swiotlb: allow architectures to override phys<->bus<->phys conversions
[linux-2.6/mini2440.git] / lib / swiotlb.c
blob3494263cdd9a0c01e046427a474798147123e6b3
1 /*
2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
19 #include <linux/cache.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/swiotlb.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/types.h>
28 #include <linux/ctype.h>
30 #include <asm/io.h>
31 #include <asm/dma.h>
32 #include <asm/scatterlist.h>
34 #include <linux/init.h>
35 #include <linux/bootmem.h>
36 #include <linux/iommu-helper.h>
38 #define OFFSET(val,align) ((unsigned long) \
39 ( (val) & ( (align) - 1)))
41 #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
42 #define SG_ENT_PHYS_ADDRESS(sg) virt_to_bus(SG_ENT_VIRT_ADDRESS(sg))
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
54 * Enumeration for sync targets
56 enum dma_sync_target {
57 SYNC_FOR_CPU = 0,
58 SYNC_FOR_DEVICE = 1,
61 int swiotlb_force;
64 * Used to do a quick range check in swiotlb_unmap_single and
65 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
66 * API.
68 static char *io_tlb_start, *io_tlb_end;
71 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
72 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
74 static unsigned long io_tlb_nslabs;
77 * When the IOMMU overflows we return a fallback buffer. This sets the size.
79 static unsigned long io_tlb_overflow = 32*1024;
81 void *io_tlb_overflow_buffer;
84 * This is a free list describing the number of free entries available from
85 * each index
87 static unsigned int *io_tlb_list;
88 static unsigned int io_tlb_index;
91 * We need to save away the original address corresponding to a mapped entry
92 * for the sync operations.
94 static unsigned char **io_tlb_orig_addr;
97 * Protect the above data structures in the map and unmap calls
99 static DEFINE_SPINLOCK(io_tlb_lock);
101 static int __init
102 setup_io_tlb_npages(char *str)
104 if (isdigit(*str)) {
105 io_tlb_nslabs = simple_strtoul(str, &str, 0);
106 /* avoid tail segment of size < IO_TLB_SEGSIZE */
107 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
109 if (*str == ',')
110 ++str;
111 if (!strcmp(str, "force"))
112 swiotlb_force = 1;
113 return 1;
115 __setup("swiotlb=", setup_io_tlb_npages);
116 /* make io_tlb_overflow tunable too? */
118 void * __weak swiotlb_alloc_boot(size_t size, unsigned long nslabs)
120 return alloc_bootmem_low_pages(size);
123 void * __weak swiotlb_alloc(unsigned order, unsigned long nslabs)
125 return (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order);
128 dma_addr_t __weak swiotlb_phys_to_bus(phys_addr_t paddr)
130 return paddr;
133 phys_addr_t __weak swiotlb_bus_to_phys(dma_addr_t baddr)
135 return baddr;
138 static dma_addr_t swiotlb_virt_to_bus(volatile void *address)
140 return swiotlb_phys_to_bus(virt_to_phys(address));
143 static void *swiotlb_bus_to_virt(dma_addr_t address)
145 return phys_to_virt(swiotlb_bus_to_phys(address));
149 * Statically reserve bounce buffer space and initialize bounce buffer data
150 * structures for the software IO TLB used to implement the DMA API.
152 void __init
153 swiotlb_init_with_default_size(size_t default_size)
155 unsigned long i, bytes;
157 if (!io_tlb_nslabs) {
158 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
159 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
162 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
165 * Get IO TLB memory from the low pages
167 io_tlb_start = swiotlb_alloc_boot(bytes, io_tlb_nslabs);
168 if (!io_tlb_start)
169 panic("Cannot allocate SWIOTLB buffer");
170 io_tlb_end = io_tlb_start + bytes;
173 * Allocate and initialize the free list array. This array is used
174 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
175 * between io_tlb_start and io_tlb_end.
177 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
178 for (i = 0; i < io_tlb_nslabs; i++)
179 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
180 io_tlb_index = 0;
181 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *));
184 * Get the overflow emergency buffer
186 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
187 if (!io_tlb_overflow_buffer)
188 panic("Cannot allocate SWIOTLB overflow buffer!\n");
190 printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n",
191 swiotlb_virt_to_bus(io_tlb_start), swiotlb_virt_to_bus(io_tlb_end));
194 void __init
195 swiotlb_init(void)
197 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
201 * Systems with larger DMA zones (those that don't support ISA) can
202 * initialize the swiotlb later using the slab allocator if needed.
203 * This should be just like above, but with some error catching.
206 swiotlb_late_init_with_default_size(size_t default_size)
208 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
209 unsigned int order;
211 if (!io_tlb_nslabs) {
212 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
213 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
217 * Get IO TLB memory from the low pages
219 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
220 io_tlb_nslabs = SLABS_PER_PAGE << order;
221 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
223 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
224 io_tlb_start = swiotlb_alloc(order, io_tlb_nslabs);
225 if (io_tlb_start)
226 break;
227 order--;
230 if (!io_tlb_start)
231 goto cleanup1;
233 if (order != get_order(bytes)) {
234 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
235 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
236 io_tlb_nslabs = SLABS_PER_PAGE << order;
237 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
239 io_tlb_end = io_tlb_start + bytes;
240 memset(io_tlb_start, 0, bytes);
243 * Allocate and initialize the free list array. This array is used
244 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
245 * between io_tlb_start and io_tlb_end.
247 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
248 get_order(io_tlb_nslabs * sizeof(int)));
249 if (!io_tlb_list)
250 goto cleanup2;
252 for (i = 0; i < io_tlb_nslabs; i++)
253 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
254 io_tlb_index = 0;
256 io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL,
257 get_order(io_tlb_nslabs * sizeof(char *)));
258 if (!io_tlb_orig_addr)
259 goto cleanup3;
261 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *));
264 * Get the overflow emergency buffer
266 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
267 get_order(io_tlb_overflow));
268 if (!io_tlb_overflow_buffer)
269 goto cleanup4;
271 printk(KERN_INFO "Placing %luMB software IO TLB between 0x%lx - "
272 "0x%lx\n", bytes >> 20,
273 swiotlb_virt_to_bus(io_tlb_start), swiotlb_virt_to_bus(io_tlb_end));
275 return 0;
277 cleanup4:
278 free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
279 sizeof(char *)));
280 io_tlb_orig_addr = NULL;
281 cleanup3:
282 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
283 sizeof(int)));
284 io_tlb_list = NULL;
285 cleanup2:
286 io_tlb_end = NULL;
287 free_pages((unsigned long)io_tlb_start, order);
288 io_tlb_start = NULL;
289 cleanup1:
290 io_tlb_nslabs = req_nslabs;
291 return -ENOMEM;
294 static int
295 address_needs_mapping(struct device *hwdev, dma_addr_t addr, size_t size)
297 return !is_buffer_dma_capable(dma_get_mask(hwdev), addr, size);
300 static int is_swiotlb_buffer(char *addr)
302 return addr >= io_tlb_start && addr < io_tlb_end;
306 * Allocates bounce buffer and returns its kernel virtual address.
308 static void *
309 map_single(struct device *hwdev, char *buffer, size_t size, int dir)
311 unsigned long flags;
312 char *dma_addr;
313 unsigned int nslots, stride, index, wrap;
314 int i;
315 unsigned long start_dma_addr;
316 unsigned long mask;
317 unsigned long offset_slots;
318 unsigned long max_slots;
320 mask = dma_get_seg_boundary(hwdev);
321 start_dma_addr = swiotlb_virt_to_bus(io_tlb_start) & mask;
323 offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
326 * Carefully handle integer overflow which can occur when mask == ~0UL.
328 max_slots = mask + 1
329 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
330 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
333 * For mappings greater than a page, we limit the stride (and
334 * hence alignment) to a page size.
336 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
337 if (size > PAGE_SIZE)
338 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
339 else
340 stride = 1;
342 BUG_ON(!nslots);
345 * Find suitable number of IO TLB entries size that will fit this
346 * request and allocate a buffer from that IO TLB pool.
348 spin_lock_irqsave(&io_tlb_lock, flags);
349 index = ALIGN(io_tlb_index, stride);
350 if (index >= io_tlb_nslabs)
351 index = 0;
352 wrap = index;
354 do {
355 while (iommu_is_span_boundary(index, nslots, offset_slots,
356 max_slots)) {
357 index += stride;
358 if (index >= io_tlb_nslabs)
359 index = 0;
360 if (index == wrap)
361 goto not_found;
365 * If we find a slot that indicates we have 'nslots' number of
366 * contiguous buffers, we allocate the buffers from that slot
367 * and mark the entries as '0' indicating unavailable.
369 if (io_tlb_list[index] >= nslots) {
370 int count = 0;
372 for (i = index; i < (int) (index + nslots); i++)
373 io_tlb_list[i] = 0;
374 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
375 io_tlb_list[i] = ++count;
376 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
379 * Update the indices to avoid searching in the next
380 * round.
382 io_tlb_index = ((index + nslots) < io_tlb_nslabs
383 ? (index + nslots) : 0);
385 goto found;
387 index += stride;
388 if (index >= io_tlb_nslabs)
389 index = 0;
390 } while (index != wrap);
392 not_found:
393 spin_unlock_irqrestore(&io_tlb_lock, flags);
394 return NULL;
395 found:
396 spin_unlock_irqrestore(&io_tlb_lock, flags);
399 * Save away the mapping from the original address to the DMA address.
400 * This is needed when we sync the memory. Then we sync the buffer if
401 * needed.
403 for (i = 0; i < nslots; i++)
404 io_tlb_orig_addr[index+i] = buffer + (i << IO_TLB_SHIFT);
405 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
406 memcpy(dma_addr, buffer, size);
408 return dma_addr;
412 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
414 static void
415 unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
417 unsigned long flags;
418 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
419 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
420 char *buffer = io_tlb_orig_addr[index];
423 * First, sync the memory before unmapping the entry
425 if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
427 * bounce... copy the data back into the original buffer * and
428 * delete the bounce buffer.
430 memcpy(buffer, dma_addr, size);
433 * Return the buffer to the free list by setting the corresponding
434 * entries to indicate the number of contigous entries available.
435 * While returning the entries to the free list, we merge the entries
436 * with slots below and above the pool being returned.
438 spin_lock_irqsave(&io_tlb_lock, flags);
440 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
441 io_tlb_list[index + nslots] : 0);
443 * Step 1: return the slots to the free list, merging the
444 * slots with superceeding slots
446 for (i = index + nslots - 1; i >= index; i--)
447 io_tlb_list[i] = ++count;
449 * Step 2: merge the returned slots with the preceding slots,
450 * if available (non zero)
452 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
453 io_tlb_list[i] = ++count;
455 spin_unlock_irqrestore(&io_tlb_lock, flags);
458 static void
459 sync_single(struct device *hwdev, char *dma_addr, size_t size,
460 int dir, int target)
462 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
463 char *buffer = io_tlb_orig_addr[index];
465 buffer += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
467 switch (target) {
468 case SYNC_FOR_CPU:
469 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
470 memcpy(buffer, dma_addr, size);
471 else
472 BUG_ON(dir != DMA_TO_DEVICE);
473 break;
474 case SYNC_FOR_DEVICE:
475 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
476 memcpy(dma_addr, buffer, size);
477 else
478 BUG_ON(dir != DMA_FROM_DEVICE);
479 break;
480 default:
481 BUG();
485 void *
486 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
487 dma_addr_t *dma_handle, gfp_t flags)
489 dma_addr_t dev_addr;
490 void *ret;
491 int order = get_order(size);
492 u64 dma_mask = DMA_32BIT_MASK;
494 if (hwdev && hwdev->coherent_dma_mask)
495 dma_mask = hwdev->coherent_dma_mask;
497 ret = (void *)__get_free_pages(flags, order);
498 if (ret && !is_buffer_dma_capable(dma_mask, swiotlb_virt_to_bus(ret), size)) {
500 * The allocated memory isn't reachable by the device.
501 * Fall back on swiotlb_map_single().
503 free_pages((unsigned long) ret, order);
504 ret = NULL;
506 if (!ret) {
508 * We are either out of memory or the device can't DMA
509 * to GFP_DMA memory; fall back on
510 * swiotlb_map_single(), which will grab memory from
511 * the lowest available address range.
513 ret = map_single(hwdev, NULL, size, DMA_FROM_DEVICE);
514 if (!ret)
515 return NULL;
518 memset(ret, 0, size);
519 dev_addr = swiotlb_virt_to_bus(ret);
521 /* Confirm address can be DMA'd by device */
522 if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) {
523 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
524 (unsigned long long)dma_mask,
525 (unsigned long long)dev_addr);
527 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
528 unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
529 return NULL;
531 *dma_handle = dev_addr;
532 return ret;
535 void
536 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
537 dma_addr_t dma_handle)
539 WARN_ON(irqs_disabled());
540 if (!is_swiotlb_buffer(vaddr))
541 free_pages((unsigned long) vaddr, get_order(size));
542 else
543 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
544 unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
547 static void
548 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
551 * Ran out of IOMMU space for this operation. This is very bad.
552 * Unfortunately the drivers cannot handle this operation properly.
553 * unless they check for dma_mapping_error (most don't)
554 * When the mapping is small enough return a static buffer to limit
555 * the damage, or panic when the transfer is too big.
557 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
558 "device %s\n", size, dev ? dev->bus_id : "?");
560 if (size > io_tlb_overflow && do_panic) {
561 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
562 panic("DMA: Memory would be corrupted\n");
563 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
564 panic("DMA: Random memory would be DMAed\n");
569 * Map a single buffer of the indicated size for DMA in streaming mode. The
570 * physical address to use is returned.
572 * Once the device is given the dma address, the device owns this memory until
573 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
575 dma_addr_t
576 swiotlb_map_single_attrs(struct device *hwdev, void *ptr, size_t size,
577 int dir, struct dma_attrs *attrs)
579 dma_addr_t dev_addr = swiotlb_virt_to_bus(ptr);
580 void *map;
582 BUG_ON(dir == DMA_NONE);
584 * If the pointer passed in happens to be in the device's DMA window,
585 * we can safely return the device addr and not worry about bounce
586 * buffering it.
588 if (!address_needs_mapping(hwdev, dev_addr, size) && !swiotlb_force)
589 return dev_addr;
592 * Oh well, have to allocate and map a bounce buffer.
594 map = map_single(hwdev, ptr, size, dir);
595 if (!map) {
596 swiotlb_full(hwdev, size, dir, 1);
597 map = io_tlb_overflow_buffer;
600 dev_addr = swiotlb_virt_to_bus(map);
603 * Ensure that the address returned is DMA'ble
605 if (address_needs_mapping(hwdev, dev_addr, size))
606 panic("map_single: bounce buffer is not DMA'ble");
608 return dev_addr;
610 EXPORT_SYMBOL(swiotlb_map_single_attrs);
612 dma_addr_t
613 swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
615 return swiotlb_map_single_attrs(hwdev, ptr, size, dir, NULL);
619 * Unmap a single streaming mode DMA translation. The dma_addr and size must
620 * match what was provided for in a previous swiotlb_map_single call. All
621 * other usages are undefined.
623 * After this call, reads by the cpu to the buffer are guaranteed to see
624 * whatever the device wrote there.
626 void
627 swiotlb_unmap_single_attrs(struct device *hwdev, dma_addr_t dev_addr,
628 size_t size, int dir, struct dma_attrs *attrs)
630 char *dma_addr = swiotlb_bus_to_virt(dev_addr);
632 BUG_ON(dir == DMA_NONE);
633 if (is_swiotlb_buffer(dma_addr))
634 unmap_single(hwdev, dma_addr, size, dir);
635 else if (dir == DMA_FROM_DEVICE)
636 dma_mark_clean(dma_addr, size);
638 EXPORT_SYMBOL(swiotlb_unmap_single_attrs);
640 void
641 swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
642 int dir)
644 return swiotlb_unmap_single_attrs(hwdev, dev_addr, size, dir, NULL);
647 * Make physical memory consistent for a single streaming mode DMA translation
648 * after a transfer.
650 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
651 * using the cpu, yet do not wish to teardown the dma mapping, you must
652 * call this function before doing so. At the next point you give the dma
653 * address back to the card, you must first perform a
654 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
656 static void
657 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
658 size_t size, int dir, int target)
660 char *dma_addr = swiotlb_bus_to_virt(dev_addr);
662 BUG_ON(dir == DMA_NONE);
663 if (is_swiotlb_buffer(dma_addr))
664 sync_single(hwdev, dma_addr, size, dir, target);
665 else if (dir == DMA_FROM_DEVICE)
666 dma_mark_clean(dma_addr, size);
669 void
670 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
671 size_t size, int dir)
673 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
676 void
677 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
678 size_t size, int dir)
680 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
684 * Same as above, but for a sub-range of the mapping.
686 static void
687 swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
688 unsigned long offset, size_t size,
689 int dir, int target)
691 char *dma_addr = swiotlb_bus_to_virt(dev_addr) + offset;
693 BUG_ON(dir == DMA_NONE);
694 if (is_swiotlb_buffer(dma_addr))
695 sync_single(hwdev, dma_addr, size, dir, target);
696 else if (dir == DMA_FROM_DEVICE)
697 dma_mark_clean(dma_addr, size);
700 void
701 swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
702 unsigned long offset, size_t size, int dir)
704 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
705 SYNC_FOR_CPU);
708 void
709 swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
710 unsigned long offset, size_t size, int dir)
712 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
713 SYNC_FOR_DEVICE);
716 void swiotlb_unmap_sg_attrs(struct device *, struct scatterlist *, int, int,
717 struct dma_attrs *);
719 * Map a set of buffers described by scatterlist in streaming mode for DMA.
720 * This is the scatter-gather version of the above swiotlb_map_single
721 * interface. Here the scatter gather list elements are each tagged with the
722 * appropriate dma address and length. They are obtained via
723 * sg_dma_{address,length}(SG).
725 * NOTE: An implementation may be able to use a smaller number of
726 * DMA address/length pairs than there are SG table elements.
727 * (for example via virtual mapping capabilities)
728 * The routine returns the number of addr/length pairs actually
729 * used, at most nents.
731 * Device ownership issues as mentioned above for swiotlb_map_single are the
732 * same here.
735 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
736 int dir, struct dma_attrs *attrs)
738 struct scatterlist *sg;
739 void *addr;
740 dma_addr_t dev_addr;
741 int i;
743 BUG_ON(dir == DMA_NONE);
745 for_each_sg(sgl, sg, nelems, i) {
746 addr = SG_ENT_VIRT_ADDRESS(sg);
747 dev_addr = swiotlb_virt_to_bus(addr);
748 if (swiotlb_force ||
749 address_needs_mapping(hwdev, dev_addr, sg->length)) {
750 void *map = map_single(hwdev, addr, sg->length, dir);
751 if (!map) {
752 /* Don't panic here, we expect map_sg users
753 to do proper error handling. */
754 swiotlb_full(hwdev, sg->length, dir, 0);
755 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
756 attrs);
757 sgl[0].dma_length = 0;
758 return 0;
760 sg->dma_address = swiotlb_virt_to_bus(map);
761 } else
762 sg->dma_address = dev_addr;
763 sg->dma_length = sg->length;
765 return nelems;
767 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
770 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
771 int dir)
773 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
777 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
778 * concerning calls here are the same as for swiotlb_unmap_single() above.
780 void
781 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
782 int nelems, int dir, struct dma_attrs *attrs)
784 struct scatterlist *sg;
785 int i;
787 BUG_ON(dir == DMA_NONE);
789 for_each_sg(sgl, sg, nelems, i) {
790 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
791 unmap_single(hwdev, swiotlb_bus_to_virt(sg->dma_address),
792 sg->dma_length, dir);
793 else if (dir == DMA_FROM_DEVICE)
794 dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
797 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
799 void
800 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
801 int dir)
803 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
807 * Make physical memory consistent for a set of streaming mode DMA translations
808 * after a transfer.
810 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
811 * and usage.
813 static void
814 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
815 int nelems, int dir, int target)
817 struct scatterlist *sg;
818 int i;
820 BUG_ON(dir == DMA_NONE);
822 for_each_sg(sgl, sg, nelems, i) {
823 if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg))
824 sync_single(hwdev, swiotlb_bus_to_virt(sg->dma_address),
825 sg->dma_length, dir, target);
826 else if (dir == DMA_FROM_DEVICE)
827 dma_mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length);
831 void
832 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
833 int nelems, int dir)
835 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
838 void
839 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
840 int nelems, int dir)
842 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
846 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
848 return (dma_addr == swiotlb_virt_to_bus(io_tlb_overflow_buffer));
852 * Return whether the given device DMA address mask can be supported
853 * properly. For example, if your device can only drive the low 24-bits
854 * during bus mastering, then you would pass 0x00ffffff as the mask to
855 * this function.
858 swiotlb_dma_supported(struct device *hwdev, u64 mask)
860 return swiotlb_virt_to_bus(io_tlb_end - 1) <= mask;
863 EXPORT_SYMBOL(swiotlb_map_single);
864 EXPORT_SYMBOL(swiotlb_unmap_single);
865 EXPORT_SYMBOL(swiotlb_map_sg);
866 EXPORT_SYMBOL(swiotlb_unmap_sg);
867 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
868 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
869 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
870 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
871 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
872 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
873 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
874 EXPORT_SYMBOL(swiotlb_alloc_coherent);
875 EXPORT_SYMBOL(swiotlb_free_coherent);
876 EXPORT_SYMBOL(swiotlb_dma_supported);