igb: Use device_set_wakeup_enable
[linux-2.6/mini2440.git] / drivers / net / igb / igb_main.c
blob0a9801516ae02f180bac0c91f3ba788a3dc925eb
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #ifdef CONFIG_IGB_DCA
46 #include <linux/dca.h>
47 #endif
48 #include "igb.h"
50 #define DRV_VERSION "1.2.45-k2"
51 char igb_driver_name[] = "igb";
52 char igb_driver_version[] = DRV_VERSION;
53 static const char igb_driver_string[] =
54 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
57 static const struct e1000_info *igb_info_tbl[] = {
58 [board_82575] = &e1000_82575_info,
61 static struct pci_device_id igb_pci_tbl[] = {
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
68 /* required last entry */
69 {0, }
72 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74 void igb_reset(struct igb_adapter *);
75 static int igb_setup_all_tx_resources(struct igb_adapter *);
76 static int igb_setup_all_rx_resources(struct igb_adapter *);
77 static void igb_free_all_tx_resources(struct igb_adapter *);
78 static void igb_free_all_rx_resources(struct igb_adapter *);
79 static void igb_free_tx_resources(struct igb_ring *);
80 static void igb_free_rx_resources(struct igb_ring *);
81 void igb_update_stats(struct igb_adapter *);
82 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83 static void __devexit igb_remove(struct pci_dev *pdev);
84 static int igb_sw_init(struct igb_adapter *);
85 static int igb_open(struct net_device *);
86 static int igb_close(struct net_device *);
87 static void igb_configure_tx(struct igb_adapter *);
88 static void igb_configure_rx(struct igb_adapter *);
89 static void igb_setup_rctl(struct igb_adapter *);
90 static void igb_clean_all_tx_rings(struct igb_adapter *);
91 static void igb_clean_all_rx_rings(struct igb_adapter *);
92 static void igb_clean_tx_ring(struct igb_ring *);
93 static void igb_clean_rx_ring(struct igb_ring *);
94 static void igb_set_multi(struct net_device *);
95 static void igb_update_phy_info(unsigned long);
96 static void igb_watchdog(unsigned long);
97 static void igb_watchdog_task(struct work_struct *);
98 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99 struct igb_ring *);
100 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101 static struct net_device_stats *igb_get_stats(struct net_device *);
102 static int igb_change_mtu(struct net_device *, int);
103 static int igb_set_mac(struct net_device *, void *);
104 static irqreturn_t igb_intr(int irq, void *);
105 static irqreturn_t igb_intr_msi(int irq, void *);
106 static irqreturn_t igb_msix_other(int irq, void *);
107 static irqreturn_t igb_msix_rx(int irq, void *);
108 static irqreturn_t igb_msix_tx(int irq, void *);
109 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
110 #ifdef CONFIG_IGB_DCA
111 static void igb_update_rx_dca(struct igb_ring *);
112 static void igb_update_tx_dca(struct igb_ring *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_ring *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
118 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
119 #ifdef CONFIG_IGB_LRO
120 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
121 #endif
122 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
123 static void igb_tx_timeout(struct net_device *);
124 static void igb_reset_task(struct work_struct *);
125 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
126 static void igb_vlan_rx_add_vid(struct net_device *, u16);
127 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
128 static void igb_restore_vlan(struct igb_adapter *);
130 static int igb_suspend(struct pci_dev *, pm_message_t);
131 #ifdef CONFIG_PM
132 static int igb_resume(struct pci_dev *);
133 #endif
134 static void igb_shutdown(struct pci_dev *);
135 #ifdef CONFIG_IGB_DCA
136 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
137 static struct notifier_block dca_notifier = {
138 .notifier_call = igb_notify_dca,
139 .next = NULL,
140 .priority = 0
142 #endif
144 #ifdef CONFIG_NET_POLL_CONTROLLER
145 /* for netdump / net console */
146 static void igb_netpoll(struct net_device *);
147 #endif
149 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
150 pci_channel_state_t);
151 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
152 static void igb_io_resume(struct pci_dev *);
154 static struct pci_error_handlers igb_err_handler = {
155 .error_detected = igb_io_error_detected,
156 .slot_reset = igb_io_slot_reset,
157 .resume = igb_io_resume,
161 static struct pci_driver igb_driver = {
162 .name = igb_driver_name,
163 .id_table = igb_pci_tbl,
164 .probe = igb_probe,
165 .remove = __devexit_p(igb_remove),
166 #ifdef CONFIG_PM
167 /* Power Managment Hooks */
168 .suspend = igb_suspend,
169 .resume = igb_resume,
170 #endif
171 .shutdown = igb_shutdown,
172 .err_handler = &igb_err_handler
175 static int global_quad_port_a; /* global quad port a indication */
177 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
178 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
179 MODULE_LICENSE("GPL");
180 MODULE_VERSION(DRV_VERSION);
182 #ifdef DEBUG
184 * igb_get_hw_dev_name - return device name string
185 * used by hardware layer to print debugging information
187 char *igb_get_hw_dev_name(struct e1000_hw *hw)
189 struct igb_adapter *adapter = hw->back;
190 return adapter->netdev->name;
192 #endif
195 * igb_init_module - Driver Registration Routine
197 * igb_init_module is the first routine called when the driver is
198 * loaded. All it does is register with the PCI subsystem.
200 static int __init igb_init_module(void)
202 int ret;
203 printk(KERN_INFO "%s - version %s\n",
204 igb_driver_string, igb_driver_version);
206 printk(KERN_INFO "%s\n", igb_copyright);
208 global_quad_port_a = 0;
210 ret = pci_register_driver(&igb_driver);
211 #ifdef CONFIG_IGB_DCA
212 dca_register_notify(&dca_notifier);
213 #endif
214 return ret;
217 module_init(igb_init_module);
220 * igb_exit_module - Driver Exit Cleanup Routine
222 * igb_exit_module is called just before the driver is removed
223 * from memory.
225 static void __exit igb_exit_module(void)
227 #ifdef CONFIG_IGB_DCA
228 dca_unregister_notify(&dca_notifier);
229 #endif
230 pci_unregister_driver(&igb_driver);
233 module_exit(igb_exit_module);
236 * igb_alloc_queues - Allocate memory for all rings
237 * @adapter: board private structure to initialize
239 * We allocate one ring per queue at run-time since we don't know the
240 * number of queues at compile-time.
242 static int igb_alloc_queues(struct igb_adapter *adapter)
244 int i;
246 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
247 sizeof(struct igb_ring), GFP_KERNEL);
248 if (!adapter->tx_ring)
249 return -ENOMEM;
251 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
252 sizeof(struct igb_ring), GFP_KERNEL);
253 if (!adapter->rx_ring) {
254 kfree(adapter->tx_ring);
255 return -ENOMEM;
258 adapter->rx_ring->buddy = adapter->tx_ring;
260 for (i = 0; i < adapter->num_tx_queues; i++) {
261 struct igb_ring *ring = &(adapter->tx_ring[i]);
262 ring->adapter = adapter;
263 ring->queue_index = i;
265 for (i = 0; i < adapter->num_rx_queues; i++) {
266 struct igb_ring *ring = &(adapter->rx_ring[i]);
267 ring->adapter = adapter;
268 ring->queue_index = i;
269 ring->itr_register = E1000_ITR;
271 /* set a default napi handler for each rx_ring */
272 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
274 return 0;
277 static void igb_free_queues(struct igb_adapter *adapter)
279 int i;
281 for (i = 0; i < adapter->num_rx_queues; i++)
282 netif_napi_del(&adapter->rx_ring[i].napi);
284 kfree(adapter->tx_ring);
285 kfree(adapter->rx_ring);
288 #define IGB_N0_QUEUE -1
289 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
290 int tx_queue, int msix_vector)
292 u32 msixbm = 0;
293 struct e1000_hw *hw = &adapter->hw;
294 u32 ivar, index;
296 switch (hw->mac.type) {
297 case e1000_82575:
298 /* The 82575 assigns vectors using a bitmask, which matches the
299 bitmask for the EICR/EIMS/EIMC registers. To assign one
300 or more queues to a vector, we write the appropriate bits
301 into the MSIXBM register for that vector. */
302 if (rx_queue > IGB_N0_QUEUE) {
303 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
304 adapter->rx_ring[rx_queue].eims_value = msixbm;
306 if (tx_queue > IGB_N0_QUEUE) {
307 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
308 adapter->tx_ring[tx_queue].eims_value =
309 E1000_EICR_TX_QUEUE0 << tx_queue;
311 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
312 break;
313 case e1000_82576:
314 /* The 82576 uses a table-based method for assigning vectors.
315 Each queue has a single entry in the table to which we write
316 a vector number along with a "valid" bit. Sadly, the layout
317 of the table is somewhat counterintuitive. */
318 if (rx_queue > IGB_N0_QUEUE) {
319 index = (rx_queue & 0x7);
320 ivar = array_rd32(E1000_IVAR0, index);
321 if (rx_queue < 8) {
322 /* vector goes into low byte of register */
323 ivar = ivar & 0xFFFFFF00;
324 ivar |= msix_vector | E1000_IVAR_VALID;
325 } else {
326 /* vector goes into third byte of register */
327 ivar = ivar & 0xFF00FFFF;
328 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
330 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
331 array_wr32(E1000_IVAR0, index, ivar);
333 if (tx_queue > IGB_N0_QUEUE) {
334 index = (tx_queue & 0x7);
335 ivar = array_rd32(E1000_IVAR0, index);
336 if (tx_queue < 8) {
337 /* vector goes into second byte of register */
338 ivar = ivar & 0xFFFF00FF;
339 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
340 } else {
341 /* vector goes into high byte of register */
342 ivar = ivar & 0x00FFFFFF;
343 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
345 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
346 array_wr32(E1000_IVAR0, index, ivar);
348 break;
349 default:
350 BUG();
351 break;
356 * igb_configure_msix - Configure MSI-X hardware
358 * igb_configure_msix sets up the hardware to properly
359 * generate MSI-X interrupts.
361 static void igb_configure_msix(struct igb_adapter *adapter)
363 u32 tmp;
364 int i, vector = 0;
365 struct e1000_hw *hw = &adapter->hw;
367 adapter->eims_enable_mask = 0;
368 if (hw->mac.type == e1000_82576)
369 /* Turn on MSI-X capability first, or our settings
370 * won't stick. And it will take days to debug. */
371 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
372 E1000_GPIE_PBA | E1000_GPIE_EIAME |
373 E1000_GPIE_NSICR);
375 for (i = 0; i < adapter->num_tx_queues; i++) {
376 struct igb_ring *tx_ring = &adapter->tx_ring[i];
377 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
378 adapter->eims_enable_mask |= tx_ring->eims_value;
379 if (tx_ring->itr_val)
380 writel(tx_ring->itr_val,
381 hw->hw_addr + tx_ring->itr_register);
382 else
383 writel(1, hw->hw_addr + tx_ring->itr_register);
386 for (i = 0; i < adapter->num_rx_queues; i++) {
387 struct igb_ring *rx_ring = &adapter->rx_ring[i];
388 rx_ring->buddy = NULL;
389 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
390 adapter->eims_enable_mask |= rx_ring->eims_value;
391 if (rx_ring->itr_val)
392 writel(rx_ring->itr_val,
393 hw->hw_addr + rx_ring->itr_register);
394 else
395 writel(1, hw->hw_addr + rx_ring->itr_register);
399 /* set vector for other causes, i.e. link changes */
400 switch (hw->mac.type) {
401 case e1000_82575:
402 array_wr32(E1000_MSIXBM(0), vector++,
403 E1000_EIMS_OTHER);
405 tmp = rd32(E1000_CTRL_EXT);
406 /* enable MSI-X PBA support*/
407 tmp |= E1000_CTRL_EXT_PBA_CLR;
409 /* Auto-Mask interrupts upon ICR read. */
410 tmp |= E1000_CTRL_EXT_EIAME;
411 tmp |= E1000_CTRL_EXT_IRCA;
413 wr32(E1000_CTRL_EXT, tmp);
414 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
415 adapter->eims_other = E1000_EIMS_OTHER;
417 break;
419 case e1000_82576:
420 tmp = (vector++ | E1000_IVAR_VALID) << 8;
421 wr32(E1000_IVAR_MISC, tmp);
423 adapter->eims_enable_mask = (1 << (vector)) - 1;
424 adapter->eims_other = 1 << (vector - 1);
425 break;
426 default:
427 /* do nothing, since nothing else supports MSI-X */
428 break;
429 } /* switch (hw->mac.type) */
430 wrfl();
434 * igb_request_msix - Initialize MSI-X interrupts
436 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
437 * kernel.
439 static int igb_request_msix(struct igb_adapter *adapter)
441 struct net_device *netdev = adapter->netdev;
442 int i, err = 0, vector = 0;
444 vector = 0;
446 for (i = 0; i < adapter->num_tx_queues; i++) {
447 struct igb_ring *ring = &(adapter->tx_ring[i]);
448 sprintf(ring->name, "%s-tx%d", netdev->name, i);
449 err = request_irq(adapter->msix_entries[vector].vector,
450 &igb_msix_tx, 0, ring->name,
451 &(adapter->tx_ring[i]));
452 if (err)
453 goto out;
454 ring->itr_register = E1000_EITR(0) + (vector << 2);
455 ring->itr_val = 976; /* ~4000 ints/sec */
456 vector++;
458 for (i = 0; i < adapter->num_rx_queues; i++) {
459 struct igb_ring *ring = &(adapter->rx_ring[i]);
460 if (strlen(netdev->name) < (IFNAMSIZ - 5))
461 sprintf(ring->name, "%s-rx%d", netdev->name, i);
462 else
463 memcpy(ring->name, netdev->name, IFNAMSIZ);
464 err = request_irq(adapter->msix_entries[vector].vector,
465 &igb_msix_rx, 0, ring->name,
466 &(adapter->rx_ring[i]));
467 if (err)
468 goto out;
469 ring->itr_register = E1000_EITR(0) + (vector << 2);
470 ring->itr_val = adapter->itr;
471 /* overwrite the poll routine for MSIX, we've already done
472 * netif_napi_add */
473 ring->napi.poll = &igb_clean_rx_ring_msix;
474 vector++;
477 err = request_irq(adapter->msix_entries[vector].vector,
478 &igb_msix_other, 0, netdev->name, netdev);
479 if (err)
480 goto out;
482 igb_configure_msix(adapter);
483 return 0;
484 out:
485 return err;
488 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
490 if (adapter->msix_entries) {
491 pci_disable_msix(adapter->pdev);
492 kfree(adapter->msix_entries);
493 adapter->msix_entries = NULL;
494 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
495 pci_disable_msi(adapter->pdev);
496 return;
501 * igb_set_interrupt_capability - set MSI or MSI-X if supported
503 * Attempt to configure interrupts using the best available
504 * capabilities of the hardware and kernel.
506 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
508 int err;
509 int numvecs, i;
511 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
512 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
513 GFP_KERNEL);
514 if (!adapter->msix_entries)
515 goto msi_only;
517 for (i = 0; i < numvecs; i++)
518 adapter->msix_entries[i].entry = i;
520 err = pci_enable_msix(adapter->pdev,
521 adapter->msix_entries,
522 numvecs);
523 if (err == 0)
524 goto out;
526 igb_reset_interrupt_capability(adapter);
528 /* If we can't do MSI-X, try MSI */
529 msi_only:
530 adapter->num_rx_queues = 1;
531 adapter->num_tx_queues = 1;
532 if (!pci_enable_msi(adapter->pdev))
533 adapter->flags |= IGB_FLAG_HAS_MSI;
534 out:
535 /* Notify the stack of the (possibly) reduced Tx Queue count. */
536 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
537 return;
541 * igb_request_irq - initialize interrupts
543 * Attempts to configure interrupts using the best available
544 * capabilities of the hardware and kernel.
546 static int igb_request_irq(struct igb_adapter *adapter)
548 struct net_device *netdev = adapter->netdev;
549 struct e1000_hw *hw = &adapter->hw;
550 int err = 0;
552 if (adapter->msix_entries) {
553 err = igb_request_msix(adapter);
554 if (!err)
555 goto request_done;
556 /* fall back to MSI */
557 igb_reset_interrupt_capability(adapter);
558 if (!pci_enable_msi(adapter->pdev))
559 adapter->flags |= IGB_FLAG_HAS_MSI;
560 igb_free_all_tx_resources(adapter);
561 igb_free_all_rx_resources(adapter);
562 adapter->num_rx_queues = 1;
563 igb_alloc_queues(adapter);
564 } else {
565 switch (hw->mac.type) {
566 case e1000_82575:
567 wr32(E1000_MSIXBM(0),
568 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
569 break;
570 case e1000_82576:
571 wr32(E1000_IVAR0, E1000_IVAR_VALID);
572 break;
573 default:
574 break;
578 if (adapter->flags & IGB_FLAG_HAS_MSI) {
579 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
580 netdev->name, netdev);
581 if (!err)
582 goto request_done;
583 /* fall back to legacy interrupts */
584 igb_reset_interrupt_capability(adapter);
585 adapter->flags &= ~IGB_FLAG_HAS_MSI;
588 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
589 netdev->name, netdev);
591 if (err)
592 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
593 err);
595 request_done:
596 return err;
599 static void igb_free_irq(struct igb_adapter *adapter)
601 struct net_device *netdev = adapter->netdev;
603 if (adapter->msix_entries) {
604 int vector = 0, i;
606 for (i = 0; i < adapter->num_tx_queues; i++)
607 free_irq(adapter->msix_entries[vector++].vector,
608 &(adapter->tx_ring[i]));
609 for (i = 0; i < adapter->num_rx_queues; i++)
610 free_irq(adapter->msix_entries[vector++].vector,
611 &(adapter->rx_ring[i]));
613 free_irq(adapter->msix_entries[vector++].vector, netdev);
614 return;
617 free_irq(adapter->pdev->irq, netdev);
621 * igb_irq_disable - Mask off interrupt generation on the NIC
622 * @adapter: board private structure
624 static void igb_irq_disable(struct igb_adapter *adapter)
626 struct e1000_hw *hw = &adapter->hw;
628 if (adapter->msix_entries) {
629 wr32(E1000_EIAM, 0);
630 wr32(E1000_EIMC, ~0);
631 wr32(E1000_EIAC, 0);
634 wr32(E1000_IAM, 0);
635 wr32(E1000_IMC, ~0);
636 wrfl();
637 synchronize_irq(adapter->pdev->irq);
641 * igb_irq_enable - Enable default interrupt generation settings
642 * @adapter: board private structure
644 static void igb_irq_enable(struct igb_adapter *adapter)
646 struct e1000_hw *hw = &adapter->hw;
648 if (adapter->msix_entries) {
649 wr32(E1000_EIAC, adapter->eims_enable_mask);
650 wr32(E1000_EIAM, adapter->eims_enable_mask);
651 wr32(E1000_EIMS, adapter->eims_enable_mask);
652 wr32(E1000_IMS, E1000_IMS_LSC);
653 } else {
654 wr32(E1000_IMS, IMS_ENABLE_MASK);
655 wr32(E1000_IAM, IMS_ENABLE_MASK);
659 static void igb_update_mng_vlan(struct igb_adapter *adapter)
661 struct net_device *netdev = adapter->netdev;
662 u16 vid = adapter->hw.mng_cookie.vlan_id;
663 u16 old_vid = adapter->mng_vlan_id;
664 if (adapter->vlgrp) {
665 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
666 if (adapter->hw.mng_cookie.status &
667 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
668 igb_vlan_rx_add_vid(netdev, vid);
669 adapter->mng_vlan_id = vid;
670 } else
671 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
673 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
674 (vid != old_vid) &&
675 !vlan_group_get_device(adapter->vlgrp, old_vid))
676 igb_vlan_rx_kill_vid(netdev, old_vid);
677 } else
678 adapter->mng_vlan_id = vid;
683 * igb_release_hw_control - release control of the h/w to f/w
684 * @adapter: address of board private structure
686 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
687 * For ASF and Pass Through versions of f/w this means that the
688 * driver is no longer loaded.
691 static void igb_release_hw_control(struct igb_adapter *adapter)
693 struct e1000_hw *hw = &adapter->hw;
694 u32 ctrl_ext;
696 /* Let firmware take over control of h/w */
697 ctrl_ext = rd32(E1000_CTRL_EXT);
698 wr32(E1000_CTRL_EXT,
699 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
704 * igb_get_hw_control - get control of the h/w from f/w
705 * @adapter: address of board private structure
707 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
708 * For ASF and Pass Through versions of f/w this means that
709 * the driver is loaded.
712 static void igb_get_hw_control(struct igb_adapter *adapter)
714 struct e1000_hw *hw = &adapter->hw;
715 u32 ctrl_ext;
717 /* Let firmware know the driver has taken over */
718 ctrl_ext = rd32(E1000_CTRL_EXT);
719 wr32(E1000_CTRL_EXT,
720 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
724 * igb_configure - configure the hardware for RX and TX
725 * @adapter: private board structure
727 static void igb_configure(struct igb_adapter *adapter)
729 struct net_device *netdev = adapter->netdev;
730 int i;
732 igb_get_hw_control(adapter);
733 igb_set_multi(netdev);
735 igb_restore_vlan(adapter);
737 igb_configure_tx(adapter);
738 igb_setup_rctl(adapter);
739 igb_configure_rx(adapter);
741 igb_rx_fifo_flush_82575(&adapter->hw);
743 /* call IGB_DESC_UNUSED which always leaves
744 * at least 1 descriptor unused to make sure
745 * next_to_use != next_to_clean */
746 for (i = 0; i < adapter->num_rx_queues; i++) {
747 struct igb_ring *ring = &adapter->rx_ring[i];
748 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
752 adapter->tx_queue_len = netdev->tx_queue_len;
757 * igb_up - Open the interface and prepare it to handle traffic
758 * @adapter: board private structure
761 int igb_up(struct igb_adapter *adapter)
763 struct e1000_hw *hw = &adapter->hw;
764 int i;
766 /* hardware has been reset, we need to reload some things */
767 igb_configure(adapter);
769 clear_bit(__IGB_DOWN, &adapter->state);
771 for (i = 0; i < adapter->num_rx_queues; i++)
772 napi_enable(&adapter->rx_ring[i].napi);
773 if (adapter->msix_entries)
774 igb_configure_msix(adapter);
776 /* Clear any pending interrupts. */
777 rd32(E1000_ICR);
778 igb_irq_enable(adapter);
780 /* Fire a link change interrupt to start the watchdog. */
781 wr32(E1000_ICS, E1000_ICS_LSC);
782 return 0;
785 void igb_down(struct igb_adapter *adapter)
787 struct e1000_hw *hw = &adapter->hw;
788 struct net_device *netdev = adapter->netdev;
789 u32 tctl, rctl;
790 int i;
792 /* signal that we're down so the interrupt handler does not
793 * reschedule our watchdog timer */
794 set_bit(__IGB_DOWN, &adapter->state);
796 /* disable receives in the hardware */
797 rctl = rd32(E1000_RCTL);
798 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
799 /* flush and sleep below */
801 netif_tx_stop_all_queues(netdev);
803 /* disable transmits in the hardware */
804 tctl = rd32(E1000_TCTL);
805 tctl &= ~E1000_TCTL_EN;
806 wr32(E1000_TCTL, tctl);
807 /* flush both disables and wait for them to finish */
808 wrfl();
809 msleep(10);
811 for (i = 0; i < adapter->num_rx_queues; i++)
812 napi_disable(&adapter->rx_ring[i].napi);
814 igb_irq_disable(adapter);
816 del_timer_sync(&adapter->watchdog_timer);
817 del_timer_sync(&adapter->phy_info_timer);
819 netdev->tx_queue_len = adapter->tx_queue_len;
820 netif_carrier_off(netdev);
821 adapter->link_speed = 0;
822 adapter->link_duplex = 0;
824 if (!pci_channel_offline(adapter->pdev))
825 igb_reset(adapter);
826 igb_clean_all_tx_rings(adapter);
827 igb_clean_all_rx_rings(adapter);
830 void igb_reinit_locked(struct igb_adapter *adapter)
832 WARN_ON(in_interrupt());
833 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
834 msleep(1);
835 igb_down(adapter);
836 igb_up(adapter);
837 clear_bit(__IGB_RESETTING, &adapter->state);
840 void igb_reset(struct igb_adapter *adapter)
842 struct e1000_hw *hw = &adapter->hw;
843 struct e1000_mac_info *mac = &hw->mac;
844 struct e1000_fc_info *fc = &hw->fc;
845 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
846 u16 hwm;
848 /* Repartition Pba for greater than 9k mtu
849 * To take effect CTRL.RST is required.
851 if (mac->type != e1000_82576) {
852 pba = E1000_PBA_34K;
854 else {
855 pba = E1000_PBA_64K;
858 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
859 (mac->type < e1000_82576)) {
860 /* adjust PBA for jumbo frames */
861 wr32(E1000_PBA, pba);
863 /* To maintain wire speed transmits, the Tx FIFO should be
864 * large enough to accommodate two full transmit packets,
865 * rounded up to the next 1KB and expressed in KB. Likewise,
866 * the Rx FIFO should be large enough to accommodate at least
867 * one full receive packet and is similarly rounded up and
868 * expressed in KB. */
869 pba = rd32(E1000_PBA);
870 /* upper 16 bits has Tx packet buffer allocation size in KB */
871 tx_space = pba >> 16;
872 /* lower 16 bits has Rx packet buffer allocation size in KB */
873 pba &= 0xffff;
874 /* the tx fifo also stores 16 bytes of information about the tx
875 * but don't include ethernet FCS because hardware appends it */
876 min_tx_space = (adapter->max_frame_size +
877 sizeof(struct e1000_tx_desc) -
878 ETH_FCS_LEN) * 2;
879 min_tx_space = ALIGN(min_tx_space, 1024);
880 min_tx_space >>= 10;
881 /* software strips receive CRC, so leave room for it */
882 min_rx_space = adapter->max_frame_size;
883 min_rx_space = ALIGN(min_rx_space, 1024);
884 min_rx_space >>= 10;
886 /* If current Tx allocation is less than the min Tx FIFO size,
887 * and the min Tx FIFO size is less than the current Rx FIFO
888 * allocation, take space away from current Rx allocation */
889 if (tx_space < min_tx_space &&
890 ((min_tx_space - tx_space) < pba)) {
891 pba = pba - (min_tx_space - tx_space);
893 /* if short on rx space, rx wins and must trump tx
894 * adjustment */
895 if (pba < min_rx_space)
896 pba = min_rx_space;
898 wr32(E1000_PBA, pba);
901 /* flow control settings */
902 /* The high water mark must be low enough to fit one full frame
903 * (or the size used for early receive) above it in the Rx FIFO.
904 * Set it to the lower of:
905 * - 90% of the Rx FIFO size, or
906 * - the full Rx FIFO size minus one full frame */
907 hwm = min(((pba << 10) * 9 / 10),
908 ((pba << 10) - 2 * adapter->max_frame_size));
910 if (mac->type < e1000_82576) {
911 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
912 fc->low_water = fc->high_water - 8;
913 } else {
914 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
915 fc->low_water = fc->high_water - 16;
917 fc->pause_time = 0xFFFF;
918 fc->send_xon = 1;
919 fc->type = fc->original_type;
921 /* Allow time for pending master requests to run */
922 adapter->hw.mac.ops.reset_hw(&adapter->hw);
923 wr32(E1000_WUC, 0);
925 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
926 dev_err(&adapter->pdev->dev, "Hardware Error\n");
928 igb_update_mng_vlan(adapter);
930 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
931 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
933 igb_reset_adaptive(&adapter->hw);
934 if (adapter->hw.phy.ops.get_phy_info)
935 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
939 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
940 * @pdev: PCI device information struct
942 * Returns true if an adapter needs ioport resources
944 static int igb_is_need_ioport(struct pci_dev *pdev)
946 switch (pdev->device) {
947 /* Currently there are no adapters that need ioport resources */
948 default:
949 return false;
954 * igb_probe - Device Initialization Routine
955 * @pdev: PCI device information struct
956 * @ent: entry in igb_pci_tbl
958 * Returns 0 on success, negative on failure
960 * igb_probe initializes an adapter identified by a pci_dev structure.
961 * The OS initialization, configuring of the adapter private structure,
962 * and a hardware reset occur.
964 static int __devinit igb_probe(struct pci_dev *pdev,
965 const struct pci_device_id *ent)
967 struct net_device *netdev;
968 struct igb_adapter *adapter;
969 struct e1000_hw *hw;
970 struct pci_dev *us_dev;
971 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
972 unsigned long mmio_start, mmio_len;
973 int i, err, pci_using_dac, pos;
974 u16 eeprom_data = 0, state = 0;
975 u16 eeprom_apme_mask = IGB_EEPROM_APME;
976 u32 part_num;
977 int bars, need_ioport;
979 /* do not allocate ioport bars when not needed */
980 need_ioport = igb_is_need_ioport(pdev);
981 if (need_ioport) {
982 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
983 err = pci_enable_device(pdev);
984 } else {
985 bars = pci_select_bars(pdev, IORESOURCE_MEM);
986 err = pci_enable_device_mem(pdev);
988 if (err)
989 return err;
991 pci_using_dac = 0;
992 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
993 if (!err) {
994 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
995 if (!err)
996 pci_using_dac = 1;
997 } else {
998 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
999 if (err) {
1000 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1001 if (err) {
1002 dev_err(&pdev->dev, "No usable DMA "
1003 "configuration, aborting\n");
1004 goto err_dma;
1009 /* 82575 requires that the pci-e link partner disable the L0s state */
1010 switch (pdev->device) {
1011 case E1000_DEV_ID_82575EB_COPPER:
1012 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1013 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1014 us_dev = pdev->bus->self;
1015 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1016 if (pos) {
1017 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1018 &state);
1019 state &= ~PCIE_LINK_STATE_L0S;
1020 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1021 state);
1022 printk(KERN_INFO "Disabling ASPM L0s upstream switch "
1023 "port %x:%x.%x\n", us_dev->bus->number,
1024 PCI_SLOT(us_dev->devfn),
1025 PCI_FUNC(us_dev->devfn));
1027 default:
1028 break;
1031 err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1032 if (err)
1033 goto err_pci_reg;
1035 pci_set_master(pdev);
1036 pci_save_state(pdev);
1038 err = -ENOMEM;
1039 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1040 if (!netdev)
1041 goto err_alloc_etherdev;
1043 SET_NETDEV_DEV(netdev, &pdev->dev);
1045 pci_set_drvdata(pdev, netdev);
1046 adapter = netdev_priv(netdev);
1047 adapter->netdev = netdev;
1048 adapter->pdev = pdev;
1049 hw = &adapter->hw;
1050 hw->back = adapter;
1051 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1052 adapter->bars = bars;
1053 adapter->need_ioport = need_ioport;
1055 mmio_start = pci_resource_start(pdev, 0);
1056 mmio_len = pci_resource_len(pdev, 0);
1058 err = -EIO;
1059 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1060 if (!adapter->hw.hw_addr)
1061 goto err_ioremap;
1063 netdev->open = &igb_open;
1064 netdev->stop = &igb_close;
1065 netdev->get_stats = &igb_get_stats;
1066 netdev->set_multicast_list = &igb_set_multi;
1067 netdev->set_mac_address = &igb_set_mac;
1068 netdev->change_mtu = &igb_change_mtu;
1069 netdev->do_ioctl = &igb_ioctl;
1070 igb_set_ethtool_ops(netdev);
1071 netdev->tx_timeout = &igb_tx_timeout;
1072 netdev->watchdog_timeo = 5 * HZ;
1073 netdev->vlan_rx_register = igb_vlan_rx_register;
1074 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
1075 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
1076 #ifdef CONFIG_NET_POLL_CONTROLLER
1077 netdev->poll_controller = igb_netpoll;
1078 #endif
1079 netdev->hard_start_xmit = &igb_xmit_frame_adv;
1081 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1083 netdev->mem_start = mmio_start;
1084 netdev->mem_end = mmio_start + mmio_len;
1086 /* PCI config space info */
1087 hw->vendor_id = pdev->vendor;
1088 hw->device_id = pdev->device;
1089 hw->revision_id = pdev->revision;
1090 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1091 hw->subsystem_device_id = pdev->subsystem_device;
1093 /* setup the private structure */
1094 hw->back = adapter;
1095 /* Copy the default MAC, PHY and NVM function pointers */
1096 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1097 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1098 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1099 /* Initialize skew-specific constants */
1100 err = ei->get_invariants(hw);
1101 if (err)
1102 goto err_hw_init;
1104 err = igb_sw_init(adapter);
1105 if (err)
1106 goto err_sw_init;
1108 igb_get_bus_info_pcie(hw);
1110 /* set flags */
1111 switch (hw->mac.type) {
1112 case e1000_82576:
1113 case e1000_82575:
1114 adapter->flags |= IGB_FLAG_HAS_DCA;
1115 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1116 break;
1117 default:
1118 break;
1121 hw->phy.autoneg_wait_to_complete = false;
1122 hw->mac.adaptive_ifs = true;
1124 /* Copper options */
1125 if (hw->phy.media_type == e1000_media_type_copper) {
1126 hw->phy.mdix = AUTO_ALL_MODES;
1127 hw->phy.disable_polarity_correction = false;
1128 hw->phy.ms_type = e1000_ms_hw_default;
1131 if (igb_check_reset_block(hw))
1132 dev_info(&pdev->dev,
1133 "PHY reset is blocked due to SOL/IDER session.\n");
1135 netdev->features = NETIF_F_SG |
1136 NETIF_F_HW_CSUM |
1137 NETIF_F_HW_VLAN_TX |
1138 NETIF_F_HW_VLAN_RX |
1139 NETIF_F_HW_VLAN_FILTER;
1141 netdev->features |= NETIF_F_TSO;
1142 netdev->features |= NETIF_F_TSO6;
1144 #ifdef CONFIG_IGB_LRO
1145 netdev->features |= NETIF_F_LRO;
1146 #endif
1148 netdev->vlan_features |= NETIF_F_TSO;
1149 netdev->vlan_features |= NETIF_F_TSO6;
1150 netdev->vlan_features |= NETIF_F_HW_CSUM;
1151 netdev->vlan_features |= NETIF_F_SG;
1153 if (pci_using_dac)
1154 netdev->features |= NETIF_F_HIGHDMA;
1156 netdev->features |= NETIF_F_LLTX;
1157 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1159 /* before reading the NVM, reset the controller to put the device in a
1160 * known good starting state */
1161 hw->mac.ops.reset_hw(hw);
1163 /* make sure the NVM is good */
1164 if (igb_validate_nvm_checksum(hw) < 0) {
1165 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1166 err = -EIO;
1167 goto err_eeprom;
1170 /* copy the MAC address out of the NVM */
1171 if (hw->mac.ops.read_mac_addr(hw))
1172 dev_err(&pdev->dev, "NVM Read Error\n");
1174 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1175 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1177 if (!is_valid_ether_addr(netdev->perm_addr)) {
1178 dev_err(&pdev->dev, "Invalid MAC Address\n");
1179 err = -EIO;
1180 goto err_eeprom;
1183 init_timer(&adapter->watchdog_timer);
1184 adapter->watchdog_timer.function = &igb_watchdog;
1185 adapter->watchdog_timer.data = (unsigned long) adapter;
1187 init_timer(&adapter->phy_info_timer);
1188 adapter->phy_info_timer.function = &igb_update_phy_info;
1189 adapter->phy_info_timer.data = (unsigned long) adapter;
1191 INIT_WORK(&adapter->reset_task, igb_reset_task);
1192 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1194 /* Initialize link & ring properties that are user-changeable */
1195 adapter->tx_ring->count = 256;
1196 for (i = 0; i < adapter->num_tx_queues; i++)
1197 adapter->tx_ring[i].count = adapter->tx_ring->count;
1198 adapter->rx_ring->count = 256;
1199 for (i = 0; i < adapter->num_rx_queues; i++)
1200 adapter->rx_ring[i].count = adapter->rx_ring->count;
1202 adapter->fc_autoneg = true;
1203 hw->mac.autoneg = true;
1204 hw->phy.autoneg_advertised = 0x2f;
1206 hw->fc.original_type = e1000_fc_default;
1207 hw->fc.type = e1000_fc_default;
1209 adapter->itr_setting = 3;
1210 adapter->itr = IGB_START_ITR;
1212 igb_validate_mdi_setting(hw);
1214 adapter->rx_csum = 1;
1216 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1217 * enable the ACPI Magic Packet filter
1220 if (hw->bus.func == 0 ||
1221 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1222 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1223 &eeprom_data);
1225 if (eeprom_data & eeprom_apme_mask)
1226 adapter->eeprom_wol |= E1000_WUFC_MAG;
1228 /* now that we have the eeprom settings, apply the special cases where
1229 * the eeprom may be wrong or the board simply won't support wake on
1230 * lan on a particular port */
1231 switch (pdev->device) {
1232 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1233 adapter->eeprom_wol = 0;
1234 break;
1235 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1236 case E1000_DEV_ID_82576_FIBER:
1237 case E1000_DEV_ID_82576_SERDES:
1238 /* Wake events only supported on port A for dual fiber
1239 * regardless of eeprom setting */
1240 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1241 adapter->eeprom_wol = 0;
1242 break;
1245 /* initialize the wol settings based on the eeprom settings */
1246 adapter->wol = adapter->eeprom_wol;
1247 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1249 /* reset the hardware with the new settings */
1250 igb_reset(adapter);
1252 /* let the f/w know that the h/w is now under the control of the
1253 * driver. */
1254 igb_get_hw_control(adapter);
1256 /* tell the stack to leave us alone until igb_open() is called */
1257 netif_carrier_off(netdev);
1258 netif_tx_stop_all_queues(netdev);
1260 strcpy(netdev->name, "eth%d");
1261 err = register_netdev(netdev);
1262 if (err)
1263 goto err_register;
1265 #ifdef CONFIG_IGB_DCA
1266 if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1267 (dca_add_requester(&pdev->dev) == 0)) {
1268 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1269 dev_info(&pdev->dev, "DCA enabled\n");
1270 /* Always use CB2 mode, difference is masked
1271 * in the CB driver. */
1272 wr32(E1000_DCA_CTRL, 2);
1273 igb_setup_dca(adapter);
1275 #endif
1277 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1278 /* print bus type/speed/width info */
1279 dev_info(&pdev->dev,
1280 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1281 netdev->name,
1282 ((hw->bus.speed == e1000_bus_speed_2500)
1283 ? "2.5Gb/s" : "unknown"),
1284 ((hw->bus.width == e1000_bus_width_pcie_x4)
1285 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1286 ? "Width x1" : "unknown"),
1287 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1288 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1290 igb_read_part_num(hw, &part_num);
1291 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1292 (part_num >> 8), (part_num & 0xff));
1294 dev_info(&pdev->dev,
1295 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1296 adapter->msix_entries ? "MSI-X" :
1297 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1298 adapter->num_rx_queues, adapter->num_tx_queues);
1300 return 0;
1302 err_register:
1303 igb_release_hw_control(adapter);
1304 err_eeprom:
1305 if (!igb_check_reset_block(hw))
1306 hw->phy.ops.reset_phy(hw);
1308 if (hw->flash_address)
1309 iounmap(hw->flash_address);
1311 igb_remove_device(hw);
1312 igb_free_queues(adapter);
1313 err_sw_init:
1314 err_hw_init:
1315 iounmap(hw->hw_addr);
1316 err_ioremap:
1317 free_netdev(netdev);
1318 err_alloc_etherdev:
1319 pci_release_selected_regions(pdev, bars);
1320 err_pci_reg:
1321 err_dma:
1322 pci_disable_device(pdev);
1323 return err;
1327 * igb_remove - Device Removal Routine
1328 * @pdev: PCI device information struct
1330 * igb_remove is called by the PCI subsystem to alert the driver
1331 * that it should release a PCI device. The could be caused by a
1332 * Hot-Plug event, or because the driver is going to be removed from
1333 * memory.
1335 static void __devexit igb_remove(struct pci_dev *pdev)
1337 struct net_device *netdev = pci_get_drvdata(pdev);
1338 struct igb_adapter *adapter = netdev_priv(netdev);
1339 #ifdef CONFIG_IGB_DCA
1340 struct e1000_hw *hw = &adapter->hw;
1341 #endif
1343 /* flush_scheduled work may reschedule our watchdog task, so
1344 * explicitly disable watchdog tasks from being rescheduled */
1345 set_bit(__IGB_DOWN, &adapter->state);
1346 del_timer_sync(&adapter->watchdog_timer);
1347 del_timer_sync(&adapter->phy_info_timer);
1349 flush_scheduled_work();
1351 #ifdef CONFIG_IGB_DCA
1352 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1353 dev_info(&pdev->dev, "DCA disabled\n");
1354 dca_remove_requester(&pdev->dev);
1355 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1356 wr32(E1000_DCA_CTRL, 1);
1358 #endif
1360 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1361 * would have already happened in close and is redundant. */
1362 igb_release_hw_control(adapter);
1364 unregister_netdev(netdev);
1366 if (adapter->hw.phy.ops.reset_phy &&
1367 !igb_check_reset_block(&adapter->hw))
1368 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1370 igb_remove_device(&adapter->hw);
1371 igb_reset_interrupt_capability(adapter);
1373 igb_free_queues(adapter);
1375 iounmap(adapter->hw.hw_addr);
1376 if (adapter->hw.flash_address)
1377 iounmap(adapter->hw.flash_address);
1378 pci_release_selected_regions(pdev, adapter->bars);
1380 free_netdev(netdev);
1382 pci_disable_device(pdev);
1386 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1387 * @adapter: board private structure to initialize
1389 * igb_sw_init initializes the Adapter private data structure.
1390 * Fields are initialized based on PCI device information and
1391 * OS network device settings (MTU size).
1393 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1395 struct e1000_hw *hw = &adapter->hw;
1396 struct net_device *netdev = adapter->netdev;
1397 struct pci_dev *pdev = adapter->pdev;
1399 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1401 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1402 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1403 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1404 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1406 /* Number of supported queues. */
1407 /* Having more queues than CPUs doesn't make sense. */
1408 adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1409 adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1411 /* This call may decrease the number of queues depending on
1412 * interrupt mode. */
1413 igb_set_interrupt_capability(adapter);
1415 if (igb_alloc_queues(adapter)) {
1416 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1417 return -ENOMEM;
1420 /* Explicitly disable IRQ since the NIC can be in any state. */
1421 igb_irq_disable(adapter);
1423 set_bit(__IGB_DOWN, &adapter->state);
1424 return 0;
1428 * igb_open - Called when a network interface is made active
1429 * @netdev: network interface device structure
1431 * Returns 0 on success, negative value on failure
1433 * The open entry point is called when a network interface is made
1434 * active by the system (IFF_UP). At this point all resources needed
1435 * for transmit and receive operations are allocated, the interrupt
1436 * handler is registered with the OS, the watchdog timer is started,
1437 * and the stack is notified that the interface is ready.
1439 static int igb_open(struct net_device *netdev)
1441 struct igb_adapter *adapter = netdev_priv(netdev);
1442 struct e1000_hw *hw = &adapter->hw;
1443 int err;
1444 int i;
1446 /* disallow open during test */
1447 if (test_bit(__IGB_TESTING, &adapter->state))
1448 return -EBUSY;
1450 /* allocate transmit descriptors */
1451 err = igb_setup_all_tx_resources(adapter);
1452 if (err)
1453 goto err_setup_tx;
1455 /* allocate receive descriptors */
1456 err = igb_setup_all_rx_resources(adapter);
1457 if (err)
1458 goto err_setup_rx;
1460 /* e1000_power_up_phy(adapter); */
1462 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1463 if ((adapter->hw.mng_cookie.status &
1464 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1465 igb_update_mng_vlan(adapter);
1467 /* before we allocate an interrupt, we must be ready to handle it.
1468 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1469 * as soon as we call pci_request_irq, so we have to setup our
1470 * clean_rx handler before we do so. */
1471 igb_configure(adapter);
1473 err = igb_request_irq(adapter);
1474 if (err)
1475 goto err_req_irq;
1477 /* From here on the code is the same as igb_up() */
1478 clear_bit(__IGB_DOWN, &adapter->state);
1480 for (i = 0; i < adapter->num_rx_queues; i++)
1481 napi_enable(&adapter->rx_ring[i].napi);
1483 /* Clear any pending interrupts. */
1484 rd32(E1000_ICR);
1486 igb_irq_enable(adapter);
1488 netif_tx_start_all_queues(netdev);
1490 /* Fire a link status change interrupt to start the watchdog. */
1491 wr32(E1000_ICS, E1000_ICS_LSC);
1493 return 0;
1495 err_req_irq:
1496 igb_release_hw_control(adapter);
1497 /* e1000_power_down_phy(adapter); */
1498 igb_free_all_rx_resources(adapter);
1499 err_setup_rx:
1500 igb_free_all_tx_resources(adapter);
1501 err_setup_tx:
1502 igb_reset(adapter);
1504 return err;
1508 * igb_close - Disables a network interface
1509 * @netdev: network interface device structure
1511 * Returns 0, this is not allowed to fail
1513 * The close entry point is called when an interface is de-activated
1514 * by the OS. The hardware is still under the driver's control, but
1515 * needs to be disabled. A global MAC reset is issued to stop the
1516 * hardware, and all transmit and receive resources are freed.
1518 static int igb_close(struct net_device *netdev)
1520 struct igb_adapter *adapter = netdev_priv(netdev);
1522 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1523 igb_down(adapter);
1525 igb_free_irq(adapter);
1527 igb_free_all_tx_resources(adapter);
1528 igb_free_all_rx_resources(adapter);
1530 /* kill manageability vlan ID if supported, but not if a vlan with
1531 * the same ID is registered on the host OS (let 8021q kill it) */
1532 if ((adapter->hw.mng_cookie.status &
1533 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1534 !(adapter->vlgrp &&
1535 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1536 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1538 return 0;
1542 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1543 * @adapter: board private structure
1544 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1546 * Return 0 on success, negative on failure
1549 int igb_setup_tx_resources(struct igb_adapter *adapter,
1550 struct igb_ring *tx_ring)
1552 struct pci_dev *pdev = adapter->pdev;
1553 int size;
1555 size = sizeof(struct igb_buffer) * tx_ring->count;
1556 tx_ring->buffer_info = vmalloc(size);
1557 if (!tx_ring->buffer_info)
1558 goto err;
1559 memset(tx_ring->buffer_info, 0, size);
1561 /* round up to nearest 4K */
1562 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1563 + sizeof(u32);
1564 tx_ring->size = ALIGN(tx_ring->size, 4096);
1566 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1567 &tx_ring->dma);
1569 if (!tx_ring->desc)
1570 goto err;
1572 tx_ring->adapter = adapter;
1573 tx_ring->next_to_use = 0;
1574 tx_ring->next_to_clean = 0;
1575 return 0;
1577 err:
1578 vfree(tx_ring->buffer_info);
1579 dev_err(&adapter->pdev->dev,
1580 "Unable to allocate memory for the transmit descriptor ring\n");
1581 return -ENOMEM;
1585 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1586 * (Descriptors) for all queues
1587 * @adapter: board private structure
1589 * Return 0 on success, negative on failure
1591 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1593 int i, err = 0;
1594 int r_idx;
1596 for (i = 0; i < adapter->num_tx_queues; i++) {
1597 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1598 if (err) {
1599 dev_err(&adapter->pdev->dev,
1600 "Allocation for Tx Queue %u failed\n", i);
1601 for (i--; i >= 0; i--)
1602 igb_free_tx_resources(&adapter->tx_ring[i]);
1603 break;
1607 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1608 r_idx = i % adapter->num_tx_queues;
1609 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1611 return err;
1615 * igb_configure_tx - Configure transmit Unit after Reset
1616 * @adapter: board private structure
1618 * Configure the Tx unit of the MAC after a reset.
1620 static void igb_configure_tx(struct igb_adapter *adapter)
1622 u64 tdba, tdwba;
1623 struct e1000_hw *hw = &adapter->hw;
1624 u32 tctl;
1625 u32 txdctl, txctrl;
1626 int i;
1628 for (i = 0; i < adapter->num_tx_queues; i++) {
1629 struct igb_ring *ring = &(adapter->tx_ring[i]);
1631 wr32(E1000_TDLEN(i),
1632 ring->count * sizeof(struct e1000_tx_desc));
1633 tdba = ring->dma;
1634 wr32(E1000_TDBAL(i),
1635 tdba & 0x00000000ffffffffULL);
1636 wr32(E1000_TDBAH(i), tdba >> 32);
1638 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1639 tdwba |= 1; /* enable head wb */
1640 wr32(E1000_TDWBAL(i),
1641 tdwba & 0x00000000ffffffffULL);
1642 wr32(E1000_TDWBAH(i), tdwba >> 32);
1644 ring->head = E1000_TDH(i);
1645 ring->tail = E1000_TDT(i);
1646 writel(0, hw->hw_addr + ring->tail);
1647 writel(0, hw->hw_addr + ring->head);
1648 txdctl = rd32(E1000_TXDCTL(i));
1649 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1650 wr32(E1000_TXDCTL(i), txdctl);
1652 /* Turn off Relaxed Ordering on head write-backs. The
1653 * writebacks MUST be delivered in order or it will
1654 * completely screw up our bookeeping.
1656 txctrl = rd32(E1000_DCA_TXCTRL(i));
1657 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1658 wr32(E1000_DCA_TXCTRL(i), txctrl);
1663 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1665 /* Program the Transmit Control Register */
1667 tctl = rd32(E1000_TCTL);
1668 tctl &= ~E1000_TCTL_CT;
1669 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1670 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1672 igb_config_collision_dist(hw);
1674 /* Setup Transmit Descriptor Settings for eop descriptor */
1675 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1677 /* Enable transmits */
1678 tctl |= E1000_TCTL_EN;
1680 wr32(E1000_TCTL, tctl);
1684 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1685 * @adapter: board private structure
1686 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1688 * Returns 0 on success, negative on failure
1691 int igb_setup_rx_resources(struct igb_adapter *adapter,
1692 struct igb_ring *rx_ring)
1694 struct pci_dev *pdev = adapter->pdev;
1695 int size, desc_len;
1697 #ifdef CONFIG_IGB_LRO
1698 size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1699 rx_ring->lro_mgr.lro_arr = vmalloc(size);
1700 if (!rx_ring->lro_mgr.lro_arr)
1701 goto err;
1702 memset(rx_ring->lro_mgr.lro_arr, 0, size);
1703 #endif
1705 size = sizeof(struct igb_buffer) * rx_ring->count;
1706 rx_ring->buffer_info = vmalloc(size);
1707 if (!rx_ring->buffer_info)
1708 goto err;
1709 memset(rx_ring->buffer_info, 0, size);
1711 desc_len = sizeof(union e1000_adv_rx_desc);
1713 /* Round up to nearest 4K */
1714 rx_ring->size = rx_ring->count * desc_len;
1715 rx_ring->size = ALIGN(rx_ring->size, 4096);
1717 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1718 &rx_ring->dma);
1720 if (!rx_ring->desc)
1721 goto err;
1723 rx_ring->next_to_clean = 0;
1724 rx_ring->next_to_use = 0;
1726 rx_ring->adapter = adapter;
1728 return 0;
1730 err:
1731 #ifdef CONFIG_IGB_LRO
1732 vfree(rx_ring->lro_mgr.lro_arr);
1733 rx_ring->lro_mgr.lro_arr = NULL;
1734 #endif
1735 vfree(rx_ring->buffer_info);
1736 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1737 "the receive descriptor ring\n");
1738 return -ENOMEM;
1742 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1743 * (Descriptors) for all queues
1744 * @adapter: board private structure
1746 * Return 0 on success, negative on failure
1748 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1750 int i, err = 0;
1752 for (i = 0; i < adapter->num_rx_queues; i++) {
1753 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1754 if (err) {
1755 dev_err(&adapter->pdev->dev,
1756 "Allocation for Rx Queue %u failed\n", i);
1757 for (i--; i >= 0; i--)
1758 igb_free_rx_resources(&adapter->rx_ring[i]);
1759 break;
1763 return err;
1767 * igb_setup_rctl - configure the receive control registers
1768 * @adapter: Board private structure
1770 static void igb_setup_rctl(struct igb_adapter *adapter)
1772 struct e1000_hw *hw = &adapter->hw;
1773 u32 rctl;
1774 u32 srrctl = 0;
1775 int i;
1777 rctl = rd32(E1000_RCTL);
1779 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1781 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1782 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1783 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1786 * enable stripping of CRC. It's unlikely this will break BMC
1787 * redirection as it did with e1000. Newer features require
1788 * that the HW strips the CRC.
1790 rctl |= E1000_RCTL_SECRC;
1792 rctl &= ~E1000_RCTL_SBP;
1794 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1795 rctl &= ~E1000_RCTL_LPE;
1796 else
1797 rctl |= E1000_RCTL_LPE;
1798 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1799 /* Setup buffer sizes */
1800 rctl &= ~E1000_RCTL_SZ_4096;
1801 rctl |= E1000_RCTL_BSEX;
1802 switch (adapter->rx_buffer_len) {
1803 case IGB_RXBUFFER_256:
1804 rctl |= E1000_RCTL_SZ_256;
1805 rctl &= ~E1000_RCTL_BSEX;
1806 break;
1807 case IGB_RXBUFFER_512:
1808 rctl |= E1000_RCTL_SZ_512;
1809 rctl &= ~E1000_RCTL_BSEX;
1810 break;
1811 case IGB_RXBUFFER_1024:
1812 rctl |= E1000_RCTL_SZ_1024;
1813 rctl &= ~E1000_RCTL_BSEX;
1814 break;
1815 case IGB_RXBUFFER_2048:
1816 default:
1817 rctl |= E1000_RCTL_SZ_2048;
1818 rctl &= ~E1000_RCTL_BSEX;
1819 break;
1821 } else {
1822 rctl &= ~E1000_RCTL_BSEX;
1823 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1826 /* 82575 and greater support packet-split where the protocol
1827 * header is placed in skb->data and the packet data is
1828 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1829 * In the case of a non-split, skb->data is linearly filled,
1830 * followed by the page buffers. Therefore, skb->data is
1831 * sized to hold the largest protocol header.
1833 /* allocations using alloc_page take too long for regular MTU
1834 * so only enable packet split for jumbo frames */
1835 if (rctl & E1000_RCTL_LPE) {
1836 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1837 srrctl |= adapter->rx_ps_hdr_size <<
1838 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1839 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1840 } else {
1841 adapter->rx_ps_hdr_size = 0;
1842 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1845 for (i = 0; i < adapter->num_rx_queues; i++)
1846 wr32(E1000_SRRCTL(i), srrctl);
1848 wr32(E1000_RCTL, rctl);
1852 * igb_configure_rx - Configure receive Unit after Reset
1853 * @adapter: board private structure
1855 * Configure the Rx unit of the MAC after a reset.
1857 static void igb_configure_rx(struct igb_adapter *adapter)
1859 u64 rdba;
1860 struct e1000_hw *hw = &adapter->hw;
1861 u32 rctl, rxcsum;
1862 u32 rxdctl;
1863 int i;
1865 /* disable receives while setting up the descriptors */
1866 rctl = rd32(E1000_RCTL);
1867 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1868 wrfl();
1869 mdelay(10);
1871 if (adapter->itr_setting > 3)
1872 wr32(E1000_ITR, adapter->itr);
1874 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1875 * the Base and Length of the Rx Descriptor Ring */
1876 for (i = 0; i < adapter->num_rx_queues; i++) {
1877 struct igb_ring *ring = &(adapter->rx_ring[i]);
1878 rdba = ring->dma;
1879 wr32(E1000_RDBAL(i),
1880 rdba & 0x00000000ffffffffULL);
1881 wr32(E1000_RDBAH(i), rdba >> 32);
1882 wr32(E1000_RDLEN(i),
1883 ring->count * sizeof(union e1000_adv_rx_desc));
1885 ring->head = E1000_RDH(i);
1886 ring->tail = E1000_RDT(i);
1887 writel(0, hw->hw_addr + ring->tail);
1888 writel(0, hw->hw_addr + ring->head);
1890 rxdctl = rd32(E1000_RXDCTL(i));
1891 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1892 rxdctl &= 0xFFF00000;
1893 rxdctl |= IGB_RX_PTHRESH;
1894 rxdctl |= IGB_RX_HTHRESH << 8;
1895 rxdctl |= IGB_RX_WTHRESH << 16;
1896 wr32(E1000_RXDCTL(i), rxdctl);
1897 #ifdef CONFIG_IGB_LRO
1898 /* Intitial LRO Settings */
1899 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1900 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1901 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1902 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1903 ring->lro_mgr.dev = adapter->netdev;
1904 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1905 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1906 #endif
1909 if (adapter->num_rx_queues > 1) {
1910 u32 random[10];
1911 u32 mrqc;
1912 u32 j, shift;
1913 union e1000_reta {
1914 u32 dword;
1915 u8 bytes[4];
1916 } reta;
1918 get_random_bytes(&random[0], 40);
1920 if (hw->mac.type >= e1000_82576)
1921 shift = 0;
1922 else
1923 shift = 6;
1924 for (j = 0; j < (32 * 4); j++) {
1925 reta.bytes[j & 3] =
1926 (j % adapter->num_rx_queues) << shift;
1927 if ((j & 3) == 3)
1928 writel(reta.dword,
1929 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1931 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1933 /* Fill out hash function seeds */
1934 for (j = 0; j < 10; j++)
1935 array_wr32(E1000_RSSRK(0), j, random[j]);
1937 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1938 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1939 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1940 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1941 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1942 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1943 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1944 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1947 wr32(E1000_MRQC, mrqc);
1949 /* Multiqueue and raw packet checksumming are mutually
1950 * exclusive. Note that this not the same as TCP/IP
1951 * checksumming, which works fine. */
1952 rxcsum = rd32(E1000_RXCSUM);
1953 rxcsum |= E1000_RXCSUM_PCSD;
1954 wr32(E1000_RXCSUM, rxcsum);
1955 } else {
1956 /* Enable Receive Checksum Offload for TCP and UDP */
1957 rxcsum = rd32(E1000_RXCSUM);
1958 if (adapter->rx_csum) {
1959 rxcsum |= E1000_RXCSUM_TUOFL;
1961 /* Enable IPv4 payload checksum for UDP fragments
1962 * Must be used in conjunction with packet-split. */
1963 if (adapter->rx_ps_hdr_size)
1964 rxcsum |= E1000_RXCSUM_IPPCSE;
1965 } else {
1966 rxcsum &= ~E1000_RXCSUM_TUOFL;
1967 /* don't need to clear IPPCSE as it defaults to 0 */
1969 wr32(E1000_RXCSUM, rxcsum);
1972 if (adapter->vlgrp)
1973 wr32(E1000_RLPML,
1974 adapter->max_frame_size + VLAN_TAG_SIZE);
1975 else
1976 wr32(E1000_RLPML, adapter->max_frame_size);
1978 /* Enable Receives */
1979 wr32(E1000_RCTL, rctl);
1983 * igb_free_tx_resources - Free Tx Resources per Queue
1984 * @adapter: board private structure
1985 * @tx_ring: Tx descriptor ring for a specific queue
1987 * Free all transmit software resources
1989 static void igb_free_tx_resources(struct igb_ring *tx_ring)
1991 struct pci_dev *pdev = tx_ring->adapter->pdev;
1993 igb_clean_tx_ring(tx_ring);
1995 vfree(tx_ring->buffer_info);
1996 tx_ring->buffer_info = NULL;
1998 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2000 tx_ring->desc = NULL;
2004 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2005 * @adapter: board private structure
2007 * Free all transmit software resources
2009 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2011 int i;
2013 for (i = 0; i < adapter->num_tx_queues; i++)
2014 igb_free_tx_resources(&adapter->tx_ring[i]);
2017 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2018 struct igb_buffer *buffer_info)
2020 if (buffer_info->dma) {
2021 pci_unmap_page(adapter->pdev,
2022 buffer_info->dma,
2023 buffer_info->length,
2024 PCI_DMA_TODEVICE);
2025 buffer_info->dma = 0;
2027 if (buffer_info->skb) {
2028 dev_kfree_skb_any(buffer_info->skb);
2029 buffer_info->skb = NULL;
2031 buffer_info->time_stamp = 0;
2032 /* buffer_info must be completely set up in the transmit path */
2036 * igb_clean_tx_ring - Free Tx Buffers
2037 * @adapter: board private structure
2038 * @tx_ring: ring to be cleaned
2040 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2042 struct igb_adapter *adapter = tx_ring->adapter;
2043 struct igb_buffer *buffer_info;
2044 unsigned long size;
2045 unsigned int i;
2047 if (!tx_ring->buffer_info)
2048 return;
2049 /* Free all the Tx ring sk_buffs */
2051 for (i = 0; i < tx_ring->count; i++) {
2052 buffer_info = &tx_ring->buffer_info[i];
2053 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2056 size = sizeof(struct igb_buffer) * tx_ring->count;
2057 memset(tx_ring->buffer_info, 0, size);
2059 /* Zero out the descriptor ring */
2061 memset(tx_ring->desc, 0, tx_ring->size);
2063 tx_ring->next_to_use = 0;
2064 tx_ring->next_to_clean = 0;
2066 writel(0, adapter->hw.hw_addr + tx_ring->head);
2067 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2071 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2072 * @adapter: board private structure
2074 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2076 int i;
2078 for (i = 0; i < adapter->num_tx_queues; i++)
2079 igb_clean_tx_ring(&adapter->tx_ring[i]);
2083 * igb_free_rx_resources - Free Rx Resources
2084 * @adapter: board private structure
2085 * @rx_ring: ring to clean the resources from
2087 * Free all receive software resources
2089 static void igb_free_rx_resources(struct igb_ring *rx_ring)
2091 struct pci_dev *pdev = rx_ring->adapter->pdev;
2093 igb_clean_rx_ring(rx_ring);
2095 vfree(rx_ring->buffer_info);
2096 rx_ring->buffer_info = NULL;
2098 #ifdef CONFIG_IGB_LRO
2099 vfree(rx_ring->lro_mgr.lro_arr);
2100 rx_ring->lro_mgr.lro_arr = NULL;
2101 #endif
2103 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2105 rx_ring->desc = NULL;
2109 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2110 * @adapter: board private structure
2112 * Free all receive software resources
2114 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2116 int i;
2118 for (i = 0; i < adapter->num_rx_queues; i++)
2119 igb_free_rx_resources(&adapter->rx_ring[i]);
2123 * igb_clean_rx_ring - Free Rx Buffers per Queue
2124 * @adapter: board private structure
2125 * @rx_ring: ring to free buffers from
2127 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2129 struct igb_adapter *adapter = rx_ring->adapter;
2130 struct igb_buffer *buffer_info;
2131 struct pci_dev *pdev = adapter->pdev;
2132 unsigned long size;
2133 unsigned int i;
2135 if (!rx_ring->buffer_info)
2136 return;
2137 /* Free all the Rx ring sk_buffs */
2138 for (i = 0; i < rx_ring->count; i++) {
2139 buffer_info = &rx_ring->buffer_info[i];
2140 if (buffer_info->dma) {
2141 if (adapter->rx_ps_hdr_size)
2142 pci_unmap_single(pdev, buffer_info->dma,
2143 adapter->rx_ps_hdr_size,
2144 PCI_DMA_FROMDEVICE);
2145 else
2146 pci_unmap_single(pdev, buffer_info->dma,
2147 adapter->rx_buffer_len,
2148 PCI_DMA_FROMDEVICE);
2149 buffer_info->dma = 0;
2152 if (buffer_info->skb) {
2153 dev_kfree_skb(buffer_info->skb);
2154 buffer_info->skb = NULL;
2156 if (buffer_info->page) {
2157 if (buffer_info->page_dma)
2158 pci_unmap_page(pdev, buffer_info->page_dma,
2159 PAGE_SIZE / 2,
2160 PCI_DMA_FROMDEVICE);
2161 put_page(buffer_info->page);
2162 buffer_info->page = NULL;
2163 buffer_info->page_dma = 0;
2164 buffer_info->page_offset = 0;
2168 size = sizeof(struct igb_buffer) * rx_ring->count;
2169 memset(rx_ring->buffer_info, 0, size);
2171 /* Zero out the descriptor ring */
2172 memset(rx_ring->desc, 0, rx_ring->size);
2174 rx_ring->next_to_clean = 0;
2175 rx_ring->next_to_use = 0;
2177 writel(0, adapter->hw.hw_addr + rx_ring->head);
2178 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2182 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2183 * @adapter: board private structure
2185 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2187 int i;
2189 for (i = 0; i < adapter->num_rx_queues; i++)
2190 igb_clean_rx_ring(&adapter->rx_ring[i]);
2194 * igb_set_mac - Change the Ethernet Address of the NIC
2195 * @netdev: network interface device structure
2196 * @p: pointer to an address structure
2198 * Returns 0 on success, negative on failure
2200 static int igb_set_mac(struct net_device *netdev, void *p)
2202 struct igb_adapter *adapter = netdev_priv(netdev);
2203 struct sockaddr *addr = p;
2205 if (!is_valid_ether_addr(addr->sa_data))
2206 return -EADDRNOTAVAIL;
2208 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2209 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2211 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2213 return 0;
2217 * igb_set_multi - Multicast and Promiscuous mode set
2218 * @netdev: network interface device structure
2220 * The set_multi entry point is called whenever the multicast address
2221 * list or the network interface flags are updated. This routine is
2222 * responsible for configuring the hardware for proper multicast,
2223 * promiscuous mode, and all-multi behavior.
2225 static void igb_set_multi(struct net_device *netdev)
2227 struct igb_adapter *adapter = netdev_priv(netdev);
2228 struct e1000_hw *hw = &adapter->hw;
2229 struct e1000_mac_info *mac = &hw->mac;
2230 struct dev_mc_list *mc_ptr;
2231 u8 *mta_list;
2232 u32 rctl;
2233 int i;
2235 /* Check for Promiscuous and All Multicast modes */
2237 rctl = rd32(E1000_RCTL);
2239 if (netdev->flags & IFF_PROMISC) {
2240 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2241 rctl &= ~E1000_RCTL_VFE;
2242 } else {
2243 if (netdev->flags & IFF_ALLMULTI) {
2244 rctl |= E1000_RCTL_MPE;
2245 rctl &= ~E1000_RCTL_UPE;
2246 } else
2247 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2248 rctl |= E1000_RCTL_VFE;
2250 wr32(E1000_RCTL, rctl);
2252 if (!netdev->mc_count) {
2253 /* nothing to program, so clear mc list */
2254 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2255 mac->rar_entry_count);
2256 return;
2259 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2260 if (!mta_list)
2261 return;
2263 /* The shared function expects a packed array of only addresses. */
2264 mc_ptr = netdev->mc_list;
2266 for (i = 0; i < netdev->mc_count; i++) {
2267 if (!mc_ptr)
2268 break;
2269 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2270 mc_ptr = mc_ptr->next;
2272 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2273 mac->rar_entry_count);
2274 kfree(mta_list);
2277 /* Need to wait a few seconds after link up to get diagnostic information from
2278 * the phy */
2279 static void igb_update_phy_info(unsigned long data)
2281 struct igb_adapter *adapter = (struct igb_adapter *) data;
2282 if (adapter->hw.phy.ops.get_phy_info)
2283 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2287 * igb_watchdog - Timer Call-back
2288 * @data: pointer to adapter cast into an unsigned long
2290 static void igb_watchdog(unsigned long data)
2292 struct igb_adapter *adapter = (struct igb_adapter *)data;
2293 /* Do the rest outside of interrupt context */
2294 schedule_work(&adapter->watchdog_task);
2297 static void igb_watchdog_task(struct work_struct *work)
2299 struct igb_adapter *adapter = container_of(work,
2300 struct igb_adapter, watchdog_task);
2301 struct e1000_hw *hw = &adapter->hw;
2303 struct net_device *netdev = adapter->netdev;
2304 struct igb_ring *tx_ring = adapter->tx_ring;
2305 struct e1000_mac_info *mac = &adapter->hw.mac;
2306 u32 link;
2307 u32 eics = 0;
2308 s32 ret_val;
2309 int i;
2311 if ((netif_carrier_ok(netdev)) &&
2312 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2313 goto link_up;
2315 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2316 if ((ret_val == E1000_ERR_PHY) &&
2317 (hw->phy.type == e1000_phy_igp_3) &&
2318 (rd32(E1000_CTRL) &
2319 E1000_PHY_CTRL_GBE_DISABLE))
2320 dev_info(&adapter->pdev->dev,
2321 "Gigabit has been disabled, downgrading speed\n");
2323 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2324 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2325 link = mac->serdes_has_link;
2326 else
2327 link = rd32(E1000_STATUS) &
2328 E1000_STATUS_LU;
2330 if (link) {
2331 if (!netif_carrier_ok(netdev)) {
2332 u32 ctrl;
2333 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2334 &adapter->link_speed,
2335 &adapter->link_duplex);
2337 ctrl = rd32(E1000_CTRL);
2338 dev_info(&adapter->pdev->dev,
2339 "NIC Link is Up %d Mbps %s, "
2340 "Flow Control: %s\n",
2341 adapter->link_speed,
2342 adapter->link_duplex == FULL_DUPLEX ?
2343 "Full Duplex" : "Half Duplex",
2344 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2345 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2346 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2347 E1000_CTRL_TFCE) ? "TX" : "None")));
2349 /* tweak tx_queue_len according to speed/duplex and
2350 * adjust the timeout factor */
2351 netdev->tx_queue_len = adapter->tx_queue_len;
2352 adapter->tx_timeout_factor = 1;
2353 switch (adapter->link_speed) {
2354 case SPEED_10:
2355 netdev->tx_queue_len = 10;
2356 adapter->tx_timeout_factor = 14;
2357 break;
2358 case SPEED_100:
2359 netdev->tx_queue_len = 100;
2360 /* maybe add some timeout factor ? */
2361 break;
2364 netif_carrier_on(netdev);
2365 netif_tx_wake_all_queues(netdev);
2367 if (!test_bit(__IGB_DOWN, &adapter->state))
2368 mod_timer(&adapter->phy_info_timer,
2369 round_jiffies(jiffies + 2 * HZ));
2371 } else {
2372 if (netif_carrier_ok(netdev)) {
2373 adapter->link_speed = 0;
2374 adapter->link_duplex = 0;
2375 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2376 netif_carrier_off(netdev);
2377 netif_tx_stop_all_queues(netdev);
2378 if (!test_bit(__IGB_DOWN, &adapter->state))
2379 mod_timer(&adapter->phy_info_timer,
2380 round_jiffies(jiffies + 2 * HZ));
2384 link_up:
2385 igb_update_stats(adapter);
2387 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2388 adapter->tpt_old = adapter->stats.tpt;
2389 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2390 adapter->colc_old = adapter->stats.colc;
2392 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2393 adapter->gorc_old = adapter->stats.gorc;
2394 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2395 adapter->gotc_old = adapter->stats.gotc;
2397 igb_update_adaptive(&adapter->hw);
2399 if (!netif_carrier_ok(netdev)) {
2400 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2401 /* We've lost link, so the controller stops DMA,
2402 * but we've got queued Tx work that's never going
2403 * to get done, so reset controller to flush Tx.
2404 * (Do the reset outside of interrupt context). */
2405 adapter->tx_timeout_count++;
2406 schedule_work(&adapter->reset_task);
2410 /* Cause software interrupt to ensure rx ring is cleaned */
2411 if (adapter->msix_entries) {
2412 for (i = 0; i < adapter->num_rx_queues; i++)
2413 eics |= adapter->rx_ring[i].eims_value;
2414 wr32(E1000_EICS, eics);
2415 } else {
2416 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2419 /* Force detection of hung controller every watchdog period */
2420 tx_ring->detect_tx_hung = true;
2422 /* Reset the timer */
2423 if (!test_bit(__IGB_DOWN, &adapter->state))
2424 mod_timer(&adapter->watchdog_timer,
2425 round_jiffies(jiffies + 2 * HZ));
2428 enum latency_range {
2429 lowest_latency = 0,
2430 low_latency = 1,
2431 bulk_latency = 2,
2432 latency_invalid = 255
2437 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2439 * Stores a new ITR value based on strictly on packet size. This
2440 * algorithm is less sophisticated than that used in igb_update_itr,
2441 * due to the difficulty of synchronizing statistics across multiple
2442 * receive rings. The divisors and thresholds used by this fuction
2443 * were determined based on theoretical maximum wire speed and testing
2444 * data, in order to minimize response time while increasing bulk
2445 * throughput.
2446 * This functionality is controlled by the InterruptThrottleRate module
2447 * parameter (see igb_param.c)
2448 * NOTE: This function is called only when operating in a multiqueue
2449 * receive environment.
2450 * @rx_ring: pointer to ring
2452 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2454 int new_val = rx_ring->itr_val;
2455 int avg_wire_size = 0;
2456 struct igb_adapter *adapter = rx_ring->adapter;
2458 if (!rx_ring->total_packets)
2459 goto clear_counts; /* no packets, so don't do anything */
2461 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2462 * ints/sec - ITR timer value of 120 ticks.
2464 if (adapter->link_speed != SPEED_1000) {
2465 new_val = 120;
2466 goto set_itr_val;
2468 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2470 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2471 avg_wire_size += 24;
2473 /* Don't starve jumbo frames */
2474 avg_wire_size = min(avg_wire_size, 3000);
2476 /* Give a little boost to mid-size frames */
2477 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2478 new_val = avg_wire_size / 3;
2479 else
2480 new_val = avg_wire_size / 2;
2482 set_itr_val:
2483 if (new_val != rx_ring->itr_val) {
2484 rx_ring->itr_val = new_val;
2485 rx_ring->set_itr = 1;
2487 clear_counts:
2488 rx_ring->total_bytes = 0;
2489 rx_ring->total_packets = 0;
2493 * igb_update_itr - update the dynamic ITR value based on statistics
2494 * Stores a new ITR value based on packets and byte
2495 * counts during the last interrupt. The advantage of per interrupt
2496 * computation is faster updates and more accurate ITR for the current
2497 * traffic pattern. Constants in this function were computed
2498 * based on theoretical maximum wire speed and thresholds were set based
2499 * on testing data as well as attempting to minimize response time
2500 * while increasing bulk throughput.
2501 * this functionality is controlled by the InterruptThrottleRate module
2502 * parameter (see igb_param.c)
2503 * NOTE: These calculations are only valid when operating in a single-
2504 * queue environment.
2505 * @adapter: pointer to adapter
2506 * @itr_setting: current adapter->itr
2507 * @packets: the number of packets during this measurement interval
2508 * @bytes: the number of bytes during this measurement interval
2510 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2511 int packets, int bytes)
2513 unsigned int retval = itr_setting;
2515 if (packets == 0)
2516 goto update_itr_done;
2518 switch (itr_setting) {
2519 case lowest_latency:
2520 /* handle TSO and jumbo frames */
2521 if (bytes/packets > 8000)
2522 retval = bulk_latency;
2523 else if ((packets < 5) && (bytes > 512))
2524 retval = low_latency;
2525 break;
2526 case low_latency: /* 50 usec aka 20000 ints/s */
2527 if (bytes > 10000) {
2528 /* this if handles the TSO accounting */
2529 if (bytes/packets > 8000) {
2530 retval = bulk_latency;
2531 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2532 retval = bulk_latency;
2533 } else if ((packets > 35)) {
2534 retval = lowest_latency;
2536 } else if (bytes/packets > 2000) {
2537 retval = bulk_latency;
2538 } else if (packets <= 2 && bytes < 512) {
2539 retval = lowest_latency;
2541 break;
2542 case bulk_latency: /* 250 usec aka 4000 ints/s */
2543 if (bytes > 25000) {
2544 if (packets > 35)
2545 retval = low_latency;
2546 } else if (bytes < 6000) {
2547 retval = low_latency;
2549 break;
2552 update_itr_done:
2553 return retval;
2556 static void igb_set_itr(struct igb_adapter *adapter)
2558 u16 current_itr;
2559 u32 new_itr = adapter->itr;
2561 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2562 if (adapter->link_speed != SPEED_1000) {
2563 current_itr = 0;
2564 new_itr = 4000;
2565 goto set_itr_now;
2568 adapter->rx_itr = igb_update_itr(adapter,
2569 adapter->rx_itr,
2570 adapter->rx_ring->total_packets,
2571 adapter->rx_ring->total_bytes);
2573 if (adapter->rx_ring->buddy) {
2574 adapter->tx_itr = igb_update_itr(adapter,
2575 adapter->tx_itr,
2576 adapter->tx_ring->total_packets,
2577 adapter->tx_ring->total_bytes);
2579 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2580 } else {
2581 current_itr = adapter->rx_itr;
2584 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2585 if (adapter->itr_setting == 3 &&
2586 current_itr == lowest_latency)
2587 current_itr = low_latency;
2589 switch (current_itr) {
2590 /* counts and packets in update_itr are dependent on these numbers */
2591 case lowest_latency:
2592 new_itr = 70000;
2593 break;
2594 case low_latency:
2595 new_itr = 20000; /* aka hwitr = ~200 */
2596 break;
2597 case bulk_latency:
2598 new_itr = 4000;
2599 break;
2600 default:
2601 break;
2604 set_itr_now:
2605 adapter->rx_ring->total_bytes = 0;
2606 adapter->rx_ring->total_packets = 0;
2607 if (adapter->rx_ring->buddy) {
2608 adapter->rx_ring->buddy->total_bytes = 0;
2609 adapter->rx_ring->buddy->total_packets = 0;
2612 if (new_itr != adapter->itr) {
2613 /* this attempts to bias the interrupt rate towards Bulk
2614 * by adding intermediate steps when interrupt rate is
2615 * increasing */
2616 new_itr = new_itr > adapter->itr ?
2617 min(adapter->itr + (new_itr >> 2), new_itr) :
2618 new_itr;
2619 /* Don't write the value here; it resets the adapter's
2620 * internal timer, and causes us to delay far longer than
2621 * we should between interrupts. Instead, we write the ITR
2622 * value at the beginning of the next interrupt so the timing
2623 * ends up being correct.
2625 adapter->itr = new_itr;
2626 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2627 adapter->rx_ring->set_itr = 1;
2630 return;
2634 #define IGB_TX_FLAGS_CSUM 0x00000001
2635 #define IGB_TX_FLAGS_VLAN 0x00000002
2636 #define IGB_TX_FLAGS_TSO 0x00000004
2637 #define IGB_TX_FLAGS_IPV4 0x00000008
2638 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2639 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2641 static inline int igb_tso_adv(struct igb_adapter *adapter,
2642 struct igb_ring *tx_ring,
2643 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2645 struct e1000_adv_tx_context_desc *context_desc;
2646 unsigned int i;
2647 int err;
2648 struct igb_buffer *buffer_info;
2649 u32 info = 0, tu_cmd = 0;
2650 u32 mss_l4len_idx, l4len;
2651 *hdr_len = 0;
2653 if (skb_header_cloned(skb)) {
2654 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2655 if (err)
2656 return err;
2659 l4len = tcp_hdrlen(skb);
2660 *hdr_len += l4len;
2662 if (skb->protocol == htons(ETH_P_IP)) {
2663 struct iphdr *iph = ip_hdr(skb);
2664 iph->tot_len = 0;
2665 iph->check = 0;
2666 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2667 iph->daddr, 0,
2668 IPPROTO_TCP,
2670 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2671 ipv6_hdr(skb)->payload_len = 0;
2672 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2673 &ipv6_hdr(skb)->daddr,
2674 0, IPPROTO_TCP, 0);
2677 i = tx_ring->next_to_use;
2679 buffer_info = &tx_ring->buffer_info[i];
2680 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2681 /* VLAN MACLEN IPLEN */
2682 if (tx_flags & IGB_TX_FLAGS_VLAN)
2683 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2684 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2685 *hdr_len += skb_network_offset(skb);
2686 info |= skb_network_header_len(skb);
2687 *hdr_len += skb_network_header_len(skb);
2688 context_desc->vlan_macip_lens = cpu_to_le32(info);
2690 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2691 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2693 if (skb->protocol == htons(ETH_P_IP))
2694 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2695 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2697 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2699 /* MSS L4LEN IDX */
2700 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2701 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2703 /* Context index must be unique per ring. */
2704 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2705 mss_l4len_idx |= tx_ring->queue_index << 4;
2707 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2708 context_desc->seqnum_seed = 0;
2710 buffer_info->time_stamp = jiffies;
2711 buffer_info->dma = 0;
2712 i++;
2713 if (i == tx_ring->count)
2714 i = 0;
2716 tx_ring->next_to_use = i;
2718 return true;
2721 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2722 struct igb_ring *tx_ring,
2723 struct sk_buff *skb, u32 tx_flags)
2725 struct e1000_adv_tx_context_desc *context_desc;
2726 unsigned int i;
2727 struct igb_buffer *buffer_info;
2728 u32 info = 0, tu_cmd = 0;
2730 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2731 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2732 i = tx_ring->next_to_use;
2733 buffer_info = &tx_ring->buffer_info[i];
2734 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2736 if (tx_flags & IGB_TX_FLAGS_VLAN)
2737 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2738 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2739 if (skb->ip_summed == CHECKSUM_PARTIAL)
2740 info |= skb_network_header_len(skb);
2742 context_desc->vlan_macip_lens = cpu_to_le32(info);
2744 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2746 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2747 switch (skb->protocol) {
2748 case __constant_htons(ETH_P_IP):
2749 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2750 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2751 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2752 break;
2753 case __constant_htons(ETH_P_IPV6):
2754 /* XXX what about other V6 headers?? */
2755 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2756 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2757 break;
2758 default:
2759 if (unlikely(net_ratelimit()))
2760 dev_warn(&adapter->pdev->dev,
2761 "partial checksum but proto=%x!\n",
2762 skb->protocol);
2763 break;
2767 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2768 context_desc->seqnum_seed = 0;
2769 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2770 context_desc->mss_l4len_idx =
2771 cpu_to_le32(tx_ring->queue_index << 4);
2773 buffer_info->time_stamp = jiffies;
2774 buffer_info->dma = 0;
2776 i++;
2777 if (i == tx_ring->count)
2778 i = 0;
2779 tx_ring->next_to_use = i;
2781 return true;
2785 return false;
2788 #define IGB_MAX_TXD_PWR 16
2789 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2791 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2792 struct igb_ring *tx_ring,
2793 struct sk_buff *skb)
2795 struct igb_buffer *buffer_info;
2796 unsigned int len = skb_headlen(skb);
2797 unsigned int count = 0, i;
2798 unsigned int f;
2800 i = tx_ring->next_to_use;
2802 buffer_info = &tx_ring->buffer_info[i];
2803 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2804 buffer_info->length = len;
2805 /* set time_stamp *before* dma to help avoid a possible race */
2806 buffer_info->time_stamp = jiffies;
2807 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2808 PCI_DMA_TODEVICE);
2809 count++;
2810 i++;
2811 if (i == tx_ring->count)
2812 i = 0;
2814 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2815 struct skb_frag_struct *frag;
2817 frag = &skb_shinfo(skb)->frags[f];
2818 len = frag->size;
2820 buffer_info = &tx_ring->buffer_info[i];
2821 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2822 buffer_info->length = len;
2823 buffer_info->time_stamp = jiffies;
2824 buffer_info->dma = pci_map_page(adapter->pdev,
2825 frag->page,
2826 frag->page_offset,
2827 len,
2828 PCI_DMA_TODEVICE);
2830 count++;
2831 i++;
2832 if (i == tx_ring->count)
2833 i = 0;
2836 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2837 tx_ring->buffer_info[i].skb = skb;
2839 return count;
2842 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2843 struct igb_ring *tx_ring,
2844 int tx_flags, int count, u32 paylen,
2845 u8 hdr_len)
2847 union e1000_adv_tx_desc *tx_desc = NULL;
2848 struct igb_buffer *buffer_info;
2849 u32 olinfo_status = 0, cmd_type_len;
2850 unsigned int i;
2852 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2853 E1000_ADVTXD_DCMD_DEXT);
2855 if (tx_flags & IGB_TX_FLAGS_VLAN)
2856 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2858 if (tx_flags & IGB_TX_FLAGS_TSO) {
2859 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2861 /* insert tcp checksum */
2862 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2864 /* insert ip checksum */
2865 if (tx_flags & IGB_TX_FLAGS_IPV4)
2866 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2868 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2869 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2872 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2873 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2874 IGB_TX_FLAGS_VLAN)))
2875 olinfo_status |= tx_ring->queue_index << 4;
2877 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2879 i = tx_ring->next_to_use;
2880 while (count--) {
2881 buffer_info = &tx_ring->buffer_info[i];
2882 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2883 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2884 tx_desc->read.cmd_type_len =
2885 cpu_to_le32(cmd_type_len | buffer_info->length);
2886 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2887 i++;
2888 if (i == tx_ring->count)
2889 i = 0;
2892 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2893 /* Force memory writes to complete before letting h/w
2894 * know there are new descriptors to fetch. (Only
2895 * applicable for weak-ordered memory model archs,
2896 * such as IA-64). */
2897 wmb();
2899 tx_ring->next_to_use = i;
2900 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2901 /* we need this if more than one processor can write to our tail
2902 * at a time, it syncronizes IO on IA64/Altix systems */
2903 mmiowb();
2906 static int __igb_maybe_stop_tx(struct net_device *netdev,
2907 struct igb_ring *tx_ring, int size)
2909 struct igb_adapter *adapter = netdev_priv(netdev);
2911 netif_stop_subqueue(netdev, tx_ring->queue_index);
2913 /* Herbert's original patch had:
2914 * smp_mb__after_netif_stop_queue();
2915 * but since that doesn't exist yet, just open code it. */
2916 smp_mb();
2918 /* We need to check again in a case another CPU has just
2919 * made room available. */
2920 if (IGB_DESC_UNUSED(tx_ring) < size)
2921 return -EBUSY;
2923 /* A reprieve! */
2924 netif_wake_subqueue(netdev, tx_ring->queue_index);
2925 ++adapter->restart_queue;
2926 return 0;
2929 static int igb_maybe_stop_tx(struct net_device *netdev,
2930 struct igb_ring *tx_ring, int size)
2932 if (IGB_DESC_UNUSED(tx_ring) >= size)
2933 return 0;
2934 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2937 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2939 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2940 struct net_device *netdev,
2941 struct igb_ring *tx_ring)
2943 struct igb_adapter *adapter = netdev_priv(netdev);
2944 unsigned int tx_flags = 0;
2945 unsigned int len;
2946 u8 hdr_len = 0;
2947 int tso = 0;
2949 len = skb_headlen(skb);
2951 if (test_bit(__IGB_DOWN, &adapter->state)) {
2952 dev_kfree_skb_any(skb);
2953 return NETDEV_TX_OK;
2956 if (skb->len <= 0) {
2957 dev_kfree_skb_any(skb);
2958 return NETDEV_TX_OK;
2961 /* need: 1 descriptor per page,
2962 * + 2 desc gap to keep tail from touching head,
2963 * + 1 desc for skb->data,
2964 * + 1 desc for context descriptor,
2965 * otherwise try next time */
2966 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2967 /* this is a hard error */
2968 return NETDEV_TX_BUSY;
2970 skb_orphan(skb);
2972 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2973 tx_flags |= IGB_TX_FLAGS_VLAN;
2974 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2977 if (skb->protocol == htons(ETH_P_IP))
2978 tx_flags |= IGB_TX_FLAGS_IPV4;
2980 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2981 &hdr_len) : 0;
2983 if (tso < 0) {
2984 dev_kfree_skb_any(skb);
2985 return NETDEV_TX_OK;
2988 if (tso)
2989 tx_flags |= IGB_TX_FLAGS_TSO;
2990 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2991 if (skb->ip_summed == CHECKSUM_PARTIAL)
2992 tx_flags |= IGB_TX_FLAGS_CSUM;
2994 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2995 igb_tx_map_adv(adapter, tx_ring, skb),
2996 skb->len, hdr_len);
2998 netdev->trans_start = jiffies;
3000 /* Make sure there is space in the ring for the next send. */
3001 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3003 return NETDEV_TX_OK;
3006 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3008 struct igb_adapter *adapter = netdev_priv(netdev);
3009 struct igb_ring *tx_ring;
3011 int r_idx = 0;
3012 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3013 tx_ring = adapter->multi_tx_table[r_idx];
3015 /* This goes back to the question of how to logically map a tx queue
3016 * to a flow. Right now, performance is impacted slightly negatively
3017 * if using multiple tx queues. If the stack breaks away from a
3018 * single qdisc implementation, we can look at this again. */
3019 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3023 * igb_tx_timeout - Respond to a Tx Hang
3024 * @netdev: network interface device structure
3026 static void igb_tx_timeout(struct net_device *netdev)
3028 struct igb_adapter *adapter = netdev_priv(netdev);
3029 struct e1000_hw *hw = &adapter->hw;
3031 /* Do the reset outside of interrupt context */
3032 adapter->tx_timeout_count++;
3033 schedule_work(&adapter->reset_task);
3034 wr32(E1000_EICS, adapter->eims_enable_mask &
3035 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3038 static void igb_reset_task(struct work_struct *work)
3040 struct igb_adapter *adapter;
3041 adapter = container_of(work, struct igb_adapter, reset_task);
3043 igb_reinit_locked(adapter);
3047 * igb_get_stats - Get System Network Statistics
3048 * @netdev: network interface device structure
3050 * Returns the address of the device statistics structure.
3051 * The statistics are actually updated from the timer callback.
3053 static struct net_device_stats *
3054 igb_get_stats(struct net_device *netdev)
3056 struct igb_adapter *adapter = netdev_priv(netdev);
3058 /* only return the current stats */
3059 return &adapter->net_stats;
3063 * igb_change_mtu - Change the Maximum Transfer Unit
3064 * @netdev: network interface device structure
3065 * @new_mtu: new value for maximum frame size
3067 * Returns 0 on success, negative on failure
3069 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3071 struct igb_adapter *adapter = netdev_priv(netdev);
3072 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3074 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3075 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3076 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3077 return -EINVAL;
3080 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3081 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3082 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3083 return -EINVAL;
3086 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3087 msleep(1);
3088 /* igb_down has a dependency on max_frame_size */
3089 adapter->max_frame_size = max_frame;
3090 if (netif_running(netdev))
3091 igb_down(adapter);
3093 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3094 * means we reserve 2 more, this pushes us to allocate from the next
3095 * larger slab size.
3096 * i.e. RXBUFFER_2048 --> size-4096 slab
3099 if (max_frame <= IGB_RXBUFFER_256)
3100 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3101 else if (max_frame <= IGB_RXBUFFER_512)
3102 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3103 else if (max_frame <= IGB_RXBUFFER_1024)
3104 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3105 else if (max_frame <= IGB_RXBUFFER_2048)
3106 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3107 else
3108 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3109 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3110 #else
3111 adapter->rx_buffer_len = PAGE_SIZE / 2;
3112 #endif
3113 /* adjust allocation if LPE protects us, and we aren't using SBP */
3114 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3115 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3116 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3118 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3119 netdev->mtu, new_mtu);
3120 netdev->mtu = new_mtu;
3122 if (netif_running(netdev))
3123 igb_up(adapter);
3124 else
3125 igb_reset(adapter);
3127 clear_bit(__IGB_RESETTING, &adapter->state);
3129 return 0;
3133 * igb_update_stats - Update the board statistics counters
3134 * @adapter: board private structure
3137 void igb_update_stats(struct igb_adapter *adapter)
3139 struct e1000_hw *hw = &adapter->hw;
3140 struct pci_dev *pdev = adapter->pdev;
3141 u16 phy_tmp;
3143 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3146 * Prevent stats update while adapter is being reset, or if the pci
3147 * connection is down.
3149 if (adapter->link_speed == 0)
3150 return;
3151 if (pci_channel_offline(pdev))
3152 return;
3154 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3155 adapter->stats.gprc += rd32(E1000_GPRC);
3156 adapter->stats.gorc += rd32(E1000_GORCL);
3157 rd32(E1000_GORCH); /* clear GORCL */
3158 adapter->stats.bprc += rd32(E1000_BPRC);
3159 adapter->stats.mprc += rd32(E1000_MPRC);
3160 adapter->stats.roc += rd32(E1000_ROC);
3162 adapter->stats.prc64 += rd32(E1000_PRC64);
3163 adapter->stats.prc127 += rd32(E1000_PRC127);
3164 adapter->stats.prc255 += rd32(E1000_PRC255);
3165 adapter->stats.prc511 += rd32(E1000_PRC511);
3166 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3167 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3168 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3169 adapter->stats.sec += rd32(E1000_SEC);
3171 adapter->stats.mpc += rd32(E1000_MPC);
3172 adapter->stats.scc += rd32(E1000_SCC);
3173 adapter->stats.ecol += rd32(E1000_ECOL);
3174 adapter->stats.mcc += rd32(E1000_MCC);
3175 adapter->stats.latecol += rd32(E1000_LATECOL);
3176 adapter->stats.dc += rd32(E1000_DC);
3177 adapter->stats.rlec += rd32(E1000_RLEC);
3178 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3179 adapter->stats.xontxc += rd32(E1000_XONTXC);
3180 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3181 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3182 adapter->stats.fcruc += rd32(E1000_FCRUC);
3183 adapter->stats.gptc += rd32(E1000_GPTC);
3184 adapter->stats.gotc += rd32(E1000_GOTCL);
3185 rd32(E1000_GOTCH); /* clear GOTCL */
3186 adapter->stats.rnbc += rd32(E1000_RNBC);
3187 adapter->stats.ruc += rd32(E1000_RUC);
3188 adapter->stats.rfc += rd32(E1000_RFC);
3189 adapter->stats.rjc += rd32(E1000_RJC);
3190 adapter->stats.tor += rd32(E1000_TORH);
3191 adapter->stats.tot += rd32(E1000_TOTH);
3192 adapter->stats.tpr += rd32(E1000_TPR);
3194 adapter->stats.ptc64 += rd32(E1000_PTC64);
3195 adapter->stats.ptc127 += rd32(E1000_PTC127);
3196 adapter->stats.ptc255 += rd32(E1000_PTC255);
3197 adapter->stats.ptc511 += rd32(E1000_PTC511);
3198 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3199 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3201 adapter->stats.mptc += rd32(E1000_MPTC);
3202 adapter->stats.bptc += rd32(E1000_BPTC);
3204 /* used for adaptive IFS */
3206 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3207 adapter->stats.tpt += hw->mac.tx_packet_delta;
3208 hw->mac.collision_delta = rd32(E1000_COLC);
3209 adapter->stats.colc += hw->mac.collision_delta;
3211 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3212 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3213 adapter->stats.tncrs += rd32(E1000_TNCRS);
3214 adapter->stats.tsctc += rd32(E1000_TSCTC);
3215 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3217 adapter->stats.iac += rd32(E1000_IAC);
3218 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3219 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3220 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3221 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3222 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3223 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3224 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3225 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3227 /* Fill out the OS statistics structure */
3228 adapter->net_stats.multicast = adapter->stats.mprc;
3229 adapter->net_stats.collisions = adapter->stats.colc;
3231 /* Rx Errors */
3233 /* RLEC on some newer hardware can be incorrect so build
3234 * our own version based on RUC and ROC */
3235 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3236 adapter->stats.crcerrs + adapter->stats.algnerrc +
3237 adapter->stats.ruc + adapter->stats.roc +
3238 adapter->stats.cexterr;
3239 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3240 adapter->stats.roc;
3241 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3242 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3243 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3245 /* Tx Errors */
3246 adapter->net_stats.tx_errors = adapter->stats.ecol +
3247 adapter->stats.latecol;
3248 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3249 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3250 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3252 /* Tx Dropped needs to be maintained elsewhere */
3254 /* Phy Stats */
3255 if (hw->phy.media_type == e1000_media_type_copper) {
3256 if ((adapter->link_speed == SPEED_1000) &&
3257 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3258 &phy_tmp))) {
3259 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3260 adapter->phy_stats.idle_errors += phy_tmp;
3264 /* Management Stats */
3265 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3266 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3267 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3271 static irqreturn_t igb_msix_other(int irq, void *data)
3273 struct net_device *netdev = data;
3274 struct igb_adapter *adapter = netdev_priv(netdev);
3275 struct e1000_hw *hw = &adapter->hw;
3276 u32 icr = rd32(E1000_ICR);
3278 /* reading ICR causes bit 31 of EICR to be cleared */
3279 if (!(icr & E1000_ICR_LSC))
3280 goto no_link_interrupt;
3281 hw->mac.get_link_status = 1;
3282 /* guard against interrupt when we're going down */
3283 if (!test_bit(__IGB_DOWN, &adapter->state))
3284 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3286 no_link_interrupt:
3287 wr32(E1000_IMS, E1000_IMS_LSC);
3288 wr32(E1000_EIMS, adapter->eims_other);
3290 return IRQ_HANDLED;
3293 static irqreturn_t igb_msix_tx(int irq, void *data)
3295 struct igb_ring *tx_ring = data;
3296 struct igb_adapter *adapter = tx_ring->adapter;
3297 struct e1000_hw *hw = &adapter->hw;
3299 #ifdef CONFIG_IGB_DCA
3300 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3301 igb_update_tx_dca(tx_ring);
3302 #endif
3303 tx_ring->total_bytes = 0;
3304 tx_ring->total_packets = 0;
3306 /* auto mask will automatically reenable the interrupt when we write
3307 * EICS */
3308 if (!igb_clean_tx_irq(tx_ring))
3309 /* Ring was not completely cleaned, so fire another interrupt */
3310 wr32(E1000_EICS, tx_ring->eims_value);
3311 else
3312 wr32(E1000_EIMS, tx_ring->eims_value);
3314 return IRQ_HANDLED;
3317 static void igb_write_itr(struct igb_ring *ring)
3319 struct e1000_hw *hw = &ring->adapter->hw;
3320 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3321 switch (hw->mac.type) {
3322 case e1000_82576:
3323 wr32(ring->itr_register,
3324 ring->itr_val |
3325 0x80000000);
3326 break;
3327 default:
3328 wr32(ring->itr_register,
3329 ring->itr_val |
3330 (ring->itr_val << 16));
3331 break;
3333 ring->set_itr = 0;
3337 static irqreturn_t igb_msix_rx(int irq, void *data)
3339 struct igb_ring *rx_ring = data;
3340 struct igb_adapter *adapter = rx_ring->adapter;
3342 /* Write the ITR value calculated at the end of the
3343 * previous interrupt.
3346 igb_write_itr(rx_ring);
3348 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3349 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3351 #ifdef CONFIG_IGB_DCA
3352 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3353 igb_update_rx_dca(rx_ring);
3354 #endif
3355 return IRQ_HANDLED;
3358 #ifdef CONFIG_IGB_DCA
3359 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3361 u32 dca_rxctrl;
3362 struct igb_adapter *adapter = rx_ring->adapter;
3363 struct e1000_hw *hw = &adapter->hw;
3364 int cpu = get_cpu();
3365 int q = rx_ring - adapter->rx_ring;
3367 if (rx_ring->cpu != cpu) {
3368 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3369 if (hw->mac.type == e1000_82576) {
3370 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3371 dca_rxctrl |= dca_get_tag(cpu) <<
3372 E1000_DCA_RXCTRL_CPUID_SHIFT;
3373 } else {
3374 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3375 dca_rxctrl |= dca_get_tag(cpu);
3377 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3378 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3379 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3380 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3381 rx_ring->cpu = cpu;
3383 put_cpu();
3386 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3388 u32 dca_txctrl;
3389 struct igb_adapter *adapter = tx_ring->adapter;
3390 struct e1000_hw *hw = &adapter->hw;
3391 int cpu = get_cpu();
3392 int q = tx_ring - adapter->tx_ring;
3394 if (tx_ring->cpu != cpu) {
3395 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3396 if (hw->mac.type == e1000_82576) {
3397 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3398 dca_txctrl |= dca_get_tag(cpu) <<
3399 E1000_DCA_TXCTRL_CPUID_SHIFT;
3400 } else {
3401 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3402 dca_txctrl |= dca_get_tag(cpu);
3404 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3405 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3406 tx_ring->cpu = cpu;
3408 put_cpu();
3411 static void igb_setup_dca(struct igb_adapter *adapter)
3413 int i;
3415 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3416 return;
3418 for (i = 0; i < adapter->num_tx_queues; i++) {
3419 adapter->tx_ring[i].cpu = -1;
3420 igb_update_tx_dca(&adapter->tx_ring[i]);
3422 for (i = 0; i < adapter->num_rx_queues; i++) {
3423 adapter->rx_ring[i].cpu = -1;
3424 igb_update_rx_dca(&adapter->rx_ring[i]);
3428 static int __igb_notify_dca(struct device *dev, void *data)
3430 struct net_device *netdev = dev_get_drvdata(dev);
3431 struct igb_adapter *adapter = netdev_priv(netdev);
3432 struct e1000_hw *hw = &adapter->hw;
3433 unsigned long event = *(unsigned long *)data;
3435 if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3436 goto out;
3438 switch (event) {
3439 case DCA_PROVIDER_ADD:
3440 /* if already enabled, don't do it again */
3441 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3442 break;
3443 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3444 /* Always use CB2 mode, difference is masked
3445 * in the CB driver. */
3446 wr32(E1000_DCA_CTRL, 2);
3447 if (dca_add_requester(dev) == 0) {
3448 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3449 igb_setup_dca(adapter);
3450 break;
3452 /* Fall Through since DCA is disabled. */
3453 case DCA_PROVIDER_REMOVE:
3454 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3455 /* without this a class_device is left
3456 * hanging around in the sysfs model */
3457 dca_remove_requester(dev);
3458 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3459 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3460 wr32(E1000_DCA_CTRL, 1);
3462 break;
3464 out:
3465 return 0;
3468 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3469 void *p)
3471 int ret_val;
3473 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3474 __igb_notify_dca);
3476 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3478 #endif /* CONFIG_IGB_DCA */
3481 * igb_intr_msi - Interrupt Handler
3482 * @irq: interrupt number
3483 * @data: pointer to a network interface device structure
3485 static irqreturn_t igb_intr_msi(int irq, void *data)
3487 struct net_device *netdev = data;
3488 struct igb_adapter *adapter = netdev_priv(netdev);
3489 struct e1000_hw *hw = &adapter->hw;
3490 /* read ICR disables interrupts using IAM */
3491 u32 icr = rd32(E1000_ICR);
3493 igb_write_itr(adapter->rx_ring);
3495 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3496 hw->mac.get_link_status = 1;
3497 if (!test_bit(__IGB_DOWN, &adapter->state))
3498 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3501 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3503 return IRQ_HANDLED;
3507 * igb_intr - Interrupt Handler
3508 * @irq: interrupt number
3509 * @data: pointer to a network interface device structure
3511 static irqreturn_t igb_intr(int irq, void *data)
3513 struct net_device *netdev = data;
3514 struct igb_adapter *adapter = netdev_priv(netdev);
3515 struct e1000_hw *hw = &adapter->hw;
3516 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3517 * need for the IMC write */
3518 u32 icr = rd32(E1000_ICR);
3519 u32 eicr = 0;
3520 if (!icr)
3521 return IRQ_NONE; /* Not our interrupt */
3523 igb_write_itr(adapter->rx_ring);
3525 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3526 * not set, then the adapter didn't send an interrupt */
3527 if (!(icr & E1000_ICR_INT_ASSERTED))
3528 return IRQ_NONE;
3530 eicr = rd32(E1000_EICR);
3532 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3533 hw->mac.get_link_status = 1;
3534 /* guard against interrupt when we're going down */
3535 if (!test_bit(__IGB_DOWN, &adapter->state))
3536 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3539 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3541 return IRQ_HANDLED;
3545 * igb_poll - NAPI Rx polling callback
3546 * @napi: napi polling structure
3547 * @budget: count of how many packets we should handle
3549 static int igb_poll(struct napi_struct *napi, int budget)
3551 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3552 struct igb_adapter *adapter = rx_ring->adapter;
3553 struct net_device *netdev = adapter->netdev;
3554 int tx_clean_complete, work_done = 0;
3556 /* this poll routine only supports one tx and one rx queue */
3557 #ifdef CONFIG_IGB_DCA
3558 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3559 igb_update_tx_dca(&adapter->tx_ring[0]);
3560 #endif
3561 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3563 #ifdef CONFIG_IGB_DCA
3564 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3565 igb_update_rx_dca(&adapter->rx_ring[0]);
3566 #endif
3567 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3569 /* If no Tx and not enough Rx work done, exit the polling mode */
3570 if ((tx_clean_complete && (work_done < budget)) ||
3571 !netif_running(netdev)) {
3572 if (adapter->itr_setting & 3)
3573 igb_set_itr(adapter);
3574 netif_rx_complete(netdev, napi);
3575 if (!test_bit(__IGB_DOWN, &adapter->state))
3576 igb_irq_enable(adapter);
3577 return 0;
3580 return 1;
3583 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3585 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3586 struct igb_adapter *adapter = rx_ring->adapter;
3587 struct e1000_hw *hw = &adapter->hw;
3588 struct net_device *netdev = adapter->netdev;
3589 int work_done = 0;
3591 #ifdef CONFIG_IGB_DCA
3592 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3593 igb_update_rx_dca(rx_ring);
3594 #endif
3595 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3598 /* If not enough Rx work done, exit the polling mode */
3599 if ((work_done == 0) || !netif_running(netdev)) {
3600 netif_rx_complete(netdev, napi);
3602 if (adapter->itr_setting & 3) {
3603 if (adapter->num_rx_queues == 1)
3604 igb_set_itr(adapter);
3605 else
3606 igb_update_ring_itr(rx_ring);
3609 if (!test_bit(__IGB_DOWN, &adapter->state))
3610 wr32(E1000_EIMS, rx_ring->eims_value);
3612 return 0;
3615 return 1;
3618 static inline u32 get_head(struct igb_ring *tx_ring)
3620 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3621 return le32_to_cpu(*(volatile __le32 *)end);
3625 * igb_clean_tx_irq - Reclaim resources after transmit completes
3626 * @adapter: board private structure
3627 * returns true if ring is completely cleaned
3629 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3631 struct igb_adapter *adapter = tx_ring->adapter;
3632 struct e1000_hw *hw = &adapter->hw;
3633 struct net_device *netdev = adapter->netdev;
3634 struct e1000_tx_desc *tx_desc;
3635 struct igb_buffer *buffer_info;
3636 struct sk_buff *skb;
3637 unsigned int i;
3638 u32 head, oldhead;
3639 unsigned int count = 0;
3640 unsigned int total_bytes = 0, total_packets = 0;
3641 bool retval = true;
3643 rmb();
3644 head = get_head(tx_ring);
3645 i = tx_ring->next_to_clean;
3646 while (1) {
3647 while (i != head) {
3648 tx_desc = E1000_TX_DESC(*tx_ring, i);
3649 buffer_info = &tx_ring->buffer_info[i];
3650 skb = buffer_info->skb;
3652 if (skb) {
3653 unsigned int segs, bytecount;
3654 /* gso_segs is currently only valid for tcp */
3655 segs = skb_shinfo(skb)->gso_segs ?: 1;
3656 /* multiply data chunks by size of headers */
3657 bytecount = ((segs - 1) * skb_headlen(skb)) +
3658 skb->len;
3659 total_packets += segs;
3660 total_bytes += bytecount;
3663 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3665 i++;
3666 if (i == tx_ring->count)
3667 i = 0;
3669 count++;
3670 if (count == IGB_MAX_TX_CLEAN) {
3671 retval = false;
3672 goto done_cleaning;
3675 oldhead = head;
3676 rmb();
3677 head = get_head(tx_ring);
3678 if (head == oldhead)
3679 goto done_cleaning;
3680 } /* while (1) */
3682 done_cleaning:
3683 tx_ring->next_to_clean = i;
3685 if (unlikely(count &&
3686 netif_carrier_ok(netdev) &&
3687 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3688 /* Make sure that anybody stopping the queue after this
3689 * sees the new next_to_clean.
3691 smp_mb();
3692 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3693 !(test_bit(__IGB_DOWN, &adapter->state))) {
3694 netif_wake_subqueue(netdev, tx_ring->queue_index);
3695 ++adapter->restart_queue;
3699 if (tx_ring->detect_tx_hung) {
3700 /* Detect a transmit hang in hardware, this serializes the
3701 * check with the clearing of time_stamp and movement of i */
3702 tx_ring->detect_tx_hung = false;
3703 if (tx_ring->buffer_info[i].time_stamp &&
3704 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3705 (adapter->tx_timeout_factor * HZ))
3706 && !(rd32(E1000_STATUS) &
3707 E1000_STATUS_TXOFF)) {
3709 tx_desc = E1000_TX_DESC(*tx_ring, i);
3710 /* detected Tx unit hang */
3711 dev_err(&adapter->pdev->dev,
3712 "Detected Tx Unit Hang\n"
3713 " Tx Queue <%d>\n"
3714 " TDH <%x>\n"
3715 " TDT <%x>\n"
3716 " next_to_use <%x>\n"
3717 " next_to_clean <%x>\n"
3718 " head (WB) <%x>\n"
3719 "buffer_info[next_to_clean]\n"
3720 " time_stamp <%lx>\n"
3721 " jiffies <%lx>\n"
3722 " desc.status <%x>\n",
3723 tx_ring->queue_index,
3724 readl(adapter->hw.hw_addr + tx_ring->head),
3725 readl(adapter->hw.hw_addr + tx_ring->tail),
3726 tx_ring->next_to_use,
3727 tx_ring->next_to_clean,
3728 head,
3729 tx_ring->buffer_info[i].time_stamp,
3730 jiffies,
3731 tx_desc->upper.fields.status);
3732 netif_stop_subqueue(netdev, tx_ring->queue_index);
3735 tx_ring->total_bytes += total_bytes;
3736 tx_ring->total_packets += total_packets;
3737 tx_ring->tx_stats.bytes += total_bytes;
3738 tx_ring->tx_stats.packets += total_packets;
3739 adapter->net_stats.tx_bytes += total_bytes;
3740 adapter->net_stats.tx_packets += total_packets;
3741 return retval;
3744 #ifdef CONFIG_IGB_LRO
3746 * igb_get_skb_hdr - helper function for LRO header processing
3747 * @skb: pointer to sk_buff to be added to LRO packet
3748 * @iphdr: pointer to ip header structure
3749 * @tcph: pointer to tcp header structure
3750 * @hdr_flags: pointer to header flags
3751 * @priv: pointer to the receive descriptor for the current sk_buff
3753 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3754 u64 *hdr_flags, void *priv)
3756 union e1000_adv_rx_desc *rx_desc = priv;
3757 u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3758 (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3760 /* Verify that this is a valid IPv4 TCP packet */
3761 if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3762 E1000_RXDADV_PKTTYPE_TCP))
3763 return -1;
3765 /* Set network headers */
3766 skb_reset_network_header(skb);
3767 skb_set_transport_header(skb, ip_hdrlen(skb));
3768 *iphdr = ip_hdr(skb);
3769 *tcph = tcp_hdr(skb);
3770 *hdr_flags = LRO_IPV4 | LRO_TCP;
3772 return 0;
3775 #endif /* CONFIG_IGB_LRO */
3778 * igb_receive_skb - helper function to handle rx indications
3779 * @ring: pointer to receive ring receving this packet
3780 * @status: descriptor status field as written by hardware
3781 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3782 * @skb: pointer to sk_buff to be indicated to stack
3784 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3785 union e1000_adv_rx_desc * rx_desc,
3786 struct sk_buff *skb)
3788 struct igb_adapter * adapter = ring->adapter;
3789 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3791 #ifdef CONFIG_IGB_LRO
3792 if (adapter->netdev->features & NETIF_F_LRO &&
3793 skb->ip_summed == CHECKSUM_UNNECESSARY) {
3794 if (vlan_extracted)
3795 lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3796 adapter->vlgrp,
3797 le16_to_cpu(rx_desc->wb.upper.vlan),
3798 rx_desc);
3799 else
3800 lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3801 ring->lro_used = 1;
3802 } else {
3803 #endif
3804 if (vlan_extracted)
3805 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3806 le16_to_cpu(rx_desc->wb.upper.vlan));
3807 else
3809 netif_receive_skb(skb);
3810 #ifdef CONFIG_IGB_LRO
3812 #endif
3816 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3817 u32 status_err, struct sk_buff *skb)
3819 skb->ip_summed = CHECKSUM_NONE;
3821 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3822 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3823 return;
3824 /* TCP/UDP checksum error bit is set */
3825 if (status_err &
3826 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3827 /* let the stack verify checksum errors */
3828 adapter->hw_csum_err++;
3829 return;
3831 /* It must be a TCP or UDP packet with a valid checksum */
3832 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3833 skb->ip_summed = CHECKSUM_UNNECESSARY;
3835 adapter->hw_csum_good++;
3838 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3839 int *work_done, int budget)
3841 struct igb_adapter *adapter = rx_ring->adapter;
3842 struct net_device *netdev = adapter->netdev;
3843 struct pci_dev *pdev = adapter->pdev;
3844 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3845 struct igb_buffer *buffer_info , *next_buffer;
3846 struct sk_buff *skb;
3847 unsigned int i;
3848 u32 length, hlen, staterr;
3849 bool cleaned = false;
3850 int cleaned_count = 0;
3851 unsigned int total_bytes = 0, total_packets = 0;
3853 i = rx_ring->next_to_clean;
3854 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3855 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3857 while (staterr & E1000_RXD_STAT_DD) {
3858 if (*work_done >= budget)
3859 break;
3860 (*work_done)++;
3861 buffer_info = &rx_ring->buffer_info[i];
3863 /* HW will not DMA in data larger than the given buffer, even
3864 * if it parses the (NFS, of course) header to be larger. In
3865 * that case, it fills the header buffer and spills the rest
3866 * into the page.
3868 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3869 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3870 if (hlen > adapter->rx_ps_hdr_size)
3871 hlen = adapter->rx_ps_hdr_size;
3873 length = le16_to_cpu(rx_desc->wb.upper.length);
3874 cleaned = true;
3875 cleaned_count++;
3877 skb = buffer_info->skb;
3878 prefetch(skb->data - NET_IP_ALIGN);
3879 buffer_info->skb = NULL;
3880 if (!adapter->rx_ps_hdr_size) {
3881 pci_unmap_single(pdev, buffer_info->dma,
3882 adapter->rx_buffer_len +
3883 NET_IP_ALIGN,
3884 PCI_DMA_FROMDEVICE);
3885 skb_put(skb, length);
3886 goto send_up;
3889 if (!skb_shinfo(skb)->nr_frags) {
3890 pci_unmap_single(pdev, buffer_info->dma,
3891 adapter->rx_ps_hdr_size +
3892 NET_IP_ALIGN,
3893 PCI_DMA_FROMDEVICE);
3894 skb_put(skb, hlen);
3897 if (length) {
3898 pci_unmap_page(pdev, buffer_info->page_dma,
3899 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3900 buffer_info->page_dma = 0;
3902 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3903 buffer_info->page,
3904 buffer_info->page_offset,
3905 length);
3907 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3908 (page_count(buffer_info->page) != 1))
3909 buffer_info->page = NULL;
3910 else
3911 get_page(buffer_info->page);
3913 skb->len += length;
3914 skb->data_len += length;
3916 skb->truesize += length;
3918 send_up:
3919 i++;
3920 if (i == rx_ring->count)
3921 i = 0;
3922 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3923 prefetch(next_rxd);
3924 next_buffer = &rx_ring->buffer_info[i];
3926 if (!(staterr & E1000_RXD_STAT_EOP)) {
3927 buffer_info->skb = xchg(&next_buffer->skb, skb);
3928 buffer_info->dma = xchg(&next_buffer->dma, 0);
3929 goto next_desc;
3932 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3933 dev_kfree_skb_irq(skb);
3934 goto next_desc;
3937 total_bytes += skb->len;
3938 total_packets++;
3940 igb_rx_checksum_adv(adapter, staterr, skb);
3942 skb->protocol = eth_type_trans(skb, netdev);
3944 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3946 netdev->last_rx = jiffies;
3948 next_desc:
3949 rx_desc->wb.upper.status_error = 0;
3951 /* return some buffers to hardware, one at a time is too slow */
3952 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3953 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3954 cleaned_count = 0;
3957 /* use prefetched values */
3958 rx_desc = next_rxd;
3959 buffer_info = next_buffer;
3961 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3964 rx_ring->next_to_clean = i;
3965 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3967 #ifdef CONFIG_IGB_LRO
3968 if (rx_ring->lro_used) {
3969 lro_flush_all(&rx_ring->lro_mgr);
3970 rx_ring->lro_used = 0;
3972 #endif
3974 if (cleaned_count)
3975 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3977 rx_ring->total_packets += total_packets;
3978 rx_ring->total_bytes += total_bytes;
3979 rx_ring->rx_stats.packets += total_packets;
3980 rx_ring->rx_stats.bytes += total_bytes;
3981 adapter->net_stats.rx_bytes += total_bytes;
3982 adapter->net_stats.rx_packets += total_packets;
3983 return cleaned;
3988 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3989 * @adapter: address of board private structure
3991 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3992 int cleaned_count)
3994 struct igb_adapter *adapter = rx_ring->adapter;
3995 struct net_device *netdev = adapter->netdev;
3996 struct pci_dev *pdev = adapter->pdev;
3997 union e1000_adv_rx_desc *rx_desc;
3998 struct igb_buffer *buffer_info;
3999 struct sk_buff *skb;
4000 unsigned int i;
4002 i = rx_ring->next_to_use;
4003 buffer_info = &rx_ring->buffer_info[i];
4005 while (cleaned_count--) {
4006 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4008 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4009 if (!buffer_info->page) {
4010 buffer_info->page = alloc_page(GFP_ATOMIC);
4011 if (!buffer_info->page) {
4012 adapter->alloc_rx_buff_failed++;
4013 goto no_buffers;
4015 buffer_info->page_offset = 0;
4016 } else {
4017 buffer_info->page_offset ^= PAGE_SIZE / 2;
4019 buffer_info->page_dma =
4020 pci_map_page(pdev,
4021 buffer_info->page,
4022 buffer_info->page_offset,
4023 PAGE_SIZE / 2,
4024 PCI_DMA_FROMDEVICE);
4027 if (!buffer_info->skb) {
4028 int bufsz;
4030 if (adapter->rx_ps_hdr_size)
4031 bufsz = adapter->rx_ps_hdr_size;
4032 else
4033 bufsz = adapter->rx_buffer_len;
4034 bufsz += NET_IP_ALIGN;
4035 skb = netdev_alloc_skb(netdev, bufsz);
4037 if (!skb) {
4038 adapter->alloc_rx_buff_failed++;
4039 goto no_buffers;
4042 /* Make buffer alignment 2 beyond a 16 byte boundary
4043 * this will result in a 16 byte aligned IP header after
4044 * the 14 byte MAC header is removed
4046 skb_reserve(skb, NET_IP_ALIGN);
4048 buffer_info->skb = skb;
4049 buffer_info->dma = pci_map_single(pdev, skb->data,
4050 bufsz,
4051 PCI_DMA_FROMDEVICE);
4054 /* Refresh the desc even if buffer_addrs didn't change because
4055 * each write-back erases this info. */
4056 if (adapter->rx_ps_hdr_size) {
4057 rx_desc->read.pkt_addr =
4058 cpu_to_le64(buffer_info->page_dma);
4059 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4060 } else {
4061 rx_desc->read.pkt_addr =
4062 cpu_to_le64(buffer_info->dma);
4063 rx_desc->read.hdr_addr = 0;
4066 i++;
4067 if (i == rx_ring->count)
4068 i = 0;
4069 buffer_info = &rx_ring->buffer_info[i];
4072 no_buffers:
4073 if (rx_ring->next_to_use != i) {
4074 rx_ring->next_to_use = i;
4075 if (i == 0)
4076 i = (rx_ring->count - 1);
4077 else
4078 i--;
4080 /* Force memory writes to complete before letting h/w
4081 * know there are new descriptors to fetch. (Only
4082 * applicable for weak-ordered memory model archs,
4083 * such as IA-64). */
4084 wmb();
4085 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4090 * igb_mii_ioctl -
4091 * @netdev:
4092 * @ifreq:
4093 * @cmd:
4095 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4097 struct igb_adapter *adapter = netdev_priv(netdev);
4098 struct mii_ioctl_data *data = if_mii(ifr);
4100 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4101 return -EOPNOTSUPP;
4103 switch (cmd) {
4104 case SIOCGMIIPHY:
4105 data->phy_id = adapter->hw.phy.addr;
4106 break;
4107 case SIOCGMIIREG:
4108 if (!capable(CAP_NET_ADMIN))
4109 return -EPERM;
4110 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
4111 data->reg_num
4112 & 0x1F, &data->val_out))
4113 return -EIO;
4114 break;
4115 case SIOCSMIIREG:
4116 default:
4117 return -EOPNOTSUPP;
4119 return 0;
4123 * igb_ioctl -
4124 * @netdev:
4125 * @ifreq:
4126 * @cmd:
4128 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4130 switch (cmd) {
4131 case SIOCGMIIPHY:
4132 case SIOCGMIIREG:
4133 case SIOCSMIIREG:
4134 return igb_mii_ioctl(netdev, ifr, cmd);
4135 default:
4136 return -EOPNOTSUPP;
4140 static void igb_vlan_rx_register(struct net_device *netdev,
4141 struct vlan_group *grp)
4143 struct igb_adapter *adapter = netdev_priv(netdev);
4144 struct e1000_hw *hw = &adapter->hw;
4145 u32 ctrl, rctl;
4147 igb_irq_disable(adapter);
4148 adapter->vlgrp = grp;
4150 if (grp) {
4151 /* enable VLAN tag insert/strip */
4152 ctrl = rd32(E1000_CTRL);
4153 ctrl |= E1000_CTRL_VME;
4154 wr32(E1000_CTRL, ctrl);
4156 /* enable VLAN receive filtering */
4157 rctl = rd32(E1000_RCTL);
4158 rctl &= ~E1000_RCTL_CFIEN;
4159 wr32(E1000_RCTL, rctl);
4160 igb_update_mng_vlan(adapter);
4161 wr32(E1000_RLPML,
4162 adapter->max_frame_size + VLAN_TAG_SIZE);
4163 } else {
4164 /* disable VLAN tag insert/strip */
4165 ctrl = rd32(E1000_CTRL);
4166 ctrl &= ~E1000_CTRL_VME;
4167 wr32(E1000_CTRL, ctrl);
4169 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4170 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4171 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4173 wr32(E1000_RLPML,
4174 adapter->max_frame_size);
4177 if (!test_bit(__IGB_DOWN, &adapter->state))
4178 igb_irq_enable(adapter);
4181 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4183 struct igb_adapter *adapter = netdev_priv(netdev);
4184 struct e1000_hw *hw = &adapter->hw;
4185 u32 vfta, index;
4187 if ((adapter->hw.mng_cookie.status &
4188 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4189 (vid == adapter->mng_vlan_id))
4190 return;
4191 /* add VID to filter table */
4192 index = (vid >> 5) & 0x7F;
4193 vfta = array_rd32(E1000_VFTA, index);
4194 vfta |= (1 << (vid & 0x1F));
4195 igb_write_vfta(&adapter->hw, index, vfta);
4198 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4200 struct igb_adapter *adapter = netdev_priv(netdev);
4201 struct e1000_hw *hw = &adapter->hw;
4202 u32 vfta, index;
4204 igb_irq_disable(adapter);
4205 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4207 if (!test_bit(__IGB_DOWN, &adapter->state))
4208 igb_irq_enable(adapter);
4210 if ((adapter->hw.mng_cookie.status &
4211 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4212 (vid == adapter->mng_vlan_id)) {
4213 /* release control to f/w */
4214 igb_release_hw_control(adapter);
4215 return;
4218 /* remove VID from filter table */
4219 index = (vid >> 5) & 0x7F;
4220 vfta = array_rd32(E1000_VFTA, index);
4221 vfta &= ~(1 << (vid & 0x1F));
4222 igb_write_vfta(&adapter->hw, index, vfta);
4225 static void igb_restore_vlan(struct igb_adapter *adapter)
4227 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4229 if (adapter->vlgrp) {
4230 u16 vid;
4231 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4232 if (!vlan_group_get_device(adapter->vlgrp, vid))
4233 continue;
4234 igb_vlan_rx_add_vid(adapter->netdev, vid);
4239 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4241 struct e1000_mac_info *mac = &adapter->hw.mac;
4243 mac->autoneg = 0;
4245 /* Fiber NICs only allow 1000 gbps Full duplex */
4246 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4247 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4248 dev_err(&adapter->pdev->dev,
4249 "Unsupported Speed/Duplex configuration\n");
4250 return -EINVAL;
4253 switch (spddplx) {
4254 case SPEED_10 + DUPLEX_HALF:
4255 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4256 break;
4257 case SPEED_10 + DUPLEX_FULL:
4258 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4259 break;
4260 case SPEED_100 + DUPLEX_HALF:
4261 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4262 break;
4263 case SPEED_100 + DUPLEX_FULL:
4264 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4265 break;
4266 case SPEED_1000 + DUPLEX_FULL:
4267 mac->autoneg = 1;
4268 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4269 break;
4270 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4271 default:
4272 dev_err(&adapter->pdev->dev,
4273 "Unsupported Speed/Duplex configuration\n");
4274 return -EINVAL;
4276 return 0;
4280 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4282 struct net_device *netdev = pci_get_drvdata(pdev);
4283 struct igb_adapter *adapter = netdev_priv(netdev);
4284 struct e1000_hw *hw = &adapter->hw;
4285 u32 ctrl, rctl, status;
4286 u32 wufc = adapter->wol;
4287 #ifdef CONFIG_PM
4288 int retval = 0;
4289 #endif
4291 netif_device_detach(netdev);
4293 if (netif_running(netdev))
4294 igb_close(netdev);
4296 igb_reset_interrupt_capability(adapter);
4298 igb_free_queues(adapter);
4300 #ifdef CONFIG_PM
4301 retval = pci_save_state(pdev);
4302 if (retval)
4303 return retval;
4304 #endif
4306 status = rd32(E1000_STATUS);
4307 if (status & E1000_STATUS_LU)
4308 wufc &= ~E1000_WUFC_LNKC;
4310 if (wufc) {
4311 igb_setup_rctl(adapter);
4312 igb_set_multi(netdev);
4314 /* turn on all-multi mode if wake on multicast is enabled */
4315 if (wufc & E1000_WUFC_MC) {
4316 rctl = rd32(E1000_RCTL);
4317 rctl |= E1000_RCTL_MPE;
4318 wr32(E1000_RCTL, rctl);
4321 ctrl = rd32(E1000_CTRL);
4322 /* advertise wake from D3Cold */
4323 #define E1000_CTRL_ADVD3WUC 0x00100000
4324 /* phy power management enable */
4325 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4326 ctrl |= E1000_CTRL_ADVD3WUC;
4327 wr32(E1000_CTRL, ctrl);
4329 /* Allow time for pending master requests to run */
4330 igb_disable_pcie_master(&adapter->hw);
4332 wr32(E1000_WUC, E1000_WUC_PME_EN);
4333 wr32(E1000_WUFC, wufc);
4334 } else {
4335 wr32(E1000_WUC, 0);
4336 wr32(E1000_WUFC, 0);
4339 /* make sure adapter isn't asleep if manageability/wol is enabled */
4340 if (wufc || adapter->en_mng_pt) {
4341 pci_enable_wake(pdev, PCI_D3hot, 1);
4342 pci_enable_wake(pdev, PCI_D3cold, 1);
4343 } else {
4344 igb_shutdown_fiber_serdes_link_82575(hw);
4345 pci_enable_wake(pdev, PCI_D3hot, 0);
4346 pci_enable_wake(pdev, PCI_D3cold, 0);
4349 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4350 * would have already happened in close and is redundant. */
4351 igb_release_hw_control(adapter);
4353 pci_disable_device(pdev);
4355 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4357 return 0;
4360 #ifdef CONFIG_PM
4361 static int igb_resume(struct pci_dev *pdev)
4363 struct net_device *netdev = pci_get_drvdata(pdev);
4364 struct igb_adapter *adapter = netdev_priv(netdev);
4365 struct e1000_hw *hw = &adapter->hw;
4366 u32 err;
4368 pci_set_power_state(pdev, PCI_D0);
4369 pci_restore_state(pdev);
4371 if (adapter->need_ioport)
4372 err = pci_enable_device(pdev);
4373 else
4374 err = pci_enable_device_mem(pdev);
4375 if (err) {
4376 dev_err(&pdev->dev,
4377 "igb: Cannot enable PCI device from suspend\n");
4378 return err;
4380 pci_set_master(pdev);
4382 pci_enable_wake(pdev, PCI_D3hot, 0);
4383 pci_enable_wake(pdev, PCI_D3cold, 0);
4385 igb_set_interrupt_capability(adapter);
4387 if (igb_alloc_queues(adapter)) {
4388 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4389 return -ENOMEM;
4392 /* e1000_power_up_phy(adapter); */
4394 igb_reset(adapter);
4395 wr32(E1000_WUS, ~0);
4397 if (netif_running(netdev)) {
4398 err = igb_open(netdev);
4399 if (err)
4400 return err;
4403 netif_device_attach(netdev);
4405 /* let the f/w know that the h/w is now under the control of the
4406 * driver. */
4407 igb_get_hw_control(adapter);
4409 return 0;
4411 #endif
4413 static void igb_shutdown(struct pci_dev *pdev)
4415 igb_suspend(pdev, PMSG_SUSPEND);
4418 #ifdef CONFIG_NET_POLL_CONTROLLER
4420 * Polling 'interrupt' - used by things like netconsole to send skbs
4421 * without having to re-enable interrupts. It's not called while
4422 * the interrupt routine is executing.
4424 static void igb_netpoll(struct net_device *netdev)
4426 struct igb_adapter *adapter = netdev_priv(netdev);
4427 int i;
4428 int work_done = 0;
4430 igb_irq_disable(adapter);
4431 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4433 for (i = 0; i < adapter->num_tx_queues; i++)
4434 igb_clean_tx_irq(&adapter->tx_ring[i]);
4436 for (i = 0; i < adapter->num_rx_queues; i++)
4437 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4438 &work_done,
4439 adapter->rx_ring[i].napi.weight);
4441 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4442 igb_irq_enable(adapter);
4444 #endif /* CONFIG_NET_POLL_CONTROLLER */
4447 * igb_io_error_detected - called when PCI error is detected
4448 * @pdev: Pointer to PCI device
4449 * @state: The current pci connection state
4451 * This function is called after a PCI bus error affecting
4452 * this device has been detected.
4454 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4455 pci_channel_state_t state)
4457 struct net_device *netdev = pci_get_drvdata(pdev);
4458 struct igb_adapter *adapter = netdev_priv(netdev);
4460 netif_device_detach(netdev);
4462 if (netif_running(netdev))
4463 igb_down(adapter);
4464 pci_disable_device(pdev);
4466 /* Request a slot slot reset. */
4467 return PCI_ERS_RESULT_NEED_RESET;
4471 * igb_io_slot_reset - called after the pci bus has been reset.
4472 * @pdev: Pointer to PCI device
4474 * Restart the card from scratch, as if from a cold-boot. Implementation
4475 * resembles the first-half of the igb_resume routine.
4477 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4479 struct net_device *netdev = pci_get_drvdata(pdev);
4480 struct igb_adapter *adapter = netdev_priv(netdev);
4481 struct e1000_hw *hw = &adapter->hw;
4482 int err;
4484 if (adapter->need_ioport)
4485 err = pci_enable_device(pdev);
4486 else
4487 err = pci_enable_device_mem(pdev);
4488 if (err) {
4489 dev_err(&pdev->dev,
4490 "Cannot re-enable PCI device after reset.\n");
4491 return PCI_ERS_RESULT_DISCONNECT;
4493 pci_set_master(pdev);
4494 pci_restore_state(pdev);
4496 pci_enable_wake(pdev, PCI_D3hot, 0);
4497 pci_enable_wake(pdev, PCI_D3cold, 0);
4499 igb_reset(adapter);
4500 wr32(E1000_WUS, ~0);
4502 return PCI_ERS_RESULT_RECOVERED;
4506 * igb_io_resume - called when traffic can start flowing again.
4507 * @pdev: Pointer to PCI device
4509 * This callback is called when the error recovery driver tells us that
4510 * its OK to resume normal operation. Implementation resembles the
4511 * second-half of the igb_resume routine.
4513 static void igb_io_resume(struct pci_dev *pdev)
4515 struct net_device *netdev = pci_get_drvdata(pdev);
4516 struct igb_adapter *adapter = netdev_priv(netdev);
4518 if (netif_running(netdev)) {
4519 if (igb_up(adapter)) {
4520 dev_err(&pdev->dev, "igb_up failed after reset\n");
4521 return;
4525 netif_device_attach(netdev);
4527 /* let the f/w know that the h/w is now under the control of the
4528 * driver. */
4529 igb_get_hw_control(adapter);
4533 /* igb_main.c */