ath9k: remove ATH9K_MODE_11B
[linux-2.6/mini2440.git] / drivers / net / wireless / ath / ath9k / rc.c
blob112a0ec0df4fc803d21aa72fba1967eac1e826d2
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2009 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include "ath9k.h"
20 static const struct ath_rate_table ar5416_11na_ratetable = {
21 42,
23 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
24 5400, 0x0b, 0x00, 12,
25 0, 2, 1, 0, 0, 0, 0, 0 },
26 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
27 7800, 0x0f, 0x00, 18,
28 0, 3, 1, 1, 1, 1, 1, 0 },
29 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
30 10000, 0x0a, 0x00, 24,
31 2, 4, 2, 2, 2, 2, 2, 0 },
32 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
33 13900, 0x0e, 0x00, 36,
34 2, 6, 2, 3, 3, 3, 3, 0 },
35 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
36 17300, 0x09, 0x00, 48,
37 4, 10, 3, 4, 4, 4, 4, 0 },
38 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
39 23000, 0x0d, 0x00, 72,
40 4, 14, 3, 5, 5, 5, 5, 0 },
41 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
42 27400, 0x08, 0x00, 96,
43 4, 20, 3, 6, 6, 6, 6, 0 },
44 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
45 29300, 0x0c, 0x00, 108,
46 4, 23, 3, 7, 7, 7, 7, 0 },
47 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
48 6400, 0x80, 0x00, 0,
49 0, 2, 3, 8, 24, 8, 24, 3216 },
50 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
51 12700, 0x81, 0x00, 1,
52 2, 4, 3, 9, 25, 9, 25, 6434 },
53 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
54 18800, 0x82, 0x00, 2,
55 2, 6, 3, 10, 26, 10, 26, 9650 },
56 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
57 25000, 0x83, 0x00, 3,
58 4, 10, 3, 11, 27, 11, 27, 12868 },
59 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
60 36700, 0x84, 0x00, 4,
61 4, 14, 3, 12, 28, 12, 28, 19304 },
62 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
63 48100, 0x85, 0x00, 5,
64 4, 20, 3, 13, 29, 13, 29, 25740 },
65 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
66 53500, 0x86, 0x00, 6,
67 4, 23, 3, 14, 30, 14, 30, 28956 },
68 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
69 59000, 0x87, 0x00, 7,
70 4, 25, 3, 15, 31, 15, 32, 32180 },
71 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
72 12700, 0x88, 0x00,
73 8, 0, 2, 3, 16, 33, 16, 33, 6430 },
74 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
75 24800, 0x89, 0x00, 9,
76 2, 4, 3, 17, 34, 17, 34, 12860 },
77 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
78 36600, 0x8a, 0x00, 10,
79 2, 6, 3, 18, 35, 18, 35, 19300 },
80 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
81 48100, 0x8b, 0x00, 11,
82 4, 10, 3, 19, 36, 19, 36, 25736 },
83 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
84 69500, 0x8c, 0x00, 12,
85 4, 14, 3, 20, 37, 20, 37, 38600 },
86 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
87 89500, 0x8d, 0x00, 13,
88 4, 20, 3, 21, 38, 21, 38, 51472 },
89 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
90 98900, 0x8e, 0x00, 14,
91 4, 23, 3, 22, 39, 22, 39, 57890 },
92 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
93 108300, 0x8f, 0x00, 15,
94 4, 25, 3, 23, 40, 23, 41, 64320 },
95 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
96 13200, 0x80, 0x00, 0,
97 0, 2, 3, 8, 24, 24, 24, 6684 },
98 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
99 25900, 0x81, 0x00, 1,
100 2, 4, 3, 9, 25, 25, 25, 13368 },
101 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
102 38600, 0x82, 0x00, 2,
103 2, 6, 3, 10, 26, 26, 26, 20052 },
104 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
105 49800, 0x83, 0x00, 3,
106 4, 10, 3, 11, 27, 27, 27, 26738 },
107 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
108 72200, 0x84, 0x00, 4,
109 4, 14, 3, 12, 28, 28, 28, 40104 },
110 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
111 92900, 0x85, 0x00, 5,
112 4, 20, 3, 13, 29, 29, 29, 53476 },
113 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
114 102700, 0x86, 0x00, 6,
115 4, 23, 3, 14, 30, 30, 30, 60156 },
116 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
117 112000, 0x87, 0x00, 7,
118 4, 25, 3, 15, 31, 32, 32, 66840 },
119 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
120 122000, 0x87, 0x00, 7,
121 4, 25, 3, 15, 31, 32, 32, 74200 },
122 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
123 25800, 0x88, 0x00, 8,
124 0, 2, 3, 16, 33, 33, 33, 13360 },
125 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
126 49800, 0x89, 0x00, 9,
127 2, 4, 3, 17, 34, 34, 34, 26720 },
128 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
129 71900, 0x8a, 0x00, 10,
130 2, 6, 3, 18, 35, 35, 35, 40080 },
131 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
132 92500, 0x8b, 0x00, 11,
133 4, 10, 3, 19, 36, 36, 36, 53440 },
134 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
135 130300, 0x8c, 0x00, 12,
136 4, 14, 3, 20, 37, 37, 37, 80160 },
137 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
138 162800, 0x8d, 0x00, 13,
139 4, 20, 3, 21, 38, 38, 38, 106880 },
140 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
141 178200, 0x8e, 0x00, 14,
142 4, 23, 3, 22, 39, 39, 39, 120240 },
143 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
144 192100, 0x8f, 0x00, 15,
145 4, 25, 3, 23, 40, 41, 41, 133600 },
146 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
147 207000, 0x8f, 0x00, 15,
148 4, 25, 3, 23, 40, 41, 41, 148400 },
150 50, /* probe interval */
151 50, /* rssi reduce interval */
152 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
155 /* 4ms frame limit not used for NG mode. The values filled
156 * for HT are the 64K max aggregate limit */
158 static const struct ath_rate_table ar5416_11ng_ratetable = {
161 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
162 900, 0x1b, 0x00, 2,
163 0, 0, 1, 0, 0, 0, 0, 0 },
164 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
165 1900, 0x1a, 0x04, 4,
166 1, 1, 1, 1, 1, 1, 1, 0 },
167 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
168 4900, 0x19, 0x04, 11,
169 2, 2, 2, 2, 2, 2, 2, 0 },
170 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
171 8100, 0x18, 0x04, 22,
172 3, 3, 2, 3, 3, 3, 3, 0 },
173 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
174 5400, 0x0b, 0x00, 12,
175 4, 2, 1, 4, 4, 4, 4, 0 },
176 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
177 7800, 0x0f, 0x00, 18,
178 4, 3, 1, 5, 5, 5, 5, 0 },
179 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
180 10100, 0x0a, 0x00, 24,
181 6, 4, 1, 6, 6, 6, 6, 0 },
182 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
183 14100, 0x0e, 0x00, 36,
184 6, 6, 2, 7, 7, 7, 7, 0 },
185 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
186 17700, 0x09, 0x00, 48,
187 8, 10, 3, 8, 8, 8, 8, 0 },
188 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
189 23700, 0x0d, 0x00, 72,
190 8, 14, 3, 9, 9, 9, 9, 0 },
191 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
192 27400, 0x08, 0x00, 96,
193 8, 20, 3, 10, 10, 10, 10, 0 },
194 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
195 30900, 0x0c, 0x00, 108,
196 8, 23, 3, 11, 11, 11, 11, 0 },
197 { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
198 6400, 0x80, 0x00, 0,
199 4, 2, 3, 12, 28, 12, 28, 3216 },
200 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
201 12700, 0x81, 0x00, 1,
202 6, 4, 3, 13, 29, 13, 29, 6434 },
203 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
204 18800, 0x82, 0x00, 2,
205 6, 6, 3, 14, 30, 14, 30, 9650 },
206 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
207 25000, 0x83, 0x00, 3,
208 8, 10, 3, 15, 31, 15, 31, 12868 },
209 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
210 36700, 0x84, 0x00, 4,
211 8, 14, 3, 16, 32, 16, 32, 19304 },
212 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
213 48100, 0x85, 0x00, 5,
214 8, 20, 3, 17, 33, 17, 33, 25740 },
215 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
216 53500, 0x86, 0x00, 6,
217 8, 23, 3, 18, 34, 18, 34, 28956 },
218 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
219 59000, 0x87, 0x00, 7,
220 8, 25, 3, 19, 35, 19, 36, 32180 },
221 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
222 12700, 0x88, 0x00, 8,
223 4, 2, 3, 20, 37, 20, 37, 6430 },
224 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
225 24800, 0x89, 0x00, 9,
226 6, 4, 3, 21, 38, 21, 38, 12860 },
227 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
228 36600, 0x8a, 0x00, 10,
229 6, 6, 3, 22, 39, 22, 39, 19300 },
230 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
231 48100, 0x8b, 0x00, 11,
232 8, 10, 3, 23, 40, 23, 40, 25736 },
233 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
234 69500, 0x8c, 0x00, 12,
235 8, 14, 3, 24, 41, 24, 41, 38600 },
236 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
237 89500, 0x8d, 0x00, 13,
238 8, 20, 3, 25, 42, 25, 42, 51472 },
239 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
240 98900, 0x8e, 0x00, 14,
241 8, 23, 3, 26, 43, 26, 44, 57890 },
242 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
243 108300, 0x8f, 0x00, 15,
244 8, 25, 3, 27, 44, 27, 45, 64320 },
245 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
246 13200, 0x80, 0x00, 0,
247 8, 2, 3, 12, 28, 28, 28, 6684 },
248 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
249 25900, 0x81, 0x00, 1,
250 8, 4, 3, 13, 29, 29, 29, 13368 },
251 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
252 38600, 0x82, 0x00, 2,
253 8, 6, 3, 14, 30, 30, 30, 20052 },
254 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
255 49800, 0x83, 0x00, 3,
256 8, 10, 3, 15, 31, 31, 31, 26738 },
257 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
258 72200, 0x84, 0x00, 4,
259 8, 14, 3, 16, 32, 32, 32, 40104 },
260 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
261 92900, 0x85, 0x00, 5,
262 8, 20, 3, 17, 33, 33, 33, 53476 },
263 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
264 102700, 0x86, 0x00, 6,
265 8, 23, 3, 18, 34, 34, 34, 60156 },
266 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
267 112000, 0x87, 0x00, 7,
268 8, 23, 3, 19, 35, 36, 36, 66840 },
269 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
270 122000, 0x87, 0x00, 7,
271 8, 25, 3, 19, 35, 36, 36, 74200 },
272 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
273 25800, 0x88, 0x00, 8,
274 8, 2, 3, 20, 37, 37, 37, 13360 },
275 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
276 49800, 0x89, 0x00, 9,
277 8, 4, 3, 21, 38, 38, 38, 26720 },
278 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
279 71900, 0x8a, 0x00, 10,
280 8, 6, 3, 22, 39, 39, 39, 40080 },
281 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
282 92500, 0x8b, 0x00, 11,
283 8, 10, 3, 23, 40, 40, 40, 53440 },
284 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
285 130300, 0x8c, 0x00, 12,
286 8, 14, 3, 24, 41, 41, 41, 80160 },
287 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
288 162800, 0x8d, 0x00, 13,
289 8, 20, 3, 25, 42, 42, 42, 106880 },
290 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
291 178200, 0x8e, 0x00, 14,
292 8, 23, 3, 26, 43, 43, 43, 120240 },
293 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
294 192100, 0x8f, 0x00, 15,
295 8, 23, 3, 27, 44, 45, 45, 133600 },
296 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
297 207000, 0x8f, 0x00, 15,
298 8, 25, 3, 27, 44, 45, 45, 148400 },
300 50, /* probe interval */
301 50, /* rssi reduce interval */
302 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
305 static const struct ath_rate_table ar5416_11a_ratetable = {
308 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
309 5400, 0x0b, 0x00, (0x80|12),
310 0, 2, 1, 0, 0 },
311 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
312 7800, 0x0f, 0x00, 18,
313 0, 3, 1, 1, 0 },
314 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
315 10000, 0x0a, 0x00, (0x80|24),
316 2, 4, 2, 2, 0 },
317 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
318 13900, 0x0e, 0x00, 36,
319 2, 6, 2, 3, 0 },
320 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
321 17300, 0x09, 0x00, (0x80|48),
322 4, 10, 3, 4, 0 },
323 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
324 23000, 0x0d, 0x00, 72,
325 4, 14, 3, 5, 0 },
326 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
327 27400, 0x08, 0x00, 96,
328 4, 19, 3, 6, 0 },
329 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
330 29300, 0x0c, 0x00, 108,
331 4, 23, 3, 7, 0 },
333 50, /* probe interval */
334 50, /* rssi reduce interval */
335 0, /* Phy rates allowed initially */
338 static const struct ath_rate_table ar5416_11g_ratetable = {
341 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
342 900, 0x1b, 0x00, 2,
343 0, 0, 1, 0, 0 },
344 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
345 1900, 0x1a, 0x04, 4,
346 1, 1, 1, 1, 0 },
347 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
348 4900, 0x19, 0x04, 11,
349 2, 2, 2, 2, 0 },
350 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
351 8100, 0x18, 0x04, 22,
352 3, 3, 2, 3, 0 },
353 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
354 5400, 0x0b, 0x00, 12,
355 4, 2, 1, 4, 0 },
356 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
357 7800, 0x0f, 0x00, 18,
358 4, 3, 1, 5, 0 },
359 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
360 10000, 0x0a, 0x00, 24,
361 6, 4, 1, 6, 0 },
362 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
363 13900, 0x0e, 0x00, 36,
364 6, 6, 2, 7, 0 },
365 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
366 17300, 0x09, 0x00, 48,
367 8, 10, 3, 8, 0 },
368 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
369 23000, 0x0d, 0x00, 72,
370 8, 14, 3, 9, 0 },
371 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
372 27400, 0x08, 0x00, 96,
373 8, 19, 3, 10, 0 },
374 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
375 29300, 0x0c, 0x00, 108,
376 8, 23, 3, 11, 0 },
378 50, /* probe interval */
379 50, /* rssi reduce interval */
380 0, /* Phy rates allowed initially */
383 static inline int8_t median(int8_t a, int8_t b, int8_t c)
385 if (a >= b) {
386 if (b >= c)
387 return b;
388 else if (a > c)
389 return c;
390 else
391 return a;
392 } else {
393 if (a >= c)
394 return a;
395 else if (b >= c)
396 return c;
397 else
398 return b;
402 static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
403 struct ath_rate_priv *ath_rc_priv)
405 u8 i, j, idx, idx_next;
407 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
408 for (j = 0; j <= i-1; j++) {
409 idx = ath_rc_priv->valid_rate_index[j];
410 idx_next = ath_rc_priv->valid_rate_index[j+1];
412 if (rate_table->info[idx].ratekbps >
413 rate_table->info[idx_next].ratekbps) {
414 ath_rc_priv->valid_rate_index[j] = idx_next;
415 ath_rc_priv->valid_rate_index[j+1] = idx;
421 static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
423 u8 i;
425 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
426 ath_rc_priv->valid_rate_index[i] = 0;
429 static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
430 u8 index, int valid_tx_rate)
432 ASSERT(index <= ath_rc_priv->rate_table_size);
433 ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
436 static inline
437 int ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
438 struct ath_rate_priv *ath_rc_priv,
439 u8 cur_valid_txrate,
440 u8 *next_idx)
442 u8 i;
444 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
445 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
446 *next_idx = ath_rc_priv->valid_rate_index[i+1];
447 return 1;
451 /* No more valid rates */
452 *next_idx = 0;
454 return 0;
457 /* Return true only for single stream */
459 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
461 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
462 return 0;
463 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
464 return 0;
465 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
466 return 0;
467 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
468 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
469 return 0;
470 if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
471 return 0;
472 return 1;
475 static inline int
476 ath_rc_get_lower_rix(const struct ath_rate_table *rate_table,
477 struct ath_rate_priv *ath_rc_priv,
478 u8 cur_valid_txrate, u8 *next_idx)
480 int8_t i;
482 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
483 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
484 *next_idx = ath_rc_priv->valid_rate_index[i-1];
485 return 1;
489 return 0;
492 static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
493 const struct ath_rate_table *rate_table,
494 u32 capflag)
496 u8 i, hi = 0;
497 u32 valid;
499 for (i = 0; i < rate_table->rate_cnt; i++) {
500 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
501 rate_table->info[i].valid_single_stream :
502 rate_table->info[i].valid);
503 if (valid == 1) {
504 u32 phy = rate_table->info[i].phy;
505 u8 valid_rate_count = 0;
507 if (!ath_rc_valid_phyrate(phy, capflag, 0))
508 continue;
510 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
512 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
513 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
514 ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
515 hi = A_MAX(hi, i);
519 return hi;
522 static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
523 const struct ath_rate_table *rate_table,
524 struct ath_rateset *rateset,
525 u32 capflag)
527 u8 i, j, hi = 0;
529 /* Use intersection of working rates and valid rates */
530 for (i = 0; i < rateset->rs_nrates; i++) {
531 for (j = 0; j < rate_table->rate_cnt; j++) {
532 u32 phy = rate_table->info[j].phy;
533 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
534 rate_table->info[j].valid_single_stream :
535 rate_table->info[j].valid);
536 u8 rate = rateset->rs_rates[i];
537 u8 dot11rate = rate_table->info[j].dot11rate;
539 /* We allow a rate only if its valid and the
540 * capflag matches one of the validity
541 * (VALID/VALID_20/VALID_40) flags */
543 if (((rate & 0x7F) == (dot11rate & 0x7F)) &&
544 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
545 WLAN_RC_CAP_MODE(capflag)) &&
546 !WLAN_RC_PHY_HT(phy)) {
547 u8 valid_rate_count = 0;
549 if (!ath_rc_valid_phyrate(phy, capflag, 0))
550 continue;
552 valid_rate_count =
553 ath_rc_priv->valid_phy_ratecnt[phy];
555 ath_rc_priv->valid_phy_rateidx[phy]
556 [valid_rate_count] = j;
557 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
558 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
559 hi = A_MAX(hi, j);
564 return hi;
567 static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
568 const struct ath_rate_table *rate_table,
569 u8 *mcs_set, u32 capflag)
571 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
573 u8 i, j, hi = 0;
575 /* Use intersection of working rates and valid rates */
576 for (i = 0; i < rateset->rs_nrates; i++) {
577 for (j = 0; j < rate_table->rate_cnt; j++) {
578 u32 phy = rate_table->info[j].phy;
579 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
580 rate_table->info[j].valid_single_stream :
581 rate_table->info[j].valid);
582 u8 rate = rateset->rs_rates[i];
583 u8 dot11rate = rate_table->info[j].dot11rate;
585 if (((rate & 0x7F) != (dot11rate & 0x7F)) ||
586 !WLAN_RC_PHY_HT(phy) ||
587 !WLAN_RC_PHY_HT_VALID(valid, capflag))
588 continue;
590 if (!ath_rc_valid_phyrate(phy, capflag, 0))
591 continue;
593 ath_rc_priv->valid_phy_rateidx[phy]
594 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
595 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
596 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
597 hi = A_MAX(hi, j);
601 return hi;
604 static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
605 struct ath_rate_priv *ath_rc_priv,
606 const struct ath_rate_table *rate_table,
607 int *is_probing)
609 u32 dt, best_thruput, this_thruput, now_msec;
610 u8 rate, next_rate, best_rate, maxindex, minindex;
611 int8_t rssi_last, rssi_reduce = 0, index = 0;
613 *is_probing = 0;
615 rssi_last = median(ath_rc_priv->rssi_last,
616 ath_rc_priv->rssi_last_prev,
617 ath_rc_priv->rssi_last_prev2);
620 * Age (reduce) last ack rssi based on how old it is.
621 * The bizarre numbers are so the delta is 160msec,
622 * meaning we divide by 16.
623 * 0msec <= dt <= 25msec: don't derate
624 * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
625 * 185msec <= dt: derate by 10dB
628 now_msec = jiffies_to_msecs(jiffies);
629 dt = now_msec - ath_rc_priv->rssi_time;
631 if (dt >= 185)
632 rssi_reduce = 10;
633 else if (dt >= 25)
634 rssi_reduce = (u8)((dt - 25) >> 4);
636 /* Now reduce rssi_last by rssi_reduce */
637 if (rssi_last < rssi_reduce)
638 rssi_last = 0;
639 else
640 rssi_last -= rssi_reduce;
643 * Now look up the rate in the rssi table and return it.
644 * If no rates match then we return 0 (lowest rate)
647 best_thruput = 0;
648 maxindex = ath_rc_priv->max_valid_rate-1;
650 minindex = 0;
651 best_rate = minindex;
654 * Try the higher rate first. It will reduce memory moving time
655 * if we have very good channel characteristics.
657 for (index = maxindex; index >= minindex ; index--) {
658 u8 per_thres;
660 rate = ath_rc_priv->valid_rate_index[index];
661 if (rate > ath_rc_priv->rate_max_phy)
662 continue;
665 * For TCP the average collision rate is around 11%,
666 * so we ignore PERs less than this. This is to
667 * prevent the rate we are currently using (whose
668 * PER might be in the 10-15 range because of TCP
669 * collisions) looking worse than the next lower
670 * rate whose PER has decayed close to 0. If we
671 * used to next lower rate, its PER would grow to
672 * 10-15 and we would be worse off then staying
673 * at the current rate.
675 per_thres = ath_rc_priv->state[rate].per;
676 if (per_thres < 12)
677 per_thres = 12;
679 this_thruput = rate_table->info[rate].user_ratekbps *
680 (100 - per_thres);
682 if (best_thruput <= this_thruput) {
683 best_thruput = this_thruput;
684 best_rate = rate;
688 rate = best_rate;
689 ath_rc_priv->rssi_last_lookup = rssi_last;
692 * Must check the actual rate (ratekbps) to account for
693 * non-monoticity of 11g's rate table
696 if (rate >= ath_rc_priv->rate_max_phy) {
697 rate = ath_rc_priv->rate_max_phy;
699 /* Probe the next allowed phy state */
700 if (ath_rc_get_nextvalid_txrate(rate_table,
701 ath_rc_priv, rate, &next_rate) &&
702 (now_msec - ath_rc_priv->probe_time >
703 rate_table->probe_interval) &&
704 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
705 rate = next_rate;
706 ath_rc_priv->probe_rate = rate;
707 ath_rc_priv->probe_time = now_msec;
708 ath_rc_priv->hw_maxretry_pktcnt = 0;
709 *is_probing = 1;
713 if (rate > (ath_rc_priv->rate_table_size - 1))
714 rate = ath_rc_priv->rate_table_size - 1;
716 if (rate_table->info[rate].valid &&
717 (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG))
718 return rate;
720 if (rate_table->info[rate].valid_single_stream &&
721 !(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG));
722 return rate;
724 /* This should not happen */
725 WARN_ON(1);
727 rate = ath_rc_priv->valid_rate_index[0];
729 return rate;
732 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table,
733 struct ieee80211_tx_rate *rate,
734 struct ieee80211_tx_rate_control *txrc,
735 u8 tries, u8 rix, int rtsctsenable)
737 rate->count = tries;
738 rate->idx = rix;
740 if (txrc->short_preamble)
741 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
742 if (txrc->rts || rtsctsenable)
743 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
744 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
745 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
746 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
747 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
748 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy))
749 rate->flags |= IEEE80211_TX_RC_MCS;
752 static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
753 const struct ath_rate_table *rate_table,
754 struct ieee80211_tx_info *tx_info)
756 struct ieee80211_tx_rate *rates = tx_info->control.rates;
757 int i = 0, rix = 0, cix, enable_g_protection = 0;
759 /* get the cix for the lowest valid rix */
760 for (i = 3; i >= 0; i--) {
761 if (rates[i].count && (rates[i].idx >= 0)) {
762 rix = rates[i].idx;
763 break;
766 cix = rate_table->info[rix].ctrl_rate;
768 /* All protection frames are transmited at 2Mb/s for 802.11g,
769 * otherwise we transmit them at 1Mb/s */
770 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
771 !conf_is_ht(&sc->hw->conf))
772 enable_g_protection = 1;
775 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
776 * just CTS. Note that this is only done for OFDM/HT unicast frames.
778 if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
779 !(tx_info->flags & IEEE80211_TX_CTL_NO_ACK) &&
780 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
781 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
782 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
783 cix = rate_table->info[enable_g_protection].ctrl_rate;
786 tx_info->control.rts_cts_rate_idx = cix;
789 static void ath_rc_ratefind(struct ath_softc *sc,
790 struct ath_rate_priv *ath_rc_priv,
791 struct ieee80211_tx_rate_control *txrc)
793 const struct ath_rate_table *rate_table;
794 struct sk_buff *skb = txrc->skb;
795 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
796 struct ieee80211_tx_rate *rates = tx_info->control.rates;
797 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
798 __le16 fc = hdr->frame_control;
799 u8 try_per_rate, i = 0, rix, nrix;
800 int is_probe = 0;
803 * For Multi Rate Retry we use a different number of
804 * retry attempt counts. This ends up looking like this:
806 * MRR[0] = 2
807 * MRR[1] = 2
808 * MRR[2] = 2
809 * MRR[3] = 4
812 try_per_rate = sc->hw->max_rate_tries;
814 rate_table = sc->cur_rate_table;
815 rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table, &is_probe);
816 nrix = rix;
818 if (is_probe) {
819 /* set one try for probe rates. For the
820 * probes don't enable rts */
821 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
822 1, nrix, 0);
824 /* Get the next tried/allowed rate. No RTS for the next series
825 * after the probe rate
827 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &nrix);
828 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
829 try_per_rate, nrix, 0);
831 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
832 } else {
833 /* Set the choosen rate. No RTS for first series entry. */
834 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
835 try_per_rate, nrix, 0);
838 /* Fill in the other rates for multirate retry */
839 for ( ; i < 4; i++) {
840 /* Use twice the number of tries for the last MRR segment. */
841 if (i + 1 == 4)
842 try_per_rate = 4;
844 ath_rc_get_lower_rix(rate_table, ath_rc_priv, rix, &nrix);
845 /* All other rates in the series have RTS enabled */
846 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
847 try_per_rate, nrix, 1);
851 * NB:Change rate series to enable aggregation when operating
852 * at lower MCS rates. When first rate in series is MCS2
853 * in HT40 @ 2.4GHz, series should look like:
855 * {MCS2, MCS1, MCS0, MCS0}.
857 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
858 * look like:
860 * {MCS3, MCS2, MCS1, MCS1}
862 * So, set fourth rate in series to be same as third one for
863 * above conditions.
865 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
866 (conf_is_ht(&sc->hw->conf))) {
867 u8 dot11rate = rate_table->info[rix].dot11rate;
868 u8 phy = rate_table->info[rix].phy;
869 if (i == 4 &&
870 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
871 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
872 rates[3].idx = rates[2].idx;
873 rates[3].flags = rates[2].flags;
878 * Force hardware to use computed duration for next
879 * fragment by disabling multi-rate retry, which
880 * updates duration based on the multi-rate duration table.
882 * FIXME: Fix duration
884 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK) &&
885 (ieee80211_has_morefrags(fc) ||
886 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG))) {
887 rates[1].count = rates[2].count = rates[3].count = 0;
888 rates[1].idx = rates[2].idx = rates[3].idx = 0;
889 rates[0].count = ATH_TXMAXTRY;
892 /* Setup RTS/CTS */
893 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
896 static bool ath_rc_update_per(struct ath_softc *sc,
897 const struct ath_rate_table *rate_table,
898 struct ath_rate_priv *ath_rc_priv,
899 struct ath_tx_info_priv *tx_info_priv,
900 int tx_rate, int xretries, int retries,
901 u32 now_msec)
903 bool state_change = false;
904 int count;
905 u8 last_per;
906 static u32 nretry_to_per_lookup[10] = {
907 100 * 0 / 1,
908 100 * 1 / 4,
909 100 * 1 / 2,
910 100 * 3 / 4,
911 100 * 4 / 5,
912 100 * 5 / 6,
913 100 * 6 / 7,
914 100 * 7 / 8,
915 100 * 8 / 9,
916 100 * 9 / 10
919 last_per = ath_rc_priv->state[tx_rate].per;
921 if (xretries) {
922 if (xretries == 1) {
923 ath_rc_priv->state[tx_rate].per += 30;
924 if (ath_rc_priv->state[tx_rate].per > 100)
925 ath_rc_priv->state[tx_rate].per = 100;
926 } else {
927 /* xretries == 2 */
928 count = ARRAY_SIZE(nretry_to_per_lookup);
929 if (retries >= count)
930 retries = count - 1;
932 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
933 ath_rc_priv->state[tx_rate].per =
934 (u8)(last_per - (last_per >> 3) + (100 >> 3));
937 /* xretries == 1 or 2 */
939 if (ath_rc_priv->probe_rate == tx_rate)
940 ath_rc_priv->probe_rate = 0;
942 } else { /* xretries == 0 */
943 count = ARRAY_SIZE(nretry_to_per_lookup);
944 if (retries >= count)
945 retries = count - 1;
947 if (tx_info_priv->n_bad_frames) {
948 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
949 * Assuming that n_frames is not 0. The current PER
950 * from the retries is 100 * retries / (retries+1),
951 * since the first retries attempts failed, and the
952 * next one worked. For the one that worked,
953 * n_bad_frames subframes out of n_frames wored,
954 * so the PER for that part is
955 * 100 * n_bad_frames / n_frames, and it contributes
956 * 100 * n_bad_frames / (n_frames * (retries+1)) to
957 * the above PER. The expression below is a
958 * simplified version of the sum of these two terms.
960 if (tx_info_priv->n_frames > 0) {
961 int n_frames, n_bad_frames;
962 u8 cur_per, new_per;
964 n_bad_frames = retries * tx_info_priv->n_frames +
965 tx_info_priv->n_bad_frames;
966 n_frames = tx_info_priv->n_frames * (retries + 1);
967 cur_per = (100 * n_bad_frames / n_frames) >> 3;
968 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
969 ath_rc_priv->state[tx_rate].per = new_per;
971 } else {
972 ath_rc_priv->state[tx_rate].per =
973 (u8)(last_per - (last_per >> 3) +
974 (nretry_to_per_lookup[retries] >> 3));
977 ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev;
978 ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last;
979 ath_rc_priv->rssi_last = tx_info_priv->tx.ts_rssi;
980 ath_rc_priv->rssi_time = now_msec;
983 * If we got at most one retry then increase the max rate if
984 * this was a probe. Otherwise, ignore the probe.
986 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
987 if (retries > 0 || 2 * tx_info_priv->n_bad_frames >
988 tx_info_priv->n_frames) {
990 * Since we probed with just a single attempt,
991 * any retries means the probe failed. Also,
992 * if the attempt worked, but more than half
993 * the subframes were bad then also consider
994 * the probe a failure.
996 ath_rc_priv->probe_rate = 0;
997 } else {
998 u8 probe_rate = 0;
1000 ath_rc_priv->rate_max_phy =
1001 ath_rc_priv->probe_rate;
1002 probe_rate = ath_rc_priv->probe_rate;
1004 if (ath_rc_priv->state[probe_rate].per > 30)
1005 ath_rc_priv->state[probe_rate].per = 20;
1007 ath_rc_priv->probe_rate = 0;
1010 * Since this probe succeeded, we allow the next
1011 * probe twice as soon. This allows the maxRate
1012 * to move up faster if the probes are
1013 * succesful.
1015 ath_rc_priv->probe_time =
1016 now_msec - rate_table->probe_interval / 2;
1020 if (retries > 0) {
1022 * Don't update anything. We don't know if
1023 * this was because of collisions or poor signal.
1025 * Later: if rssi_ack is close to
1026 * ath_rc_priv->state[txRate].rssi_thres and we see lots
1027 * of retries, then we could increase
1028 * ath_rc_priv->state[txRate].rssi_thres.
1030 ath_rc_priv->hw_maxretry_pktcnt = 0;
1031 } else {
1032 int32_t rssi_ackAvg;
1033 int8_t rssi_thres;
1034 int8_t rssi_ack_vmin;
1037 * It worked with no retries. First ignore bogus (small)
1038 * rssi_ack values.
1040 if (tx_rate == ath_rc_priv->rate_max_phy &&
1041 ath_rc_priv->hw_maxretry_pktcnt < 255) {
1042 ath_rc_priv->hw_maxretry_pktcnt++;
1045 if (tx_info_priv->tx.ts_rssi <
1046 rate_table->info[tx_rate].rssi_ack_validmin)
1047 goto exit;
1049 /* Average the rssi */
1050 if (tx_rate != ath_rc_priv->rssi_sum_rate) {
1051 ath_rc_priv->rssi_sum_rate = tx_rate;
1052 ath_rc_priv->rssi_sum =
1053 ath_rc_priv->rssi_sum_cnt = 0;
1056 ath_rc_priv->rssi_sum += tx_info_priv->tx.ts_rssi;
1057 ath_rc_priv->rssi_sum_cnt++;
1059 if (ath_rc_priv->rssi_sum_cnt < 4)
1060 goto exit;
1062 rssi_ackAvg =
1063 (ath_rc_priv->rssi_sum + 2) / 4;
1064 rssi_thres =
1065 ath_rc_priv->state[tx_rate].rssi_thres;
1066 rssi_ack_vmin =
1067 rate_table->info[tx_rate].rssi_ack_validmin;
1069 ath_rc_priv->rssi_sum =
1070 ath_rc_priv->rssi_sum_cnt = 0;
1072 /* Now reduce the current rssi threshold */
1073 if ((rssi_ackAvg < rssi_thres + 2) &&
1074 (rssi_thres > rssi_ack_vmin)) {
1075 ath_rc_priv->state[tx_rate].rssi_thres--;
1078 state_change = true;
1081 exit:
1082 return state_change;
1085 /* Update PER, RSSI and whatever else that the code thinks it is doing.
1086 If you can make sense of all this, you really need to go out more. */
1088 static void ath_rc_update_ht(struct ath_softc *sc,
1089 struct ath_rate_priv *ath_rc_priv,
1090 struct ath_tx_info_priv *tx_info_priv,
1091 int tx_rate, int xretries, int retries)
1093 #define CHK_RSSI(rate) \
1094 ((ath_rc_priv->state[(rate)].rssi_thres + \
1095 rate_table->info[(rate)].rssi_ack_deltamin) > \
1096 ath_rc_priv->state[(rate)+1].rssi_thres)
1098 u32 now_msec = jiffies_to_msecs(jiffies);
1099 int rate;
1100 u8 last_per;
1101 bool state_change = false;
1102 const struct ath_rate_table *rate_table = sc->cur_rate_table;
1103 int size = ath_rc_priv->rate_table_size;
1105 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1106 return;
1108 /* To compensate for some imbalance between ctrl and ext. channel */
1110 if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
1111 tx_info_priv->tx.ts_rssi =
1112 tx_info_priv->tx.ts_rssi < 3 ? 0 :
1113 tx_info_priv->tx.ts_rssi - 3;
1115 last_per = ath_rc_priv->state[tx_rate].per;
1117 /* Update PER first */
1118 state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
1119 tx_info_priv, tx_rate, xretries,
1120 retries, now_msec);
1123 * If this rate looks bad (high PER) then stop using it for
1124 * a while (except if we are probing).
1126 if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 &&
1127 rate_table->info[tx_rate].ratekbps <=
1128 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1129 ath_rc_get_lower_rix(rate_table, ath_rc_priv,
1130 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1132 /* Don't probe for a little while. */
1133 ath_rc_priv->probe_time = now_msec;
1136 if (state_change) {
1138 * Make sure the rates above this have higher rssi thresholds.
1139 * (Note: Monotonicity is kept within the OFDM rates and
1140 * within the CCK rates. However, no adjustment is
1141 * made to keep the rssi thresholds monotonically
1142 * increasing between the CCK and OFDM rates.)
1144 for (rate = tx_rate; rate < size - 1; rate++) {
1145 if (rate_table->info[rate+1].phy !=
1146 rate_table->info[tx_rate].phy)
1147 break;
1149 if (CHK_RSSI(rate)) {
1150 ath_rc_priv->state[rate+1].rssi_thres =
1151 ath_rc_priv->state[rate].rssi_thres +
1152 rate_table->info[rate].rssi_ack_deltamin;
1156 /* Make sure the rates below this have lower rssi thresholds. */
1157 for (rate = tx_rate - 1; rate >= 0; rate--) {
1158 if (rate_table->info[rate].phy !=
1159 rate_table->info[tx_rate].phy)
1160 break;
1162 if (CHK_RSSI(rate)) {
1163 if (ath_rc_priv->state[rate+1].rssi_thres <
1164 rate_table->info[rate].rssi_ack_deltamin)
1165 ath_rc_priv->state[rate].rssi_thres = 0;
1166 else {
1167 ath_rc_priv->state[rate].rssi_thres =
1168 ath_rc_priv->state[rate+1].rssi_thres -
1169 rate_table->info[rate].rssi_ack_deltamin;
1172 if (ath_rc_priv->state[rate].rssi_thres <
1173 rate_table->info[rate].rssi_ack_validmin) {
1174 ath_rc_priv->state[rate].rssi_thres =
1175 rate_table->info[rate].rssi_ack_validmin;
1181 /* Make sure the rates below this have lower PER */
1182 /* Monotonicity is kept only for rates below the current rate. */
1183 if (ath_rc_priv->state[tx_rate].per < last_per) {
1184 for (rate = tx_rate - 1; rate >= 0; rate--) {
1185 if (rate_table->info[rate].phy !=
1186 rate_table->info[tx_rate].phy)
1187 break;
1189 if (ath_rc_priv->state[rate].per >
1190 ath_rc_priv->state[rate+1].per) {
1191 ath_rc_priv->state[rate].per =
1192 ath_rc_priv->state[rate+1].per;
1197 /* Maintain monotonicity for rates above the current rate */
1198 for (rate = tx_rate; rate < size - 1; rate++) {
1199 if (ath_rc_priv->state[rate+1].per <
1200 ath_rc_priv->state[rate].per)
1201 ath_rc_priv->state[rate+1].per =
1202 ath_rc_priv->state[rate].per;
1205 /* Every so often, we reduce the thresholds and
1206 * PER (different for CCK and OFDM). */
1207 if (now_msec - ath_rc_priv->rssi_down_time >=
1208 rate_table->rssi_reduce_interval) {
1210 for (rate = 0; rate < size; rate++) {
1211 if (ath_rc_priv->state[rate].rssi_thres >
1212 rate_table->info[rate].rssi_ack_validmin)
1213 ath_rc_priv->state[rate].rssi_thres -= 1;
1215 ath_rc_priv->rssi_down_time = now_msec;
1218 /* Every so often, we reduce the thresholds
1219 * and PER (different for CCK and OFDM). */
1220 if (now_msec - ath_rc_priv->per_down_time >=
1221 rate_table->rssi_reduce_interval) {
1222 for (rate = 0; rate < size; rate++) {
1223 ath_rc_priv->state[rate].per =
1224 7 * ath_rc_priv->state[rate].per / 8;
1227 ath_rc_priv->per_down_time = now_msec;
1230 ath_debug_stat_retries(sc, tx_rate, xretries, retries,
1231 ath_rc_priv->state[tx_rate].per);
1233 #undef CHK_RSSI
1236 static int ath_rc_get_rateindex(const struct ath_rate_table *rate_table,
1237 struct ieee80211_tx_rate *rate)
1239 int rix;
1241 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1242 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
1243 rix = rate_table->info[rate->idx].ht_index;
1244 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1245 rix = rate_table->info[rate->idx].sgi_index;
1246 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1247 rix = rate_table->info[rate->idx].cw40index;
1248 else
1249 rix = rate_table->info[rate->idx].base_index;
1251 return rix;
1254 static void ath_rc_tx_status(struct ath_softc *sc,
1255 struct ath_rate_priv *ath_rc_priv,
1256 struct ieee80211_tx_info *tx_info,
1257 int final_ts_idx, int xretries, int long_retry)
1259 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1260 const struct ath_rate_table *rate_table;
1261 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1262 u8 flags;
1263 u32 i = 0, rix;
1265 rate_table = sc->cur_rate_table;
1268 * If the first rate is not the final index, there
1269 * are intermediate rate failures to be processed.
1271 if (final_ts_idx != 0) {
1272 /* Process intermediate rates that failed.*/
1273 for (i = 0; i < final_ts_idx ; i++) {
1274 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1275 flags = rates[i].flags;
1277 /* If HT40 and we have switched mode from
1278 * 40 to 20 => don't update */
1280 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1281 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1282 return;
1284 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1285 ath_rc_update_ht(sc, ath_rc_priv,
1286 tx_info_priv, rix,
1287 xretries ? 1 : 2,
1288 rates[i].count);
1291 } else {
1293 * Handle the special case of MIMO PS burst, where the second
1294 * aggregate is sent out with only one rate and one try.
1295 * Treating it as an excessive retry penalizes the rate
1296 * inordinately.
1298 if (rates[0].count == 1 && xretries == 1)
1299 xretries = 2;
1302 flags = rates[i].flags;
1304 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1305 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1306 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1307 return;
1309 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1310 ath_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix,
1311 xretries, long_retry);
1314 static const
1315 struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1316 enum ieee80211_band band,
1317 bool is_ht,
1318 bool is_cw_40)
1320 int mode = 0;
1322 switch(band) {
1323 case IEEE80211_BAND_2GHZ:
1324 mode = ATH9K_MODE_11G;
1325 if (is_ht)
1326 mode = ATH9K_MODE_11NG_HT20;
1327 if (is_cw_40)
1328 mode = ATH9K_MODE_11NG_HT40PLUS;
1329 break;
1330 case IEEE80211_BAND_5GHZ:
1331 mode = ATH9K_MODE_11A;
1332 if (is_ht)
1333 mode = ATH9K_MODE_11NA_HT20;
1334 if (is_cw_40)
1335 mode = ATH9K_MODE_11NA_HT40PLUS;
1336 break;
1337 default:
1338 DPRINTF(sc, ATH_DBG_CONFIG, "Invalid band\n");
1339 return NULL;
1342 BUG_ON(mode >= ATH9K_MODE_MAX);
1344 DPRINTF(sc, ATH_DBG_CONFIG, "Choosing rate table for mode: %d\n", mode);
1345 return sc->hw_rate_table[mode];
1348 static void ath_rc_init(struct ath_softc *sc,
1349 struct ath_rate_priv *ath_rc_priv,
1350 struct ieee80211_supported_band *sband,
1351 struct ieee80211_sta *sta,
1352 const struct ath_rate_table *rate_table)
1354 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1355 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1356 u8 i, j, k, hi = 0, hthi = 0;
1358 if (!rate_table) {
1359 DPRINTF(sc, ATH_DBG_FATAL, "Rate table not initialized\n");
1360 return;
1363 /* Initial rate table size. Will change depending
1364 * on the working rate set */
1365 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1367 /* Initialize thresholds according to the global rate table */
1368 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1369 ath_rc_priv->state[i].rssi_thres =
1370 rate_table->info[i].rssi_ack_validmin;
1371 ath_rc_priv->state[i].per = 0;
1374 /* Determine the valid rates */
1375 ath_rc_init_valid_txmask(ath_rc_priv);
1377 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1378 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1379 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1380 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1383 if (!rateset->rs_nrates) {
1384 /* No working rate, just initialize valid rates */
1385 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1386 ath_rc_priv->ht_cap);
1387 } else {
1388 /* Use intersection of working rates and valid rates */
1389 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1390 rateset, ath_rc_priv->ht_cap);
1391 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1392 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1393 rate_table,
1394 ht_mcs,
1395 ath_rc_priv->ht_cap);
1397 hi = A_MAX(hi, hthi);
1400 ath_rc_priv->rate_table_size = hi + 1;
1401 ath_rc_priv->rate_max_phy = 0;
1402 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1404 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1405 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1406 ath_rc_priv->valid_rate_index[k++] =
1407 ath_rc_priv->valid_phy_rateidx[i][j];
1410 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1411 || !ath_rc_priv->valid_phy_ratecnt[i])
1412 continue;
1414 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1416 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1417 ASSERT(k <= RATE_TABLE_SIZE);
1419 ath_rc_priv->max_valid_rate = k;
1420 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1421 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1422 sc->cur_rate_table = rate_table;
1424 DPRINTF(sc, ATH_DBG_CONFIG, "RC Initialized with capabilities: 0x%x\n",
1425 ath_rc_priv->ht_cap);
1428 static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
1429 bool is_cw40, bool is_sgi40)
1431 u8 caps = 0;
1433 if (sta->ht_cap.ht_supported) {
1434 caps = WLAN_RC_HT_FLAG;
1435 if (sc->sc_ah->caps.tx_chainmask != 1 &&
1436 ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_DS, 0, NULL)) {
1437 if (sta->ht_cap.mcs.rx_mask[1])
1438 caps |= WLAN_RC_DS_FLAG;
1440 if (is_cw40)
1441 caps |= WLAN_RC_40_FLAG;
1442 if (is_sgi40)
1443 caps |= WLAN_RC_SGI_FLAG;
1446 return caps;
1449 /***********************************/
1450 /* mac80211 Rate Control callbacks */
1451 /***********************************/
1453 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1454 struct ieee80211_sta *sta, void *priv_sta,
1455 struct sk_buff *skb)
1457 struct ath_softc *sc = priv;
1458 struct ath_rate_priv *ath_rc_priv = priv_sta;
1459 struct ath_tx_info_priv *tx_info_priv = NULL;
1460 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1461 struct ieee80211_hdr *hdr;
1462 int final_ts_idx, tx_status = 0, is_underrun = 0;
1463 __le16 fc;
1465 hdr = (struct ieee80211_hdr *)skb->data;
1466 fc = hdr->frame_control;
1467 tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1468 final_ts_idx = tx_info_priv->tx.ts_rateindex;
1470 if (!priv_sta || !ieee80211_is_data(fc) ||
1471 !tx_info_priv->update_rc)
1472 goto exit;
1474 if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT)
1475 goto exit;
1478 * If underrun error is seen assume it as an excessive retry only
1479 * if prefetch trigger level have reached the max (0x3f for 5416)
1480 * Adjust the long retry as if the frame was tried hw->max_rate_tries
1481 * times. This affects how ratectrl updates PER for the failed rate.
1483 if (tx_info_priv->tx.ts_flags &
1484 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
1485 ((sc->sc_ah->tx_trig_level) >= ath_rc_priv->tx_triglevel_max)) {
1486 tx_status = 1;
1487 is_underrun = 1;
1490 if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
1491 (tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
1492 tx_status = 1;
1494 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1495 (is_underrun) ? sc->hw->max_rate_tries :
1496 tx_info_priv->tx.ts_longretry);
1498 /* Check if aggregation has to be enabled for this tid */
1499 if (conf_is_ht(&sc->hw->conf) &&
1500 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1501 if (ieee80211_is_data_qos(fc)) {
1502 u8 *qc, tid;
1503 struct ath_node *an;
1505 qc = ieee80211_get_qos_ctl(hdr);
1506 tid = qc[0] & 0xf;
1507 an = (struct ath_node *)sta->drv_priv;
1509 if(ath_tx_aggr_check(sc, an, tid))
1510 ieee80211_start_tx_ba_session(sc->hw, hdr->addr1, tid);
1514 ath_debug_stat_rc(sc, skb);
1515 exit:
1516 kfree(tx_info_priv);
1519 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1520 struct ieee80211_tx_rate_control *txrc)
1522 struct ieee80211_supported_band *sband = txrc->sband;
1523 struct sk_buff *skb = txrc->skb;
1524 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1525 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1526 struct ath_softc *sc = priv;
1527 struct ath_rate_priv *ath_rc_priv = priv_sta;
1528 __le16 fc = hdr->frame_control;
1530 /* lowest rate for management and NO_ACK frames */
1531 if (!ieee80211_is_data(fc) ||
1532 tx_info->flags & IEEE80211_TX_CTL_NO_ACK || !sta) {
1533 tx_info->control.rates[0].idx = rate_lowest_index(sband, sta);
1534 tx_info->control.rates[0].count =
1535 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) ?
1536 1 : ATH_MGT_TXMAXTRY;
1537 return;
1540 /* Find tx rate for unicast frames */
1541 ath_rc_ratefind(sc, ath_rc_priv, txrc);
1544 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1545 struct ieee80211_sta *sta, void *priv_sta)
1547 struct ath_softc *sc = priv;
1548 struct ath_rate_priv *ath_rc_priv = priv_sta;
1549 const struct ath_rate_table *rate_table = NULL;
1550 bool is_cw40, is_sgi40;
1551 int i, j = 0;
1553 for (i = 0; i < sband->n_bitrates; i++) {
1554 if (sta->supp_rates[sband->band] & BIT(i)) {
1555 ath_rc_priv->neg_rates.rs_rates[j]
1556 = (sband->bitrates[i].bitrate * 2) / 10;
1557 j++;
1560 ath_rc_priv->neg_rates.rs_nrates = j;
1562 if (sta->ht_cap.ht_supported) {
1563 for (i = 0, j = 0; i < 77; i++) {
1564 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1565 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1566 if (j == ATH_RATE_MAX)
1567 break;
1569 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1572 is_cw40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1573 is_sgi40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
1575 /* Choose rate table first */
1577 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) ||
1578 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT) ||
1579 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)) {
1580 rate_table = ath_choose_rate_table(sc, sband->band,
1581 sta->ht_cap.ht_supported,
1582 is_cw40);
1583 } else if (sc->sc_ah->opmode == NL80211_IFTYPE_AP) {
1584 /* cur_rate_table would be set on init through config() */
1585 rate_table = sc->cur_rate_table;
1588 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi40);
1589 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1592 static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1593 struct ieee80211_sta *sta, void *priv_sta,
1594 u32 changed)
1596 struct ath_softc *sc = priv;
1597 struct ath_rate_priv *ath_rc_priv = priv_sta;
1598 const struct ath_rate_table *rate_table = NULL;
1599 bool oper_cw40 = false, oper_sgi40;
1600 bool local_cw40 = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ?
1601 true : false;
1602 bool local_sgi40 = (ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ?
1603 true : false;
1605 /* FIXME: Handle AP mode later when we support CWM */
1607 if (changed & IEEE80211_RC_HT_CHANGED) {
1608 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
1609 return;
1611 if (sc->hw->conf.channel_type == NL80211_CHAN_HT40MINUS ||
1612 sc->hw->conf.channel_type == NL80211_CHAN_HT40PLUS)
1613 oper_cw40 = true;
1615 oper_sgi40 = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1616 true : false;
1618 if ((local_cw40 != oper_cw40) || (local_sgi40 != oper_sgi40)) {
1619 rate_table = ath_choose_rate_table(sc, sband->band,
1620 sta->ht_cap.ht_supported,
1621 oper_cw40);
1622 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
1623 oper_cw40, oper_sgi40);
1624 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1626 DPRINTF(sc, ATH_DBG_CONFIG,
1627 "Operating HT Bandwidth changed to: %d\n",
1628 sc->hw->conf.channel_type);
1633 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1635 struct ath_wiphy *aphy = hw->priv;
1636 return aphy->sc;
1639 static void ath_rate_free(void *priv)
1641 return;
1644 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1646 struct ath_softc *sc = priv;
1647 struct ath_rate_priv *rate_priv;
1649 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1650 if (!rate_priv) {
1651 DPRINTF(sc, ATH_DBG_FATAL,
1652 "Unable to allocate private rc structure\n");
1653 return NULL;
1656 rate_priv->rssi_down_time = jiffies_to_msecs(jiffies);
1657 rate_priv->tx_triglevel_max = sc->sc_ah->caps.tx_triglevel_max;
1659 return rate_priv;
1662 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1663 void *priv_sta)
1665 struct ath_rate_priv *rate_priv = priv_sta;
1666 kfree(rate_priv);
1669 static struct rate_control_ops ath_rate_ops = {
1670 .module = NULL,
1671 .name = "ath9k_rate_control",
1672 .tx_status = ath_tx_status,
1673 .get_rate = ath_get_rate,
1674 .rate_init = ath_rate_init,
1675 .rate_update = ath_rate_update,
1676 .alloc = ath_rate_alloc,
1677 .free = ath_rate_free,
1678 .alloc_sta = ath_rate_alloc_sta,
1679 .free_sta = ath_rate_free_sta,
1682 void ath_rate_attach(struct ath_softc *sc)
1684 sc->hw_rate_table[ATH9K_MODE_11A] =
1685 &ar5416_11a_ratetable;
1686 sc->hw_rate_table[ATH9K_MODE_11G] =
1687 &ar5416_11g_ratetable;
1688 sc->hw_rate_table[ATH9K_MODE_11NA_HT20] =
1689 &ar5416_11na_ratetable;
1690 sc->hw_rate_table[ATH9K_MODE_11NG_HT20] =
1691 &ar5416_11ng_ratetable;
1692 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
1693 &ar5416_11na_ratetable;
1694 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
1695 &ar5416_11na_ratetable;
1696 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
1697 &ar5416_11ng_ratetable;
1698 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
1699 &ar5416_11ng_ratetable;
1702 int ath_rate_control_register(void)
1704 return ieee80211_rate_control_register(&ath_rate_ops);
1707 void ath_rate_control_unregister(void)
1709 ieee80211_rate_control_unregister(&ath_rate_ops);