2 * SLOB Allocator: Simple List Of Blocks
4 * Matt Mackall <mpm@selenic.com> 12/30/03
8 * The core of SLOB is a traditional K&R style heap allocator, with
9 * support for returning aligned objects. The granularity of this
10 * allocator is 8 bytes on x86, though it's perhaps possible to reduce
11 * this to 4 if it's deemed worth the effort. The slob heap is a
12 * singly-linked list of pages from __get_free_page, grown on demand
13 * and allocation from the heap is currently first-fit.
15 * Above this is an implementation of kmalloc/kfree. Blocks returned
16 * from kmalloc are 8-byte aligned and prepended with a 8-byte header.
17 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
18 * __get_free_pages directly so that it can return page-aligned blocks
19 * and keeps a linked list of such pages and their orders. These
20 * objects are detected in kfree() by their page alignment.
22 * SLAB is emulated on top of SLOB by simply calling constructors and
23 * destructors for every SLAB allocation. Objects are returned with
24 * the 8-byte alignment unless the SLAB_HWCACHE_ALIGN flag is
25 * set, in which case the low-level allocator will fragment blocks to
26 * create the proper alignment. Again, objects of page-size or greater
27 * are allocated by calling __get_free_pages. As SLAB objects know
28 * their size, no separate size bookkeeping is necessary and there is
29 * essentially no allocation space overhead.
32 #include <linux/slab.h>
34 #include <linux/cache.h>
35 #include <linux/init.h>
36 #include <linux/module.h>
37 #include <linux/timer.h>
38 #include <linux/rcupdate.h>
42 struct slob_block
*next
;
44 typedef struct slob_block slob_t
;
46 #define SLOB_UNIT sizeof(slob_t)
47 #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
48 #define SLOB_ALIGN L1_CACHE_BYTES
53 struct bigblock
*next
;
55 typedef struct bigblock bigblock_t
;
58 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
59 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
60 * the block using call_rcu.
67 static slob_t arena
= { .next
= &arena
, .units
= 1 };
68 static slob_t
*slobfree
= &arena
;
69 static bigblock_t
*bigblocks
;
70 static DEFINE_SPINLOCK(slob_lock
);
71 static DEFINE_SPINLOCK(block_lock
);
73 static void slob_free(void *b
, int size
);
74 static void slob_timer_cbk(void);
77 static void *slob_alloc(size_t size
, gfp_t gfp
, int align
)
79 slob_t
*prev
, *cur
, *aligned
= 0;
80 int delta
= 0, units
= SLOB_UNITS(size
);
83 spin_lock_irqsave(&slob_lock
, flags
);
85 for (cur
= prev
->next
; ; prev
= cur
, cur
= cur
->next
) {
87 aligned
= (slob_t
*)ALIGN((unsigned long)cur
, align
);
88 delta
= aligned
- cur
;
90 if (cur
->units
>= units
+ delta
) { /* room enough? */
91 if (delta
) { /* need to fragment head to align? */
92 aligned
->units
= cur
->units
- delta
;
93 aligned
->next
= cur
->next
;
100 if (cur
->units
== units
) /* exact fit? */
101 prev
->next
= cur
->next
; /* unlink */
102 else { /* fragment */
103 prev
->next
= cur
+ units
;
104 prev
->next
->units
= cur
->units
- units
;
105 prev
->next
->next
= cur
->next
;
110 spin_unlock_irqrestore(&slob_lock
, flags
);
113 if (cur
== slobfree
) {
114 spin_unlock_irqrestore(&slob_lock
, flags
);
116 if (size
== PAGE_SIZE
) /* trying to shrink arena? */
119 cur
= (slob_t
*)__get_free_page(gfp
);
123 slob_free(cur
, PAGE_SIZE
);
124 spin_lock_irqsave(&slob_lock
, flags
);
130 static void slob_free(void *block
, int size
)
132 slob_t
*cur
, *b
= (slob_t
*)block
;
139 b
->units
= SLOB_UNITS(size
);
141 /* Find reinsertion point */
142 spin_lock_irqsave(&slob_lock
, flags
);
143 for (cur
= slobfree
; !(b
> cur
&& b
< cur
->next
); cur
= cur
->next
)
144 if (cur
>= cur
->next
&& (b
> cur
|| b
< cur
->next
))
147 if (b
+ b
->units
== cur
->next
) {
148 b
->units
+= cur
->next
->units
;
149 b
->next
= cur
->next
->next
;
153 if (cur
+ cur
->units
== b
) {
154 cur
->units
+= b
->units
;
161 spin_unlock_irqrestore(&slob_lock
, flags
);
164 void *__kmalloc(size_t size
, gfp_t gfp
)
170 if (size
< PAGE_SIZE
- SLOB_UNIT
) {
171 m
= slob_alloc(size
+ SLOB_UNIT
, gfp
, 0);
172 return m
? (void *)(m
+ 1) : 0;
175 bb
= slob_alloc(sizeof(bigblock_t
), gfp
, 0);
179 bb
->order
= get_order(size
);
180 bb
->pages
= (void *)__get_free_pages(gfp
, bb
->order
);
183 spin_lock_irqsave(&block_lock
, flags
);
184 bb
->next
= bigblocks
;
186 spin_unlock_irqrestore(&block_lock
, flags
);
190 slob_free(bb
, sizeof(bigblock_t
));
193 EXPORT_SYMBOL(__kmalloc
);
196 * krealloc - reallocate memory. The contents will remain unchanged.
198 * @p: object to reallocate memory for.
199 * @new_size: how many bytes of memory are required.
200 * @flags: the type of memory to allocate.
202 * The contents of the object pointed to are preserved up to the
203 * lesser of the new and old sizes. If @p is %NULL, krealloc()
204 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
205 * %NULL pointer, the object pointed to is freed.
207 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
212 return kmalloc_track_caller(new_size
, flags
);
214 if (unlikely(!new_size
)) {
219 ret
= kmalloc_track_caller(new_size
, flags
);
221 memcpy(ret
, p
, min(new_size
, ksize(p
)));
226 EXPORT_SYMBOL(krealloc
);
228 void kfree(const void *block
)
230 bigblock_t
*bb
, **last
= &bigblocks
;
236 if (!((unsigned long)block
& (PAGE_SIZE
-1))) {
237 /* might be on the big block list */
238 spin_lock_irqsave(&block_lock
, flags
);
239 for (bb
= bigblocks
; bb
; last
= &bb
->next
, bb
= bb
->next
) {
240 if (bb
->pages
== block
) {
242 spin_unlock_irqrestore(&block_lock
, flags
);
243 free_pages((unsigned long)block
, bb
->order
);
244 slob_free(bb
, sizeof(bigblock_t
));
248 spin_unlock_irqrestore(&block_lock
, flags
);
251 slob_free((slob_t
*)block
- 1, 0);
255 EXPORT_SYMBOL(kfree
);
257 size_t ksize(const void *block
)
265 if (!((unsigned long)block
& (PAGE_SIZE
-1))) {
266 spin_lock_irqsave(&block_lock
, flags
);
267 for (bb
= bigblocks
; bb
; bb
= bb
->next
)
268 if (bb
->pages
== block
) {
269 spin_unlock_irqrestore(&slob_lock
, flags
);
270 return PAGE_SIZE
<< bb
->order
;
272 spin_unlock_irqrestore(&block_lock
, flags
);
275 return ((slob_t
*)block
- 1)->units
* SLOB_UNIT
;
279 unsigned int size
, align
;
282 void (*ctor
)(void *, struct kmem_cache
*, unsigned long);
285 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
286 size_t align
, unsigned long flags
,
287 void (*ctor
)(void*, struct kmem_cache
*, unsigned long),
288 void (*dtor
)(void*, struct kmem_cache
*, unsigned long))
290 struct kmem_cache
*c
;
292 c
= slob_alloc(sizeof(struct kmem_cache
), flags
, 0);
297 if (flags
& SLAB_DESTROY_BY_RCU
) {
298 /* leave room for rcu footer at the end of object */
299 c
->size
+= sizeof(struct slob_rcu
);
303 /* ignore alignment unless it's forced */
304 c
->align
= (flags
& SLAB_HWCACHE_ALIGN
) ? SLOB_ALIGN
: 0;
305 if (c
->align
< align
)
307 } else if (flags
& SLAB_PANIC
)
308 panic("Cannot create slab cache %s\n", name
);
312 EXPORT_SYMBOL(kmem_cache_create
);
314 void kmem_cache_destroy(struct kmem_cache
*c
)
316 slob_free(c
, sizeof(struct kmem_cache
));
318 EXPORT_SYMBOL(kmem_cache_destroy
);
320 void *kmem_cache_alloc(struct kmem_cache
*c
, gfp_t flags
)
324 if (c
->size
< PAGE_SIZE
)
325 b
= slob_alloc(c
->size
, flags
, c
->align
);
327 b
= (void *)__get_free_pages(flags
, get_order(c
->size
));
334 EXPORT_SYMBOL(kmem_cache_alloc
);
336 void *kmem_cache_zalloc(struct kmem_cache
*c
, gfp_t flags
)
338 void *ret
= kmem_cache_alloc(c
, flags
);
340 memset(ret
, 0, c
->size
);
344 EXPORT_SYMBOL(kmem_cache_zalloc
);
346 static void __kmem_cache_free(void *b
, int size
)
348 if (size
< PAGE_SIZE
)
351 free_pages((unsigned long)b
, get_order(size
));
354 static void kmem_rcu_free(struct rcu_head
*head
)
356 struct slob_rcu
*slob_rcu
= (struct slob_rcu
*)head
;
357 void *b
= (void *)slob_rcu
- (slob_rcu
->size
- sizeof(struct slob_rcu
));
359 __kmem_cache_free(b
, slob_rcu
->size
);
362 void kmem_cache_free(struct kmem_cache
*c
, void *b
)
364 if (unlikely(c
->flags
& SLAB_DESTROY_BY_RCU
)) {
365 struct slob_rcu
*slob_rcu
;
366 slob_rcu
= b
+ (c
->size
- sizeof(struct slob_rcu
));
367 INIT_RCU_HEAD(&slob_rcu
->head
);
368 slob_rcu
->size
= c
->size
;
369 call_rcu(&slob_rcu
->head
, kmem_rcu_free
);
371 __kmem_cache_free(b
, c
->size
);
374 EXPORT_SYMBOL(kmem_cache_free
);
376 unsigned int kmem_cache_size(struct kmem_cache
*c
)
380 EXPORT_SYMBOL(kmem_cache_size
);
382 const char *kmem_cache_name(struct kmem_cache
*c
)
386 EXPORT_SYMBOL(kmem_cache_name
);
388 static struct timer_list slob_timer
= TIMER_INITIALIZER(
389 (void (*)(unsigned long))slob_timer_cbk
, 0, 0);
391 int kmem_cache_shrink(struct kmem_cache
*d
)
395 EXPORT_SYMBOL(kmem_cache_shrink
);
397 int kmem_ptr_validate(struct kmem_cache
*a
, const void *b
)
402 void __init
kmem_cache_init(void)
407 static void slob_timer_cbk(void)
409 void *p
= slob_alloc(PAGE_SIZE
, 0, PAGE_SIZE
-1);
412 free_page((unsigned long)p
);
414 mod_timer(&slob_timer
, jiffies
+ HZ
);