2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 #include <linux/completion.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/kref.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
28 #include "fw-transaction.h"
29 #include "fw-topology.h"
30 #include "fw-device.h"
32 int fw_compute_block_crc(u32
*block
)
34 __be32 be32_block
[256];
37 length
= (*block
>> 16) & 0xff;
38 for (i
= 0; i
< length
; i
++)
39 be32_block
[i
] = cpu_to_be32(block
[i
+ 1]);
40 *block
|= crc_itu_t(0, (u8
*) be32_block
, length
* 4);
45 static DEFINE_MUTEX(card_mutex
);
46 static LIST_HEAD(card_list
);
48 static LIST_HEAD(descriptor_list
);
49 static int descriptor_count
;
51 #define BIB_CRC(v) ((v) << 0)
52 #define BIB_CRC_LENGTH(v) ((v) << 16)
53 #define BIB_INFO_LENGTH(v) ((v) << 24)
55 #define BIB_LINK_SPEED(v) ((v) << 0)
56 #define BIB_GENERATION(v) ((v) << 4)
57 #define BIB_MAX_ROM(v) ((v) << 8)
58 #define BIB_MAX_RECEIVE(v) ((v) << 12)
59 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
60 #define BIB_PMC ((1) << 27)
61 #define BIB_BMC ((1) << 28)
62 #define BIB_ISC ((1) << 29)
63 #define BIB_CMC ((1) << 30)
64 #define BIB_IMC ((1) << 31)
66 static u32
*generate_config_rom(struct fw_card
*card
, size_t *config_rom_length
)
68 struct fw_descriptor
*desc
;
69 static u32 config_rom
[256];
73 * Initialize contents of config rom buffer. On the OHCI
74 * controller, block reads to the config rom accesses the host
75 * memory, but quadlet read access the hardware bus info block
76 * registers. That's just crack, but it means we should make
77 * sure the contents of bus info block in host memory matches
78 * the version stored in the OHCI registers.
81 memset(config_rom
, 0, sizeof(config_rom
));
82 config_rom
[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
83 config_rom
[1] = 0x31333934;
86 BIB_LINK_SPEED(card
->link_speed
) |
87 BIB_GENERATION(card
->config_rom_generation
++ % 14 + 2) |
89 BIB_MAX_RECEIVE(card
->max_receive
) |
90 BIB_BMC
| BIB_ISC
| BIB_CMC
| BIB_IMC
;
91 config_rom
[3] = card
->guid
>> 32;
92 config_rom
[4] = card
->guid
;
94 /* Generate root directory. */
97 config_rom
[i
++] = 0x0c0083c0; /* node capabilities */
98 j
= i
+ descriptor_count
;
100 /* Generate root directory entries for descriptors. */
101 list_for_each_entry (desc
, &descriptor_list
, link
) {
102 if (desc
->immediate
> 0)
103 config_rom
[i
++] = desc
->immediate
;
104 config_rom
[i
] = desc
->key
| (j
- i
);
109 /* Update root directory length. */
110 config_rom
[5] = (i
- 5 - 1) << 16;
112 /* End of root directory, now copy in descriptors. */
113 list_for_each_entry (desc
, &descriptor_list
, link
) {
114 memcpy(&config_rom
[i
], desc
->data
, desc
->length
* 4);
118 /* Calculate CRCs for all blocks in the config rom. This
119 * assumes that CRC length and info length are identical for
120 * the bus info block, which is always the case for this
122 for (i
= 0; i
< j
; i
+= length
+ 1)
123 length
= fw_compute_block_crc(config_rom
+ i
);
125 *config_rom_length
= j
;
130 static void update_config_roms(void)
132 struct fw_card
*card
;
136 list_for_each_entry (card
, &card_list
, link
) {
137 config_rom
= generate_config_rom(card
, &length
);
138 card
->driver
->set_config_rom(card
, config_rom
, length
);
142 int fw_core_add_descriptor(struct fw_descriptor
*desc
)
147 * Check descriptor is valid; the length of all blocks in the
148 * descriptor has to add up to exactly the length of the
152 while (i
< desc
->length
)
153 i
+= (desc
->data
[i
] >> 16) + 1;
155 if (i
!= desc
->length
)
158 mutex_lock(&card_mutex
);
160 list_add_tail(&desc
->link
, &descriptor_list
);
162 if (desc
->immediate
> 0)
164 update_config_roms();
166 mutex_unlock(&card_mutex
);
171 void fw_core_remove_descriptor(struct fw_descriptor
*desc
)
173 mutex_lock(&card_mutex
);
175 list_del(&desc
->link
);
177 if (desc
->immediate
> 0)
179 update_config_roms();
181 mutex_unlock(&card_mutex
);
184 static const char gap_count_table
[] = {
185 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
188 void fw_schedule_bm_work(struct fw_card
*card
, unsigned long delay
)
193 scheduled
= schedule_delayed_work(&card
->work
, delay
);
198 static void fw_card_bm_work(struct work_struct
*work
)
200 struct fw_card
*card
= container_of(work
, struct fw_card
, work
.work
);
201 struct fw_device
*root_device
;
202 struct fw_node
*root_node
, *local_node
;
204 int root_id
, new_root_id
, irm_id
, gap_count
, generation
, grace
, rcode
;
205 bool do_reset
= false;
206 bool root_device_is_running
;
207 bool root_device_is_cmc
;
210 spin_lock_irqsave(&card
->lock
, flags
);
211 local_node
= card
->local_node
;
212 root_node
= card
->root_node
;
214 if (local_node
== NULL
) {
215 spin_unlock_irqrestore(&card
->lock
, flags
);
218 fw_node_get(local_node
);
219 fw_node_get(root_node
);
221 generation
= card
->generation
;
222 root_device
= root_node
->data
;
223 root_device_is_running
= root_device
&&
224 atomic_read(&root_device
->state
) == FW_DEVICE_RUNNING
;
225 root_device_is_cmc
= root_device
&& root_device
->cmc
;
226 root_id
= root_node
->node_id
;
227 grace
= time_after(jiffies
, card
->reset_jiffies
+ DIV_ROUND_UP(HZ
, 10));
229 if (is_next_generation(generation
, card
->bm_generation
) ||
230 (card
->bm_generation
!= generation
&& grace
)) {
232 * This first step is to figure out who is IRM and
233 * then try to become bus manager. If the IRM is not
234 * well defined (e.g. does not have an active link
235 * layer or does not responds to our lock request, we
236 * will have to do a little vigilante bus management.
237 * In that case, we do a goto into the gap count logic
238 * so that when we do the reset, we still optimize the
239 * gap count. That could well save a reset in the
243 irm_id
= card
->irm_node
->node_id
;
244 if (!card
->irm_node
->link_on
) {
245 new_root_id
= local_node
->node_id
;
246 fw_notify("IRM has link off, making local node (%02x) root.\n",
251 lock_data
[0] = cpu_to_be32(0x3f);
252 lock_data
[1] = cpu_to_be32(local_node
->node_id
);
254 spin_unlock_irqrestore(&card
->lock
, flags
);
256 rcode
= fw_run_transaction(card
, TCODE_LOCK_COMPARE_SWAP
,
257 irm_id
, generation
, SCODE_100
,
258 CSR_REGISTER_BASE
+ CSR_BUS_MANAGER_ID
,
259 lock_data
, sizeof(lock_data
));
261 if (rcode
== RCODE_GENERATION
)
262 /* Another bus reset, BM work has been rescheduled. */
265 if (rcode
== RCODE_COMPLETE
&&
266 lock_data
[0] != cpu_to_be32(0x3f))
267 /* Somebody else is BM, let them do the work. */
270 spin_lock_irqsave(&card
->lock
, flags
);
272 if (rcode
!= RCODE_COMPLETE
) {
274 * The lock request failed, maybe the IRM
275 * isn't really IRM capable after all. Let's
276 * do a bus reset and pick the local node as
277 * root, and thus, IRM.
279 new_root_id
= local_node
->node_id
;
280 fw_notify("BM lock failed, making local node (%02x) root.\n",
284 } else if (card
->bm_generation
!= generation
) {
286 * OK, we weren't BM in the last generation, and it's
287 * less than 100ms since last bus reset. Reschedule
288 * this task 100ms from now.
290 spin_unlock_irqrestore(&card
->lock
, flags
);
291 fw_schedule_bm_work(card
, DIV_ROUND_UP(HZ
, 10));
296 * We're bus manager for this generation, so next step is to
297 * make sure we have an active cycle master and do gap count
300 card
->bm_generation
= generation
;
302 if (root_device
== NULL
) {
304 * Either link_on is false, or we failed to read the
305 * config rom. In either case, pick another root.
307 new_root_id
= local_node
->node_id
;
308 } else if (!root_device_is_running
) {
310 * If we haven't probed this device yet, bail out now
311 * and let's try again once that's done.
313 spin_unlock_irqrestore(&card
->lock
, flags
);
315 } else if (root_device_is_cmc
) {
317 * FIXME: I suppose we should set the cmstr bit in the
318 * STATE_CLEAR register of this node, as described in
319 * 1394-1995, 8.4.2.6. Also, send out a force root
320 * packet for this node.
322 new_root_id
= root_id
;
325 * Current root has an active link layer and we
326 * successfully read the config rom, but it's not
327 * cycle master capable.
329 new_root_id
= local_node
->node_id
;
334 * Pick a gap count from 1394a table E-1. The table doesn't cover
335 * the typically much larger 1394b beta repeater delays though.
337 if (!card
->beta_repeaters_present
&&
338 root_node
->max_hops
< ARRAY_SIZE(gap_count_table
))
339 gap_count
= gap_count_table
[root_node
->max_hops
];
344 * Finally, figure out if we should do a reset or not. If we have
345 * done less than 5 resets with the same physical topology and we
346 * have either a new root or a new gap count setting, let's do it.
349 if (card
->bm_retries
++ < 5 &&
350 (card
->gap_count
!= gap_count
|| new_root_id
!= root_id
))
353 spin_unlock_irqrestore(&card
->lock
, flags
);
356 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
357 card
->index
, new_root_id
, gap_count
);
358 fw_send_phy_config(card
, new_root_id
, generation
, gap_count
);
359 fw_core_initiate_bus_reset(card
, 1);
362 fw_node_put(root_node
);
363 fw_node_put(local_node
);
368 static void flush_timer_callback(unsigned long data
)
370 struct fw_card
*card
= (struct fw_card
*)data
;
372 fw_flush_transactions(card
);
375 void fw_card_initialize(struct fw_card
*card
,
376 const struct fw_card_driver
*driver
,
377 struct device
*device
)
379 static atomic_t index
= ATOMIC_INIT(-1);
381 card
->index
= atomic_inc_return(&index
);
382 card
->driver
= driver
;
383 card
->device
= device
;
384 card
->current_tlabel
= 0;
385 card
->tlabel_mask
= 0;
387 card
->broadcast_channel
= BROADCAST_CHANNEL_INITIAL
;
389 kref_init(&card
->kref
);
390 init_completion(&card
->done
);
391 INIT_LIST_HEAD(&card
->transaction_list
);
392 spin_lock_init(&card
->lock
);
393 setup_timer(&card
->flush_timer
,
394 flush_timer_callback
, (unsigned long)card
);
396 card
->local_node
= NULL
;
398 INIT_DELAYED_WORK(&card
->work
, fw_card_bm_work
);
400 EXPORT_SYMBOL(fw_card_initialize
);
402 int fw_card_add(struct fw_card
*card
,
403 u32 max_receive
, u32 link_speed
, u64 guid
)
409 card
->max_receive
= max_receive
;
410 card
->link_speed
= link_speed
;
413 mutex_lock(&card_mutex
);
414 config_rom
= generate_config_rom(card
, &length
);
415 list_add_tail(&card
->link
, &card_list
);
416 mutex_unlock(&card_mutex
);
418 ret
= card
->driver
->enable(card
, config_rom
, length
);
420 mutex_lock(&card_mutex
);
421 list_del(&card
->link
);
422 mutex_unlock(&card_mutex
);
427 EXPORT_SYMBOL(fw_card_add
);
431 * The next few functions implements a dummy driver that use once a
432 * card driver shuts down an fw_card. This allows the driver to
433 * cleanly unload, as all IO to the card will be handled by the dummy
434 * driver instead of calling into the (possibly) unloaded module. The
435 * dummy driver just fails all IO.
438 static int dummy_enable(struct fw_card
*card
, u32
*config_rom
, size_t length
)
444 static int dummy_update_phy_reg(struct fw_card
*card
, int address
,
445 int clear_bits
, int set_bits
)
450 static int dummy_set_config_rom(struct fw_card
*card
,
451 u32
*config_rom
, size_t length
)
454 * We take the card out of card_list before setting the dummy
455 * driver, so this should never get called.
461 static void dummy_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
463 packet
->callback(packet
, card
, -ENODEV
);
466 static void dummy_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
468 packet
->callback(packet
, card
, -ENODEV
);
471 static int dummy_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
476 static int dummy_enable_phys_dma(struct fw_card
*card
,
477 int node_id
, int generation
)
482 static struct fw_card_driver dummy_driver
= {
483 .enable
= dummy_enable
,
484 .update_phy_reg
= dummy_update_phy_reg
,
485 .set_config_rom
= dummy_set_config_rom
,
486 .send_request
= dummy_send_request
,
487 .cancel_packet
= dummy_cancel_packet
,
488 .send_response
= dummy_send_response
,
489 .enable_phys_dma
= dummy_enable_phys_dma
,
492 void fw_card_release(struct kref
*kref
)
494 struct fw_card
*card
= container_of(kref
, struct fw_card
, kref
);
496 complete(&card
->done
);
499 void fw_core_remove_card(struct fw_card
*card
)
501 card
->driver
->update_phy_reg(card
, 4,
502 PHY_LINK_ACTIVE
| PHY_CONTENDER
, 0);
503 fw_core_initiate_bus_reset(card
, 1);
505 mutex_lock(&card_mutex
);
506 list_del_init(&card
->link
);
507 mutex_unlock(&card_mutex
);
509 /* Set up the dummy driver. */
510 card
->driver
= &dummy_driver
;
512 fw_destroy_nodes(card
);
514 /* Wait for all users, especially device workqueue jobs, to finish. */
516 wait_for_completion(&card
->done
);
518 WARN_ON(!list_empty(&card
->transaction_list
));
519 del_timer_sync(&card
->flush_timer
);
521 EXPORT_SYMBOL(fw_core_remove_card
);
523 int fw_core_initiate_bus_reset(struct fw_card
*card
, int short_reset
)
525 int reg
= short_reset
? 5 : 1;
526 int bit
= short_reset
? PHY_BUS_SHORT_RESET
: PHY_BUS_RESET
;
528 return card
->driver
->update_phy_reg(card
, reg
, 0, bit
);
530 EXPORT_SYMBOL(fw_core_initiate_bus_reset
);