V4L/DVB (9682): gspca: New subdriver parameter 'bulk_nurbs'.
[linux-2.6/mini2440.git] / drivers / spi / spi.c
blob3734dc9708e12669070ab984cc2fe9f0fbee1b70
1 /*
2 * spi.c - SPI init/core code
4 * Copyright (C) 2005 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/spi/spi.h>
29 /* SPI bustype and spi_master class are registered after board init code
30 * provides the SPI device tables, ensuring that both are present by the
31 * time controller driver registration causes spi_devices to "enumerate".
33 static void spidev_release(struct device *dev)
35 struct spi_device *spi = to_spi_device(dev);
37 /* spi masters may cleanup for released devices */
38 if (spi->master->cleanup)
39 spi->master->cleanup(spi);
41 spi_master_put(spi->master);
42 kfree(dev);
45 static ssize_t
46 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
48 const struct spi_device *spi = to_spi_device(dev);
50 return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
53 static struct device_attribute spi_dev_attrs[] = {
54 __ATTR_RO(modalias),
55 __ATTR_NULL,
58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
59 * and the sysfs version makes coldplug work too.
62 static int spi_match_device(struct device *dev, struct device_driver *drv)
64 const struct spi_device *spi = to_spi_device(dev);
66 return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
69 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
71 const struct spi_device *spi = to_spi_device(dev);
73 add_uevent_var(env, "MODALIAS=%s", spi->modalias);
74 return 0;
77 #ifdef CONFIG_PM
79 static int spi_suspend(struct device *dev, pm_message_t message)
81 int value = 0;
82 struct spi_driver *drv = to_spi_driver(dev->driver);
84 /* suspend will stop irqs and dma; no more i/o */
85 if (drv) {
86 if (drv->suspend)
87 value = drv->suspend(to_spi_device(dev), message);
88 else
89 dev_dbg(dev, "... can't suspend\n");
91 return value;
94 static int spi_resume(struct device *dev)
96 int value = 0;
97 struct spi_driver *drv = to_spi_driver(dev->driver);
99 /* resume may restart the i/o queue */
100 if (drv) {
101 if (drv->resume)
102 value = drv->resume(to_spi_device(dev));
103 else
104 dev_dbg(dev, "... can't resume\n");
106 return value;
109 #else
110 #define spi_suspend NULL
111 #define spi_resume NULL
112 #endif
114 struct bus_type spi_bus_type = {
115 .name = "spi",
116 .dev_attrs = spi_dev_attrs,
117 .match = spi_match_device,
118 .uevent = spi_uevent,
119 .suspend = spi_suspend,
120 .resume = spi_resume,
122 EXPORT_SYMBOL_GPL(spi_bus_type);
125 static int spi_drv_probe(struct device *dev)
127 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
129 return sdrv->probe(to_spi_device(dev));
132 static int spi_drv_remove(struct device *dev)
134 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
136 return sdrv->remove(to_spi_device(dev));
139 static void spi_drv_shutdown(struct device *dev)
141 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
143 sdrv->shutdown(to_spi_device(dev));
147 * spi_register_driver - register a SPI driver
148 * @sdrv: the driver to register
149 * Context: can sleep
151 int spi_register_driver(struct spi_driver *sdrv)
153 sdrv->driver.bus = &spi_bus_type;
154 if (sdrv->probe)
155 sdrv->driver.probe = spi_drv_probe;
156 if (sdrv->remove)
157 sdrv->driver.remove = spi_drv_remove;
158 if (sdrv->shutdown)
159 sdrv->driver.shutdown = spi_drv_shutdown;
160 return driver_register(&sdrv->driver);
162 EXPORT_SYMBOL_GPL(spi_register_driver);
164 /*-------------------------------------------------------------------------*/
166 /* SPI devices should normally not be created by SPI device drivers; that
167 * would make them board-specific. Similarly with SPI master drivers.
168 * Device registration normally goes into like arch/.../mach.../board-YYY.c
169 * with other readonly (flashable) information about mainboard devices.
172 struct boardinfo {
173 struct list_head list;
174 unsigned n_board_info;
175 struct spi_board_info board_info[0];
178 static LIST_HEAD(board_list);
179 static DEFINE_MUTEX(board_lock);
182 * spi_alloc_device - Allocate a new SPI device
183 * @master: Controller to which device is connected
184 * Context: can sleep
186 * Allows a driver to allocate and initialize a spi_device without
187 * registering it immediately. This allows a driver to directly
188 * fill the spi_device with device parameters before calling
189 * spi_add_device() on it.
191 * Caller is responsible to call spi_add_device() on the returned
192 * spi_device structure to add it to the SPI master. If the caller
193 * needs to discard the spi_device without adding it, then it should
194 * call spi_dev_put() on it.
196 * Returns a pointer to the new device, or NULL.
198 struct spi_device *spi_alloc_device(struct spi_master *master)
200 struct spi_device *spi;
201 struct device *dev = master->dev.parent;
203 if (!spi_master_get(master))
204 return NULL;
206 spi = kzalloc(sizeof *spi, GFP_KERNEL);
207 if (!spi) {
208 dev_err(dev, "cannot alloc spi_device\n");
209 spi_master_put(master);
210 return NULL;
213 spi->master = master;
214 spi->dev.parent = dev;
215 spi->dev.bus = &spi_bus_type;
216 spi->dev.release = spidev_release;
217 device_initialize(&spi->dev);
218 return spi;
220 EXPORT_SYMBOL_GPL(spi_alloc_device);
223 * spi_add_device - Add spi_device allocated with spi_alloc_device
224 * @spi: spi_device to register
226 * Companion function to spi_alloc_device. Devices allocated with
227 * spi_alloc_device can be added onto the spi bus with this function.
229 * Returns 0 on success; negative errno on failure
231 int spi_add_device(struct spi_device *spi)
233 static DEFINE_MUTEX(spi_add_lock);
234 struct device *dev = spi->master->dev.parent;
235 int status;
237 /* Chipselects are numbered 0..max; validate. */
238 if (spi->chip_select >= spi->master->num_chipselect) {
239 dev_err(dev, "cs%d >= max %d\n",
240 spi->chip_select,
241 spi->master->num_chipselect);
242 return -EINVAL;
245 /* Set the bus ID string */
246 snprintf(spi->dev.bus_id, sizeof spi->dev.bus_id,
247 "%s.%u", spi->master->dev.bus_id,
248 spi->chip_select);
251 /* We need to make sure there's no other device with this
252 * chipselect **BEFORE** we call setup(), else we'll trash
253 * its configuration. Lock against concurrent add() calls.
255 mutex_lock(&spi_add_lock);
257 if (bus_find_device_by_name(&spi_bus_type, NULL, spi->dev.bus_id)
258 != NULL) {
259 dev_err(dev, "chipselect %d already in use\n",
260 spi->chip_select);
261 status = -EBUSY;
262 goto done;
265 /* Drivers may modify this initial i/o setup, but will
266 * normally rely on the device being setup. Devices
267 * using SPI_CS_HIGH can't coexist well otherwise...
269 status = spi->master->setup(spi);
270 if (status < 0) {
271 dev_err(dev, "can't %s %s, status %d\n",
272 "setup", spi->dev.bus_id, status);
273 goto done;
276 /* Device may be bound to an active driver when this returns */
277 status = device_add(&spi->dev);
278 if (status < 0)
279 dev_err(dev, "can't %s %s, status %d\n",
280 "add", spi->dev.bus_id, status);
281 else
282 dev_dbg(dev, "registered child %s\n", spi->dev.bus_id);
284 done:
285 mutex_unlock(&spi_add_lock);
286 return status;
288 EXPORT_SYMBOL_GPL(spi_add_device);
291 * spi_new_device - instantiate one new SPI device
292 * @master: Controller to which device is connected
293 * @chip: Describes the SPI device
294 * Context: can sleep
296 * On typical mainboards, this is purely internal; and it's not needed
297 * after board init creates the hard-wired devices. Some development
298 * platforms may not be able to use spi_register_board_info though, and
299 * this is exported so that for example a USB or parport based adapter
300 * driver could add devices (which it would learn about out-of-band).
302 * Returns the new device, or NULL.
304 struct spi_device *spi_new_device(struct spi_master *master,
305 struct spi_board_info *chip)
307 struct spi_device *proxy;
308 int status;
310 /* NOTE: caller did any chip->bus_num checks necessary.
312 * Also, unless we change the return value convention to use
313 * error-or-pointer (not NULL-or-pointer), troubleshootability
314 * suggests syslogged diagnostics are best here (ugh).
317 proxy = spi_alloc_device(master);
318 if (!proxy)
319 return NULL;
321 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
323 proxy->chip_select = chip->chip_select;
324 proxy->max_speed_hz = chip->max_speed_hz;
325 proxy->mode = chip->mode;
326 proxy->irq = chip->irq;
327 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
328 proxy->dev.platform_data = (void *) chip->platform_data;
329 proxy->controller_data = chip->controller_data;
330 proxy->controller_state = NULL;
332 status = spi_add_device(proxy);
333 if (status < 0) {
334 spi_dev_put(proxy);
335 return NULL;
338 return proxy;
340 EXPORT_SYMBOL_GPL(spi_new_device);
343 * spi_register_board_info - register SPI devices for a given board
344 * @info: array of chip descriptors
345 * @n: how many descriptors are provided
346 * Context: can sleep
348 * Board-specific early init code calls this (probably during arch_initcall)
349 * with segments of the SPI device table. Any device nodes are created later,
350 * after the relevant parent SPI controller (bus_num) is defined. We keep
351 * this table of devices forever, so that reloading a controller driver will
352 * not make Linux forget about these hard-wired devices.
354 * Other code can also call this, e.g. a particular add-on board might provide
355 * SPI devices through its expansion connector, so code initializing that board
356 * would naturally declare its SPI devices.
358 * The board info passed can safely be __initdata ... but be careful of
359 * any embedded pointers (platform_data, etc), they're copied as-is.
361 int __init
362 spi_register_board_info(struct spi_board_info const *info, unsigned n)
364 struct boardinfo *bi;
366 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
367 if (!bi)
368 return -ENOMEM;
369 bi->n_board_info = n;
370 memcpy(bi->board_info, info, n * sizeof *info);
372 mutex_lock(&board_lock);
373 list_add_tail(&bi->list, &board_list);
374 mutex_unlock(&board_lock);
375 return 0;
378 /* FIXME someone should add support for a __setup("spi", ...) that
379 * creates board info from kernel command lines
382 static void scan_boardinfo(struct spi_master *master)
384 struct boardinfo *bi;
386 mutex_lock(&board_lock);
387 list_for_each_entry(bi, &board_list, list) {
388 struct spi_board_info *chip = bi->board_info;
389 unsigned n;
391 for (n = bi->n_board_info; n > 0; n--, chip++) {
392 if (chip->bus_num != master->bus_num)
393 continue;
394 /* NOTE: this relies on spi_new_device to
395 * issue diagnostics when given bogus inputs
397 (void) spi_new_device(master, chip);
400 mutex_unlock(&board_lock);
403 /*-------------------------------------------------------------------------*/
405 static void spi_master_release(struct device *dev)
407 struct spi_master *master;
409 master = container_of(dev, struct spi_master, dev);
410 kfree(master);
413 static struct class spi_master_class = {
414 .name = "spi_master",
415 .owner = THIS_MODULE,
416 .dev_release = spi_master_release,
421 * spi_alloc_master - allocate SPI master controller
422 * @dev: the controller, possibly using the platform_bus
423 * @size: how much zeroed driver-private data to allocate; the pointer to this
424 * memory is in the driver_data field of the returned device,
425 * accessible with spi_master_get_devdata().
426 * Context: can sleep
428 * This call is used only by SPI master controller drivers, which are the
429 * only ones directly touching chip registers. It's how they allocate
430 * an spi_master structure, prior to calling spi_register_master().
432 * This must be called from context that can sleep. It returns the SPI
433 * master structure on success, else NULL.
435 * The caller is responsible for assigning the bus number and initializing
436 * the master's methods before calling spi_register_master(); and (after errors
437 * adding the device) calling spi_master_put() to prevent a memory leak.
439 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
441 struct spi_master *master;
443 if (!dev)
444 return NULL;
446 master = kzalloc(size + sizeof *master, GFP_KERNEL);
447 if (!master)
448 return NULL;
450 device_initialize(&master->dev);
451 master->dev.class = &spi_master_class;
452 master->dev.parent = get_device(dev);
453 spi_master_set_devdata(master, &master[1]);
455 return master;
457 EXPORT_SYMBOL_GPL(spi_alloc_master);
460 * spi_register_master - register SPI master controller
461 * @master: initialized master, originally from spi_alloc_master()
462 * Context: can sleep
464 * SPI master controllers connect to their drivers using some non-SPI bus,
465 * such as the platform bus. The final stage of probe() in that code
466 * includes calling spi_register_master() to hook up to this SPI bus glue.
468 * SPI controllers use board specific (often SOC specific) bus numbers,
469 * and board-specific addressing for SPI devices combines those numbers
470 * with chip select numbers. Since SPI does not directly support dynamic
471 * device identification, boards need configuration tables telling which
472 * chip is at which address.
474 * This must be called from context that can sleep. It returns zero on
475 * success, else a negative error code (dropping the master's refcount).
476 * After a successful return, the caller is responsible for calling
477 * spi_unregister_master().
479 int spi_register_master(struct spi_master *master)
481 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
482 struct device *dev = master->dev.parent;
483 int status = -ENODEV;
484 int dynamic = 0;
486 if (!dev)
487 return -ENODEV;
489 /* even if it's just one always-selected device, there must
490 * be at least one chipselect
492 if (master->num_chipselect == 0)
493 return -EINVAL;
495 /* convention: dynamically assigned bus IDs count down from the max */
496 if (master->bus_num < 0) {
497 /* FIXME switch to an IDR based scheme, something like
498 * I2C now uses, so we can't run out of "dynamic" IDs
500 master->bus_num = atomic_dec_return(&dyn_bus_id);
501 dynamic = 1;
504 /* register the device, then userspace will see it.
505 * registration fails if the bus ID is in use.
507 snprintf(master->dev.bus_id, sizeof master->dev.bus_id,
508 "spi%u", master->bus_num);
509 status = device_add(&master->dev);
510 if (status < 0)
511 goto done;
512 dev_dbg(dev, "registered master %s%s\n", master->dev.bus_id,
513 dynamic ? " (dynamic)" : "");
515 /* populate children from any spi device tables */
516 scan_boardinfo(master);
517 status = 0;
518 done:
519 return status;
521 EXPORT_SYMBOL_GPL(spi_register_master);
524 static int __unregister(struct device *dev, void *master_dev)
526 /* note: before about 2.6.14-rc1 this would corrupt memory: */
527 if (dev != master_dev)
528 spi_unregister_device(to_spi_device(dev));
529 return 0;
533 * spi_unregister_master - unregister SPI master controller
534 * @master: the master being unregistered
535 * Context: can sleep
537 * This call is used only by SPI master controller drivers, which are the
538 * only ones directly touching chip registers.
540 * This must be called from context that can sleep.
542 void spi_unregister_master(struct spi_master *master)
544 int dummy;
546 dummy = device_for_each_child(master->dev.parent, &master->dev,
547 __unregister);
548 device_unregister(&master->dev);
550 EXPORT_SYMBOL_GPL(spi_unregister_master);
552 static int __spi_master_match(struct device *dev, void *data)
554 struct spi_master *m;
555 u16 *bus_num = data;
557 m = container_of(dev, struct spi_master, dev);
558 return m->bus_num == *bus_num;
562 * spi_busnum_to_master - look up master associated with bus_num
563 * @bus_num: the master's bus number
564 * Context: can sleep
566 * This call may be used with devices that are registered after
567 * arch init time. It returns a refcounted pointer to the relevant
568 * spi_master (which the caller must release), or NULL if there is
569 * no such master registered.
571 struct spi_master *spi_busnum_to_master(u16 bus_num)
573 struct device *dev;
574 struct spi_master *master = NULL;
576 dev = class_find_device(&spi_master_class, NULL, &bus_num,
577 __spi_master_match);
578 if (dev)
579 master = container_of(dev, struct spi_master, dev);
580 /* reference got in class_find_device */
581 return master;
583 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
586 /*-------------------------------------------------------------------------*/
588 static void spi_complete(void *arg)
590 complete(arg);
594 * spi_sync - blocking/synchronous SPI data transfers
595 * @spi: device with which data will be exchanged
596 * @message: describes the data transfers
597 * Context: can sleep
599 * This call may only be used from a context that may sleep. The sleep
600 * is non-interruptible, and has no timeout. Low-overhead controller
601 * drivers may DMA directly into and out of the message buffers.
603 * Note that the SPI device's chip select is active during the message,
604 * and then is normally disabled between messages. Drivers for some
605 * frequently-used devices may want to minimize costs of selecting a chip,
606 * by leaving it selected in anticipation that the next message will go
607 * to the same chip. (That may increase power usage.)
609 * Also, the caller is guaranteeing that the memory associated with the
610 * message will not be freed before this call returns.
612 * It returns zero on success, else a negative error code.
614 int spi_sync(struct spi_device *spi, struct spi_message *message)
616 DECLARE_COMPLETION_ONSTACK(done);
617 int status;
619 message->complete = spi_complete;
620 message->context = &done;
621 status = spi_async(spi, message);
622 if (status == 0) {
623 wait_for_completion(&done);
624 status = message->status;
626 message->context = NULL;
627 return status;
629 EXPORT_SYMBOL_GPL(spi_sync);
631 /* portable code must never pass more than 32 bytes */
632 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
634 static u8 *buf;
637 * spi_write_then_read - SPI synchronous write followed by read
638 * @spi: device with which data will be exchanged
639 * @txbuf: data to be written (need not be dma-safe)
640 * @n_tx: size of txbuf, in bytes
641 * @rxbuf: buffer into which data will be read
642 * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
643 * Context: can sleep
645 * This performs a half duplex MicroWire style transaction with the
646 * device, sending txbuf and then reading rxbuf. The return value
647 * is zero for success, else a negative errno status code.
648 * This call may only be used from a context that may sleep.
650 * Parameters to this routine are always copied using a small buffer;
651 * portable code should never use this for more than 32 bytes.
652 * Performance-sensitive or bulk transfer code should instead use
653 * spi_{async,sync}() calls with dma-safe buffers.
655 int spi_write_then_read(struct spi_device *spi,
656 const u8 *txbuf, unsigned n_tx,
657 u8 *rxbuf, unsigned n_rx)
659 static DEFINE_MUTEX(lock);
661 int status;
662 struct spi_message message;
663 struct spi_transfer x;
664 u8 *local_buf;
666 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
667 * (as a pure convenience thing), but we can keep heap costs
668 * out of the hot path ...
670 if ((n_tx + n_rx) > SPI_BUFSIZ)
671 return -EINVAL;
673 spi_message_init(&message);
674 memset(&x, 0, sizeof x);
675 x.len = n_tx + n_rx;
676 spi_message_add_tail(&x, &message);
678 /* ... unless someone else is using the pre-allocated buffer */
679 if (!mutex_trylock(&lock)) {
680 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
681 if (!local_buf)
682 return -ENOMEM;
683 } else
684 local_buf = buf;
686 memcpy(local_buf, txbuf, n_tx);
687 x.tx_buf = local_buf;
688 x.rx_buf = local_buf;
690 /* do the i/o */
691 status = spi_sync(spi, &message);
692 if (status == 0)
693 memcpy(rxbuf, x.rx_buf + n_tx, n_rx);
695 if (x.tx_buf == buf)
696 mutex_unlock(&lock);
697 else
698 kfree(local_buf);
700 return status;
702 EXPORT_SYMBOL_GPL(spi_write_then_read);
704 /*-------------------------------------------------------------------------*/
706 static int __init spi_init(void)
708 int status;
710 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
711 if (!buf) {
712 status = -ENOMEM;
713 goto err0;
716 status = bus_register(&spi_bus_type);
717 if (status < 0)
718 goto err1;
720 status = class_register(&spi_master_class);
721 if (status < 0)
722 goto err2;
723 return 0;
725 err2:
726 bus_unregister(&spi_bus_type);
727 err1:
728 kfree(buf);
729 buf = NULL;
730 err0:
731 return status;
734 /* board_info is normally registered in arch_initcall(),
735 * but even essential drivers wait till later
737 * REVISIT only boardinfo really needs static linking. the rest (device and
738 * driver registration) _could_ be dynamically linked (modular) ... costs
739 * include needing to have boardinfo data structures be much more public.
741 postcore_initcall(spi_init);