2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
19 #include <linux/cache.h>
20 #include <linux/dma-mapping.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/swiotlb.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/types.h>
28 #include <linux/ctype.h>
32 #include <asm/scatterlist.h>
34 #include <linux/init.h>
35 #include <linux/bootmem.h>
36 #include <linux/iommu-helper.h>
38 #define OFFSET(val,align) ((unsigned long) \
39 ( (val) & ( (align) - 1)))
41 #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
42 #define SG_ENT_PHYS_ADDRESS(sg) virt_to_bus(SG_ENT_VIRT_ADDRESS(sg))
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
54 * Enumeration for sync targets
56 enum dma_sync_target
{
64 * Used to do a quick range check in swiotlb_unmap_single and
65 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
68 static char *io_tlb_start
, *io_tlb_end
;
71 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
72 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
74 static unsigned long io_tlb_nslabs
;
77 * When the IOMMU overflows we return a fallback buffer. This sets the size.
79 static unsigned long io_tlb_overflow
= 32*1024;
81 void *io_tlb_overflow_buffer
;
84 * This is a free list describing the number of free entries available from
87 static unsigned int *io_tlb_list
;
88 static unsigned int io_tlb_index
;
91 * We need to save away the original address corresponding to a mapped entry
92 * for the sync operations.
94 static unsigned char **io_tlb_orig_addr
;
97 * Protect the above data structures in the map and unmap calls
99 static DEFINE_SPINLOCK(io_tlb_lock
);
102 setup_io_tlb_npages(char *str
)
105 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
106 /* avoid tail segment of size < IO_TLB_SEGSIZE */
107 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
111 if (!strcmp(str
, "force"))
115 __setup("swiotlb=", setup_io_tlb_npages
);
116 /* make io_tlb_overflow tunable too? */
118 void * __weak
swiotlb_alloc_boot(size_t size
, unsigned long nslabs
)
120 return alloc_bootmem_low_pages(size
);
123 void * __weak
swiotlb_alloc(unsigned order
, unsigned long nslabs
)
125 return (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
, order
);
128 dma_addr_t __weak
swiotlb_phys_to_bus(phys_addr_t paddr
)
133 phys_addr_t __weak
swiotlb_bus_to_phys(dma_addr_t baddr
)
138 static dma_addr_t
swiotlb_virt_to_bus(volatile void *address
)
140 return swiotlb_phys_to_bus(virt_to_phys(address
));
143 static void *swiotlb_bus_to_virt(dma_addr_t address
)
145 return phys_to_virt(swiotlb_bus_to_phys(address
));
149 * Statically reserve bounce buffer space and initialize bounce buffer data
150 * structures for the software IO TLB used to implement the DMA API.
153 swiotlb_init_with_default_size(size_t default_size
)
155 unsigned long i
, bytes
;
157 if (!io_tlb_nslabs
) {
158 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
159 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
162 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
165 * Get IO TLB memory from the low pages
167 io_tlb_start
= swiotlb_alloc_boot(bytes
, io_tlb_nslabs
);
169 panic("Cannot allocate SWIOTLB buffer");
170 io_tlb_end
= io_tlb_start
+ bytes
;
173 * Allocate and initialize the free list array. This array is used
174 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
175 * between io_tlb_start and io_tlb_end.
177 io_tlb_list
= alloc_bootmem(io_tlb_nslabs
* sizeof(int));
178 for (i
= 0; i
< io_tlb_nslabs
; i
++)
179 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
181 io_tlb_orig_addr
= alloc_bootmem(io_tlb_nslabs
* sizeof(char *));
184 * Get the overflow emergency buffer
186 io_tlb_overflow_buffer
= alloc_bootmem_low(io_tlb_overflow
);
187 if (!io_tlb_overflow_buffer
)
188 panic("Cannot allocate SWIOTLB overflow buffer!\n");
190 printk(KERN_INFO
"Placing software IO TLB between 0x%lx - 0x%lx\n",
191 swiotlb_virt_to_bus(io_tlb_start
), swiotlb_virt_to_bus(io_tlb_end
));
197 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
201 * Systems with larger DMA zones (those that don't support ISA) can
202 * initialize the swiotlb later using the slab allocator if needed.
203 * This should be just like above, but with some error catching.
206 swiotlb_late_init_with_default_size(size_t default_size
)
208 unsigned long i
, bytes
, req_nslabs
= io_tlb_nslabs
;
211 if (!io_tlb_nslabs
) {
212 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
213 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
217 * Get IO TLB memory from the low pages
219 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
220 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
221 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
223 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
224 io_tlb_start
= swiotlb_alloc(order
, io_tlb_nslabs
);
233 if (order
!= get_order(bytes
)) {
234 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
235 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
236 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
237 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
239 io_tlb_end
= io_tlb_start
+ bytes
;
240 memset(io_tlb_start
, 0, bytes
);
243 * Allocate and initialize the free list array. This array is used
244 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
245 * between io_tlb_start and io_tlb_end.
247 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
248 get_order(io_tlb_nslabs
* sizeof(int)));
252 for (i
= 0; i
< io_tlb_nslabs
; i
++)
253 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
256 io_tlb_orig_addr
= (unsigned char **)__get_free_pages(GFP_KERNEL
,
257 get_order(io_tlb_nslabs
* sizeof(char *)));
258 if (!io_tlb_orig_addr
)
261 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(char *));
264 * Get the overflow emergency buffer
266 io_tlb_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
267 get_order(io_tlb_overflow
));
268 if (!io_tlb_overflow_buffer
)
271 printk(KERN_INFO
"Placing %luMB software IO TLB between 0x%lx - "
272 "0x%lx\n", bytes
>> 20,
273 swiotlb_virt_to_bus(io_tlb_start
), swiotlb_virt_to_bus(io_tlb_end
));
278 free_pages((unsigned long)io_tlb_orig_addr
, get_order(io_tlb_nslabs
*
280 io_tlb_orig_addr
= NULL
;
282 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
287 free_pages((unsigned long)io_tlb_start
, order
);
290 io_tlb_nslabs
= req_nslabs
;
295 address_needs_mapping(struct device
*hwdev
, dma_addr_t addr
, size_t size
)
297 return !is_buffer_dma_capable(dma_get_mask(hwdev
), addr
, size
);
300 static int is_swiotlb_buffer(char *addr
)
302 return addr
>= io_tlb_start
&& addr
< io_tlb_end
;
306 * Allocates bounce buffer and returns its kernel virtual address.
309 map_single(struct device
*hwdev
, char *buffer
, size_t size
, int dir
)
313 unsigned int nslots
, stride
, index
, wrap
;
315 unsigned long start_dma_addr
;
317 unsigned long offset_slots
;
318 unsigned long max_slots
;
320 mask
= dma_get_seg_boundary(hwdev
);
321 start_dma_addr
= swiotlb_virt_to_bus(io_tlb_start
) & mask
;
323 offset_slots
= ALIGN(start_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
326 * Carefully handle integer overflow which can occur when mask == ~0UL.
329 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
330 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
333 * For mappings greater than a page, we limit the stride (and
334 * hence alignment) to a page size.
336 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
337 if (size
> PAGE_SIZE
)
338 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
345 * Find suitable number of IO TLB entries size that will fit this
346 * request and allocate a buffer from that IO TLB pool.
348 spin_lock_irqsave(&io_tlb_lock
, flags
);
349 index
= ALIGN(io_tlb_index
, stride
);
350 if (index
>= io_tlb_nslabs
)
355 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
358 if (index
>= io_tlb_nslabs
)
365 * If we find a slot that indicates we have 'nslots' number of
366 * contiguous buffers, we allocate the buffers from that slot
367 * and mark the entries as '0' indicating unavailable.
369 if (io_tlb_list
[index
] >= nslots
) {
372 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
374 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
375 io_tlb_list
[i
] = ++count
;
376 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
379 * Update the indices to avoid searching in the next
382 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
383 ? (index
+ nslots
) : 0);
388 if (index
>= io_tlb_nslabs
)
390 } while (index
!= wrap
);
393 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
396 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
399 * Save away the mapping from the original address to the DMA address.
400 * This is needed when we sync the memory. Then we sync the buffer if
403 for (i
= 0; i
< nslots
; i
++)
404 io_tlb_orig_addr
[index
+i
] = buffer
+ (i
<< IO_TLB_SHIFT
);
405 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
406 memcpy(dma_addr
, buffer
, size
);
412 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
415 unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
, int dir
)
418 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
419 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
420 char *buffer
= io_tlb_orig_addr
[index
];
423 * First, sync the memory before unmapping the entry
425 if (buffer
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
427 * bounce... copy the data back into the original buffer * and
428 * delete the bounce buffer.
430 memcpy(buffer
, dma_addr
, size
);
433 * Return the buffer to the free list by setting the corresponding
434 * entries to indicate the number of contigous entries available.
435 * While returning the entries to the free list, we merge the entries
436 * with slots below and above the pool being returned.
438 spin_lock_irqsave(&io_tlb_lock
, flags
);
440 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
441 io_tlb_list
[index
+ nslots
] : 0);
443 * Step 1: return the slots to the free list, merging the
444 * slots with superceeding slots
446 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
447 io_tlb_list
[i
] = ++count
;
449 * Step 2: merge the returned slots with the preceding slots,
450 * if available (non zero)
452 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
453 io_tlb_list
[i
] = ++count
;
455 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
459 sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
462 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
463 char *buffer
= io_tlb_orig_addr
[index
];
465 buffer
+= ((unsigned long)dma_addr
& ((1 << IO_TLB_SHIFT
) - 1));
469 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
470 memcpy(buffer
, dma_addr
, size
);
472 BUG_ON(dir
!= DMA_TO_DEVICE
);
474 case SYNC_FOR_DEVICE
:
475 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
476 memcpy(dma_addr
, buffer
, size
);
478 BUG_ON(dir
!= DMA_FROM_DEVICE
);
486 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
487 dma_addr_t
*dma_handle
, gfp_t flags
)
491 int order
= get_order(size
);
492 u64 dma_mask
= DMA_32BIT_MASK
;
494 if (hwdev
&& hwdev
->coherent_dma_mask
)
495 dma_mask
= hwdev
->coherent_dma_mask
;
497 ret
= (void *)__get_free_pages(flags
, order
);
498 if (ret
&& !is_buffer_dma_capable(dma_mask
, swiotlb_virt_to_bus(ret
), size
)) {
500 * The allocated memory isn't reachable by the device.
501 * Fall back on swiotlb_map_single().
503 free_pages((unsigned long) ret
, order
);
508 * We are either out of memory or the device can't DMA
509 * to GFP_DMA memory; fall back on
510 * swiotlb_map_single(), which will grab memory from
511 * the lowest available address range.
513 ret
= map_single(hwdev
, NULL
, size
, DMA_FROM_DEVICE
);
518 memset(ret
, 0, size
);
519 dev_addr
= swiotlb_virt_to_bus(ret
);
521 /* Confirm address can be DMA'd by device */
522 if (!is_buffer_dma_capable(dma_mask
, dev_addr
, size
)) {
523 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
524 (unsigned long long)dma_mask
,
525 (unsigned long long)dev_addr
);
527 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
528 unmap_single(hwdev
, ret
, size
, DMA_TO_DEVICE
);
531 *dma_handle
= dev_addr
;
536 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
537 dma_addr_t dma_handle
)
539 WARN_ON(irqs_disabled());
540 if (!is_swiotlb_buffer(vaddr
))
541 free_pages((unsigned long) vaddr
, get_order(size
));
543 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
544 unmap_single(hwdev
, vaddr
, size
, DMA_TO_DEVICE
);
548 swiotlb_full(struct device
*dev
, size_t size
, int dir
, int do_panic
)
551 * Ran out of IOMMU space for this operation. This is very bad.
552 * Unfortunately the drivers cannot handle this operation properly.
553 * unless they check for dma_mapping_error (most don't)
554 * When the mapping is small enough return a static buffer to limit
555 * the damage, or panic when the transfer is too big.
557 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
558 "device %s\n", size
, dev
? dev
->bus_id
: "?");
560 if (size
> io_tlb_overflow
&& do_panic
) {
561 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
562 panic("DMA: Memory would be corrupted\n");
563 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
564 panic("DMA: Random memory would be DMAed\n");
569 * Map a single buffer of the indicated size for DMA in streaming mode. The
570 * physical address to use is returned.
572 * Once the device is given the dma address, the device owns this memory until
573 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
576 swiotlb_map_single_attrs(struct device
*hwdev
, void *ptr
, size_t size
,
577 int dir
, struct dma_attrs
*attrs
)
579 dma_addr_t dev_addr
= swiotlb_virt_to_bus(ptr
);
582 BUG_ON(dir
== DMA_NONE
);
584 * If the pointer passed in happens to be in the device's DMA window,
585 * we can safely return the device addr and not worry about bounce
588 if (!address_needs_mapping(hwdev
, dev_addr
, size
) && !swiotlb_force
)
592 * Oh well, have to allocate and map a bounce buffer.
594 map
= map_single(hwdev
, ptr
, size
, dir
);
596 swiotlb_full(hwdev
, size
, dir
, 1);
597 map
= io_tlb_overflow_buffer
;
600 dev_addr
= swiotlb_virt_to_bus(map
);
603 * Ensure that the address returned is DMA'ble
605 if (address_needs_mapping(hwdev
, dev_addr
, size
))
606 panic("map_single: bounce buffer is not DMA'ble");
610 EXPORT_SYMBOL(swiotlb_map_single_attrs
);
613 swiotlb_map_single(struct device
*hwdev
, void *ptr
, size_t size
, int dir
)
615 return swiotlb_map_single_attrs(hwdev
, ptr
, size
, dir
, NULL
);
619 * Unmap a single streaming mode DMA translation. The dma_addr and size must
620 * match what was provided for in a previous swiotlb_map_single call. All
621 * other usages are undefined.
623 * After this call, reads by the cpu to the buffer are guaranteed to see
624 * whatever the device wrote there.
627 swiotlb_unmap_single_attrs(struct device
*hwdev
, dma_addr_t dev_addr
,
628 size_t size
, int dir
, struct dma_attrs
*attrs
)
630 char *dma_addr
= swiotlb_bus_to_virt(dev_addr
);
632 BUG_ON(dir
== DMA_NONE
);
633 if (is_swiotlb_buffer(dma_addr
))
634 unmap_single(hwdev
, dma_addr
, size
, dir
);
635 else if (dir
== DMA_FROM_DEVICE
)
636 dma_mark_clean(dma_addr
, size
);
638 EXPORT_SYMBOL(swiotlb_unmap_single_attrs
);
641 swiotlb_unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
, size_t size
,
644 return swiotlb_unmap_single_attrs(hwdev
, dev_addr
, size
, dir
, NULL
);
647 * Make physical memory consistent for a single streaming mode DMA translation
650 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
651 * using the cpu, yet do not wish to teardown the dma mapping, you must
652 * call this function before doing so. At the next point you give the dma
653 * address back to the card, you must first perform a
654 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
657 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
658 size_t size
, int dir
, int target
)
660 char *dma_addr
= swiotlb_bus_to_virt(dev_addr
);
662 BUG_ON(dir
== DMA_NONE
);
663 if (is_swiotlb_buffer(dma_addr
))
664 sync_single(hwdev
, dma_addr
, size
, dir
, target
);
665 else if (dir
== DMA_FROM_DEVICE
)
666 dma_mark_clean(dma_addr
, size
);
670 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
671 size_t size
, int dir
)
673 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
677 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
678 size_t size
, int dir
)
680 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
684 * Same as above, but for a sub-range of the mapping.
687 swiotlb_sync_single_range(struct device
*hwdev
, dma_addr_t dev_addr
,
688 unsigned long offset
, size_t size
,
691 char *dma_addr
= swiotlb_bus_to_virt(dev_addr
) + offset
;
693 BUG_ON(dir
== DMA_NONE
);
694 if (is_swiotlb_buffer(dma_addr
))
695 sync_single(hwdev
, dma_addr
, size
, dir
, target
);
696 else if (dir
== DMA_FROM_DEVICE
)
697 dma_mark_clean(dma_addr
, size
);
701 swiotlb_sync_single_range_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
702 unsigned long offset
, size_t size
, int dir
)
704 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
709 swiotlb_sync_single_range_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
710 unsigned long offset
, size_t size
, int dir
)
712 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
716 void swiotlb_unmap_sg_attrs(struct device
*, struct scatterlist
*, int, int,
719 * Map a set of buffers described by scatterlist in streaming mode for DMA.
720 * This is the scatter-gather version of the above swiotlb_map_single
721 * interface. Here the scatter gather list elements are each tagged with the
722 * appropriate dma address and length. They are obtained via
723 * sg_dma_{address,length}(SG).
725 * NOTE: An implementation may be able to use a smaller number of
726 * DMA address/length pairs than there are SG table elements.
727 * (for example via virtual mapping capabilities)
728 * The routine returns the number of addr/length pairs actually
729 * used, at most nents.
731 * Device ownership issues as mentioned above for swiotlb_map_single are the
735 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
736 int dir
, struct dma_attrs
*attrs
)
738 struct scatterlist
*sg
;
743 BUG_ON(dir
== DMA_NONE
);
745 for_each_sg(sgl
, sg
, nelems
, i
) {
746 addr
= SG_ENT_VIRT_ADDRESS(sg
);
747 dev_addr
= swiotlb_virt_to_bus(addr
);
749 address_needs_mapping(hwdev
, dev_addr
, sg
->length
)) {
750 void *map
= map_single(hwdev
, addr
, sg
->length
, dir
);
752 /* Don't panic here, we expect map_sg users
753 to do proper error handling. */
754 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
755 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
757 sgl
[0].dma_length
= 0;
760 sg
->dma_address
= swiotlb_virt_to_bus(map
);
762 sg
->dma_address
= dev_addr
;
763 sg
->dma_length
= sg
->length
;
767 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
770 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
773 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
777 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
778 * concerning calls here are the same as for swiotlb_unmap_single() above.
781 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
782 int nelems
, int dir
, struct dma_attrs
*attrs
)
784 struct scatterlist
*sg
;
787 BUG_ON(dir
== DMA_NONE
);
789 for_each_sg(sgl
, sg
, nelems
, i
) {
790 if (sg
->dma_address
!= SG_ENT_PHYS_ADDRESS(sg
))
791 unmap_single(hwdev
, swiotlb_bus_to_virt(sg
->dma_address
),
792 sg
->dma_length
, dir
);
793 else if (dir
== DMA_FROM_DEVICE
)
794 dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg
), sg
->dma_length
);
797 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
800 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
803 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
807 * Make physical memory consistent for a set of streaming mode DMA translations
810 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
814 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
815 int nelems
, int dir
, int target
)
817 struct scatterlist
*sg
;
820 BUG_ON(dir
== DMA_NONE
);
822 for_each_sg(sgl
, sg
, nelems
, i
) {
823 if (sg
->dma_address
!= SG_ENT_PHYS_ADDRESS(sg
))
824 sync_single(hwdev
, swiotlb_bus_to_virt(sg
->dma_address
),
825 sg
->dma_length
, dir
, target
);
826 else if (dir
== DMA_FROM_DEVICE
)
827 dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg
), sg
->dma_length
);
832 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
835 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
839 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
842 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
846 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
848 return (dma_addr
== swiotlb_virt_to_bus(io_tlb_overflow_buffer
));
852 * Return whether the given device DMA address mask can be supported
853 * properly. For example, if your device can only drive the low 24-bits
854 * during bus mastering, then you would pass 0x00ffffff as the mask to
858 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
860 return swiotlb_virt_to_bus(io_tlb_end
- 1) <= mask
;
863 EXPORT_SYMBOL(swiotlb_map_single
);
864 EXPORT_SYMBOL(swiotlb_unmap_single
);
865 EXPORT_SYMBOL(swiotlb_map_sg
);
866 EXPORT_SYMBOL(swiotlb_unmap_sg
);
867 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
868 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
869 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu
);
870 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device
);
871 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
872 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
873 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
874 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
875 EXPORT_SYMBOL(swiotlb_free_coherent
);
876 EXPORT_SYMBOL(swiotlb_dma_supported
);