2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
34 #include <linux/time.h>
35 #include <linux/ext4_jbd2.h>
36 #include <linux/jbd2.h>
37 #include <linux/highuid.h>
38 #include <linux/pagemap.h>
39 #include <linux/quotaops.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/falloc.h>
43 #include <linux/ext4_fs_extents.h>
44 #include <asm/uaccess.h>
49 * combine low and high parts of physical block number into ext4_fsblk_t
51 static ext4_fsblk_t
ext_pblock(struct ext4_extent
*ex
)
55 block
= le32_to_cpu(ex
->ee_start_lo
);
56 block
|= ((ext4_fsblk_t
) le16_to_cpu(ex
->ee_start_hi
) << 31) << 1;
62 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64 static ext4_fsblk_t
idx_pblock(struct ext4_extent_idx
*ix
)
68 block
= le32_to_cpu(ix
->ei_leaf_lo
);
69 block
|= ((ext4_fsblk_t
) le16_to_cpu(ix
->ei_leaf_hi
) << 31) << 1;
74 * ext4_ext_store_pblock:
75 * stores a large physical block number into an extent struct,
76 * breaking it into parts
78 static void ext4_ext_store_pblock(struct ext4_extent
*ex
, ext4_fsblk_t pb
)
80 ex
->ee_start_lo
= cpu_to_le32((unsigned long) (pb
& 0xffffffff));
81 ex
->ee_start_hi
= cpu_to_le16((unsigned long) ((pb
>> 31) >> 1) & 0xffff);
85 * ext4_idx_store_pblock:
86 * stores a large physical block number into an index struct,
87 * breaking it into parts
89 static void ext4_idx_store_pblock(struct ext4_extent_idx
*ix
, ext4_fsblk_t pb
)
91 ix
->ei_leaf_lo
= cpu_to_le32((unsigned long) (pb
& 0xffffffff));
92 ix
->ei_leaf_hi
= cpu_to_le16((unsigned long) ((pb
>> 31) >> 1) & 0xffff);
95 static handle_t
*ext4_ext_journal_restart(handle_t
*handle
, int needed
)
99 if (handle
->h_buffer_credits
> needed
)
101 if (!ext4_journal_extend(handle
, needed
))
103 err
= ext4_journal_restart(handle
, needed
);
113 static int ext4_ext_get_access(handle_t
*handle
, struct inode
*inode
,
114 struct ext4_ext_path
*path
)
117 /* path points to block */
118 return ext4_journal_get_write_access(handle
, path
->p_bh
);
120 /* path points to leaf/index in inode body */
121 /* we use in-core data, no need to protect them */
131 static int ext4_ext_dirty(handle_t
*handle
, struct inode
*inode
,
132 struct ext4_ext_path
*path
)
136 /* path points to block */
137 err
= ext4_journal_dirty_metadata(handle
, path
->p_bh
);
139 /* path points to leaf/index in inode body */
140 err
= ext4_mark_inode_dirty(handle
, inode
);
145 static ext4_fsblk_t
ext4_ext_find_goal(struct inode
*inode
,
146 struct ext4_ext_path
*path
,
149 struct ext4_inode_info
*ei
= EXT4_I(inode
);
150 ext4_fsblk_t bg_start
;
151 ext4_grpblk_t colour
;
155 struct ext4_extent
*ex
;
156 depth
= path
->p_depth
;
158 /* try to predict block placement */
159 ex
= path
[depth
].p_ext
;
161 return ext_pblock(ex
)+(block
-le32_to_cpu(ex
->ee_block
));
163 /* it looks like index is empty;
164 * try to find starting block from index itself */
165 if (path
[depth
].p_bh
)
166 return path
[depth
].p_bh
->b_blocknr
;
169 /* OK. use inode's group */
170 bg_start
= (ei
->i_block_group
* EXT4_BLOCKS_PER_GROUP(inode
->i_sb
)) +
171 le32_to_cpu(EXT4_SB(inode
->i_sb
)->s_es
->s_first_data_block
);
172 colour
= (current
->pid
% 16) *
173 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
174 return bg_start
+ colour
+ block
;
178 ext4_ext_new_block(handle_t
*handle
, struct inode
*inode
,
179 struct ext4_ext_path
*path
,
180 struct ext4_extent
*ex
, int *err
)
182 ext4_fsblk_t goal
, newblock
;
184 goal
= ext4_ext_find_goal(inode
, path
, le32_to_cpu(ex
->ee_block
));
185 newblock
= ext4_new_block(handle
, inode
, goal
, err
);
189 static int ext4_ext_space_block(struct inode
*inode
)
193 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
194 / sizeof(struct ext4_extent
);
195 #ifdef AGGRESSIVE_TEST
202 static int ext4_ext_space_block_idx(struct inode
*inode
)
206 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
207 / sizeof(struct ext4_extent_idx
);
208 #ifdef AGGRESSIVE_TEST
215 static int ext4_ext_space_root(struct inode
*inode
)
219 size
= sizeof(EXT4_I(inode
)->i_data
);
220 size
-= sizeof(struct ext4_extent_header
);
221 size
/= sizeof(struct ext4_extent
);
222 #ifdef AGGRESSIVE_TEST
229 static int ext4_ext_space_root_idx(struct inode
*inode
)
233 size
= sizeof(EXT4_I(inode
)->i_data
);
234 size
-= sizeof(struct ext4_extent_header
);
235 size
/= sizeof(struct ext4_extent_idx
);
236 #ifdef AGGRESSIVE_TEST
244 ext4_ext_max_entries(struct inode
*inode
, int depth
)
248 if (depth
== ext_depth(inode
)) {
250 max
= ext4_ext_space_root(inode
);
252 max
= ext4_ext_space_root_idx(inode
);
255 max
= ext4_ext_space_block(inode
);
257 max
= ext4_ext_space_block_idx(inode
);
263 static int __ext4_ext_check_header(const char *function
, struct inode
*inode
,
264 struct ext4_extent_header
*eh
,
267 const char *error_msg
;
270 if (unlikely(eh
->eh_magic
!= EXT4_EXT_MAGIC
)) {
271 error_msg
= "invalid magic";
274 if (unlikely(le16_to_cpu(eh
->eh_depth
) != depth
)) {
275 error_msg
= "unexpected eh_depth";
278 if (unlikely(eh
->eh_max
== 0)) {
279 error_msg
= "invalid eh_max";
282 max
= ext4_ext_max_entries(inode
, depth
);
283 if (unlikely(le16_to_cpu(eh
->eh_max
) > max
)) {
284 error_msg
= "too large eh_max";
287 if (unlikely(le16_to_cpu(eh
->eh_entries
) > le16_to_cpu(eh
->eh_max
))) {
288 error_msg
= "invalid eh_entries";
294 ext4_error(inode
->i_sb
, function
,
295 "bad header in inode #%lu: %s - magic %x, "
296 "entries %u, max %u(%u), depth %u(%u)",
297 inode
->i_ino
, error_msg
, le16_to_cpu(eh
->eh_magic
),
298 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
),
299 max
, le16_to_cpu(eh
->eh_depth
), depth
);
304 #define ext4_ext_check_header(inode, eh, depth) \
305 __ext4_ext_check_header(__FUNCTION__, inode, eh, depth)
308 static void ext4_ext_show_path(struct inode
*inode
, struct ext4_ext_path
*path
)
310 int k
, l
= path
->p_depth
;
313 for (k
= 0; k
<= l
; k
++, path
++) {
315 ext_debug(" %d->%llu", le32_to_cpu(path
->p_idx
->ei_block
),
316 idx_pblock(path
->p_idx
));
317 } else if (path
->p_ext
) {
318 ext_debug(" %d:%d:%llu ",
319 le32_to_cpu(path
->p_ext
->ee_block
),
320 ext4_ext_get_actual_len(path
->p_ext
),
321 ext_pblock(path
->p_ext
));
328 static void ext4_ext_show_leaf(struct inode
*inode
, struct ext4_ext_path
*path
)
330 int depth
= ext_depth(inode
);
331 struct ext4_extent_header
*eh
;
332 struct ext4_extent
*ex
;
338 eh
= path
[depth
].p_hdr
;
339 ex
= EXT_FIRST_EXTENT(eh
);
341 for (i
= 0; i
< le16_to_cpu(eh
->eh_entries
); i
++, ex
++) {
342 ext_debug("%d:%d:%llu ", le32_to_cpu(ex
->ee_block
),
343 ext4_ext_get_actual_len(ex
), ext_pblock(ex
));
348 #define ext4_ext_show_path(inode,path)
349 #define ext4_ext_show_leaf(inode,path)
352 static void ext4_ext_drop_refs(struct ext4_ext_path
*path
)
354 int depth
= path
->p_depth
;
357 for (i
= 0; i
<= depth
; i
++, path
++)
365 * ext4_ext_binsearch_idx:
366 * binary search for the closest index of the given block
367 * the header must be checked before calling this
370 ext4_ext_binsearch_idx(struct inode
*inode
, struct ext4_ext_path
*path
, int block
)
372 struct ext4_extent_header
*eh
= path
->p_hdr
;
373 struct ext4_extent_idx
*r
, *l
, *m
;
376 ext_debug("binsearch for %d(idx): ", block
);
378 l
= EXT_FIRST_INDEX(eh
) + 1;
379 r
= EXT_LAST_INDEX(eh
);
382 if (block
< le32_to_cpu(m
->ei_block
))
386 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ei_block
),
387 m
, le32_to_cpu(m
->ei_block
),
388 r
, le32_to_cpu(r
->ei_block
));
392 ext_debug(" -> %d->%lld ", le32_to_cpu(path
->p_idx
->ei_block
),
393 idx_pblock(path
->p_idx
));
395 #ifdef CHECK_BINSEARCH
397 struct ext4_extent_idx
*chix
, *ix
;
400 chix
= ix
= EXT_FIRST_INDEX(eh
);
401 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ix
++) {
403 le32_to_cpu(ix
->ei_block
) <= le32_to_cpu(ix
[-1].ei_block
)) {
404 printk("k=%d, ix=0x%p, first=0x%p\n", k
,
405 ix
, EXT_FIRST_INDEX(eh
));
407 le32_to_cpu(ix
->ei_block
),
408 le32_to_cpu(ix
[-1].ei_block
));
410 BUG_ON(k
&& le32_to_cpu(ix
->ei_block
)
411 <= le32_to_cpu(ix
[-1].ei_block
));
412 if (block
< le32_to_cpu(ix
->ei_block
))
416 BUG_ON(chix
!= path
->p_idx
);
423 * ext4_ext_binsearch:
424 * binary search for closest extent of the given block
425 * the header must be checked before calling this
428 ext4_ext_binsearch(struct inode
*inode
, struct ext4_ext_path
*path
, int block
)
430 struct ext4_extent_header
*eh
= path
->p_hdr
;
431 struct ext4_extent
*r
, *l
, *m
;
433 if (eh
->eh_entries
== 0) {
435 * this leaf is empty:
436 * we get such a leaf in split/add case
441 ext_debug("binsearch for %d: ", block
);
443 l
= EXT_FIRST_EXTENT(eh
) + 1;
444 r
= EXT_LAST_EXTENT(eh
);
448 if (block
< le32_to_cpu(m
->ee_block
))
452 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ee_block
),
453 m
, le32_to_cpu(m
->ee_block
),
454 r
, le32_to_cpu(r
->ee_block
));
458 ext_debug(" -> %d:%llu:%d ",
459 le32_to_cpu(path
->p_ext
->ee_block
),
460 ext_pblock(path
->p_ext
),
461 ext4_ext_get_actual_len(path
->p_ext
));
463 #ifdef CHECK_BINSEARCH
465 struct ext4_extent
*chex
, *ex
;
468 chex
= ex
= EXT_FIRST_EXTENT(eh
);
469 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ex
++) {
470 BUG_ON(k
&& le32_to_cpu(ex
->ee_block
)
471 <= le32_to_cpu(ex
[-1].ee_block
));
472 if (block
< le32_to_cpu(ex
->ee_block
))
476 BUG_ON(chex
!= path
->p_ext
);
482 int ext4_ext_tree_init(handle_t
*handle
, struct inode
*inode
)
484 struct ext4_extent_header
*eh
;
486 eh
= ext_inode_hdr(inode
);
489 eh
->eh_magic
= EXT4_EXT_MAGIC
;
490 eh
->eh_max
= cpu_to_le16(ext4_ext_space_root(inode
));
491 ext4_mark_inode_dirty(handle
, inode
);
492 ext4_ext_invalidate_cache(inode
);
496 struct ext4_ext_path
*
497 ext4_ext_find_extent(struct inode
*inode
, int block
, struct ext4_ext_path
*path
)
499 struct ext4_extent_header
*eh
;
500 struct buffer_head
*bh
;
501 short int depth
, i
, ppos
= 0, alloc
= 0;
503 eh
= ext_inode_hdr(inode
);
504 depth
= ext_depth(inode
);
505 if (ext4_ext_check_header(inode
, eh
, depth
))
506 return ERR_PTR(-EIO
);
509 /* account possible depth increase */
511 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 2),
514 return ERR_PTR(-ENOMEM
);
520 /* walk through the tree */
522 ext_debug("depth %d: num %d, max %d\n",
523 ppos
, le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
525 ext4_ext_binsearch_idx(inode
, path
+ ppos
, block
);
526 path
[ppos
].p_block
= idx_pblock(path
[ppos
].p_idx
);
527 path
[ppos
].p_depth
= i
;
528 path
[ppos
].p_ext
= NULL
;
530 bh
= sb_bread(inode
->i_sb
, path
[ppos
].p_block
);
534 eh
= ext_block_hdr(bh
);
536 BUG_ON(ppos
> depth
);
537 path
[ppos
].p_bh
= bh
;
538 path
[ppos
].p_hdr
= eh
;
541 if (ext4_ext_check_header(inode
, eh
, i
))
545 path
[ppos
].p_depth
= i
;
546 path
[ppos
].p_hdr
= eh
;
547 path
[ppos
].p_ext
= NULL
;
548 path
[ppos
].p_idx
= NULL
;
551 ext4_ext_binsearch(inode
, path
+ ppos
, block
);
553 ext4_ext_show_path(inode
, path
);
558 ext4_ext_drop_refs(path
);
561 return ERR_PTR(-EIO
);
565 * ext4_ext_insert_index:
566 * insert new index [@logical;@ptr] into the block at @curp;
567 * check where to insert: before @curp or after @curp
569 static int ext4_ext_insert_index(handle_t
*handle
, struct inode
*inode
,
570 struct ext4_ext_path
*curp
,
571 int logical
, ext4_fsblk_t ptr
)
573 struct ext4_extent_idx
*ix
;
576 err
= ext4_ext_get_access(handle
, inode
, curp
);
580 BUG_ON(logical
== le32_to_cpu(curp
->p_idx
->ei_block
));
581 len
= EXT_MAX_INDEX(curp
->p_hdr
) - curp
->p_idx
;
582 if (logical
> le32_to_cpu(curp
->p_idx
->ei_block
)) {
584 if (curp
->p_idx
!= EXT_LAST_INDEX(curp
->p_hdr
)) {
585 len
= (len
- 1) * sizeof(struct ext4_extent_idx
);
586 len
= len
< 0 ? 0 : len
;
587 ext_debug("insert new index %d after: %llu. "
588 "move %d from 0x%p to 0x%p\n",
590 (curp
->p_idx
+ 1), (curp
->p_idx
+ 2));
591 memmove(curp
->p_idx
+ 2, curp
->p_idx
+ 1, len
);
593 ix
= curp
->p_idx
+ 1;
596 len
= len
* sizeof(struct ext4_extent_idx
);
597 len
= len
< 0 ? 0 : len
;
598 ext_debug("insert new index %d before: %llu. "
599 "move %d from 0x%p to 0x%p\n",
601 curp
->p_idx
, (curp
->p_idx
+ 1));
602 memmove(curp
->p_idx
+ 1, curp
->p_idx
, len
);
606 ix
->ei_block
= cpu_to_le32(logical
);
607 ext4_idx_store_pblock(ix
, ptr
);
608 curp
->p_hdr
->eh_entries
= cpu_to_le16(le16_to_cpu(curp
->p_hdr
->eh_entries
)+1);
610 BUG_ON(le16_to_cpu(curp
->p_hdr
->eh_entries
)
611 > le16_to_cpu(curp
->p_hdr
->eh_max
));
612 BUG_ON(ix
> EXT_LAST_INDEX(curp
->p_hdr
));
614 err
= ext4_ext_dirty(handle
, inode
, curp
);
615 ext4_std_error(inode
->i_sb
, err
);
622 * inserts new subtree into the path, using free index entry
624 * - allocates all needed blocks (new leaf and all intermediate index blocks)
625 * - makes decision where to split
626 * - moves remaining extents and index entries (right to the split point)
627 * into the newly allocated blocks
628 * - initializes subtree
630 static int ext4_ext_split(handle_t
*handle
, struct inode
*inode
,
631 struct ext4_ext_path
*path
,
632 struct ext4_extent
*newext
, int at
)
634 struct buffer_head
*bh
= NULL
;
635 int depth
= ext_depth(inode
);
636 struct ext4_extent_header
*neh
;
637 struct ext4_extent_idx
*fidx
;
638 struct ext4_extent
*ex
;
640 ext4_fsblk_t newblock
, oldblock
;
642 ext4_fsblk_t
*ablocks
= NULL
; /* array of allocated blocks */
645 /* make decision: where to split? */
646 /* FIXME: now decision is simplest: at current extent */
648 /* if current leaf will be split, then we should use
649 * border from split point */
650 BUG_ON(path
[depth
].p_ext
> EXT_MAX_EXTENT(path
[depth
].p_hdr
));
651 if (path
[depth
].p_ext
!= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
652 border
= path
[depth
].p_ext
[1].ee_block
;
653 ext_debug("leaf will be split."
654 " next leaf starts at %d\n",
655 le32_to_cpu(border
));
657 border
= newext
->ee_block
;
658 ext_debug("leaf will be added."
659 " next leaf starts at %d\n",
660 le32_to_cpu(border
));
664 * If error occurs, then we break processing
665 * and mark filesystem read-only. index won't
666 * be inserted and tree will be in consistent
667 * state. Next mount will repair buffers too.
671 * Get array to track all allocated blocks.
672 * We need this to handle errors and free blocks
675 ablocks
= kzalloc(sizeof(ext4_fsblk_t
) * depth
, GFP_NOFS
);
679 /* allocate all needed blocks */
680 ext_debug("allocate %d blocks for indexes/leaf\n", depth
- at
);
681 for (a
= 0; a
< depth
- at
; a
++) {
682 newblock
= ext4_ext_new_block(handle
, inode
, path
, newext
, &err
);
685 ablocks
[a
] = newblock
;
688 /* initialize new leaf */
689 newblock
= ablocks
[--a
];
690 BUG_ON(newblock
== 0);
691 bh
= sb_getblk(inode
->i_sb
, newblock
);
698 err
= ext4_journal_get_create_access(handle
, bh
);
702 neh
= ext_block_hdr(bh
);
704 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
));
705 neh
->eh_magic
= EXT4_EXT_MAGIC
;
707 ex
= EXT_FIRST_EXTENT(neh
);
709 /* move remainder of path[depth] to the new leaf */
710 BUG_ON(path
[depth
].p_hdr
->eh_entries
!= path
[depth
].p_hdr
->eh_max
);
711 /* start copy from next extent */
712 /* TODO: we could do it by single memmove */
715 while (path
[depth
].p_ext
<=
716 EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
717 ext_debug("move %d:%llu:%d in new leaf %llu\n",
718 le32_to_cpu(path
[depth
].p_ext
->ee_block
),
719 ext_pblock(path
[depth
].p_ext
),
720 ext4_ext_get_actual_len(path
[depth
].p_ext
),
722 /*memmove(ex++, path[depth].p_ext++,
723 sizeof(struct ext4_extent));
729 memmove(ex
, path
[depth
].p_ext
-m
, sizeof(struct ext4_extent
)*m
);
730 neh
->eh_entries
= cpu_to_le16(le16_to_cpu(neh
->eh_entries
)+m
);
733 set_buffer_uptodate(bh
);
736 err
= ext4_journal_dirty_metadata(handle
, bh
);
742 /* correct old leaf */
744 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
747 path
[depth
].p_hdr
->eh_entries
=
748 cpu_to_le16(le16_to_cpu(path
[depth
].p_hdr
->eh_entries
)-m
);
749 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
755 /* create intermediate indexes */
759 ext_debug("create %d intermediate indices\n", k
);
760 /* insert new index into current index block */
761 /* current depth stored in i var */
765 newblock
= ablocks
[--a
];
766 bh
= sb_getblk(inode
->i_sb
, (ext4_fsblk_t
)newblock
);
773 err
= ext4_journal_get_create_access(handle
, bh
);
777 neh
= ext_block_hdr(bh
);
778 neh
->eh_entries
= cpu_to_le16(1);
779 neh
->eh_magic
= EXT4_EXT_MAGIC
;
780 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
));
781 neh
->eh_depth
= cpu_to_le16(depth
- i
);
782 fidx
= EXT_FIRST_INDEX(neh
);
783 fidx
->ei_block
= border
;
784 ext4_idx_store_pblock(fidx
, oldblock
);
786 ext_debug("int.index at %d (block %llu): %lu -> %llu\n", i
,
787 newblock
, (unsigned long) le32_to_cpu(border
),
793 ext_debug("cur 0x%p, last 0x%p\n", path
[i
].p_idx
,
794 EXT_MAX_INDEX(path
[i
].p_hdr
));
795 BUG_ON(EXT_MAX_INDEX(path
[i
].p_hdr
) !=
796 EXT_LAST_INDEX(path
[i
].p_hdr
));
797 while (path
[i
].p_idx
<= EXT_MAX_INDEX(path
[i
].p_hdr
)) {
798 ext_debug("%d: move %d:%llu in new index %llu\n", i
,
799 le32_to_cpu(path
[i
].p_idx
->ei_block
),
800 idx_pblock(path
[i
].p_idx
),
802 /*memmove(++fidx, path[i].p_idx++,
803 sizeof(struct ext4_extent_idx));
805 BUG_ON(neh->eh_entries > neh->eh_max);*/
810 memmove(++fidx
, path
[i
].p_idx
- m
,
811 sizeof(struct ext4_extent_idx
) * m
);
813 cpu_to_le16(le16_to_cpu(neh
->eh_entries
) + m
);
815 set_buffer_uptodate(bh
);
818 err
= ext4_journal_dirty_metadata(handle
, bh
);
824 /* correct old index */
826 err
= ext4_ext_get_access(handle
, inode
, path
+ i
);
829 path
[i
].p_hdr
->eh_entries
= cpu_to_le16(le16_to_cpu(path
[i
].p_hdr
->eh_entries
)-m
);
830 err
= ext4_ext_dirty(handle
, inode
, path
+ i
);
838 /* insert new index */
839 err
= ext4_ext_insert_index(handle
, inode
, path
+ at
,
840 le32_to_cpu(border
), newblock
);
844 if (buffer_locked(bh
))
850 /* free all allocated blocks in error case */
851 for (i
= 0; i
< depth
; i
++) {
854 ext4_free_blocks(handle
, inode
, ablocks
[i
], 1);
863 * ext4_ext_grow_indepth:
864 * implements tree growing procedure:
865 * - allocates new block
866 * - moves top-level data (index block or leaf) into the new block
867 * - initializes new top-level, creating index that points to the
870 static int ext4_ext_grow_indepth(handle_t
*handle
, struct inode
*inode
,
871 struct ext4_ext_path
*path
,
872 struct ext4_extent
*newext
)
874 struct ext4_ext_path
*curp
= path
;
875 struct ext4_extent_header
*neh
;
876 struct ext4_extent_idx
*fidx
;
877 struct buffer_head
*bh
;
878 ext4_fsblk_t newblock
;
881 newblock
= ext4_ext_new_block(handle
, inode
, path
, newext
, &err
);
885 bh
= sb_getblk(inode
->i_sb
, newblock
);
888 ext4_std_error(inode
->i_sb
, err
);
893 err
= ext4_journal_get_create_access(handle
, bh
);
899 /* move top-level index/leaf into new block */
900 memmove(bh
->b_data
, curp
->p_hdr
, sizeof(EXT4_I(inode
)->i_data
));
902 /* set size of new block */
903 neh
= ext_block_hdr(bh
);
904 /* old root could have indexes or leaves
905 * so calculate e_max right way */
906 if (ext_depth(inode
))
907 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
));
909 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
));
910 neh
->eh_magic
= EXT4_EXT_MAGIC
;
911 set_buffer_uptodate(bh
);
914 err
= ext4_journal_dirty_metadata(handle
, bh
);
918 /* create index in new top-level index: num,max,pointer */
919 err
= ext4_ext_get_access(handle
, inode
, curp
);
923 curp
->p_hdr
->eh_magic
= EXT4_EXT_MAGIC
;
924 curp
->p_hdr
->eh_max
= cpu_to_le16(ext4_ext_space_root_idx(inode
));
925 curp
->p_hdr
->eh_entries
= cpu_to_le16(1);
926 curp
->p_idx
= EXT_FIRST_INDEX(curp
->p_hdr
);
928 if (path
[0].p_hdr
->eh_depth
)
929 curp
->p_idx
->ei_block
=
930 EXT_FIRST_INDEX(path
[0].p_hdr
)->ei_block
;
932 curp
->p_idx
->ei_block
=
933 EXT_FIRST_EXTENT(path
[0].p_hdr
)->ee_block
;
934 ext4_idx_store_pblock(curp
->p_idx
, newblock
);
936 neh
= ext_inode_hdr(inode
);
937 fidx
= EXT_FIRST_INDEX(neh
);
938 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
939 le16_to_cpu(neh
->eh_entries
), le16_to_cpu(neh
->eh_max
),
940 le32_to_cpu(fidx
->ei_block
), idx_pblock(fidx
));
942 neh
->eh_depth
= cpu_to_le16(path
->p_depth
+ 1);
943 err
= ext4_ext_dirty(handle
, inode
, curp
);
951 * ext4_ext_create_new_leaf:
952 * finds empty index and adds new leaf.
953 * if no free index is found, then it requests in-depth growing.
955 static int ext4_ext_create_new_leaf(handle_t
*handle
, struct inode
*inode
,
956 struct ext4_ext_path
*path
,
957 struct ext4_extent
*newext
)
959 struct ext4_ext_path
*curp
;
960 int depth
, i
, err
= 0;
963 i
= depth
= ext_depth(inode
);
965 /* walk up to the tree and look for free index entry */
967 while (i
> 0 && !EXT_HAS_FREE_INDEX(curp
)) {
972 /* we use already allocated block for index block,
973 * so subsequent data blocks should be contiguous */
974 if (EXT_HAS_FREE_INDEX(curp
)) {
975 /* if we found index with free entry, then use that
976 * entry: create all needed subtree and add new leaf */
977 err
= ext4_ext_split(handle
, inode
, path
, newext
, i
);
980 ext4_ext_drop_refs(path
);
981 path
= ext4_ext_find_extent(inode
,
982 le32_to_cpu(newext
->ee_block
),
987 /* tree is full, time to grow in depth */
988 err
= ext4_ext_grow_indepth(handle
, inode
, path
, newext
);
993 ext4_ext_drop_refs(path
);
994 path
= ext4_ext_find_extent(inode
,
995 le32_to_cpu(newext
->ee_block
),
1003 * only first (depth 0 -> 1) produces free space;
1004 * in all other cases we have to split the grown tree
1006 depth
= ext_depth(inode
);
1007 if (path
[depth
].p_hdr
->eh_entries
== path
[depth
].p_hdr
->eh_max
) {
1008 /* now we need to split */
1018 * ext4_ext_next_allocated_block:
1019 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1020 * NOTE: it considers block number from index entry as
1021 * allocated block. Thus, index entries have to be consistent
1024 static unsigned long
1025 ext4_ext_next_allocated_block(struct ext4_ext_path
*path
)
1029 BUG_ON(path
== NULL
);
1030 depth
= path
->p_depth
;
1032 if (depth
== 0 && path
->p_ext
== NULL
)
1033 return EXT_MAX_BLOCK
;
1035 while (depth
>= 0) {
1036 if (depth
== path
->p_depth
) {
1038 if (path
[depth
].p_ext
!=
1039 EXT_LAST_EXTENT(path
[depth
].p_hdr
))
1040 return le32_to_cpu(path
[depth
].p_ext
[1].ee_block
);
1043 if (path
[depth
].p_idx
!=
1044 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1045 return le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1050 return EXT_MAX_BLOCK
;
1054 * ext4_ext_next_leaf_block:
1055 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1057 static unsigned ext4_ext_next_leaf_block(struct inode
*inode
,
1058 struct ext4_ext_path
*path
)
1062 BUG_ON(path
== NULL
);
1063 depth
= path
->p_depth
;
1065 /* zero-tree has no leaf blocks at all */
1067 return EXT_MAX_BLOCK
;
1069 /* go to index block */
1072 while (depth
>= 0) {
1073 if (path
[depth
].p_idx
!=
1074 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1075 return le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1079 return EXT_MAX_BLOCK
;
1083 * ext4_ext_correct_indexes:
1084 * if leaf gets modified and modified extent is first in the leaf,
1085 * then we have to correct all indexes above.
1086 * TODO: do we need to correct tree in all cases?
1088 int ext4_ext_correct_indexes(handle_t
*handle
, struct inode
*inode
,
1089 struct ext4_ext_path
*path
)
1091 struct ext4_extent_header
*eh
;
1092 int depth
= ext_depth(inode
);
1093 struct ext4_extent
*ex
;
1097 eh
= path
[depth
].p_hdr
;
1098 ex
= path
[depth
].p_ext
;
1103 /* there is no tree at all */
1107 if (ex
!= EXT_FIRST_EXTENT(eh
)) {
1108 /* we correct tree if first leaf got modified only */
1113 * TODO: we need correction if border is smaller than current one
1116 border
= path
[depth
].p_ext
->ee_block
;
1117 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1120 path
[k
].p_idx
->ei_block
= border
;
1121 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1126 /* change all left-side indexes */
1127 if (path
[k
+1].p_idx
!= EXT_FIRST_INDEX(path
[k
+1].p_hdr
))
1129 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1132 path
[k
].p_idx
->ei_block
= border
;
1133 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1142 ext4_can_extents_be_merged(struct inode
*inode
, struct ext4_extent
*ex1
,
1143 struct ext4_extent
*ex2
)
1145 unsigned short ext1_ee_len
, ext2_ee_len
, max_len
;
1148 * Make sure that either both extents are uninitialized, or
1151 if (ext4_ext_is_uninitialized(ex1
) ^ ext4_ext_is_uninitialized(ex2
))
1154 if (ext4_ext_is_uninitialized(ex1
))
1155 max_len
= EXT_UNINIT_MAX_LEN
;
1157 max_len
= EXT_INIT_MAX_LEN
;
1159 ext1_ee_len
= ext4_ext_get_actual_len(ex1
);
1160 ext2_ee_len
= ext4_ext_get_actual_len(ex2
);
1162 if (le32_to_cpu(ex1
->ee_block
) + ext1_ee_len
!=
1163 le32_to_cpu(ex2
->ee_block
))
1167 * To allow future support for preallocated extents to be added
1168 * as an RO_COMPAT feature, refuse to merge to extents if
1169 * this can result in the top bit of ee_len being set.
1171 if (ext1_ee_len
+ ext2_ee_len
> max_len
)
1173 #ifdef AGGRESSIVE_TEST
1174 if (le16_to_cpu(ex1
->ee_len
) >= 4)
1178 if (ext_pblock(ex1
) + ext1_ee_len
== ext_pblock(ex2
))
1184 * This function tries to merge the "ex" extent to the next extent in the tree.
1185 * It always tries to merge towards right. If you want to merge towards
1186 * left, pass "ex - 1" as argument instead of "ex".
1187 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1188 * 1 if they got merged.
1190 int ext4_ext_try_to_merge(struct inode
*inode
,
1191 struct ext4_ext_path
*path
,
1192 struct ext4_extent
*ex
)
1194 struct ext4_extent_header
*eh
;
1195 unsigned int depth
, len
;
1197 int uninitialized
= 0;
1199 depth
= ext_depth(inode
);
1200 BUG_ON(path
[depth
].p_hdr
== NULL
);
1201 eh
= path
[depth
].p_hdr
;
1203 while (ex
< EXT_LAST_EXTENT(eh
)) {
1204 if (!ext4_can_extents_be_merged(inode
, ex
, ex
+ 1))
1206 /* merge with next extent! */
1207 if (ext4_ext_is_uninitialized(ex
))
1209 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1210 + ext4_ext_get_actual_len(ex
+ 1));
1212 ext4_ext_mark_uninitialized(ex
);
1214 if (ex
+ 1 < EXT_LAST_EXTENT(eh
)) {
1215 len
= (EXT_LAST_EXTENT(eh
) - ex
- 1)
1216 * sizeof(struct ext4_extent
);
1217 memmove(ex
+ 1, ex
+ 2, len
);
1219 eh
->eh_entries
= cpu_to_le16(le16_to_cpu(eh
->eh_entries
) - 1);
1221 WARN_ON(eh
->eh_entries
== 0);
1222 if (!eh
->eh_entries
)
1223 ext4_error(inode
->i_sb
, "ext4_ext_try_to_merge",
1224 "inode#%lu, eh->eh_entries = 0!", inode
->i_ino
);
1231 * check if a portion of the "newext" extent overlaps with an
1234 * If there is an overlap discovered, it updates the length of the newext
1235 * such that there will be no overlap, and then returns 1.
1236 * If there is no overlap found, it returns 0.
1238 unsigned int ext4_ext_check_overlap(struct inode
*inode
,
1239 struct ext4_extent
*newext
,
1240 struct ext4_ext_path
*path
)
1242 unsigned long b1
, b2
;
1243 unsigned int depth
, len1
;
1244 unsigned int ret
= 0;
1246 b1
= le32_to_cpu(newext
->ee_block
);
1247 len1
= ext4_ext_get_actual_len(newext
);
1248 depth
= ext_depth(inode
);
1249 if (!path
[depth
].p_ext
)
1251 b2
= le32_to_cpu(path
[depth
].p_ext
->ee_block
);
1254 * get the next allocated block if the extent in the path
1255 * is before the requested block(s)
1258 b2
= ext4_ext_next_allocated_block(path
);
1259 if (b2
== EXT_MAX_BLOCK
)
1263 /* check for wrap through zero */
1264 if (b1
+ len1
< b1
) {
1265 len1
= EXT_MAX_BLOCK
- b1
;
1266 newext
->ee_len
= cpu_to_le16(len1
);
1270 /* check for overlap */
1271 if (b1
+ len1
> b2
) {
1272 newext
->ee_len
= cpu_to_le16(b2
- b1
);
1280 * ext4_ext_insert_extent:
1281 * tries to merge requsted extent into the existing extent or
1282 * inserts requested extent as new one into the tree,
1283 * creating new leaf in the no-space case.
1285 int ext4_ext_insert_extent(handle_t
*handle
, struct inode
*inode
,
1286 struct ext4_ext_path
*path
,
1287 struct ext4_extent
*newext
)
1289 struct ext4_extent_header
* eh
;
1290 struct ext4_extent
*ex
, *fex
;
1291 struct ext4_extent
*nearex
; /* nearest extent */
1292 struct ext4_ext_path
*npath
= NULL
;
1293 int depth
, len
, err
, next
;
1294 unsigned uninitialized
= 0;
1296 BUG_ON(ext4_ext_get_actual_len(newext
) == 0);
1297 depth
= ext_depth(inode
);
1298 ex
= path
[depth
].p_ext
;
1299 BUG_ON(path
[depth
].p_hdr
== NULL
);
1301 /* try to insert block into found extent and return */
1302 if (ex
&& ext4_can_extents_be_merged(inode
, ex
, newext
)) {
1303 ext_debug("append %d block to %d:%d (from %llu)\n",
1304 ext4_ext_get_actual_len(newext
),
1305 le32_to_cpu(ex
->ee_block
),
1306 ext4_ext_get_actual_len(ex
), ext_pblock(ex
));
1307 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1312 * ext4_can_extents_be_merged should have checked that either
1313 * both extents are uninitialized, or both aren't. Thus we
1314 * need to check only one of them here.
1316 if (ext4_ext_is_uninitialized(ex
))
1318 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1319 + ext4_ext_get_actual_len(newext
));
1321 ext4_ext_mark_uninitialized(ex
);
1322 eh
= path
[depth
].p_hdr
;
1328 depth
= ext_depth(inode
);
1329 eh
= path
[depth
].p_hdr
;
1330 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
))
1333 /* probably next leaf has space for us? */
1334 fex
= EXT_LAST_EXTENT(eh
);
1335 next
= ext4_ext_next_leaf_block(inode
, path
);
1336 if (le32_to_cpu(newext
->ee_block
) > le32_to_cpu(fex
->ee_block
)
1337 && next
!= EXT_MAX_BLOCK
) {
1338 ext_debug("next leaf block - %d\n", next
);
1339 BUG_ON(npath
!= NULL
);
1340 npath
= ext4_ext_find_extent(inode
, next
, NULL
);
1342 return PTR_ERR(npath
);
1343 BUG_ON(npath
->p_depth
!= path
->p_depth
);
1344 eh
= npath
[depth
].p_hdr
;
1345 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
)) {
1346 ext_debug("next leaf isnt full(%d)\n",
1347 le16_to_cpu(eh
->eh_entries
));
1351 ext_debug("next leaf has no free space(%d,%d)\n",
1352 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
1356 * There is no free space in the found leaf.
1357 * We're gonna add a new leaf in the tree.
1359 err
= ext4_ext_create_new_leaf(handle
, inode
, path
, newext
);
1362 depth
= ext_depth(inode
);
1363 eh
= path
[depth
].p_hdr
;
1366 nearex
= path
[depth
].p_ext
;
1368 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1373 /* there is no extent in this leaf, create first one */
1374 ext_debug("first extent in the leaf: %d:%llu:%d\n",
1375 le32_to_cpu(newext
->ee_block
),
1377 ext4_ext_get_actual_len(newext
));
1378 path
[depth
].p_ext
= EXT_FIRST_EXTENT(eh
);
1379 } else if (le32_to_cpu(newext
->ee_block
)
1380 > le32_to_cpu(nearex
->ee_block
)) {
1381 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1382 if (nearex
!= EXT_LAST_EXTENT(eh
)) {
1383 len
= EXT_MAX_EXTENT(eh
) - nearex
;
1384 len
= (len
- 1) * sizeof(struct ext4_extent
);
1385 len
= len
< 0 ? 0 : len
;
1386 ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1387 "move %d from 0x%p to 0x%p\n",
1388 le32_to_cpu(newext
->ee_block
),
1390 ext4_ext_get_actual_len(newext
),
1391 nearex
, len
, nearex
+ 1, nearex
+ 2);
1392 memmove(nearex
+ 2, nearex
+ 1, len
);
1394 path
[depth
].p_ext
= nearex
+ 1;
1396 BUG_ON(newext
->ee_block
== nearex
->ee_block
);
1397 len
= (EXT_MAX_EXTENT(eh
) - nearex
) * sizeof(struct ext4_extent
);
1398 len
= len
< 0 ? 0 : len
;
1399 ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1400 "move %d from 0x%p to 0x%p\n",
1401 le32_to_cpu(newext
->ee_block
),
1403 ext4_ext_get_actual_len(newext
),
1404 nearex
, len
, nearex
+ 1, nearex
+ 2);
1405 memmove(nearex
+ 1, nearex
, len
);
1406 path
[depth
].p_ext
= nearex
;
1409 eh
->eh_entries
= cpu_to_le16(le16_to_cpu(eh
->eh_entries
)+1);
1410 nearex
= path
[depth
].p_ext
;
1411 nearex
->ee_block
= newext
->ee_block
;
1412 ext4_ext_store_pblock(nearex
, ext_pblock(newext
));
1413 nearex
->ee_len
= newext
->ee_len
;
1416 /* try to merge extents to the right */
1417 ext4_ext_try_to_merge(inode
, path
, nearex
);
1419 /* try to merge extents to the left */
1421 /* time to correct all indexes above */
1422 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
1426 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1430 ext4_ext_drop_refs(npath
);
1433 ext4_ext_tree_changed(inode
);
1434 ext4_ext_invalidate_cache(inode
);
1438 int ext4_ext_walk_space(struct inode
*inode
, unsigned long block
,
1439 unsigned long num
, ext_prepare_callback func
,
1442 struct ext4_ext_path
*path
= NULL
;
1443 struct ext4_ext_cache cbex
;
1444 struct ext4_extent
*ex
;
1445 unsigned long next
, start
= 0, end
= 0;
1446 unsigned long last
= block
+ num
;
1447 int depth
, exists
, err
= 0;
1449 BUG_ON(func
== NULL
);
1450 BUG_ON(inode
== NULL
);
1452 while (block
< last
&& block
!= EXT_MAX_BLOCK
) {
1454 /* find extent for this block */
1455 path
= ext4_ext_find_extent(inode
, block
, path
);
1457 err
= PTR_ERR(path
);
1462 depth
= ext_depth(inode
);
1463 BUG_ON(path
[depth
].p_hdr
== NULL
);
1464 ex
= path
[depth
].p_ext
;
1465 next
= ext4_ext_next_allocated_block(path
);
1469 /* there is no extent yet, so try to allocate
1470 * all requested space */
1473 } else if (le32_to_cpu(ex
->ee_block
) > block
) {
1474 /* need to allocate space before found extent */
1476 end
= le32_to_cpu(ex
->ee_block
);
1477 if (block
+ num
< end
)
1479 } else if (block
>= le32_to_cpu(ex
->ee_block
)
1480 + ext4_ext_get_actual_len(ex
)) {
1481 /* need to allocate space after found extent */
1486 } else if (block
>= le32_to_cpu(ex
->ee_block
)) {
1488 * some part of requested space is covered
1492 end
= le32_to_cpu(ex
->ee_block
)
1493 + ext4_ext_get_actual_len(ex
);
1494 if (block
+ num
< end
)
1500 BUG_ON(end
<= start
);
1503 cbex
.ec_block
= start
;
1504 cbex
.ec_len
= end
- start
;
1506 cbex
.ec_type
= EXT4_EXT_CACHE_GAP
;
1508 cbex
.ec_block
= le32_to_cpu(ex
->ee_block
);
1509 cbex
.ec_len
= ext4_ext_get_actual_len(ex
);
1510 cbex
.ec_start
= ext_pblock(ex
);
1511 cbex
.ec_type
= EXT4_EXT_CACHE_EXTENT
;
1514 BUG_ON(cbex
.ec_len
== 0);
1515 err
= func(inode
, path
, &cbex
, cbdata
);
1516 ext4_ext_drop_refs(path
);
1520 if (err
== EXT_REPEAT
)
1522 else if (err
== EXT_BREAK
) {
1527 if (ext_depth(inode
) != depth
) {
1528 /* depth was changed. we have to realloc path */
1533 block
= cbex
.ec_block
+ cbex
.ec_len
;
1537 ext4_ext_drop_refs(path
);
1545 ext4_ext_put_in_cache(struct inode
*inode
, __u32 block
,
1546 __u32 len
, ext4_fsblk_t start
, int type
)
1548 struct ext4_ext_cache
*cex
;
1550 cex
= &EXT4_I(inode
)->i_cached_extent
;
1551 cex
->ec_type
= type
;
1552 cex
->ec_block
= block
;
1554 cex
->ec_start
= start
;
1558 * ext4_ext_put_gap_in_cache:
1559 * calculate boundaries of the gap that the requested block fits into
1560 * and cache this gap
1563 ext4_ext_put_gap_in_cache(struct inode
*inode
, struct ext4_ext_path
*path
,
1564 unsigned long block
)
1566 int depth
= ext_depth(inode
);
1567 unsigned long lblock
, len
;
1568 struct ext4_extent
*ex
;
1570 ex
= path
[depth
].p_ext
;
1572 /* there is no extent yet, so gap is [0;-] */
1574 len
= EXT_MAX_BLOCK
;
1575 ext_debug("cache gap(whole file):");
1576 } else if (block
< le32_to_cpu(ex
->ee_block
)) {
1578 len
= le32_to_cpu(ex
->ee_block
) - block
;
1579 ext_debug("cache gap(before): %lu [%lu:%lu]",
1580 (unsigned long) block
,
1581 (unsigned long) le32_to_cpu(ex
->ee_block
),
1582 (unsigned long) ext4_ext_get_actual_len(ex
));
1583 } else if (block
>= le32_to_cpu(ex
->ee_block
)
1584 + ext4_ext_get_actual_len(ex
)) {
1585 lblock
= le32_to_cpu(ex
->ee_block
)
1586 + ext4_ext_get_actual_len(ex
);
1587 len
= ext4_ext_next_allocated_block(path
);
1588 ext_debug("cache gap(after): [%lu:%lu] %lu",
1589 (unsigned long) le32_to_cpu(ex
->ee_block
),
1590 (unsigned long) ext4_ext_get_actual_len(ex
),
1591 (unsigned long) block
);
1592 BUG_ON(len
== lblock
);
1599 ext_debug(" -> %lu:%lu\n", (unsigned long) lblock
, len
);
1600 ext4_ext_put_in_cache(inode
, lblock
, len
, 0, EXT4_EXT_CACHE_GAP
);
1604 ext4_ext_in_cache(struct inode
*inode
, unsigned long block
,
1605 struct ext4_extent
*ex
)
1607 struct ext4_ext_cache
*cex
;
1609 cex
= &EXT4_I(inode
)->i_cached_extent
;
1611 /* has cache valid data? */
1612 if (cex
->ec_type
== EXT4_EXT_CACHE_NO
)
1613 return EXT4_EXT_CACHE_NO
;
1615 BUG_ON(cex
->ec_type
!= EXT4_EXT_CACHE_GAP
&&
1616 cex
->ec_type
!= EXT4_EXT_CACHE_EXTENT
);
1617 if (block
>= cex
->ec_block
&& block
< cex
->ec_block
+ cex
->ec_len
) {
1618 ex
->ee_block
= cpu_to_le32(cex
->ec_block
);
1619 ext4_ext_store_pblock(ex
, cex
->ec_start
);
1620 ex
->ee_len
= cpu_to_le16(cex
->ec_len
);
1621 ext_debug("%lu cached by %lu:%lu:%llu\n",
1622 (unsigned long) block
,
1623 (unsigned long) cex
->ec_block
,
1624 (unsigned long) cex
->ec_len
,
1626 return cex
->ec_type
;
1630 return EXT4_EXT_CACHE_NO
;
1635 * removes index from the index block.
1636 * It's used in truncate case only, thus all requests are for
1637 * last index in the block only.
1639 int ext4_ext_rm_idx(handle_t
*handle
, struct inode
*inode
,
1640 struct ext4_ext_path
*path
)
1642 struct buffer_head
*bh
;
1646 /* free index block */
1648 leaf
= idx_pblock(path
->p_idx
);
1649 BUG_ON(path
->p_hdr
->eh_entries
== 0);
1650 err
= ext4_ext_get_access(handle
, inode
, path
);
1653 path
->p_hdr
->eh_entries
= cpu_to_le16(le16_to_cpu(path
->p_hdr
->eh_entries
)-1);
1654 err
= ext4_ext_dirty(handle
, inode
, path
);
1657 ext_debug("index is empty, remove it, free block %llu\n", leaf
);
1658 bh
= sb_find_get_block(inode
->i_sb
, leaf
);
1659 ext4_forget(handle
, 1, inode
, bh
, leaf
);
1660 ext4_free_blocks(handle
, inode
, leaf
, 1);
1665 * ext4_ext_calc_credits_for_insert:
1666 * This routine returns max. credits that the extent tree can consume.
1667 * It should be OK for low-performance paths like ->writepage()
1668 * To allow many writing processes to fit into a single transaction,
1669 * the caller should calculate credits under truncate_mutex and
1670 * pass the actual path.
1672 int ext4_ext_calc_credits_for_insert(struct inode
*inode
,
1673 struct ext4_ext_path
*path
)
1678 /* probably there is space in leaf? */
1679 depth
= ext_depth(inode
);
1680 if (le16_to_cpu(path
[depth
].p_hdr
->eh_entries
)
1681 < le16_to_cpu(path
[depth
].p_hdr
->eh_max
))
1686 * given 32-bit logical block (4294967296 blocks), max. tree
1687 * can be 4 levels in depth -- 4 * 340^4 == 53453440000.
1688 * Let's also add one more level for imbalance.
1692 /* allocation of new data block(s) */
1696 * tree can be full, so it would need to grow in depth:
1697 * we need one credit to modify old root, credits for
1698 * new root will be added in split accounting
1703 * Index split can happen, we would need:
1704 * allocate intermediate indexes (bitmap + group)
1705 * + change two blocks at each level, but root (already included)
1707 needed
+= (depth
* 2) + (depth
* 2);
1709 /* any allocation modifies superblock */
1715 static int ext4_remove_blocks(handle_t
*handle
, struct inode
*inode
,
1716 struct ext4_extent
*ex
,
1717 unsigned long from
, unsigned long to
)
1719 struct buffer_head
*bh
;
1720 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
1723 #ifdef EXTENTS_STATS
1725 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1726 spin_lock(&sbi
->s_ext_stats_lock
);
1727 sbi
->s_ext_blocks
+= ee_len
;
1728 sbi
->s_ext_extents
++;
1729 if (ee_len
< sbi
->s_ext_min
)
1730 sbi
->s_ext_min
= ee_len
;
1731 if (ee_len
> sbi
->s_ext_max
)
1732 sbi
->s_ext_max
= ee_len
;
1733 if (ext_depth(inode
) > sbi
->s_depth_max
)
1734 sbi
->s_depth_max
= ext_depth(inode
);
1735 spin_unlock(&sbi
->s_ext_stats_lock
);
1738 if (from
>= le32_to_cpu(ex
->ee_block
)
1739 && to
== le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
1743 num
= le32_to_cpu(ex
->ee_block
) + ee_len
- from
;
1744 start
= ext_pblock(ex
) + ee_len
- num
;
1745 ext_debug("free last %lu blocks starting %llu\n", num
, start
);
1746 for (i
= 0; i
< num
; i
++) {
1747 bh
= sb_find_get_block(inode
->i_sb
, start
+ i
);
1748 ext4_forget(handle
, 0, inode
, bh
, start
+ i
);
1750 ext4_free_blocks(handle
, inode
, start
, num
);
1751 } else if (from
== le32_to_cpu(ex
->ee_block
)
1752 && to
<= le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
1753 printk("strange request: removal %lu-%lu from %u:%u\n",
1754 from
, to
, le32_to_cpu(ex
->ee_block
), ee_len
);
1756 printk("strange request: removal(2) %lu-%lu from %u:%u\n",
1757 from
, to
, le32_to_cpu(ex
->ee_block
), ee_len
);
1763 ext4_ext_rm_leaf(handle_t
*handle
, struct inode
*inode
,
1764 struct ext4_ext_path
*path
, unsigned long start
)
1766 int err
= 0, correct_index
= 0;
1767 int depth
= ext_depth(inode
), credits
;
1768 struct ext4_extent_header
*eh
;
1769 unsigned a
, b
, block
, num
;
1770 unsigned long ex_ee_block
;
1771 unsigned short ex_ee_len
;
1772 unsigned uninitialized
= 0;
1773 struct ext4_extent
*ex
;
1775 /* the header must be checked already in ext4_ext_remove_space() */
1776 ext_debug("truncate since %lu in leaf\n", start
);
1777 if (!path
[depth
].p_hdr
)
1778 path
[depth
].p_hdr
= ext_block_hdr(path
[depth
].p_bh
);
1779 eh
= path
[depth
].p_hdr
;
1782 /* find where to start removing */
1783 ex
= EXT_LAST_EXTENT(eh
);
1785 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
1786 if (ext4_ext_is_uninitialized(ex
))
1788 ex_ee_len
= ext4_ext_get_actual_len(ex
);
1790 while (ex
>= EXT_FIRST_EXTENT(eh
) &&
1791 ex_ee_block
+ ex_ee_len
> start
) {
1792 ext_debug("remove ext %lu:%u\n", ex_ee_block
, ex_ee_len
);
1793 path
[depth
].p_ext
= ex
;
1795 a
= ex_ee_block
> start
? ex_ee_block
: start
;
1796 b
= ex_ee_block
+ ex_ee_len
- 1 < EXT_MAX_BLOCK
?
1797 ex_ee_block
+ ex_ee_len
- 1 : EXT_MAX_BLOCK
;
1799 ext_debug(" border %u:%u\n", a
, b
);
1801 if (a
!= ex_ee_block
&& b
!= ex_ee_block
+ ex_ee_len
- 1) {
1805 } else if (a
!= ex_ee_block
) {
1806 /* remove tail of the extent */
1807 block
= ex_ee_block
;
1809 } else if (b
!= ex_ee_block
+ ex_ee_len
- 1) {
1810 /* remove head of the extent */
1813 /* there is no "make a hole" API yet */
1816 /* remove whole extent: excellent! */
1817 block
= ex_ee_block
;
1819 BUG_ON(a
!= ex_ee_block
);
1820 BUG_ON(b
!= ex_ee_block
+ ex_ee_len
- 1);
1823 /* at present, extent can't cross block group: */
1824 /* leaf + bitmap + group desc + sb + inode */
1826 if (ex
== EXT_FIRST_EXTENT(eh
)) {
1828 credits
+= (ext_depth(inode
)) + 1;
1831 credits
+= 2 * EXT4_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
1834 handle
= ext4_ext_journal_restart(handle
, credits
);
1835 if (IS_ERR(handle
)) {
1836 err
= PTR_ERR(handle
);
1840 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1844 err
= ext4_remove_blocks(handle
, inode
, ex
, a
, b
);
1849 /* this extent is removed; mark slot entirely unused */
1850 ext4_ext_store_pblock(ex
, 0);
1851 eh
->eh_entries
= cpu_to_le16(le16_to_cpu(eh
->eh_entries
)-1);
1854 ex
->ee_block
= cpu_to_le32(block
);
1855 ex
->ee_len
= cpu_to_le16(num
);
1857 * Do not mark uninitialized if all the blocks in the
1858 * extent have been removed.
1860 if (uninitialized
&& num
)
1861 ext4_ext_mark_uninitialized(ex
);
1863 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1867 ext_debug("new extent: %u:%u:%llu\n", block
, num
,
1870 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
1871 ex_ee_len
= ext4_ext_get_actual_len(ex
);
1874 if (correct_index
&& eh
->eh_entries
)
1875 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
1877 /* if this leaf is free, then we should
1878 * remove it from index block above */
1879 if (err
== 0 && eh
->eh_entries
== 0 && path
[depth
].p_bh
!= NULL
)
1880 err
= ext4_ext_rm_idx(handle
, inode
, path
+ depth
);
1887 * ext4_ext_more_to_rm:
1888 * returns 1 if current index has to be freed (even partial)
1891 ext4_ext_more_to_rm(struct ext4_ext_path
*path
)
1893 BUG_ON(path
->p_idx
== NULL
);
1895 if (path
->p_idx
< EXT_FIRST_INDEX(path
->p_hdr
))
1899 * if truncate on deeper level happened, it wasn't partial,
1900 * so we have to consider current index for truncation
1902 if (le16_to_cpu(path
->p_hdr
->eh_entries
) == path
->p_block
)
1907 int ext4_ext_remove_space(struct inode
*inode
, unsigned long start
)
1909 struct super_block
*sb
= inode
->i_sb
;
1910 int depth
= ext_depth(inode
);
1911 struct ext4_ext_path
*path
;
1915 ext_debug("truncate since %lu\n", start
);
1917 /* probably first extent we're gonna free will be last in block */
1918 handle
= ext4_journal_start(inode
, depth
+ 1);
1920 return PTR_ERR(handle
);
1922 ext4_ext_invalidate_cache(inode
);
1925 * We start scanning from right side, freeing all the blocks
1926 * after i_size and walking into the tree depth-wise.
1928 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 1), GFP_KERNEL
);
1930 ext4_journal_stop(handle
);
1933 path
[0].p_hdr
= ext_inode_hdr(inode
);
1934 if (ext4_ext_check_header(inode
, path
[0].p_hdr
, depth
)) {
1938 path
[0].p_depth
= depth
;
1940 while (i
>= 0 && err
== 0) {
1942 /* this is leaf block */
1943 err
= ext4_ext_rm_leaf(handle
, inode
, path
, start
);
1944 /* root level has p_bh == NULL, brelse() eats this */
1945 brelse(path
[i
].p_bh
);
1946 path
[i
].p_bh
= NULL
;
1951 /* this is index block */
1952 if (!path
[i
].p_hdr
) {
1953 ext_debug("initialize header\n");
1954 path
[i
].p_hdr
= ext_block_hdr(path
[i
].p_bh
);
1957 if (!path
[i
].p_idx
) {
1958 /* this level hasn't been touched yet */
1959 path
[i
].p_idx
= EXT_LAST_INDEX(path
[i
].p_hdr
);
1960 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
)+1;
1961 ext_debug("init index ptr: hdr 0x%p, num %d\n",
1963 le16_to_cpu(path
[i
].p_hdr
->eh_entries
));
1965 /* we were already here, see at next index */
1969 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
1970 i
, EXT_FIRST_INDEX(path
[i
].p_hdr
),
1972 if (ext4_ext_more_to_rm(path
+ i
)) {
1973 struct buffer_head
*bh
;
1974 /* go to the next level */
1975 ext_debug("move to level %d (block %llu)\n",
1976 i
+ 1, idx_pblock(path
[i
].p_idx
));
1977 memset(path
+ i
+ 1, 0, sizeof(*path
));
1978 bh
= sb_bread(sb
, idx_pblock(path
[i
].p_idx
));
1980 /* should we reset i_size? */
1984 if (WARN_ON(i
+ 1 > depth
)) {
1988 if (ext4_ext_check_header(inode
, ext_block_hdr(bh
),
1993 path
[i
+ 1].p_bh
= bh
;
1995 /* save actual number of indexes since this
1996 * number is changed at the next iteration */
1997 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
);
2000 /* we finished processing this index, go up */
2001 if (path
[i
].p_hdr
->eh_entries
== 0 && i
> 0) {
2002 /* index is empty, remove it;
2003 * handle must be already prepared by the
2004 * truncatei_leaf() */
2005 err
= ext4_ext_rm_idx(handle
, inode
, path
+ i
);
2007 /* root level has p_bh == NULL, brelse() eats this */
2008 brelse(path
[i
].p_bh
);
2009 path
[i
].p_bh
= NULL
;
2011 ext_debug("return to level %d\n", i
);
2015 /* TODO: flexible tree reduction should be here */
2016 if (path
->p_hdr
->eh_entries
== 0) {
2018 * truncate to zero freed all the tree,
2019 * so we need to correct eh_depth
2021 err
= ext4_ext_get_access(handle
, inode
, path
);
2023 ext_inode_hdr(inode
)->eh_depth
= 0;
2024 ext_inode_hdr(inode
)->eh_max
=
2025 cpu_to_le16(ext4_ext_space_root(inode
));
2026 err
= ext4_ext_dirty(handle
, inode
, path
);
2030 ext4_ext_tree_changed(inode
);
2031 ext4_ext_drop_refs(path
);
2033 ext4_journal_stop(handle
);
2039 * called at mount time
2041 void ext4_ext_init(struct super_block
*sb
)
2044 * possible initialization would be here
2047 if (test_opt(sb
, EXTENTS
)) {
2048 printk("EXT4-fs: file extents enabled");
2049 #ifdef AGGRESSIVE_TEST
2050 printk(", aggressive tests");
2052 #ifdef CHECK_BINSEARCH
2053 printk(", check binsearch");
2055 #ifdef EXTENTS_STATS
2059 #ifdef EXTENTS_STATS
2060 spin_lock_init(&EXT4_SB(sb
)->s_ext_stats_lock
);
2061 EXT4_SB(sb
)->s_ext_min
= 1 << 30;
2062 EXT4_SB(sb
)->s_ext_max
= 0;
2068 * called at umount time
2070 void ext4_ext_release(struct super_block
*sb
)
2072 if (!test_opt(sb
, EXTENTS
))
2075 #ifdef EXTENTS_STATS
2076 if (EXT4_SB(sb
)->s_ext_blocks
&& EXT4_SB(sb
)->s_ext_extents
) {
2077 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2078 printk(KERN_ERR
"EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2079 sbi
->s_ext_blocks
, sbi
->s_ext_extents
,
2080 sbi
->s_ext_blocks
/ sbi
->s_ext_extents
);
2081 printk(KERN_ERR
"EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2082 sbi
->s_ext_min
, sbi
->s_ext_max
, sbi
->s_depth_max
);
2088 * This function is called by ext4_ext_get_blocks() if someone tries to write
2089 * to an uninitialized extent. It may result in splitting the uninitialized
2090 * extent into multiple extents (upto three - one initialized and two
2092 * There are three possibilities:
2093 * a> There is no split required: Entire extent should be initialized
2094 * b> Splits in two extents: Write is happening at either end of the extent
2095 * c> Splits in three extents: Somone is writing in middle of the extent
2097 int ext4_ext_convert_to_initialized(handle_t
*handle
, struct inode
*inode
,
2098 struct ext4_ext_path
*path
,
2099 ext4_fsblk_t iblock
,
2100 unsigned long max_blocks
)
2102 struct ext4_extent
*ex
, newex
;
2103 struct ext4_extent
*ex1
= NULL
;
2104 struct ext4_extent
*ex2
= NULL
;
2105 struct ext4_extent
*ex3
= NULL
;
2106 struct ext4_extent_header
*eh
;
2107 unsigned int allocated
, ee_block
, ee_len
, depth
;
2108 ext4_fsblk_t newblock
;
2112 depth
= ext_depth(inode
);
2113 eh
= path
[depth
].p_hdr
;
2114 ex
= path
[depth
].p_ext
;
2115 ee_block
= le32_to_cpu(ex
->ee_block
);
2116 ee_len
= ext4_ext_get_actual_len(ex
);
2117 allocated
= ee_len
- (iblock
- ee_block
);
2118 newblock
= iblock
- ee_block
+ ext_pblock(ex
);
2121 /* ex1: ee_block to iblock - 1 : uninitialized */
2122 if (iblock
> ee_block
) {
2124 ex1
->ee_len
= cpu_to_le16(iblock
- ee_block
);
2125 ext4_ext_mark_uninitialized(ex1
);
2129 * for sanity, update the length of the ex2 extent before
2130 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2131 * overlap of blocks.
2133 if (!ex1
&& allocated
> max_blocks
)
2134 ex2
->ee_len
= cpu_to_le16(max_blocks
);
2135 /* ex3: to ee_block + ee_len : uninitialised */
2136 if (allocated
> max_blocks
) {
2137 unsigned int newdepth
;
2139 ex3
->ee_block
= cpu_to_le32(iblock
+ max_blocks
);
2140 ext4_ext_store_pblock(ex3
, newblock
+ max_blocks
);
2141 ex3
->ee_len
= cpu_to_le16(allocated
- max_blocks
);
2142 ext4_ext_mark_uninitialized(ex3
);
2143 err
= ext4_ext_insert_extent(handle
, inode
, path
, ex3
);
2147 * The depth, and hence eh & ex might change
2148 * as part of the insert above.
2150 newdepth
= ext_depth(inode
);
2151 if (newdepth
!= depth
) {
2153 path
= ext4_ext_find_extent(inode
, iblock
, NULL
);
2155 err
= PTR_ERR(path
);
2159 eh
= path
[depth
].p_hdr
;
2160 ex
= path
[depth
].p_ext
;
2164 allocated
= max_blocks
;
2167 * If there was a change of depth as part of the
2168 * insertion of ex3 above, we need to update the length
2169 * of the ex1 extent again here
2171 if (ex1
&& ex1
!= ex
) {
2173 ex1
->ee_len
= cpu_to_le16(iblock
- ee_block
);
2174 ext4_ext_mark_uninitialized(ex1
);
2177 /* ex2: iblock to iblock + maxblocks-1 : initialised */
2178 ex2
->ee_block
= cpu_to_le32(iblock
);
2179 ext4_ext_store_pblock(ex2
, newblock
);
2180 ex2
->ee_len
= cpu_to_le16(allocated
);
2183 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2187 * New (initialized) extent starts from the first block
2188 * in the current extent. i.e., ex2 == ex
2189 * We have to see if it can be merged with the extent
2192 if (ex2
> EXT_FIRST_EXTENT(eh
)) {
2194 * To merge left, pass "ex2 - 1" to try_to_merge(),
2195 * since it merges towards right _only_.
2197 ret
= ext4_ext_try_to_merge(inode
, path
, ex2
- 1);
2199 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
2202 depth
= ext_depth(inode
);
2207 * Try to Merge towards right. This might be required
2208 * only when the whole extent is being written to.
2209 * i.e. ex2 == ex and ex3 == NULL.
2212 ret
= ext4_ext_try_to_merge(inode
, path
, ex2
);
2214 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
2219 /* Mark modified extent as dirty */
2220 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2223 err
= ext4_ext_insert_extent(handle
, inode
, path
, &newex
);
2225 return err
? err
: allocated
;
2228 int ext4_ext_get_blocks(handle_t
*handle
, struct inode
*inode
,
2229 ext4_fsblk_t iblock
,
2230 unsigned long max_blocks
, struct buffer_head
*bh_result
,
2231 int create
, int extend_disksize
)
2233 struct ext4_ext_path
*path
= NULL
;
2234 struct ext4_extent_header
*eh
;
2235 struct ext4_extent newex
, *ex
;
2236 ext4_fsblk_t goal
, newblock
;
2237 int err
= 0, depth
, ret
;
2238 unsigned long allocated
= 0;
2240 __clear_bit(BH_New
, &bh_result
->b_state
);
2241 ext_debug("blocks %d/%lu requested for inode %u\n", (int) iblock
,
2242 max_blocks
, (unsigned) inode
->i_ino
);
2243 mutex_lock(&EXT4_I(inode
)->truncate_mutex
);
2245 /* check in cache */
2246 goal
= ext4_ext_in_cache(inode
, iblock
, &newex
);
2248 if (goal
== EXT4_EXT_CACHE_GAP
) {
2251 * block isn't allocated yet and
2252 * user doesn't want to allocate it
2256 /* we should allocate requested block */
2257 } else if (goal
== EXT4_EXT_CACHE_EXTENT
) {
2258 /* block is already allocated */
2260 - le32_to_cpu(newex
.ee_block
)
2261 + ext_pblock(&newex
);
2262 /* number of remaining blocks in the extent */
2263 allocated
= le16_to_cpu(newex
.ee_len
) -
2264 (iblock
- le32_to_cpu(newex
.ee_block
));
2271 /* find extent for this block */
2272 path
= ext4_ext_find_extent(inode
, iblock
, NULL
);
2274 err
= PTR_ERR(path
);
2279 depth
= ext_depth(inode
);
2282 * consistent leaf must not be empty;
2283 * this situation is possible, though, _during_ tree modification;
2284 * this is why assert can't be put in ext4_ext_find_extent()
2286 BUG_ON(path
[depth
].p_ext
== NULL
&& depth
!= 0);
2287 eh
= path
[depth
].p_hdr
;
2289 ex
= path
[depth
].p_ext
;
2291 unsigned long ee_block
= le32_to_cpu(ex
->ee_block
);
2292 ext4_fsblk_t ee_start
= ext_pblock(ex
);
2293 unsigned short ee_len
;
2296 * Uninitialized extents are treated as holes, except that
2297 * we split out initialized portions during a write.
2299 ee_len
= ext4_ext_get_actual_len(ex
);
2300 /* if found extent covers block, simply return it */
2301 if (iblock
>= ee_block
&& iblock
< ee_block
+ ee_len
) {
2302 newblock
= iblock
- ee_block
+ ee_start
;
2303 /* number of remaining blocks in the extent */
2304 allocated
= ee_len
- (iblock
- ee_block
);
2305 ext_debug("%d fit into %lu:%d -> %llu\n", (int) iblock
,
2306 ee_block
, ee_len
, newblock
);
2308 /* Do not put uninitialized extent in the cache */
2309 if (!ext4_ext_is_uninitialized(ex
)) {
2310 ext4_ext_put_in_cache(inode
, ee_block
,
2312 EXT4_EXT_CACHE_EXTENT
);
2315 if (create
== EXT4_CREATE_UNINITIALIZED_EXT
)
2320 ret
= ext4_ext_convert_to_initialized(handle
, inode
,
2332 * requested block isn't allocated yet;
2333 * we couldn't try to create block if create flag is zero
2337 * put just found gap into cache to speed up
2338 * subsequent requests
2340 ext4_ext_put_gap_in_cache(inode
, path
, iblock
);
2344 * Okay, we need to do block allocation. Lazily initialize the block
2345 * allocation info here if necessary.
2347 if (S_ISREG(inode
->i_mode
) && (!EXT4_I(inode
)->i_block_alloc_info
))
2348 ext4_init_block_alloc_info(inode
);
2350 /* allocate new block */
2351 goal
= ext4_ext_find_goal(inode
, path
, iblock
);
2354 * See if request is beyond maximum number of blocks we can have in
2355 * a single extent. For an initialized extent this limit is
2356 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2357 * EXT_UNINIT_MAX_LEN.
2359 if (max_blocks
> EXT_INIT_MAX_LEN
&&
2360 create
!= EXT4_CREATE_UNINITIALIZED_EXT
)
2361 max_blocks
= EXT_INIT_MAX_LEN
;
2362 else if (max_blocks
> EXT_UNINIT_MAX_LEN
&&
2363 create
== EXT4_CREATE_UNINITIALIZED_EXT
)
2364 max_blocks
= EXT_UNINIT_MAX_LEN
;
2366 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2367 newex
.ee_block
= cpu_to_le32(iblock
);
2368 newex
.ee_len
= cpu_to_le16(max_blocks
);
2369 err
= ext4_ext_check_overlap(inode
, &newex
, path
);
2371 allocated
= le16_to_cpu(newex
.ee_len
);
2373 allocated
= max_blocks
;
2374 newblock
= ext4_new_blocks(handle
, inode
, goal
, &allocated
, &err
);
2377 ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2378 goal
, newblock
, allocated
);
2380 /* try to insert new extent into found leaf and return */
2381 ext4_ext_store_pblock(&newex
, newblock
);
2382 newex
.ee_len
= cpu_to_le16(allocated
);
2383 if (create
== EXT4_CREATE_UNINITIALIZED_EXT
) /* Mark uninitialized */
2384 ext4_ext_mark_uninitialized(&newex
);
2385 err
= ext4_ext_insert_extent(handle
, inode
, path
, &newex
);
2387 /* free data blocks we just allocated */
2388 ext4_free_blocks(handle
, inode
, ext_pblock(&newex
),
2389 le16_to_cpu(newex
.ee_len
));
2393 if (extend_disksize
&& inode
->i_size
> EXT4_I(inode
)->i_disksize
)
2394 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
2396 /* previous routine could use block we allocated */
2397 newblock
= ext_pblock(&newex
);
2399 __set_bit(BH_New
, &bh_result
->b_state
);
2401 /* Cache only when it is _not_ an uninitialized extent */
2402 if (create
!= EXT4_CREATE_UNINITIALIZED_EXT
)
2403 ext4_ext_put_in_cache(inode
, iblock
, allocated
, newblock
,
2404 EXT4_EXT_CACHE_EXTENT
);
2406 if (allocated
> max_blocks
)
2407 allocated
= max_blocks
;
2408 ext4_ext_show_leaf(inode
, path
);
2409 __set_bit(BH_Mapped
, &bh_result
->b_state
);
2410 bh_result
->b_bdev
= inode
->i_sb
->s_bdev
;
2411 bh_result
->b_blocknr
= newblock
;
2414 ext4_ext_drop_refs(path
);
2417 mutex_unlock(&EXT4_I(inode
)->truncate_mutex
);
2419 return err
? err
: allocated
;
2422 void ext4_ext_truncate(struct inode
* inode
, struct page
*page
)
2424 struct address_space
*mapping
= inode
->i_mapping
;
2425 struct super_block
*sb
= inode
->i_sb
;
2426 unsigned long last_block
;
2431 * probably first extent we're gonna free will be last in block
2433 err
= ext4_writepage_trans_blocks(inode
) + 3;
2434 handle
= ext4_journal_start(inode
, err
);
2435 if (IS_ERR(handle
)) {
2437 clear_highpage(page
);
2438 flush_dcache_page(page
);
2440 page_cache_release(page
);
2446 ext4_block_truncate_page(handle
, page
, mapping
, inode
->i_size
);
2448 mutex_lock(&EXT4_I(inode
)->truncate_mutex
);
2449 ext4_ext_invalidate_cache(inode
);
2452 * TODO: optimization is possible here.
2453 * Probably we need not scan at all,
2454 * because page truncation is enough.
2456 if (ext4_orphan_add(handle
, inode
))
2459 /* we have to know where to truncate from in crash case */
2460 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
2461 ext4_mark_inode_dirty(handle
, inode
);
2463 last_block
= (inode
->i_size
+ sb
->s_blocksize
- 1)
2464 >> EXT4_BLOCK_SIZE_BITS(sb
);
2465 err
= ext4_ext_remove_space(inode
, last_block
);
2467 /* In a multi-transaction truncate, we only make the final
2468 * transaction synchronous.
2475 * If this was a simple ftruncate() and the file will remain alive,
2476 * then we need to clear up the orphan record which we created above.
2477 * However, if this was a real unlink then we were called by
2478 * ext4_delete_inode(), and we allow that function to clean up the
2479 * orphan info for us.
2482 ext4_orphan_del(handle
, inode
);
2484 mutex_unlock(&EXT4_I(inode
)->truncate_mutex
);
2485 ext4_journal_stop(handle
);
2489 * ext4_ext_writepage_trans_blocks:
2490 * calculate max number of blocks we could modify
2491 * in order to allocate new block for an inode
2493 int ext4_ext_writepage_trans_blocks(struct inode
*inode
, int num
)
2497 needed
= ext4_ext_calc_credits_for_insert(inode
, NULL
);
2499 /* caller wants to allocate num blocks, but note it includes sb */
2500 needed
= needed
* num
- (num
- 1);
2503 needed
+= 2 * EXT4_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
2510 * preallocate space for a file. This implements ext4's fallocate inode
2511 * operation, which gets called from sys_fallocate system call.
2512 * For block-mapped files, posix_fallocate should fall back to the method
2513 * of writing zeroes to the required new blocks (the same behavior which is
2514 * expected for file systems which do not support fallocate() system call).
2516 long ext4_fallocate(struct inode
*inode
, int mode
, loff_t offset
, loff_t len
)
2519 ext4_fsblk_t block
, max_blocks
;
2520 ext4_fsblk_t nblocks
= 0;
2524 struct buffer_head map_bh
;
2525 unsigned int credits
, blkbits
= inode
->i_blkbits
;
2528 * currently supporting (pre)allocate mode for extent-based
2531 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
2534 /* preallocation to directories is currently not supported */
2535 if (S_ISDIR(inode
->i_mode
))
2538 block
= offset
>> blkbits
;
2539 max_blocks
= (EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
)
2543 * credits to insert 1 extent into extent tree + buffers to be able to
2544 * modify 1 super block, 1 block bitmap and 1 group descriptor.
2546 credits
= EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + 3;
2548 while (ret
>= 0 && ret
< max_blocks
) {
2549 block
= block
+ ret
;
2550 max_blocks
= max_blocks
- ret
;
2551 handle
= ext4_journal_start(inode
, credits
);
2552 if (IS_ERR(handle
)) {
2553 ret
= PTR_ERR(handle
);
2557 ret
= ext4_ext_get_blocks(handle
, inode
, block
,
2558 max_blocks
, &map_bh
,
2559 EXT4_CREATE_UNINITIALIZED_EXT
, 0);
2562 ext4_error(inode
->i_sb
, "ext4_fallocate",
2563 "ext4_ext_get_blocks returned 0! inode#%lu"
2564 ", block=%llu, max_blocks=%llu",
2565 inode
->i_ino
, block
, max_blocks
);
2567 ext4_mark_inode_dirty(handle
, inode
);
2568 ret2
= ext4_journal_stop(handle
);
2572 /* check wrap through sign-bit/zero here */
2573 if ((block
+ ret
) < 0 || (block
+ ret
) < block
) {
2575 ext4_mark_inode_dirty(handle
, inode
);
2576 ret2
= ext4_journal_stop(handle
);
2579 if (buffer_new(&map_bh
) && ((block
+ ret
) >
2580 (EXT4_BLOCK_ALIGN(i_size_read(inode
), blkbits
)
2582 nblocks
= nblocks
+ ret
;
2585 /* Update ctime if new blocks get allocated */
2587 struct timespec now
;
2589 now
= current_fs_time(inode
->i_sb
);
2590 if (!timespec_equal(&inode
->i_ctime
, &now
))
2591 inode
->i_ctime
= now
;
2594 ext4_mark_inode_dirty(handle
, inode
);
2595 ret2
= ext4_journal_stop(handle
);
2600 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2604 * Time to update the file size.
2605 * Update only when preallocation was requested beyond the file size.
2607 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
2608 (offset
+ len
) > i_size_read(inode
)) {
2611 * if no error, we assume preallocation succeeded
2614 mutex_lock(&inode
->i_mutex
);
2615 i_size_write(inode
, offset
+ len
);
2616 EXT4_I(inode
)->i_disksize
= i_size_read(inode
);
2617 mutex_unlock(&inode
->i_mutex
);
2618 } else if (ret
< 0 && nblocks
) {
2619 /* Handle partial allocation scenario */
2622 mutex_lock(&inode
->i_mutex
);
2623 newsize
= (nblocks
<< blkbits
) + i_size_read(inode
);
2624 i_size_write(inode
, EXT4_BLOCK_ALIGN(newsize
, blkbits
));
2625 EXT4_I(inode
)->i_disksize
= i_size_read(inode
);
2626 mutex_unlock(&inode
->i_mutex
);
2630 return ret
> 0 ? ret2
: ret
;