called when traffic can start flowing again.
4663 * @pdev: Pointer to PCI device
4665 * This callback is called when the error recovery driver tells us that
4666 * its OK to resume normal operation. Implementation resembles the
4667 * second-half of the e1000_resume routine.
4669 static void e1000_io_resume(struct pci_dev *pdev)
4671 struct net_device *netdev = pci_get_drvdata(pdev);
4672 struct e1000_adapter *adapter = netdev_priv(netdev);
4674 e1000_init_manageability(adapter);
4676 if (netif_running(netdev)) {
4677 if (e1000e_up(adapter)) {
4678 dev_err(&pdev->dev,
4679 "can't bring device back up after reset\n");
4680 return;
4684 netif_device_attach(netdev);
4687 * If the controller has AMT, do not set DRV_LOAD until the interface
4688 * is up. For all other cases, let the f/w know that the h/w is now
4689 * under the control of the driver.
4691 if (!(adapter->flags & FLAG_HAS_AMT))
4692 e1000_get_hw_control(adapter);
4696 static void e1000_print_device_info(struct e1000_adapter *adapter)
4698 struct e1000_hw *hw = &adapter->hw;
4699 struct net_device *netdev = adapter->netdev;
4700 u32 pba_num;
4702 /* print bus type/speed/width info */
4703 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4704 /* bus width */
4705 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4706 "Width x1"),
4707 /* MAC address */
4708 netdev->dev_addr);
4709 e_info("Intel(R) PRO/%s Network Connection\n",
4710 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4711 e1000e_read_pba_num(hw, &pba_num);
4712 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4713 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4716 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4718 struct e1000_hw *hw = &adapter->hw;
4719 int ret_val;
4720 u16 buf = 0;
4722 if (hw->mac.type != e1000_82573)
4723 return;
4725 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4726 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4727 /* Deep Smart Power Down (DSPD) */
4728 dev_warn(&adapter->pdev->dev,
4729 "Warning: detected DSPD enabled in EEPROM\n");
4732 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4733 if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
4734 /* ASPM enable */
4735 dev_warn(&adapter->pdev->dev,
4736 "Warning: detected ASPM enabled in EEPROM\n");
4740 static const struct net_device_ops e1000e_netdev_ops = {
4741 .ndo_open = e1000_open,
4742 .ndo_stop = e1000_close,
4743 .ndo_start_xmit = e1000_xmit_frame,
4744 .ndo_get_stats = e1000_get_stats,
4745 .ndo_set_multicast_list = e1000_set_multi,
4746 .ndo_set_mac_address = e1000_set_mac,
4747 .ndo_change_mtu = e1000_change_mtu,
4748 .ndo_do_ioctl = e1000_ioctl,
4749 .ndo_tx_timeout = e1000_tx_timeout,
4750 .ndo_validate_addr = eth_validate_addr,
4752 .ndo_vlan_rx_register = e1000_vlan_rx_register,
4753 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
4754 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
4755 #ifdef CONFIG_NET_POLL_CONTROLLER
4756 .ndo_poll_controller = e1000_netpoll,
4757 #endif
4761 * e1000_probe - Device Initialization Routine
4762 * @pdev: PCI device information struct
4763 * @ent: entry in e1000_pci_tbl
4765 * Returns 0 on success, negative on failure
4767 * e1000_probe initializes an adapter identified by a pci_dev structure.
4768 * The OS initialization, configuring of the adapter private structure,
4769 * and a hardware reset occur.
4771 static int __devinit e1000_probe(struct pci_dev *pdev,
4772 const struct pci_device_id *ent)
4774 struct net_device *netdev;
4775 struct e1000_adapter *adapter;
4776 struct e1000_hw *hw;
4777 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4778 resource_size_t mmio_start, mmio_len;
4779 resource_size_t flash_start, flash_len;
4781 static int cards_found;
4782 int i, err, pci_using_dac;
4783 u16 eeprom_data = 0;
4784 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4786 e1000e_disable_l1aspm(pdev);
4788 err = pci_enable_device_mem(pdev);
4789 if (err)
4790 return err;
4792 pci_using_dac = 0;
4793 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4794 if (!err) {
4795 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4796 if (!err)
4797 pci_using_dac = 1;
4798 } else {
4799 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4800 if (err) {
4801 err = pci_set_consistent_dma_mask(pdev,
4802 DMA_32BIT_MASK);
4803 if (err) {
4804 dev_err(&pdev->dev, "No usable DMA "
4805 "configuration, aborting\n");
4806 goto err_dma;
4811 err = pci_request_selected_regions(pdev,
4812 pci_select_bars(pdev, IORESOURCE_MEM),
4813 e1000e_driver_name);
4814 if (err)
4815 goto err_pci_reg;
4817 pci_set_master(pdev);
4818 /* PCI config space info */
4819 err = pci_save_state(pdev);
4820 if (err)
4821 goto err_alloc_etherdev;
4823 err = -ENOMEM;
4824 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4825 if (!netdev)
4826 goto err_alloc_etherdev;
4828 SET_NETDEV_DEV(netdev, &pdev->dev);
4830 pci_set_drvdata(pdev, netdev);
4831 adapter = netdev_priv(netdev);
4832 hw = &adapter->hw;
4833 adapter->netdev = netdev;
4834 adapter->pdev = pdev;
4835 adapter->ei = ei;
4836 adapter->pba = ei->pba;
4837 adapter->flags = ei->flags;
4838 adapter->flags2 = ei->flags2;
4839 adapter->hw.adapter = adapter;
4840 adapter->hw.mac.type = ei->mac;
4841 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4843 mmio_start = pci_resource_start(pdev, 0);
4844 mmio_len = pci_resource_len(pdev, 0);
4846 err = -EIO;
4847 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4848 if (!adapter->hw.hw_addr)
4849 goto err_ioremap;
4851 if ((adapter->flags & FLAG_HAS_FLASH) &&
4852 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4853 flash_start = pci_resource_start(pdev, 1);
4854 flash_len = pci_resource_len(pdev, 1);
4855 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4856 if (!adapter->hw.flash_address)
4857 goto err_flashmap;
4860 /* construct the net_device struct */
4861 netdev->netdev_ops = &e1000e_netdev_ops;
4862 e1000e_set_ethtool_ops(netdev);
4863 netdev->watchdog_timeo = 5 * HZ;
4864 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4865 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4867 netdev->mem_start = mmio_start;
4868 netdev->mem_end = mmio_start + mmio_len;
4870 adapter->bd_number = cards_found++;
4872 e1000e_check_options(adapter);
4874 /* setup adapter struct */
4875 err = e1000_sw_init(adapter);
4876 if (err)
4877 goto err_sw_init;
4879 err = -EIO;
4881 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4882 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4883 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4885 err = ei->get_variants(adapter);
4886 if (err)
4887 goto err_hw_init;
4889 if ((adapter->flags & FLAG_IS_ICH) &&
4890 (adapter->flags & FLAG_READ_ONLY_NVM))
4891 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
4893 hw->mac.ops.get_bus_info(&adapter->hw);
4895 adapter->hw.phy.autoneg_wait_to_complete = 0;
4897 /* Copper options */
4898 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4899 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4900 adapter->hw.phy.disable_polarity_correction = 0;
4901 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4904 if (e1000_check_reset_block(&adapter->hw))
4905 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4907 netdev->features = NETIF_F_SG |
4908 NETIF_F_HW_CSUM |
4909 NETIF_F_HW_VLAN_TX |
4910 NETIF_F_HW_VLAN_RX;
4912 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4913 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4915 netdev->features |= NETIF_F_TSO;
4916 netdev->features |= NETIF_F_TSO6;
4918 netdev->vlan_features |= NETIF_F_TSO;
4919 netdev->vlan_features |= NETIF_F_TSO6;
4920 netdev->vlan_features |= NETIF_F_HW_CSUM;
4921 netdev->vlan_features |= NETIF_F_SG;
4923 if (pci_using_dac)
4924 netdev->features |= NETIF_F_HIGHDMA;
4927 * We should not be using LLTX anymore, but we are still Tx faster with
4928 * it.
4930 netdev->features |= NETIF_F_LLTX;
4932 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4933 adapter->flags |= FLAG_MNG_PT_ENABLED;
4936 * before reading the NVM, reset the controller to
4937 * put the device in a known good starting state
4939 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4942 * systems with ASPM and others may see the checksum fail on the first
4943 * attempt. Let's give it a few tries
4945 for (i = 0;; i++) {
4946 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4947 break;
4948 if (i == 2) {
4949 e_err("The NVM Checksum Is Not Valid\n");
4950 err = -EIO;
4951 goto err_eeprom;
4955 e1000_eeprom_checks(adapter);
4957 /* copy the MAC address out of the NVM */
4958 if (e1000e_read_mac_addr(&adapter->hw))
4959 e_err("NVM Read Error while reading MAC address\n");
4961 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4962 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4964 if (!is_valid_ether_addr(netdev->perm_addr)) {
4965 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
4966 err = -EIO;
4967 goto err_eeprom;
4970 init_timer(&adapter->watchdog_timer);
4971 adapter->watchdog_timer.function = &e1000_watchdog;
4972 adapter->watchdog_timer.data = (unsigned long) adapter;
4974 init_timer(&adapter->phy_info_timer);
4975 adapter->phy_info_timer.function = &e1000_update_phy_info;
4976 adapter->phy_info_timer.data = (unsigned long) adapter;
4978 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4979 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4980 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
4981 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
4983 /* Initialize link parameters. User can change them with ethtool */
4984 adapter->hw.mac.autoneg = 1;
4985 adapter->fc_autoneg = 1;
4986 adapter->hw.fc.requested_mode = e1000_fc_default;
4987 adapter->hw.fc.current_mode = e1000_fc_default;
4988 adapter->hw.phy.autoneg_advertised = 0x2f;
4990 /* ring size defaults */
4991 adapter->rx_ring->count = 256;
4992 adapter->tx_ring->count = 256;
4995 * Initial Wake on LAN setting - If APM wake is enabled in
4996 * the EEPROM, enable the ACPI Magic Packet filter
4998 if (adapter->flags & FLAG_APME_IN_WUC) {
4999 /* APME bit in EEPROM is mapped to WUC.APME */
5000 eeprom_data = er32(WUC);
5001 eeprom_apme_mask = E1000_WUC_APME;
5002 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5003 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5004 (adapter->hw.bus.func == 1))
5005 e1000_read_nvm(&adapter->hw,
5006 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5007 else
5008 e1000_read_nvm(&adapter->hw,
5009 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5012 /* fetch WoL from EEPROM */
5013 if (eeprom_data & eeprom_apme_mask)
5014 adapter->eeprom_wol |= E1000_WUFC_MAG;
5017 * now that we have the eeprom settings, apply the special cases
5018 * where the eeprom may be wrong or the board simply won't support
5019 * wake on lan on a particular port
5021 if (!(adapter->flags & FLAG_HAS_WOL))
5022 adapter->eeprom_wol = 0;
5024 /* initialize the wol settings based on the eeprom settings */
5025 adapter->wol = adapter->eeprom_wol;
5026 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5028 /* save off EEPROM version number */
5029 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5031 /* reset the hardware with the new settings */
5032 e1000e_reset(adapter);
5035 * If the controller has AMT, do not set DRV_LOAD until the interface
5036 * is up. For all other cases, let the f/w know that the h/w is now
5037 * under the control of the driver.
5039 if (!(adapter->flags & FLAG_HAS_AMT))
5040 e1000_get_hw_control(adapter);
5042 /* tell the stack to leave us alone until e1000_open() is called */
5043 netif_carrier_off(netdev);
5044 netif_tx_stop_all_queues(netdev);
5046 strcpy(netdev->name, "eth%d");
5047 err = register_netdev(netdev);
5048 if (err)
5049 goto err_register;
5051 e1000_print_device_info(adapter);
5053 return 0;
5055 err_register:
5056 if (!(adapter->flags & FLAG_HAS_AMT))
5057 e1000_release_hw_control(adapter);
5058 err_eeprom:
5059 if (!e1000_check_reset_block(&adapter->hw))
5060 e1000_phy_hw_reset(&adapter->hw);
5061 err_hw_init:
5063 kfree(adapter->tx_ring);
5064 kfree(adapter->rx_ring);
5065 err_sw_init:
5066 if (adapter->hw.flash_address)
5067 iounmap(adapter->hw.flash_address);
5068 e1000e_reset_interrupt_capability(adapter);
5069 err_flashmap:
5070 iounmap(adapter->hw.hw_addr);
5071 err_ioremap:
5072 free_netdev(netdev);
5073 err_alloc_etherdev:
5074 pci_release_selected_regions(pdev,
5075 pci_select_bars(pdev, IORESOURCE_MEM));
5076 err_pci_reg:
5077 err_dma:
5078 pci_disable_device(pdev);
5079 return err;
5083 * e1000_remove - Device Removal Routine
5084 * @pdev: PCI device information struct
5086 * e1000_remove is called by the PCI subsystem to alert the driver
5087 * that it should release a PCI device. The could be caused by a
5088 * Hot-Plug event, or because the driver is going to be removed from
5089 * memory.
5091 static void __devexit e1000_remove(struct pci_dev *pdev)
5093 struct net_device *netdev = pci_get_drvdata(pdev);
5094 struct e1000_adapter *adapter = netdev_priv(netdev);
5097 * flush_scheduled work may reschedule our watchdog task, so
5098 * explicitly disable watchdog tasks from being rescheduled
5100 set_bit(__E1000_DOWN, &adapter->state);
5101 del_timer_sync(&adapter->watchdog_timer);
5102 del_timer_sync(&adapter->phy_info_timer);
5104 flush_scheduled_work();
5107 * Release control of h/w to f/w. If f/w is AMT enabled, this
5108 * would have already happened in close and is redundant.
5110 e1000_release_hw_control(adapter);
5112 unregister_netdev(netdev);
5114 if (!e1000_check_reset_block(&adapter->hw))
5115 e1000_phy_hw_reset(&adapter->hw);
5117 e1000e_reset_interrupt_capability(adapter);
5118 kfree(adapter->tx_ring);
5119 kfree(adapter->rx_ring);
5121 iounmap(adapter->hw.hw_addr);
5122 if (adapter->hw.flash_address)
5123 iounmap(adapter->hw.flash_address);
5124 pci_release_selected_regions(pdev,
5125 pci_select_bars(pdev, IORESOURCE_MEM));
5127 free_netdev(netdev);
5129 pci_disable_device(pdev);
5132 /* PCI Error Recovery (ERS) */
5133 static struct pci_error_handlers e1000_err_handler = {
5134 .error_detected = e1000_io_error_detected,
5135 .slot_reset = e1000_io_slot_reset,
5136 .resume = e1000_io_resume,
5139 static struct pci_device_id e1000_pci_tbl[] = {
5140 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5141 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5142 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5143 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5144 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5145 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5146 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5147 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5148 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5150 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5151 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5152 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5153 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5155 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5156 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5157 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5159 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5161 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5162 board_80003es2lan },
5163 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5164 board_80003es2lan },
5165 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5166 board_80003es2lan },
5167 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5168 board_80003es2lan },
5170 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5171 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5172 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5173 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5174 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5175 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5176 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5178 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5179 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5180 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5181 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5182 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5183 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5184 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5185 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5186 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5188 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5189 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5190 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5192 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5193 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5195 { } /* terminate list */
5197 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5199 /* PCI Device API Driver */
5200 static struct pci_driver e1000_driver = {
5201 .name = e1000e_driver_name,
5202 .id_table = e1000_pci_tbl,
5203 .probe = e1000_probe,
5204 .remove = __devexit_p(e1000_remove),
5205 #ifdef CONFIG_PM
5206 /* Power Management Hooks */
5207 .suspend = e1000_suspend,
5208 .resume = e1000_resume,
5209 #endif
5210 .shutdown = e1000_shutdown,
5211 .err_handler = &e1000_err_handler
5215 * e1000_init_module - Driver Registration Routine
5217 * e1000_init_module is the first routine called when the driver is
5218 * loaded. All it does is register with the PCI subsystem.
5220 static int __init e1000_init_module(void)
5222 int ret;
5223 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5224 e1000e_driver_name, e1000e_driver_version);
5225 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
5226 e1000e_driver_name);
5227 ret = pci_register_driver(&e1000_driver);
5228 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5229 PM_QOS_DEFAULT_VALUE);
5231 return ret;
5233 module_init(e1000_init_module);
5236 * e1000_exit_module - Driver Exit Cleanup Routine
5238 * e1000_exit_module is called just before the driver is removed
5239 * from memory.
5241 static void __exit e1000_exit_module(void)
5243 pci_unregister_driver(&e1000_driver);
5244 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
5246 module_exit(e1000_exit_module);
5249 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5250 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5251 MODULE_LICENSE("GPL");
5252 MODULE_VERSION(DRV_VERSION);
5254 /* e1000_main.c */