V4L/DVB (9682): gspca: New subdriver parameter 'bulk_nurbs'.
[linux-2.6/mini2440.git] / drivers / spi / pxa2xx_spi.c
blobcf12f2d84be2c2547fdbe88caf81ea25d733f867
1 /*
2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/spi/spi.h>
28 #include <linux/workqueue.h>
29 #include <linux/delay.h>
30 #include <linux/clk.h>
32 #include <asm/io.h>
33 #include <asm/irq.h>
34 #include <asm/delay.h>
35 #include <asm/dma.h>
37 #include <mach/hardware.h>
38 #include <mach/pxa-regs.h>
39 #include <mach/regs-ssp.h>
40 #include <mach/ssp.h>
41 #include <mach/pxa2xx_spi.h>
43 MODULE_AUTHOR("Stephen Street");
44 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
45 MODULE_LICENSE("GPL");
46 MODULE_ALIAS("platform:pxa2xx-spi");
48 #define MAX_BUSES 3
50 #define RX_THRESH_DFLT 8
51 #define TX_THRESH_DFLT 8
52 #define TIMOUT_DFLT 1000
54 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
55 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
56 #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
57 #define MAX_DMA_LEN 8191
60 * for testing SSCR1 changes that require SSP restart, basically
61 * everything except the service and interrupt enables, the pxa270 developer
62 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
63 * list, but the PXA255 dev man says all bits without really meaning the
64 * service and interrupt enables
66 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
67 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
68 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
69 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
70 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
71 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
73 #define DEFINE_SSP_REG(reg, off) \
74 static inline u32 read_##reg(void const __iomem *p) \
75 { return __raw_readl(p + (off)); } \
77 static inline void write_##reg(u32 v, void __iomem *p) \
78 { __raw_writel(v, p + (off)); }
80 DEFINE_SSP_REG(SSCR0, 0x00)
81 DEFINE_SSP_REG(SSCR1, 0x04)
82 DEFINE_SSP_REG(SSSR, 0x08)
83 DEFINE_SSP_REG(SSITR, 0x0c)
84 DEFINE_SSP_REG(SSDR, 0x10)
85 DEFINE_SSP_REG(SSTO, 0x28)
86 DEFINE_SSP_REG(SSPSP, 0x2c)
88 #define START_STATE ((void*)0)
89 #define RUNNING_STATE ((void*)1)
90 #define DONE_STATE ((void*)2)
91 #define ERROR_STATE ((void*)-1)
93 #define QUEUE_RUNNING 0
94 #define QUEUE_STOPPED 1
96 struct driver_data {
97 /* Driver model hookup */
98 struct platform_device *pdev;
100 /* SSP Info */
101 struct ssp_device *ssp;
103 /* SPI framework hookup */
104 enum pxa_ssp_type ssp_type;
105 struct spi_master *master;
107 /* PXA hookup */
108 struct pxa2xx_spi_master *master_info;
110 /* DMA setup stuff */
111 int rx_channel;
112 int tx_channel;
113 u32 *null_dma_buf;
115 /* SSP register addresses */
116 void __iomem *ioaddr;
117 u32 ssdr_physical;
119 /* SSP masks*/
120 u32 dma_cr1;
121 u32 int_cr1;
122 u32 clear_sr;
123 u32 mask_sr;
125 /* Driver message queue */
126 struct workqueue_struct *workqueue;
127 struct work_struct pump_messages;
128 spinlock_t lock;
129 struct list_head queue;
130 int busy;
131 int run;
133 /* Message Transfer pump */
134 struct tasklet_struct pump_transfers;
136 /* Current message transfer state info */
137 struct spi_message* cur_msg;
138 struct spi_transfer* cur_transfer;
139 struct chip_data *cur_chip;
140 size_t len;
141 void *tx;
142 void *tx_end;
143 void *rx;
144 void *rx_end;
145 int dma_mapped;
146 dma_addr_t rx_dma;
147 dma_addr_t tx_dma;
148 size_t rx_map_len;
149 size_t tx_map_len;
150 u8 n_bytes;
151 u32 dma_width;
152 int (*write)(struct driver_data *drv_data);
153 int (*read)(struct driver_data *drv_data);
154 irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
155 void (*cs_control)(u32 command);
158 struct chip_data {
159 u32 cr0;
160 u32 cr1;
161 u32 psp;
162 u32 timeout;
163 u8 n_bytes;
164 u32 dma_width;
165 u32 dma_burst_size;
166 u32 threshold;
167 u32 dma_threshold;
168 u8 enable_dma;
169 u8 bits_per_word;
170 u32 speed_hz;
171 int (*write)(struct driver_data *drv_data);
172 int (*read)(struct driver_data *drv_data);
173 void (*cs_control)(u32 command);
176 static void pump_messages(struct work_struct *work);
178 static int flush(struct driver_data *drv_data)
180 unsigned long limit = loops_per_jiffy << 1;
182 void __iomem *reg = drv_data->ioaddr;
184 do {
185 while (read_SSSR(reg) & SSSR_RNE) {
186 read_SSDR(reg);
188 } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
189 write_SSSR(SSSR_ROR, reg);
191 return limit;
194 static void null_cs_control(u32 command)
198 static int null_writer(struct driver_data *drv_data)
200 void __iomem *reg = drv_data->ioaddr;
201 u8 n_bytes = drv_data->n_bytes;
203 if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
204 || (drv_data->tx == drv_data->tx_end))
205 return 0;
207 write_SSDR(0, reg);
208 drv_data->tx += n_bytes;
210 return 1;
213 static int null_reader(struct driver_data *drv_data)
215 void __iomem *reg = drv_data->ioaddr;
216 u8 n_bytes = drv_data->n_bytes;
218 while ((read_SSSR(reg) & SSSR_RNE)
219 && (drv_data->rx < drv_data->rx_end)) {
220 read_SSDR(reg);
221 drv_data->rx += n_bytes;
224 return drv_data->rx == drv_data->rx_end;
227 static int u8_writer(struct driver_data *drv_data)
229 void __iomem *reg = drv_data->ioaddr;
231 if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
232 || (drv_data->tx == drv_data->tx_end))
233 return 0;
235 write_SSDR(*(u8 *)(drv_data->tx), reg);
236 ++drv_data->tx;
238 return 1;
241 static int u8_reader(struct driver_data *drv_data)
243 void __iomem *reg = drv_data->ioaddr;
245 while ((read_SSSR(reg) & SSSR_RNE)
246 && (drv_data->rx < drv_data->rx_end)) {
247 *(u8 *)(drv_data->rx) = read_SSDR(reg);
248 ++drv_data->rx;
251 return drv_data->rx == drv_data->rx_end;
254 static int u16_writer(struct driver_data *drv_data)
256 void __iomem *reg = drv_data->ioaddr;
258 if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
259 || (drv_data->tx == drv_data->tx_end))
260 return 0;
262 write_SSDR(*(u16 *)(drv_data->tx), reg);
263 drv_data->tx += 2;
265 return 1;
268 static int u16_reader(struct driver_data *drv_data)
270 void __iomem *reg = drv_data->ioaddr;
272 while ((read_SSSR(reg) & SSSR_RNE)
273 && (drv_data->rx < drv_data->rx_end)) {
274 *(u16 *)(drv_data->rx) = read_SSDR(reg);
275 drv_data->rx += 2;
278 return drv_data->rx == drv_data->rx_end;
281 static int u32_writer(struct driver_data *drv_data)
283 void __iomem *reg = drv_data->ioaddr;
285 if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
286 || (drv_data->tx == drv_data->tx_end))
287 return 0;
289 write_SSDR(*(u32 *)(drv_data->tx), reg);
290 drv_data->tx += 4;
292 return 1;
295 static int u32_reader(struct driver_data *drv_data)
297 void __iomem *reg = drv_data->ioaddr;
299 while ((read_SSSR(reg) & SSSR_RNE)
300 && (drv_data->rx < drv_data->rx_end)) {
301 *(u32 *)(drv_data->rx) = read_SSDR(reg);
302 drv_data->rx += 4;
305 return drv_data->rx == drv_data->rx_end;
308 static void *next_transfer(struct driver_data *drv_data)
310 struct spi_message *msg = drv_data->cur_msg;
311 struct spi_transfer *trans = drv_data->cur_transfer;
313 /* Move to next transfer */
314 if (trans->transfer_list.next != &msg->transfers) {
315 drv_data->cur_transfer =
316 list_entry(trans->transfer_list.next,
317 struct spi_transfer,
318 transfer_list);
319 return RUNNING_STATE;
320 } else
321 return DONE_STATE;
324 static int map_dma_buffers(struct driver_data *drv_data)
326 struct spi_message *msg = drv_data->cur_msg;
327 struct device *dev = &msg->spi->dev;
329 if (!drv_data->cur_chip->enable_dma)
330 return 0;
332 if (msg->is_dma_mapped)
333 return drv_data->rx_dma && drv_data->tx_dma;
335 if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
336 return 0;
338 /* Modify setup if rx buffer is null */
339 if (drv_data->rx == NULL) {
340 *drv_data->null_dma_buf = 0;
341 drv_data->rx = drv_data->null_dma_buf;
342 drv_data->rx_map_len = 4;
343 } else
344 drv_data->rx_map_len = drv_data->len;
347 /* Modify setup if tx buffer is null */
348 if (drv_data->tx == NULL) {
349 *drv_data->null_dma_buf = 0;
350 drv_data->tx = drv_data->null_dma_buf;
351 drv_data->tx_map_len = 4;
352 } else
353 drv_data->tx_map_len = drv_data->len;
355 /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
356 * so we flush the cache *before* invalidating it, in case
357 * the tx and rx buffers overlap.
359 drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
360 drv_data->tx_map_len, DMA_TO_DEVICE);
361 if (dma_mapping_error(dev, drv_data->tx_dma))
362 return 0;
364 /* Stream map the rx buffer */
365 drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
366 drv_data->rx_map_len, DMA_FROM_DEVICE);
367 if (dma_mapping_error(dev, drv_data->rx_dma)) {
368 dma_unmap_single(dev, drv_data->tx_dma,
369 drv_data->tx_map_len, DMA_TO_DEVICE);
370 return 0;
373 return 1;
376 static void unmap_dma_buffers(struct driver_data *drv_data)
378 struct device *dev;
380 if (!drv_data->dma_mapped)
381 return;
383 if (!drv_data->cur_msg->is_dma_mapped) {
384 dev = &drv_data->cur_msg->spi->dev;
385 dma_unmap_single(dev, drv_data->rx_dma,
386 drv_data->rx_map_len, DMA_FROM_DEVICE);
387 dma_unmap_single(dev, drv_data->tx_dma,
388 drv_data->tx_map_len, DMA_TO_DEVICE);
391 drv_data->dma_mapped = 0;
394 /* caller already set message->status; dma and pio irqs are blocked */
395 static void giveback(struct driver_data *drv_data)
397 struct spi_transfer* last_transfer;
398 unsigned long flags;
399 struct spi_message *msg;
401 spin_lock_irqsave(&drv_data->lock, flags);
402 msg = drv_data->cur_msg;
403 drv_data->cur_msg = NULL;
404 drv_data->cur_transfer = NULL;
405 drv_data->cur_chip = NULL;
406 queue_work(drv_data->workqueue, &drv_data->pump_messages);
407 spin_unlock_irqrestore(&drv_data->lock, flags);
409 last_transfer = list_entry(msg->transfers.prev,
410 struct spi_transfer,
411 transfer_list);
413 /* Delay if requested before any change in chip select */
414 if (last_transfer->delay_usecs)
415 udelay(last_transfer->delay_usecs);
417 /* Drop chip select UNLESS cs_change is true or we are returning
418 * a message with an error, or next message is for another chip
420 if (!last_transfer->cs_change)
421 drv_data->cs_control(PXA2XX_CS_DEASSERT);
422 else {
423 struct spi_message *next_msg;
425 /* Holding of cs was hinted, but we need to make sure
426 * the next message is for the same chip. Don't waste
427 * time with the following tests unless this was hinted.
429 * We cannot postpone this until pump_messages, because
430 * after calling msg->complete (below) the driver that
431 * sent the current message could be unloaded, which
432 * could invalidate the cs_control() callback...
435 /* get a pointer to the next message, if any */
436 spin_lock_irqsave(&drv_data->lock, flags);
437 if (list_empty(&drv_data->queue))
438 next_msg = NULL;
439 else
440 next_msg = list_entry(drv_data->queue.next,
441 struct spi_message, queue);
442 spin_unlock_irqrestore(&drv_data->lock, flags);
444 /* see if the next and current messages point
445 * to the same chip
447 if (next_msg && next_msg->spi != msg->spi)
448 next_msg = NULL;
449 if (!next_msg || msg->state == ERROR_STATE)
450 drv_data->cs_control(PXA2XX_CS_DEASSERT);
453 msg->state = NULL;
454 if (msg->complete)
455 msg->complete(msg->context);
458 static int wait_ssp_rx_stall(void const __iomem *ioaddr)
460 unsigned long limit = loops_per_jiffy << 1;
462 while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
463 cpu_relax();
465 return limit;
468 static int wait_dma_channel_stop(int channel)
470 unsigned long limit = loops_per_jiffy << 1;
472 while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
473 cpu_relax();
475 return limit;
478 static void dma_error_stop(struct driver_data *drv_data, const char *msg)
480 void __iomem *reg = drv_data->ioaddr;
482 /* Stop and reset */
483 DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
484 DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
485 write_SSSR(drv_data->clear_sr, reg);
486 write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
487 if (drv_data->ssp_type != PXA25x_SSP)
488 write_SSTO(0, reg);
489 flush(drv_data);
490 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
492 unmap_dma_buffers(drv_data);
494 dev_err(&drv_data->pdev->dev, "%s\n", msg);
496 drv_data->cur_msg->state = ERROR_STATE;
497 tasklet_schedule(&drv_data->pump_transfers);
500 static void dma_transfer_complete(struct driver_data *drv_data)
502 void __iomem *reg = drv_data->ioaddr;
503 struct spi_message *msg = drv_data->cur_msg;
505 /* Clear and disable interrupts on SSP and DMA channels*/
506 write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
507 write_SSSR(drv_data->clear_sr, reg);
508 DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
509 DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
511 if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
512 dev_err(&drv_data->pdev->dev,
513 "dma_handler: dma rx channel stop failed\n");
515 if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
516 dev_err(&drv_data->pdev->dev,
517 "dma_transfer: ssp rx stall failed\n");
519 unmap_dma_buffers(drv_data);
521 /* update the buffer pointer for the amount completed in dma */
522 drv_data->rx += drv_data->len -
523 (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
525 /* read trailing data from fifo, it does not matter how many
526 * bytes are in the fifo just read until buffer is full
527 * or fifo is empty, which ever occurs first */
528 drv_data->read(drv_data);
530 /* return count of what was actually read */
531 msg->actual_length += drv_data->len -
532 (drv_data->rx_end - drv_data->rx);
534 /* Transfer delays and chip select release are
535 * handled in pump_transfers or giveback
538 /* Move to next transfer */
539 msg->state = next_transfer(drv_data);
541 /* Schedule transfer tasklet */
542 tasklet_schedule(&drv_data->pump_transfers);
545 static void dma_handler(int channel, void *data)
547 struct driver_data *drv_data = data;
548 u32 irq_status = DCSR(channel) & DMA_INT_MASK;
550 if (irq_status & DCSR_BUSERR) {
552 if (channel == drv_data->tx_channel)
553 dma_error_stop(drv_data,
554 "dma_handler: "
555 "bad bus address on tx channel");
556 else
557 dma_error_stop(drv_data,
558 "dma_handler: "
559 "bad bus address on rx channel");
560 return;
563 /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
564 if ((channel == drv_data->tx_channel)
565 && (irq_status & DCSR_ENDINTR)
566 && (drv_data->ssp_type == PXA25x_SSP)) {
568 /* Wait for rx to stall */
569 if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
570 dev_err(&drv_data->pdev->dev,
571 "dma_handler: ssp rx stall failed\n");
573 /* finish this transfer, start the next */
574 dma_transfer_complete(drv_data);
578 static irqreturn_t dma_transfer(struct driver_data *drv_data)
580 u32 irq_status;
581 void __iomem *reg = drv_data->ioaddr;
583 irq_status = read_SSSR(reg) & drv_data->mask_sr;
584 if (irq_status & SSSR_ROR) {
585 dma_error_stop(drv_data, "dma_transfer: fifo overrun");
586 return IRQ_HANDLED;
589 /* Check for false positive timeout */
590 if ((irq_status & SSSR_TINT)
591 && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
592 write_SSSR(SSSR_TINT, reg);
593 return IRQ_HANDLED;
596 if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
598 /* Clear and disable timeout interrupt, do the rest in
599 * dma_transfer_complete */
600 if (drv_data->ssp_type != PXA25x_SSP)
601 write_SSTO(0, reg);
603 /* finish this transfer, start the next */
604 dma_transfer_complete(drv_data);
606 return IRQ_HANDLED;
609 /* Opps problem detected */
610 return IRQ_NONE;
613 static void int_error_stop(struct driver_data *drv_data, const char* msg)
615 void __iomem *reg = drv_data->ioaddr;
617 /* Stop and reset SSP */
618 write_SSSR(drv_data->clear_sr, reg);
619 write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
620 if (drv_data->ssp_type != PXA25x_SSP)
621 write_SSTO(0, reg);
622 flush(drv_data);
623 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
625 dev_err(&drv_data->pdev->dev, "%s\n", msg);
627 drv_data->cur_msg->state = ERROR_STATE;
628 tasklet_schedule(&drv_data->pump_transfers);
631 static void int_transfer_complete(struct driver_data *drv_data)
633 void __iomem *reg = drv_data->ioaddr;
635 /* Stop SSP */
636 write_SSSR(drv_data->clear_sr, reg);
637 write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
638 if (drv_data->ssp_type != PXA25x_SSP)
639 write_SSTO(0, reg);
641 /* Update total byte transfered return count actual bytes read */
642 drv_data->cur_msg->actual_length += drv_data->len -
643 (drv_data->rx_end - drv_data->rx);
645 /* Transfer delays and chip select release are
646 * handled in pump_transfers or giveback
649 /* Move to next transfer */
650 drv_data->cur_msg->state = next_transfer(drv_data);
652 /* Schedule transfer tasklet */
653 tasklet_schedule(&drv_data->pump_transfers);
656 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
658 void __iomem *reg = drv_data->ioaddr;
660 u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
661 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
663 u32 irq_status = read_SSSR(reg) & irq_mask;
665 if (irq_status & SSSR_ROR) {
666 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
667 return IRQ_HANDLED;
670 if (irq_status & SSSR_TINT) {
671 write_SSSR(SSSR_TINT, reg);
672 if (drv_data->read(drv_data)) {
673 int_transfer_complete(drv_data);
674 return IRQ_HANDLED;
678 /* Drain rx fifo, Fill tx fifo and prevent overruns */
679 do {
680 if (drv_data->read(drv_data)) {
681 int_transfer_complete(drv_data);
682 return IRQ_HANDLED;
684 } while (drv_data->write(drv_data));
686 if (drv_data->read(drv_data)) {
687 int_transfer_complete(drv_data);
688 return IRQ_HANDLED;
691 if (drv_data->tx == drv_data->tx_end) {
692 write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
693 /* PXA25x_SSP has no timeout, read trailing bytes */
694 if (drv_data->ssp_type == PXA25x_SSP) {
695 if (!wait_ssp_rx_stall(reg))
697 int_error_stop(drv_data, "interrupt_transfer: "
698 "rx stall failed");
699 return IRQ_HANDLED;
701 if (!drv_data->read(drv_data))
703 int_error_stop(drv_data,
704 "interrupt_transfer: "
705 "trailing byte read failed");
706 return IRQ_HANDLED;
708 int_transfer_complete(drv_data);
712 /* We did something */
713 return IRQ_HANDLED;
716 static irqreturn_t ssp_int(int irq, void *dev_id)
718 struct driver_data *drv_data = dev_id;
719 void __iomem *reg = drv_data->ioaddr;
721 if (!drv_data->cur_msg) {
723 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
724 write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
725 if (drv_data->ssp_type != PXA25x_SSP)
726 write_SSTO(0, reg);
727 write_SSSR(drv_data->clear_sr, reg);
729 dev_err(&drv_data->pdev->dev, "bad message state "
730 "in interrupt handler\n");
732 /* Never fail */
733 return IRQ_HANDLED;
736 return drv_data->transfer_handler(drv_data);
739 static int set_dma_burst_and_threshold(struct chip_data *chip,
740 struct spi_device *spi,
741 u8 bits_per_word, u32 *burst_code,
742 u32 *threshold)
744 struct pxa2xx_spi_chip *chip_info =
745 (struct pxa2xx_spi_chip *)spi->controller_data;
746 int bytes_per_word;
747 int burst_bytes;
748 int thresh_words;
749 int req_burst_size;
750 int retval = 0;
752 /* Set the threshold (in registers) to equal the same amount of data
753 * as represented by burst size (in bytes). The computation below
754 * is (burst_size rounded up to nearest 8 byte, word or long word)
755 * divided by (bytes/register); the tx threshold is the inverse of
756 * the rx, so that there will always be enough data in the rx fifo
757 * to satisfy a burst, and there will always be enough space in the
758 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
759 * there is not enough space), there must always remain enough empty
760 * space in the rx fifo for any data loaded to the tx fifo.
761 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
762 * will be 8, or half the fifo;
763 * The threshold can only be set to 2, 4 or 8, but not 16, because
764 * to burst 16 to the tx fifo, the fifo would have to be empty;
765 * however, the minimum fifo trigger level is 1, and the tx will
766 * request service when the fifo is at this level, with only 15 spaces.
769 /* find bytes/word */
770 if (bits_per_word <= 8)
771 bytes_per_word = 1;
772 else if (bits_per_word <= 16)
773 bytes_per_word = 2;
774 else
775 bytes_per_word = 4;
777 /* use struct pxa2xx_spi_chip->dma_burst_size if available */
778 if (chip_info)
779 req_burst_size = chip_info->dma_burst_size;
780 else {
781 switch (chip->dma_burst_size) {
782 default:
783 /* if the default burst size is not set,
784 * do it now */
785 chip->dma_burst_size = DCMD_BURST8;
786 case DCMD_BURST8:
787 req_burst_size = 8;
788 break;
789 case DCMD_BURST16:
790 req_burst_size = 16;
791 break;
792 case DCMD_BURST32:
793 req_burst_size = 32;
794 break;
797 if (req_burst_size <= 8) {
798 *burst_code = DCMD_BURST8;
799 burst_bytes = 8;
800 } else if (req_burst_size <= 16) {
801 if (bytes_per_word == 1) {
802 /* don't burst more than 1/2 the fifo */
803 *burst_code = DCMD_BURST8;
804 burst_bytes = 8;
805 retval = 1;
806 } else {
807 *burst_code = DCMD_BURST16;
808 burst_bytes = 16;
810 } else {
811 if (bytes_per_word == 1) {
812 /* don't burst more than 1/2 the fifo */
813 *burst_code = DCMD_BURST8;
814 burst_bytes = 8;
815 retval = 1;
816 } else if (bytes_per_word == 2) {
817 /* don't burst more than 1/2 the fifo */
818 *burst_code = DCMD_BURST16;
819 burst_bytes = 16;
820 retval = 1;
821 } else {
822 *burst_code = DCMD_BURST32;
823 burst_bytes = 32;
827 thresh_words = burst_bytes / bytes_per_word;
829 /* thresh_words will be between 2 and 8 */
830 *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
831 | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
833 return retval;
836 static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
838 unsigned long ssp_clk = clk_get_rate(ssp->clk);
840 if (ssp->type == PXA25x_SSP)
841 return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
842 else
843 return ((ssp_clk / rate - 1) & 0xfff) << 8;
846 static void pump_transfers(unsigned long data)
848 struct driver_data *drv_data = (struct driver_data *)data;
849 struct spi_message *message = NULL;
850 struct spi_transfer *transfer = NULL;
851 struct spi_transfer *previous = NULL;
852 struct chip_data *chip = NULL;
853 struct ssp_device *ssp = drv_data->ssp;
854 void __iomem *reg = drv_data->ioaddr;
855 u32 clk_div = 0;
856 u8 bits = 0;
857 u32 speed = 0;
858 u32 cr0;
859 u32 cr1;
860 u32 dma_thresh = drv_data->cur_chip->dma_threshold;
861 u32 dma_burst = drv_data->cur_chip->dma_burst_size;
863 /* Get current state information */
864 message = drv_data->cur_msg;
865 transfer = drv_data->cur_transfer;
866 chip = drv_data->cur_chip;
868 /* Handle for abort */
869 if (message->state == ERROR_STATE) {
870 message->status = -EIO;
871 giveback(drv_data);
872 return;
875 /* Handle end of message */
876 if (message->state == DONE_STATE) {
877 message->status = 0;
878 giveback(drv_data);
879 return;
882 /* Delay if requested at end of transfer before CS change */
883 if (message->state == RUNNING_STATE) {
884 previous = list_entry(transfer->transfer_list.prev,
885 struct spi_transfer,
886 transfer_list);
887 if (previous->delay_usecs)
888 udelay(previous->delay_usecs);
890 /* Drop chip select only if cs_change is requested */
891 if (previous->cs_change)
892 drv_data->cs_control(PXA2XX_CS_DEASSERT);
895 /* Check for transfers that need multiple DMA segments */
896 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
898 /* reject already-mapped transfers; PIO won't always work */
899 if (message->is_dma_mapped
900 || transfer->rx_dma || transfer->tx_dma) {
901 dev_err(&drv_data->pdev->dev,
902 "pump_transfers: mapped transfer length "
903 "of %u is greater than %d\n",
904 transfer->len, MAX_DMA_LEN);
905 message->status = -EINVAL;
906 giveback(drv_data);
907 return;
910 /* warn ... we force this to PIO mode */
911 if (printk_ratelimit())
912 dev_warn(&message->spi->dev, "pump_transfers: "
913 "DMA disabled for transfer length %ld "
914 "greater than %d\n",
915 (long)drv_data->len, MAX_DMA_LEN);
918 /* Setup the transfer state based on the type of transfer */
919 if (flush(drv_data) == 0) {
920 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
921 message->status = -EIO;
922 giveback(drv_data);
923 return;
925 drv_data->n_bytes = chip->n_bytes;
926 drv_data->dma_width = chip->dma_width;
927 drv_data->cs_control = chip->cs_control;
928 drv_data->tx = (void *)transfer->tx_buf;
929 drv_data->tx_end = drv_data->tx + transfer->len;
930 drv_data->rx = transfer->rx_buf;
931 drv_data->rx_end = drv_data->rx + transfer->len;
932 drv_data->rx_dma = transfer->rx_dma;
933 drv_data->tx_dma = transfer->tx_dma;
934 drv_data->len = transfer->len & DCMD_LENGTH;
935 drv_data->write = drv_data->tx ? chip->write : null_writer;
936 drv_data->read = drv_data->rx ? chip->read : null_reader;
938 /* Change speed and bit per word on a per transfer */
939 cr0 = chip->cr0;
940 if (transfer->speed_hz || transfer->bits_per_word) {
942 bits = chip->bits_per_word;
943 speed = chip->speed_hz;
945 if (transfer->speed_hz)
946 speed = transfer->speed_hz;
948 if (transfer->bits_per_word)
949 bits = transfer->bits_per_word;
951 clk_div = ssp_get_clk_div(ssp, speed);
953 if (bits <= 8) {
954 drv_data->n_bytes = 1;
955 drv_data->dma_width = DCMD_WIDTH1;
956 drv_data->read = drv_data->read != null_reader ?
957 u8_reader : null_reader;
958 drv_data->write = drv_data->write != null_writer ?
959 u8_writer : null_writer;
960 } else if (bits <= 16) {
961 drv_data->n_bytes = 2;
962 drv_data->dma_width = DCMD_WIDTH2;
963 drv_data->read = drv_data->read != null_reader ?
964 u16_reader : null_reader;
965 drv_data->write = drv_data->write != null_writer ?
966 u16_writer : null_writer;
967 } else if (bits <= 32) {
968 drv_data->n_bytes = 4;
969 drv_data->dma_width = DCMD_WIDTH4;
970 drv_data->read = drv_data->read != null_reader ?
971 u32_reader : null_reader;
972 drv_data->write = drv_data->write != null_writer ?
973 u32_writer : null_writer;
975 /* if bits/word is changed in dma mode, then must check the
976 * thresholds and burst also */
977 if (chip->enable_dma) {
978 if (set_dma_burst_and_threshold(chip, message->spi,
979 bits, &dma_burst,
980 &dma_thresh))
981 if (printk_ratelimit())
982 dev_warn(&message->spi->dev,
983 "pump_transfers: "
984 "DMA burst size reduced to "
985 "match bits_per_word\n");
988 cr0 = clk_div
989 | SSCR0_Motorola
990 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
991 | SSCR0_SSE
992 | (bits > 16 ? SSCR0_EDSS : 0);
995 message->state = RUNNING_STATE;
997 /* Try to map dma buffer and do a dma transfer if successful, but
998 * only if the length is non-zero and less than MAX_DMA_LEN.
1000 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
1001 * of PIO instead. Care is needed above because the transfer may
1002 * have have been passed with buffers that are already dma mapped.
1003 * A zero-length transfer in PIO mode will not try to write/read
1004 * to/from the buffers
1006 * REVISIT large transfers are exactly where we most want to be
1007 * using DMA. If this happens much, split those transfers into
1008 * multiple DMA segments rather than forcing PIO.
1010 drv_data->dma_mapped = 0;
1011 if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
1012 drv_data->dma_mapped = map_dma_buffers(drv_data);
1013 if (drv_data->dma_mapped) {
1015 /* Ensure we have the correct interrupt handler */
1016 drv_data->transfer_handler = dma_transfer;
1018 /* Setup rx DMA Channel */
1019 DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
1020 DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
1021 DTADR(drv_data->rx_channel) = drv_data->rx_dma;
1022 if (drv_data->rx == drv_data->null_dma_buf)
1023 /* No target address increment */
1024 DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
1025 | drv_data->dma_width
1026 | dma_burst
1027 | drv_data->len;
1028 else
1029 DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
1030 | DCMD_FLOWSRC
1031 | drv_data->dma_width
1032 | dma_burst
1033 | drv_data->len;
1035 /* Setup tx DMA Channel */
1036 DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
1037 DSADR(drv_data->tx_channel) = drv_data->tx_dma;
1038 DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
1039 if (drv_data->tx == drv_data->null_dma_buf)
1040 /* No source address increment */
1041 DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
1042 | drv_data->dma_width
1043 | dma_burst
1044 | drv_data->len;
1045 else
1046 DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
1047 | DCMD_FLOWTRG
1048 | drv_data->dma_width
1049 | dma_burst
1050 | drv_data->len;
1052 /* Enable dma end irqs on SSP to detect end of transfer */
1053 if (drv_data->ssp_type == PXA25x_SSP)
1054 DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
1056 /* Clear status and start DMA engine */
1057 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1058 write_SSSR(drv_data->clear_sr, reg);
1059 DCSR(drv_data->rx_channel) |= DCSR_RUN;
1060 DCSR(drv_data->tx_channel) |= DCSR_RUN;
1061 } else {
1062 /* Ensure we have the correct interrupt handler */
1063 drv_data->transfer_handler = interrupt_transfer;
1065 /* Clear status */
1066 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1067 write_SSSR(drv_data->clear_sr, reg);
1070 /* see if we need to reload the config registers */
1071 if ((read_SSCR0(reg) != cr0)
1072 || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
1073 (cr1 & SSCR1_CHANGE_MASK)) {
1075 /* stop the SSP, and update the other bits */
1076 write_SSCR0(cr0 & ~SSCR0_SSE, reg);
1077 if (drv_data->ssp_type != PXA25x_SSP)
1078 write_SSTO(chip->timeout, reg);
1079 /* first set CR1 without interrupt and service enables */
1080 write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
1081 /* restart the SSP */
1082 write_SSCR0(cr0, reg);
1084 } else {
1085 if (drv_data->ssp_type != PXA25x_SSP)
1086 write_SSTO(chip->timeout, reg);
1089 /* FIXME, need to handle cs polarity,
1090 * this driver uses struct pxa2xx_spi_chip.cs_control to
1091 * specify a CS handling function, and it ignores most
1092 * struct spi_device.mode[s], including SPI_CS_HIGH */
1093 drv_data->cs_control(PXA2XX_CS_ASSERT);
1095 /* after chip select, release the data by enabling service
1096 * requests and interrupts, without changing any mode bits */
1097 write_SSCR1(cr1, reg);
1100 static void pump_messages(struct work_struct *work)
1102 struct driver_data *drv_data =
1103 container_of(work, struct driver_data, pump_messages);
1104 unsigned long flags;
1106 /* Lock queue and check for queue work */
1107 spin_lock_irqsave(&drv_data->lock, flags);
1108 if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1109 drv_data->busy = 0;
1110 spin_unlock_irqrestore(&drv_data->lock, flags);
1111 return;
1114 /* Make sure we are not already running a message */
1115 if (drv_data->cur_msg) {
1116 spin_unlock_irqrestore(&drv_data->lock, flags);
1117 return;
1120 /* Extract head of queue */
1121 drv_data->cur_msg = list_entry(drv_data->queue.next,
1122 struct spi_message, queue);
1123 list_del_init(&drv_data->cur_msg->queue);
1125 /* Initial message state*/
1126 drv_data->cur_msg->state = START_STATE;
1127 drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1128 struct spi_transfer,
1129 transfer_list);
1131 /* prepare to setup the SSP, in pump_transfers, using the per
1132 * chip configuration */
1133 drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1135 /* Mark as busy and launch transfers */
1136 tasklet_schedule(&drv_data->pump_transfers);
1138 drv_data->busy = 1;
1139 spin_unlock_irqrestore(&drv_data->lock, flags);
1142 static int transfer(struct spi_device *spi, struct spi_message *msg)
1144 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1145 unsigned long flags;
1147 spin_lock_irqsave(&drv_data->lock, flags);
1149 if (drv_data->run == QUEUE_STOPPED) {
1150 spin_unlock_irqrestore(&drv_data->lock, flags);
1151 return -ESHUTDOWN;
1154 msg->actual_length = 0;
1155 msg->status = -EINPROGRESS;
1156 msg->state = START_STATE;
1158 list_add_tail(&msg->queue, &drv_data->queue);
1160 if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1161 queue_work(drv_data->workqueue, &drv_data->pump_messages);
1163 spin_unlock_irqrestore(&drv_data->lock, flags);
1165 return 0;
1168 /* the spi->mode bits understood by this driver: */
1169 #define MODEBITS (SPI_CPOL | SPI_CPHA)
1171 static int setup(struct spi_device *spi)
1173 struct pxa2xx_spi_chip *chip_info = NULL;
1174 struct chip_data *chip;
1175 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1176 struct ssp_device *ssp = drv_data->ssp;
1177 unsigned int clk_div;
1178 uint tx_thres = TX_THRESH_DFLT;
1179 uint rx_thres = RX_THRESH_DFLT;
1181 if (!spi->bits_per_word)
1182 spi->bits_per_word = 8;
1184 if (drv_data->ssp_type != PXA25x_SSP
1185 && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
1186 dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1187 "b/w not 4-32 for type non-PXA25x_SSP\n",
1188 drv_data->ssp_type, spi->bits_per_word);
1189 return -EINVAL;
1191 else if (drv_data->ssp_type == PXA25x_SSP
1192 && (spi->bits_per_word < 4
1193 || spi->bits_per_word > 16)) {
1194 dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
1195 "b/w not 4-16 for type PXA25x_SSP\n",
1196 drv_data->ssp_type, spi->bits_per_word);
1197 return -EINVAL;
1200 if (spi->mode & ~MODEBITS) {
1201 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
1202 spi->mode & ~MODEBITS);
1203 return -EINVAL;
1206 /* Only alloc on first setup */
1207 chip = spi_get_ctldata(spi);
1208 if (!chip) {
1209 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1210 if (!chip) {
1211 dev_err(&spi->dev,
1212 "failed setup: can't allocate chip data\n");
1213 return -ENOMEM;
1216 chip->cs_control = null_cs_control;
1217 chip->enable_dma = 0;
1218 chip->timeout = TIMOUT_DFLT;
1219 chip->dma_burst_size = drv_data->master_info->enable_dma ?
1220 DCMD_BURST8 : 0;
1223 /* protocol drivers may change the chip settings, so...
1224 * if chip_info exists, use it */
1225 chip_info = spi->controller_data;
1227 /* chip_info isn't always needed */
1228 chip->cr1 = 0;
1229 if (chip_info) {
1230 if (chip_info->cs_control)
1231 chip->cs_control = chip_info->cs_control;
1232 if (chip_info->timeout)
1233 chip->timeout = chip_info->timeout;
1234 if (chip_info->tx_threshold)
1235 tx_thres = chip_info->tx_threshold;
1236 if (chip_info->rx_threshold)
1237 rx_thres = chip_info->rx_threshold;
1238 chip->enable_dma = drv_data->master_info->enable_dma;
1239 chip->dma_threshold = 0;
1240 if (chip_info->enable_loopback)
1241 chip->cr1 = SSCR1_LBM;
1244 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1245 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1247 /* set dma burst and threshold outside of chip_info path so that if
1248 * chip_info goes away after setting chip->enable_dma, the
1249 * burst and threshold can still respond to changes in bits_per_word */
1250 if (chip->enable_dma) {
1251 /* set up legal burst and threshold for dma */
1252 if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
1253 &chip->dma_burst_size,
1254 &chip->dma_threshold)) {
1255 dev_warn(&spi->dev, "in setup: DMA burst size reduced "
1256 "to match bits_per_word\n");
1260 clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
1261 chip->speed_hz = spi->max_speed_hz;
1263 chip->cr0 = clk_div
1264 | SSCR0_Motorola
1265 | SSCR0_DataSize(spi->bits_per_word > 16 ?
1266 spi->bits_per_word - 16 : spi->bits_per_word)
1267 | SSCR0_SSE
1268 | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
1269 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1270 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1271 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1273 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1274 if (drv_data->ssp_type != PXA25x_SSP)
1275 dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
1276 spi->bits_per_word,
1277 clk_get_rate(ssp->clk)
1278 / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
1279 spi->mode & 0x3,
1280 chip->enable_dma ? "DMA" : "PIO");
1281 else
1282 dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
1283 spi->bits_per_word,
1284 clk_get_rate(ssp->clk) / 2
1285 / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
1286 spi->mode & 0x3,
1287 chip->enable_dma ? "DMA" : "PIO");
1289 if (spi->bits_per_word <= 8) {
1290 chip->n_bytes = 1;
1291 chip->dma_width = DCMD_WIDTH1;
1292 chip->read = u8_reader;
1293 chip->write = u8_writer;
1294 } else if (spi->bits_per_word <= 16) {
1295 chip->n_bytes = 2;
1296 chip->dma_width = DCMD_WIDTH2;
1297 chip->read = u16_reader;
1298 chip->write = u16_writer;
1299 } else if (spi->bits_per_word <= 32) {
1300 chip->cr0 |= SSCR0_EDSS;
1301 chip->n_bytes = 4;
1302 chip->dma_width = DCMD_WIDTH4;
1303 chip->read = u32_reader;
1304 chip->write = u32_writer;
1305 } else {
1306 dev_err(&spi->dev, "invalid wordsize\n");
1307 return -ENODEV;
1309 chip->bits_per_word = spi->bits_per_word;
1311 spi_set_ctldata(spi, chip);
1313 return 0;
1316 static void cleanup(struct spi_device *spi)
1318 struct chip_data *chip = spi_get_ctldata(spi);
1320 kfree(chip);
1323 static int __init init_queue(struct driver_data *drv_data)
1325 INIT_LIST_HEAD(&drv_data->queue);
1326 spin_lock_init(&drv_data->lock);
1328 drv_data->run = QUEUE_STOPPED;
1329 drv_data->busy = 0;
1331 tasklet_init(&drv_data->pump_transfers,
1332 pump_transfers, (unsigned long)drv_data);
1334 INIT_WORK(&drv_data->pump_messages, pump_messages);
1335 drv_data->workqueue = create_singlethread_workqueue(
1336 drv_data->master->dev.parent->bus_id);
1337 if (drv_data->workqueue == NULL)
1338 return -EBUSY;
1340 return 0;
1343 static int start_queue(struct driver_data *drv_data)
1345 unsigned long flags;
1347 spin_lock_irqsave(&drv_data->lock, flags);
1349 if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1350 spin_unlock_irqrestore(&drv_data->lock, flags);
1351 return -EBUSY;
1354 drv_data->run = QUEUE_RUNNING;
1355 drv_data->cur_msg = NULL;
1356 drv_data->cur_transfer = NULL;
1357 drv_data->cur_chip = NULL;
1358 spin_unlock_irqrestore(&drv_data->lock, flags);
1360 queue_work(drv_data->workqueue, &drv_data->pump_messages);
1362 return 0;
1365 static int stop_queue(struct driver_data *drv_data)
1367 unsigned long flags;
1368 unsigned limit = 500;
1369 int status = 0;
1371 spin_lock_irqsave(&drv_data->lock, flags);
1373 /* This is a bit lame, but is optimized for the common execution path.
1374 * A wait_queue on the drv_data->busy could be used, but then the common
1375 * execution path (pump_messages) would be required to call wake_up or
1376 * friends on every SPI message. Do this instead */
1377 drv_data->run = QUEUE_STOPPED;
1378 while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
1379 spin_unlock_irqrestore(&drv_data->lock, flags);
1380 msleep(10);
1381 spin_lock_irqsave(&drv_data->lock, flags);
1384 if (!list_empty(&drv_data->queue) || drv_data->busy)
1385 status = -EBUSY;
1387 spin_unlock_irqrestore(&drv_data->lock, flags);
1389 return status;
1392 static int destroy_queue(struct driver_data *drv_data)
1394 int status;
1396 status = stop_queue(drv_data);
1397 /* we are unloading the module or failing to load (only two calls
1398 * to this routine), and neither call can handle a return value.
1399 * However, destroy_workqueue calls flush_workqueue, and that will
1400 * block until all work is done. If the reason that stop_queue
1401 * timed out is that the work will never finish, then it does no
1402 * good to call destroy_workqueue, so return anyway. */
1403 if (status != 0)
1404 return status;
1406 destroy_workqueue(drv_data->workqueue);
1408 return 0;
1411 static int __init pxa2xx_spi_probe(struct platform_device *pdev)
1413 struct device *dev = &pdev->dev;
1414 struct pxa2xx_spi_master *platform_info;
1415 struct spi_master *master;
1416 struct driver_data *drv_data;
1417 struct ssp_device *ssp;
1418 int status;
1420 platform_info = dev->platform_data;
1422 ssp = ssp_request(pdev->id, pdev->name);
1423 if (ssp == NULL) {
1424 dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
1425 return -ENODEV;
1428 /* Allocate master with space for drv_data and null dma buffer */
1429 master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1430 if (!master) {
1431 dev_err(&pdev->dev, "cannot alloc spi_master\n");
1432 ssp_free(ssp);
1433 return -ENOMEM;
1435 drv_data = spi_master_get_devdata(master);
1436 drv_data->master = master;
1437 drv_data->master_info = platform_info;
1438 drv_data->pdev = pdev;
1439 drv_data->ssp = ssp;
1441 master->bus_num = pdev->id;
1442 master->num_chipselect = platform_info->num_chipselect;
1443 master->cleanup = cleanup;
1444 master->setup = setup;
1445 master->transfer = transfer;
1447 drv_data->ssp_type = ssp->type;
1448 drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
1449 sizeof(struct driver_data)), 8);
1451 drv_data->ioaddr = ssp->mmio_base;
1452 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1453 if (ssp->type == PXA25x_SSP) {
1454 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1455 drv_data->dma_cr1 = 0;
1456 drv_data->clear_sr = SSSR_ROR;
1457 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1458 } else {
1459 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1460 drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
1461 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1462 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1465 status = request_irq(ssp->irq, ssp_int, 0, dev->bus_id, drv_data);
1466 if (status < 0) {
1467 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1468 goto out_error_master_alloc;
1471 /* Setup DMA if requested */
1472 drv_data->tx_channel = -1;
1473 drv_data->rx_channel = -1;
1474 if (platform_info->enable_dma) {
1476 /* Get two DMA channels (rx and tx) */
1477 drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
1478 DMA_PRIO_HIGH,
1479 dma_handler,
1480 drv_data);
1481 if (drv_data->rx_channel < 0) {
1482 dev_err(dev, "problem (%d) requesting rx channel\n",
1483 drv_data->rx_channel);
1484 status = -ENODEV;
1485 goto out_error_irq_alloc;
1487 drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
1488 DMA_PRIO_MEDIUM,
1489 dma_handler,
1490 drv_data);
1491 if (drv_data->tx_channel < 0) {
1492 dev_err(dev, "problem (%d) requesting tx channel\n",
1493 drv_data->tx_channel);
1494 status = -ENODEV;
1495 goto out_error_dma_alloc;
1498 DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
1499 DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
1502 /* Enable SOC clock */
1503 clk_enable(ssp->clk);
1505 /* Load default SSP configuration */
1506 write_SSCR0(0, drv_data->ioaddr);
1507 write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1508 SSCR1_TxTresh(TX_THRESH_DFLT),
1509 drv_data->ioaddr);
1510 write_SSCR0(SSCR0_SerClkDiv(2)
1511 | SSCR0_Motorola
1512 | SSCR0_DataSize(8),
1513 drv_data->ioaddr);
1514 if (drv_data->ssp_type != PXA25x_SSP)
1515 write_SSTO(0, drv_data->ioaddr);
1516 write_SSPSP(0, drv_data->ioaddr);
1518 /* Initial and start queue */
1519 status = init_queue(drv_data);
1520 if (status != 0) {
1521 dev_err(&pdev->dev, "problem initializing queue\n");
1522 goto out_error_clock_enabled;
1524 status = start_queue(drv_data);
1525 if (status != 0) {
1526 dev_err(&pdev->dev, "problem starting queue\n");
1527 goto out_error_clock_enabled;
1530 /* Register with the SPI framework */
1531 platform_set_drvdata(pdev, drv_data);
1532 status = spi_register_master(master);
1533 if (status != 0) {
1534 dev_err(&pdev->dev, "problem registering spi master\n");
1535 goto out_error_queue_alloc;
1538 return status;
1540 out_error_queue_alloc:
1541 destroy_queue(drv_data);
1543 out_error_clock_enabled:
1544 clk_disable(ssp->clk);
1546 out_error_dma_alloc:
1547 if (drv_data->tx_channel != -1)
1548 pxa_free_dma(drv_data->tx_channel);
1549 if (drv_data->rx_channel != -1)
1550 pxa_free_dma(drv_data->rx_channel);
1552 out_error_irq_alloc:
1553 free_irq(ssp->irq, drv_data);
1555 out_error_master_alloc:
1556 spi_master_put(master);
1557 ssp_free(ssp);
1558 return status;
1561 static int pxa2xx_spi_remove(struct platform_device *pdev)
1563 struct driver_data *drv_data = platform_get_drvdata(pdev);
1564 struct ssp_device *ssp = drv_data->ssp;
1565 int status = 0;
1567 if (!drv_data)
1568 return 0;
1570 /* Remove the queue */
1571 status = destroy_queue(drv_data);
1572 if (status != 0)
1573 /* the kernel does not check the return status of this
1574 * this routine (mod->exit, within the kernel). Therefore
1575 * nothing is gained by returning from here, the module is
1576 * going away regardless, and we should not leave any more
1577 * resources allocated than necessary. We cannot free the
1578 * message memory in drv_data->queue, but we can release the
1579 * resources below. I think the kernel should honor -EBUSY
1580 * returns but... */
1581 dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
1582 "complete, message memory not freed\n");
1584 /* Disable the SSP at the peripheral and SOC level */
1585 write_SSCR0(0, drv_data->ioaddr);
1586 clk_disable(ssp->clk);
1588 /* Release DMA */
1589 if (drv_data->master_info->enable_dma) {
1590 DRCMR(ssp->drcmr_rx) = 0;
1591 DRCMR(ssp->drcmr_tx) = 0;
1592 pxa_free_dma(drv_data->tx_channel);
1593 pxa_free_dma(drv_data->rx_channel);
1596 /* Release IRQ */
1597 free_irq(ssp->irq, drv_data);
1599 /* Release SSP */
1600 ssp_free(ssp);
1602 /* Disconnect from the SPI framework */
1603 spi_unregister_master(drv_data->master);
1605 /* Prevent double remove */
1606 platform_set_drvdata(pdev, NULL);
1608 return 0;
1611 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1613 int status = 0;
1615 if ((status = pxa2xx_spi_remove(pdev)) != 0)
1616 dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1619 #ifdef CONFIG_PM
1621 static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
1623 struct driver_data *drv_data = platform_get_drvdata(pdev);
1624 struct ssp_device *ssp = drv_data->ssp;
1625 int status = 0;
1627 status = stop_queue(drv_data);
1628 if (status != 0)
1629 return status;
1630 write_SSCR0(0, drv_data->ioaddr);
1631 clk_disable(ssp->clk);
1633 return 0;
1636 static int pxa2xx_spi_resume(struct platform_device *pdev)
1638 struct driver_data *drv_data = platform_get_drvdata(pdev);
1639 struct ssp_device *ssp = drv_data->ssp;
1640 int status = 0;
1642 /* Enable the SSP clock */
1643 clk_enable(ssp->clk);
1645 /* Start the queue running */
1646 status = start_queue(drv_data);
1647 if (status != 0) {
1648 dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
1649 return status;
1652 return 0;
1654 #else
1655 #define pxa2xx_spi_suspend NULL
1656 #define pxa2xx_spi_resume NULL
1657 #endif /* CONFIG_PM */
1659 static struct platform_driver driver = {
1660 .driver = {
1661 .name = "pxa2xx-spi",
1662 .owner = THIS_MODULE,
1664 .remove = pxa2xx_spi_remove,
1665 .shutdown = pxa2xx_spi_shutdown,
1666 .suspend = pxa2xx_spi_suspend,
1667 .resume = pxa2xx_spi_resume,
1670 static int __init pxa2xx_spi_init(void)
1672 return platform_driver_probe(&driver, pxa2xx_spi_probe);
1674 module_init(pxa2xx_spi_init);
1676 static void __exit pxa2xx_spi_exit(void)
1678 platform_driver_unregister(&driver);
1680 module_exit(pxa2xx_spi_exit);