4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 #include <asm/div64.h>
44 #include <asm/timex.h>
47 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
49 EXPORT_SYMBOL(jiffies_64
);
52 * per-CPU timer vector definitions:
54 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56 #define TVN_SIZE (1 << TVN_BITS)
57 #define TVR_SIZE (1 << TVR_BITS)
58 #define TVN_MASK (TVN_SIZE - 1)
59 #define TVR_MASK (TVR_SIZE - 1)
62 struct list_head vec
[TVN_SIZE
];
66 struct list_head vec
[TVR_SIZE
];
71 struct timer_list
*running_timer
;
72 unsigned long timer_jiffies
;
78 } ____cacheline_aligned
;
80 struct tvec_base boot_tvec_bases
;
81 EXPORT_SYMBOL(boot_tvec_bases
);
82 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
85 * Note that all tvec_bases are 2 byte aligned and lower bit of
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
89 #define TBASE_DEFERRABLE_FLAG (0x1)
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
94 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
97 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
99 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
102 static inline void timer_set_deferrable(struct timer_list
*timer
)
104 timer
->base
= ((struct tvec_base
*)((unsigned long)(timer
->base
) |
105 TBASE_DEFERRABLE_FLAG
));
109 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
111 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
112 tbase_get_deferrable(timer
->base
));
116 * __round_jiffies - function to round jiffies to a full second
117 * @j: the time in (absolute) jiffies that should be rounded
118 * @cpu: the processor number on which the timeout will happen
120 * __round_jiffies() rounds an absolute time in the future (in jiffies)
121 * up or down to (approximately) full seconds. This is useful for timers
122 * for which the exact time they fire does not matter too much, as long as
123 * they fire approximately every X seconds.
125 * By rounding these timers to whole seconds, all such timers will fire
126 * at the same time, rather than at various times spread out. The goal
127 * of this is to have the CPU wake up less, which saves power.
129 * The exact rounding is skewed for each processor to avoid all
130 * processors firing at the exact same time, which could lead
131 * to lock contention or spurious cache line bouncing.
133 * The return value is the rounded version of the @j parameter.
135 unsigned long __round_jiffies(unsigned long j
, int cpu
)
138 unsigned long original
= j
;
141 * We don't want all cpus firing their timers at once hitting the
142 * same lock or cachelines, so we skew each extra cpu with an extra
143 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
145 * The skew is done by adding 3*cpunr, then round, then subtract this
146 * extra offset again.
153 * If the target jiffie is just after a whole second (which can happen
154 * due to delays of the timer irq, long irq off times etc etc) then
155 * we should round down to the whole second, not up. Use 1/4th second
156 * as cutoff for this rounding as an extreme upper bound for this.
158 if (rem
< HZ
/4) /* round down */
163 /* now that we have rounded, subtract the extra skew again */
166 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
170 EXPORT_SYMBOL_GPL(__round_jiffies
);
173 * __round_jiffies_relative - function to round jiffies to a full second
174 * @j: the time in (relative) jiffies that should be rounded
175 * @cpu: the processor number on which the timeout will happen
177 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
178 * up or down to (approximately) full seconds. This is useful for timers
179 * for which the exact time they fire does not matter too much, as long as
180 * they fire approximately every X seconds.
182 * By rounding these timers to whole seconds, all such timers will fire
183 * at the same time, rather than at various times spread out. The goal
184 * of this is to have the CPU wake up less, which saves power.
186 * The exact rounding is skewed for each processor to avoid all
187 * processors firing at the exact same time, which could lead
188 * to lock contention or spurious cache line bouncing.
190 * The return value is the rounded version of the @j parameter.
192 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
195 * In theory the following code can skip a jiffy in case jiffies
196 * increments right between the addition and the later subtraction.
197 * However since the entire point of this function is to use approximate
198 * timeouts, it's entirely ok to not handle that.
200 return __round_jiffies(j
+ jiffies
, cpu
) - jiffies
;
202 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
205 * round_jiffies - function to round jiffies to a full second
206 * @j: the time in (absolute) jiffies that should be rounded
208 * round_jiffies() rounds an absolute time in the future (in jiffies)
209 * up or down to (approximately) full seconds. This is useful for timers
210 * for which the exact time they fire does not matter too much, as long as
211 * they fire approximately every X seconds.
213 * By rounding these timers to whole seconds, all such timers will fire
214 * at the same time, rather than at various times spread out. The goal
215 * of this is to have the CPU wake up less, which saves power.
217 * The return value is the rounded version of the @j parameter.
219 unsigned long round_jiffies(unsigned long j
)
221 return __round_jiffies(j
, raw_smp_processor_id());
223 EXPORT_SYMBOL_GPL(round_jiffies
);
226 * round_jiffies_relative - function to round jiffies to a full second
227 * @j: the time in (relative) jiffies that should be rounded
229 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
230 * up or down to (approximately) full seconds. This is useful for timers
231 * for which the exact time they fire does not matter too much, as long as
232 * they fire approximately every X seconds.
234 * By rounding these timers to whole seconds, all such timers will fire
235 * at the same time, rather than at various times spread out. The goal
236 * of this is to have the CPU wake up less, which saves power.
238 * The return value is the rounded version of the @j parameter.
240 unsigned long round_jiffies_relative(unsigned long j
)
242 return __round_jiffies_relative(j
, raw_smp_processor_id());
244 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
247 static inline void set_running_timer(struct tvec_base
*base
,
248 struct timer_list
*timer
)
251 base
->running_timer
= timer
;
255 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
257 unsigned long expires
= timer
->expires
;
258 unsigned long idx
= expires
- base
->timer_jiffies
;
259 struct list_head
*vec
;
261 if (idx
< TVR_SIZE
) {
262 int i
= expires
& TVR_MASK
;
263 vec
= base
->tv1
.vec
+ i
;
264 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
265 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
266 vec
= base
->tv2
.vec
+ i
;
267 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
268 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
269 vec
= base
->tv3
.vec
+ i
;
270 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
271 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
272 vec
= base
->tv4
.vec
+ i
;
273 } else if ((signed long) idx
< 0) {
275 * Can happen if you add a timer with expires == jiffies,
276 * or you set a timer to go off in the past
278 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
281 /* If the timeout is larger than 0xffffffff on 64-bit
282 * architectures then we use the maximum timeout:
284 if (idx
> 0xffffffffUL
) {
286 expires
= idx
+ base
->timer_jiffies
;
288 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
289 vec
= base
->tv5
.vec
+ i
;
294 list_add_tail(&timer
->entry
, vec
);
297 #ifdef CONFIG_TIMER_STATS
298 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
300 if (timer
->start_site
)
303 timer
->start_site
= addr
;
304 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
305 timer
->start_pid
= current
->pid
;
308 static void timer_stats_account_timer(struct timer_list
*timer
)
310 unsigned int flag
= 0;
312 if (unlikely(tbase_get_deferrable(timer
->base
)))
313 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
315 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
316 timer
->function
, timer
->start_comm
, flag
);
320 static void timer_stats_account_timer(struct timer_list
*timer
) {}
324 * init_timer - initialize a timer.
325 * @timer: the timer to be initialized
327 * init_timer() must be done to a timer prior calling *any* of the
328 * other timer functions.
330 void fastcall
init_timer(struct timer_list
*timer
)
332 timer
->entry
.next
= NULL
;
333 timer
->base
= __raw_get_cpu_var(tvec_bases
);
334 #ifdef CONFIG_TIMER_STATS
335 timer
->start_site
= NULL
;
336 timer
->start_pid
= -1;
337 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
340 EXPORT_SYMBOL(init_timer
);
342 void fastcall
init_timer_deferrable(struct timer_list
*timer
)
345 timer_set_deferrable(timer
);
347 EXPORT_SYMBOL(init_timer_deferrable
);
349 static inline void detach_timer(struct timer_list
*timer
,
352 struct list_head
*entry
= &timer
->entry
;
354 __list_del(entry
->prev
, entry
->next
);
357 entry
->prev
= LIST_POISON2
;
361 * We are using hashed locking: holding per_cpu(tvec_bases).lock
362 * means that all timers which are tied to this base via timer->base are
363 * locked, and the base itself is locked too.
365 * So __run_timers/migrate_timers can safely modify all timers which could
366 * be found on ->tvX lists.
368 * When the timer's base is locked, and the timer removed from list, it is
369 * possible to set timer->base = NULL and drop the lock: the timer remains
372 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
373 unsigned long *flags
)
374 __acquires(timer
->base
->lock
)
376 struct tvec_base
*base
;
379 struct tvec_base
*prelock_base
= timer
->base
;
380 base
= tbase_get_base(prelock_base
);
381 if (likely(base
!= NULL
)) {
382 spin_lock_irqsave(&base
->lock
, *flags
);
383 if (likely(prelock_base
== timer
->base
))
385 /* The timer has migrated to another CPU */
386 spin_unlock_irqrestore(&base
->lock
, *flags
);
392 int __mod_timer(struct timer_list
*timer
, unsigned long expires
)
394 struct tvec_base
*base
, *new_base
;
398 timer_stats_timer_set_start_info(timer
);
399 BUG_ON(!timer
->function
);
401 base
= lock_timer_base(timer
, &flags
);
403 if (timer_pending(timer
)) {
404 detach_timer(timer
, 0);
408 new_base
= __get_cpu_var(tvec_bases
);
410 if (base
!= new_base
) {
412 * We are trying to schedule the timer on the local CPU.
413 * However we can't change timer's base while it is running,
414 * otherwise del_timer_sync() can't detect that the timer's
415 * handler yet has not finished. This also guarantees that
416 * the timer is serialized wrt itself.
418 if (likely(base
->running_timer
!= timer
)) {
419 /* See the comment in lock_timer_base() */
420 timer_set_base(timer
, NULL
);
421 spin_unlock(&base
->lock
);
423 spin_lock(&base
->lock
);
424 timer_set_base(timer
, base
);
428 timer
->expires
= expires
;
429 internal_add_timer(base
, timer
);
430 spin_unlock_irqrestore(&base
->lock
, flags
);
435 EXPORT_SYMBOL(__mod_timer
);
438 * add_timer_on - start a timer on a particular CPU
439 * @timer: the timer to be added
440 * @cpu: the CPU to start it on
442 * This is not very scalable on SMP. Double adds are not possible.
444 void add_timer_on(struct timer_list
*timer
, int cpu
)
446 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
449 timer_stats_timer_set_start_info(timer
);
450 BUG_ON(timer_pending(timer
) || !timer
->function
);
451 spin_lock_irqsave(&base
->lock
, flags
);
452 timer_set_base(timer
, base
);
453 internal_add_timer(base
, timer
);
454 spin_unlock_irqrestore(&base
->lock
, flags
);
459 * mod_timer - modify a timer's timeout
460 * @timer: the timer to be modified
461 * @expires: new timeout in jiffies
463 * mod_timer() is a more efficient way to update the expire field of an
464 * active timer (if the timer is inactive it will be activated)
466 * mod_timer(timer, expires) is equivalent to:
468 * del_timer(timer); timer->expires = expires; add_timer(timer);
470 * Note that if there are multiple unserialized concurrent users of the
471 * same timer, then mod_timer() is the only safe way to modify the timeout,
472 * since add_timer() cannot modify an already running timer.
474 * The function returns whether it has modified a pending timer or not.
475 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
476 * active timer returns 1.)
478 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
480 BUG_ON(!timer
->function
);
482 timer_stats_timer_set_start_info(timer
);
484 * This is a common optimization triggered by the
485 * networking code - if the timer is re-modified
486 * to be the same thing then just return:
488 if (timer
->expires
== expires
&& timer_pending(timer
))
491 return __mod_timer(timer
, expires
);
494 EXPORT_SYMBOL(mod_timer
);
497 * del_timer - deactive a timer.
498 * @timer: the timer to be deactivated
500 * del_timer() deactivates a timer - this works on both active and inactive
503 * The function returns whether it has deactivated a pending timer or not.
504 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
505 * active timer returns 1.)
507 int del_timer(struct timer_list
*timer
)
509 struct tvec_base
*base
;
513 timer_stats_timer_clear_start_info(timer
);
514 if (timer_pending(timer
)) {
515 base
= lock_timer_base(timer
, &flags
);
516 if (timer_pending(timer
)) {
517 detach_timer(timer
, 1);
520 spin_unlock_irqrestore(&base
->lock
, flags
);
526 EXPORT_SYMBOL(del_timer
);
530 * try_to_del_timer_sync - Try to deactivate a timer
531 * @timer: timer do del
533 * This function tries to deactivate a timer. Upon successful (ret >= 0)
534 * exit the timer is not queued and the handler is not running on any CPU.
536 * It must not be called from interrupt contexts.
538 int try_to_del_timer_sync(struct timer_list
*timer
)
540 struct tvec_base
*base
;
544 base
= lock_timer_base(timer
, &flags
);
546 if (base
->running_timer
== timer
)
550 if (timer_pending(timer
)) {
551 detach_timer(timer
, 1);
555 spin_unlock_irqrestore(&base
->lock
, flags
);
560 EXPORT_SYMBOL(try_to_del_timer_sync
);
563 * del_timer_sync - deactivate a timer and wait for the handler to finish.
564 * @timer: the timer to be deactivated
566 * This function only differs from del_timer() on SMP: besides deactivating
567 * the timer it also makes sure the handler has finished executing on other
570 * Synchronization rules: Callers must prevent restarting of the timer,
571 * otherwise this function is meaningless. It must not be called from
572 * interrupt contexts. The caller must not hold locks which would prevent
573 * completion of the timer's handler. The timer's handler must not call
574 * add_timer_on(). Upon exit the timer is not queued and the handler is
575 * not running on any CPU.
577 * The function returns whether it has deactivated a pending timer or not.
579 int del_timer_sync(struct timer_list
*timer
)
582 int ret
= try_to_del_timer_sync(timer
);
589 EXPORT_SYMBOL(del_timer_sync
);
592 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
594 /* cascade all the timers from tv up one level */
595 struct timer_list
*timer
, *tmp
;
596 struct list_head tv_list
;
598 list_replace_init(tv
->vec
+ index
, &tv_list
);
601 * We are removing _all_ timers from the list, so we
602 * don't have to detach them individually.
604 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
605 BUG_ON(tbase_get_base(timer
->base
) != base
);
606 internal_add_timer(base
, timer
);
612 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
615 * __run_timers - run all expired timers (if any) on this CPU.
616 * @base: the timer vector to be processed.
618 * This function cascades all vectors and executes all expired timer
621 static inline void __run_timers(struct tvec_base
*base
)
623 struct timer_list
*timer
;
625 spin_lock_irq(&base
->lock
);
626 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
627 struct list_head work_list
;
628 struct list_head
*head
= &work_list
;
629 int index
= base
->timer_jiffies
& TVR_MASK
;
635 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
636 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
637 !cascade(base
, &base
->tv4
, INDEX(2)))
638 cascade(base
, &base
->tv5
, INDEX(3));
639 ++base
->timer_jiffies
;
640 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
641 while (!list_empty(head
)) {
642 void (*fn
)(unsigned long);
645 timer
= list_first_entry(head
, struct timer_list
,entry
);
646 fn
= timer
->function
;
649 timer_stats_account_timer(timer
);
651 set_running_timer(base
, timer
);
652 detach_timer(timer
, 1);
653 spin_unlock_irq(&base
->lock
);
655 int preempt_count
= preempt_count();
657 if (preempt_count
!= preempt_count()) {
658 printk(KERN_ERR
"huh, entered %p "
659 "with preempt_count %08x, exited"
666 spin_lock_irq(&base
->lock
);
669 set_running_timer(base
, NULL
);
670 spin_unlock_irq(&base
->lock
);
673 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
675 * Find out when the next timer event is due to happen. This
676 * is used on S/390 to stop all activity when a cpus is idle.
677 * This functions needs to be called disabled.
679 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
681 unsigned long timer_jiffies
= base
->timer_jiffies
;
682 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
683 int index
, slot
, array
, found
= 0;
684 struct timer_list
*nte
;
685 struct tvec
*varray
[4];
687 /* Look for timer events in tv1. */
688 index
= slot
= timer_jiffies
& TVR_MASK
;
690 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
691 if (tbase_get_deferrable(nte
->base
))
695 expires
= nte
->expires
;
696 /* Look at the cascade bucket(s)? */
697 if (!index
|| slot
< index
)
701 slot
= (slot
+ 1) & TVR_MASK
;
702 } while (slot
!= index
);
705 /* Calculate the next cascade event */
707 timer_jiffies
+= TVR_SIZE
- index
;
708 timer_jiffies
>>= TVR_BITS
;
711 varray
[0] = &base
->tv2
;
712 varray
[1] = &base
->tv3
;
713 varray
[2] = &base
->tv4
;
714 varray
[3] = &base
->tv5
;
716 for (array
= 0; array
< 4; array
++) {
717 struct tvec
*varp
= varray
[array
];
719 index
= slot
= timer_jiffies
& TVN_MASK
;
721 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
723 if (time_before(nte
->expires
, expires
))
724 expires
= nte
->expires
;
727 * Do we still search for the first timer or are
728 * we looking up the cascade buckets ?
731 /* Look at the cascade bucket(s)? */
732 if (!index
|| slot
< index
)
736 slot
= (slot
+ 1) & TVN_MASK
;
737 } while (slot
!= index
);
740 timer_jiffies
+= TVN_SIZE
- index
;
741 timer_jiffies
>>= TVN_BITS
;
747 * Check, if the next hrtimer event is before the next timer wheel
750 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
751 unsigned long expires
)
753 ktime_t hr_delta
= hrtimer_get_next_event();
754 struct timespec tsdelta
;
757 if (hr_delta
.tv64
== KTIME_MAX
)
761 * Expired timer available, let it expire in the next tick
763 if (hr_delta
.tv64
<= 0)
766 tsdelta
= ktime_to_timespec(hr_delta
);
767 delta
= timespec_to_jiffies(&tsdelta
);
770 * Limit the delta to the max value, which is checked in
771 * tick_nohz_stop_sched_tick():
773 if (delta
> NEXT_TIMER_MAX_DELTA
)
774 delta
= NEXT_TIMER_MAX_DELTA
;
777 * Take rounding errors in to account and make sure, that it
778 * expires in the next tick. Otherwise we go into an endless
779 * ping pong due to tick_nohz_stop_sched_tick() retriggering
785 if (time_before(now
, expires
))
791 * get_next_timer_interrupt - return the jiffy of the next pending timer
792 * @now: current time (in jiffies)
794 unsigned long get_next_timer_interrupt(unsigned long now
)
796 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
797 unsigned long expires
;
799 spin_lock(&base
->lock
);
800 expires
= __next_timer_interrupt(base
);
801 spin_unlock(&base
->lock
);
803 if (time_before_eq(expires
, now
))
806 return cmp_next_hrtimer_event(now
, expires
);
809 #ifdef CONFIG_NO_IDLE_HZ
810 unsigned long next_timer_interrupt(void)
812 return get_next_timer_interrupt(jiffies
);
818 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
819 void account_process_tick(struct task_struct
*p
, int user_tick
)
821 cputime_t one_jiffy
= jiffies_to_cputime(1);
824 account_user_time(p
, one_jiffy
);
825 account_user_time_scaled(p
, cputime_to_scaled(one_jiffy
));
827 account_system_time(p
, HARDIRQ_OFFSET
, one_jiffy
);
828 account_system_time_scaled(p
, cputime_to_scaled(one_jiffy
));
834 * Called from the timer interrupt handler to charge one tick to the current
835 * process. user_tick is 1 if the tick is user time, 0 for system.
837 void update_process_times(int user_tick
)
839 struct task_struct
*p
= current
;
840 int cpu
= smp_processor_id();
842 /* Note: this timer irq context must be accounted for as well. */
843 account_process_tick(p
, user_tick
);
845 if (rcu_pending(cpu
))
846 rcu_check_callbacks(cpu
, user_tick
);
848 run_posix_cpu_timers(p
);
852 * Nr of active tasks - counted in fixed-point numbers
854 static unsigned long count_active_tasks(void)
856 return nr_active() * FIXED_1
;
860 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
861 * imply that avenrun[] is the standard name for this kind of thing.
862 * Nothing else seems to be standardized: the fractional size etc
863 * all seem to differ on different machines.
865 * Requires xtime_lock to access.
867 unsigned long avenrun
[3];
869 EXPORT_SYMBOL(avenrun
);
872 * calc_load - given tick count, update the avenrun load estimates.
873 * This is called while holding a write_lock on xtime_lock.
875 static inline void calc_load(unsigned long ticks
)
877 unsigned long active_tasks
; /* fixed-point */
878 static int count
= LOAD_FREQ
;
881 if (unlikely(count
< 0)) {
882 active_tasks
= count_active_tasks();
884 CALC_LOAD(avenrun
[0], EXP_1
, active_tasks
);
885 CALC_LOAD(avenrun
[1], EXP_5
, active_tasks
);
886 CALC_LOAD(avenrun
[2], EXP_15
, active_tasks
);
893 * This function runs timers and the timer-tq in bottom half context.
895 static void run_timer_softirq(struct softirq_action
*h
)
897 struct tvec_base
*base
= __get_cpu_var(tvec_bases
);
899 hrtimer_run_pending();
901 if (time_after_eq(jiffies
, base
->timer_jiffies
))
906 * Called by the local, per-CPU timer interrupt on SMP.
908 void run_local_timers(void)
910 hrtimer_run_queues();
911 raise_softirq(TIMER_SOFTIRQ
);
916 * Called by the timer interrupt. xtime_lock must already be taken
919 static inline void update_times(unsigned long ticks
)
926 * The 64-bit jiffies value is not atomic - you MUST NOT read it
927 * without sampling the sequence number in xtime_lock.
928 * jiffies is defined in the linker script...
931 void do_timer(unsigned long ticks
)
937 #ifdef __ARCH_WANT_SYS_ALARM
940 * For backwards compatibility? This can be done in libc so Alpha
941 * and all newer ports shouldn't need it.
943 asmlinkage
unsigned long sys_alarm(unsigned int seconds
)
945 return alarm_setitimer(seconds
);
953 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
954 * should be moved into arch/i386 instead?
958 * sys_getpid - return the thread group id of the current process
960 * Note, despite the name, this returns the tgid not the pid. The tgid and
961 * the pid are identical unless CLONE_THREAD was specified on clone() in
962 * which case the tgid is the same in all threads of the same group.
964 * This is SMP safe as current->tgid does not change.
966 asmlinkage
long sys_getpid(void)
968 return task_tgid_vnr(current
);
972 * Accessing ->real_parent is not SMP-safe, it could
973 * change from under us. However, we can use a stale
974 * value of ->real_parent under rcu_read_lock(), see
975 * release_task()->call_rcu(delayed_put_task_struct).
977 asmlinkage
long sys_getppid(void)
982 pid
= task_tgid_nr_ns(current
->real_parent
, current
->nsproxy
->pid_ns
);
988 asmlinkage
long sys_getuid(void)
990 /* Only we change this so SMP safe */
994 asmlinkage
long sys_geteuid(void)
996 /* Only we change this so SMP safe */
997 return current
->euid
;
1000 asmlinkage
long sys_getgid(void)
1002 /* Only we change this so SMP safe */
1003 return current
->gid
;
1006 asmlinkage
long sys_getegid(void)
1008 /* Only we change this so SMP safe */
1009 return current
->egid
;
1014 static void process_timeout(unsigned long __data
)
1016 wake_up_process((struct task_struct
*)__data
);
1020 * schedule_timeout - sleep until timeout
1021 * @timeout: timeout value in jiffies
1023 * Make the current task sleep until @timeout jiffies have
1024 * elapsed. The routine will return immediately unless
1025 * the current task state has been set (see set_current_state()).
1027 * You can set the task state as follows -
1029 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1030 * pass before the routine returns. The routine will return 0
1032 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1033 * delivered to the current task. In this case the remaining time
1034 * in jiffies will be returned, or 0 if the timer expired in time
1036 * The current task state is guaranteed to be TASK_RUNNING when this
1039 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1040 * the CPU away without a bound on the timeout. In this case the return
1041 * value will be %MAX_SCHEDULE_TIMEOUT.
1043 * In all cases the return value is guaranteed to be non-negative.
1045 fastcall
signed long __sched
schedule_timeout(signed long timeout
)
1047 struct timer_list timer
;
1048 unsigned long expire
;
1052 case MAX_SCHEDULE_TIMEOUT
:
1054 * These two special cases are useful to be comfortable
1055 * in the caller. Nothing more. We could take
1056 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1057 * but I' d like to return a valid offset (>=0) to allow
1058 * the caller to do everything it want with the retval.
1064 * Another bit of PARANOID. Note that the retval will be
1065 * 0 since no piece of kernel is supposed to do a check
1066 * for a negative retval of schedule_timeout() (since it
1067 * should never happens anyway). You just have the printk()
1068 * that will tell you if something is gone wrong and where.
1071 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1072 "value %lx\n", timeout
);
1074 current
->state
= TASK_RUNNING
;
1079 expire
= timeout
+ jiffies
;
1081 setup_timer(&timer
, process_timeout
, (unsigned long)current
);
1082 __mod_timer(&timer
, expire
);
1084 del_singleshot_timer_sync(&timer
);
1086 timeout
= expire
- jiffies
;
1089 return timeout
< 0 ? 0 : timeout
;
1091 EXPORT_SYMBOL(schedule_timeout
);
1094 * We can use __set_current_state() here because schedule_timeout() calls
1095 * schedule() unconditionally.
1097 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1099 __set_current_state(TASK_INTERRUPTIBLE
);
1100 return schedule_timeout(timeout
);
1102 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1104 signed long __sched
schedule_timeout_killable(signed long timeout
)
1106 __set_current_state(TASK_KILLABLE
);
1107 return schedule_timeout(timeout
);
1109 EXPORT_SYMBOL(schedule_timeout_killable
);
1111 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1113 __set_current_state(TASK_UNINTERRUPTIBLE
);
1114 return schedule_timeout(timeout
);
1116 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1118 /* Thread ID - the internal kernel "pid" */
1119 asmlinkage
long sys_gettid(void)
1121 return task_pid_vnr(current
);
1125 * do_sysinfo - fill in sysinfo struct
1126 * @info: pointer to buffer to fill
1128 int do_sysinfo(struct sysinfo
*info
)
1130 unsigned long mem_total
, sav_total
;
1131 unsigned int mem_unit
, bitcount
;
1134 memset(info
, 0, sizeof(struct sysinfo
));
1138 seq
= read_seqbegin(&xtime_lock
);
1141 * This is annoying. The below is the same thing
1142 * posix_get_clock_monotonic() does, but it wants to
1143 * take the lock which we want to cover the loads stuff
1147 getnstimeofday(&tp
);
1148 tp
.tv_sec
+= wall_to_monotonic
.tv_sec
;
1149 tp
.tv_nsec
+= wall_to_monotonic
.tv_nsec
;
1150 monotonic_to_bootbased(&tp
);
1151 if (tp
.tv_nsec
- NSEC_PER_SEC
>= 0) {
1152 tp
.tv_nsec
= tp
.tv_nsec
- NSEC_PER_SEC
;
1155 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1157 info
->loads
[0] = avenrun
[0] << (SI_LOAD_SHIFT
- FSHIFT
);
1158 info
->loads
[1] = avenrun
[1] << (SI_LOAD_SHIFT
- FSHIFT
);
1159 info
->loads
[2] = avenrun
[2] << (SI_LOAD_SHIFT
- FSHIFT
);
1161 info
->procs
= nr_threads
;
1162 } while (read_seqretry(&xtime_lock
, seq
));
1168 * If the sum of all the available memory (i.e. ram + swap)
1169 * is less than can be stored in a 32 bit unsigned long then
1170 * we can be binary compatible with 2.2.x kernels. If not,
1171 * well, in that case 2.2.x was broken anyways...
1173 * -Erik Andersen <andersee@debian.org>
1176 mem_total
= info
->totalram
+ info
->totalswap
;
1177 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1180 mem_unit
= info
->mem_unit
;
1181 while (mem_unit
> 1) {
1184 sav_total
= mem_total
;
1186 if (mem_total
< sav_total
)
1191 * If mem_total did not overflow, multiply all memory values by
1192 * info->mem_unit and set it to 1. This leaves things compatible
1193 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1198 info
->totalram
<<= bitcount
;
1199 info
->freeram
<<= bitcount
;
1200 info
->sharedram
<<= bitcount
;
1201 info
->bufferram
<<= bitcount
;
1202 info
->totalswap
<<= bitcount
;
1203 info
->freeswap
<<= bitcount
;
1204 info
->totalhigh
<<= bitcount
;
1205 info
->freehigh
<<= bitcount
;
1211 asmlinkage
long sys_sysinfo(struct sysinfo __user
*info
)
1217 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1224 * lockdep: we want to track each per-CPU base as a separate lock-class,
1225 * but timer-bases are kmalloc()-ed, so we need to attach separate
1228 static struct lock_class_key base_lock_keys
[NR_CPUS
];
1230 static int __cpuinit
init_timers_cpu(int cpu
)
1233 struct tvec_base
*base
;
1234 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1236 if (!tvec_base_done
[cpu
]) {
1237 static char boot_done
;
1241 * The APs use this path later in boot
1243 base
= kmalloc_node(sizeof(*base
),
1244 GFP_KERNEL
| __GFP_ZERO
,
1249 /* Make sure that tvec_base is 2 byte aligned */
1250 if (tbase_get_deferrable(base
)) {
1255 per_cpu(tvec_bases
, cpu
) = base
;
1258 * This is for the boot CPU - we use compile-time
1259 * static initialisation because per-cpu memory isn't
1260 * ready yet and because the memory allocators are not
1261 * initialised either.
1264 base
= &boot_tvec_bases
;
1266 tvec_base_done
[cpu
] = 1;
1268 base
= per_cpu(tvec_bases
, cpu
);
1271 spin_lock_init(&base
->lock
);
1272 lockdep_set_class(&base
->lock
, base_lock_keys
+ cpu
);
1274 for (j
= 0; j
< TVN_SIZE
; j
++) {
1275 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1276 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1277 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1278 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1280 for (j
= 0; j
< TVR_SIZE
; j
++)
1281 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1283 base
->timer_jiffies
= jiffies
;
1287 #ifdef CONFIG_HOTPLUG_CPU
1288 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1290 struct timer_list
*timer
;
1292 while (!list_empty(head
)) {
1293 timer
= list_first_entry(head
, struct timer_list
, entry
);
1294 detach_timer(timer
, 0);
1295 timer_set_base(timer
, new_base
);
1296 internal_add_timer(new_base
, timer
);
1300 static void __cpuinit
migrate_timers(int cpu
)
1302 struct tvec_base
*old_base
;
1303 struct tvec_base
*new_base
;
1306 BUG_ON(cpu_online(cpu
));
1307 old_base
= per_cpu(tvec_bases
, cpu
);
1308 new_base
= get_cpu_var(tvec_bases
);
1310 local_irq_disable();
1311 double_spin_lock(&new_base
->lock
, &old_base
->lock
,
1312 smp_processor_id() < cpu
);
1314 BUG_ON(old_base
->running_timer
);
1316 for (i
= 0; i
< TVR_SIZE
; i
++)
1317 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1318 for (i
= 0; i
< TVN_SIZE
; i
++) {
1319 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1320 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1321 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1322 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1325 double_spin_unlock(&new_base
->lock
, &old_base
->lock
,
1326 smp_processor_id() < cpu
);
1328 put_cpu_var(tvec_bases
);
1330 #endif /* CONFIG_HOTPLUG_CPU */
1332 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1333 unsigned long action
, void *hcpu
)
1335 long cpu
= (long)hcpu
;
1337 case CPU_UP_PREPARE
:
1338 case CPU_UP_PREPARE_FROZEN
:
1339 if (init_timers_cpu(cpu
) < 0)
1342 #ifdef CONFIG_HOTPLUG_CPU
1344 case CPU_DEAD_FROZEN
:
1345 migrate_timers(cpu
);
1354 static struct notifier_block __cpuinitdata timers_nb
= {
1355 .notifier_call
= timer_cpu_notify
,
1359 void __init
init_timers(void)
1361 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1362 (void *)(long)smp_processor_id());
1366 BUG_ON(err
== NOTIFY_BAD
);
1367 register_cpu_notifier(&timers_nb
);
1368 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
, NULL
);
1372 * msleep - sleep safely even with waitqueue interruptions
1373 * @msecs: Time in milliseconds to sleep for
1375 void msleep(unsigned int msecs
)
1377 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1380 timeout
= schedule_timeout_uninterruptible(timeout
);
1383 EXPORT_SYMBOL(msleep
);
1386 * msleep_interruptible - sleep waiting for signals
1387 * @msecs: Time in milliseconds to sleep for
1389 unsigned long msleep_interruptible(unsigned int msecs
)
1391 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1393 while (timeout
&& !signal_pending(current
))
1394 timeout
= schedule_timeout_interruptible(timeout
);
1395 return jiffies_to_msecs(timeout
);
1398 EXPORT_SYMBOL(msleep_interruptible
);