5 * Block allocation handling routines for the OSTA-UDF(tm) filesystem.
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1999-2001 Ben Fennema
14 * (C) 1999 Stelias Computing Inc
18 * 02/24/99 blf Created.
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
31 #define udf_clear_bit(nr, addr) ext2_clear_bit(nr, addr)
32 #define udf_set_bit(nr, addr) ext2_set_bit(nr, addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
35 #define udf_find_next_one_bit(addr, size, offset) \
36 find_next_one_bit(addr, size, offset)
38 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
39 #define leNUM_to_cpup(x, y) xleNUM_to_cpup(x, y)
40 #define xleNUM_to_cpup(x, y) (le ## x ## _to_cpup(y))
41 #define uintBPL_t uint(BITS_PER_LONG)
42 #define uint(x) xuint(x)
43 #define xuint(x) __le ## x
45 static inline int find_next_one_bit(void *addr
, int size
, int offset
)
47 uintBPL_t
*p
= ((uintBPL_t
*) addr
) + (offset
/ BITS_PER_LONG
);
48 int result
= offset
& ~(BITS_PER_LONG
- 1);
54 offset
&= (BITS_PER_LONG
- 1);
56 tmp
= leBPL_to_cpup(p
++);
57 tmp
&= ~0UL << offset
;
58 if (size
< BITS_PER_LONG
)
62 size
-= BITS_PER_LONG
;
63 result
+= BITS_PER_LONG
;
65 while (size
& ~(BITS_PER_LONG
- 1)) {
66 tmp
= leBPL_to_cpup(p
++);
69 result
+= BITS_PER_LONG
;
70 size
-= BITS_PER_LONG
;
74 tmp
= leBPL_to_cpup(p
);
76 tmp
&= ~0UL >> (BITS_PER_LONG
- size
);
78 return result
+ ffz(~tmp
);
81 #define find_first_one_bit(addr, size)\
82 find_next_one_bit((addr), (size), 0)
84 static int read_block_bitmap(struct super_block
*sb
,
85 struct udf_bitmap
*bitmap
, unsigned int block
,
86 unsigned long bitmap_nr
)
88 struct buffer_head
*bh
= NULL
;
90 struct kernel_lb_addr loc
;
92 loc
.logicalBlockNum
= bitmap
->s_extPosition
;
93 loc
.partitionReferenceNum
= UDF_SB(sb
)->s_partition
;
95 bh
= udf_tread(sb
, udf_get_lb_pblock(sb
, &loc
, block
));
99 bitmap
->s_block_bitmap
[bitmap_nr
] = bh
;
103 static int __load_block_bitmap(struct super_block
*sb
,
104 struct udf_bitmap
*bitmap
,
105 unsigned int block_group
)
108 int nr_groups
= bitmap
->s_nr_groups
;
110 if (block_group
>= nr_groups
) {
111 udf_debug("block_group (%d) > nr_groups (%d)\n", block_group
,
115 if (bitmap
->s_block_bitmap
[block_group
]) {
118 retval
= read_block_bitmap(sb
, bitmap
, block_group
,
126 static inline int load_block_bitmap(struct super_block
*sb
,
127 struct udf_bitmap
*bitmap
,
128 unsigned int block_group
)
132 slot
= __load_block_bitmap(sb
, bitmap
, block_group
);
137 if (!bitmap
->s_block_bitmap
[slot
])
143 static void udf_add_free_space(struct super_block
*sb
, u16 partition
, u32 cnt
)
145 struct udf_sb_info
*sbi
= UDF_SB(sb
);
146 struct logicalVolIntegrityDesc
*lvid
;
151 lvid
= (struct logicalVolIntegrityDesc
*)sbi
->s_lvid_bh
->b_data
;
152 le32_add_cpu(&lvid
->freeSpaceTable
[partition
], cnt
);
153 udf_updated_lvid(sb
);
156 static void udf_bitmap_free_blocks(struct super_block
*sb
,
158 struct udf_bitmap
*bitmap
,
159 struct kernel_lb_addr
*bloc
,
163 struct udf_sb_info
*sbi
= UDF_SB(sb
);
164 struct buffer_head
*bh
= NULL
;
165 struct udf_part_map
*partmap
;
167 unsigned long block_group
;
171 unsigned long overflow
;
173 mutex_lock(&sbi
->s_alloc_mutex
);
174 partmap
= &sbi
->s_partmaps
[bloc
->partitionReferenceNum
];
175 if (bloc
->logicalBlockNum
< 0 ||
176 (bloc
->logicalBlockNum
+ count
) >
177 partmap
->s_partition_len
) {
178 udf_debug("%d < %d || %d + %d > %d\n",
179 bloc
->logicalBlockNum
, 0, bloc
->logicalBlockNum
,
180 count
, partmap
->s_partition_len
);
184 block
= bloc
->logicalBlockNum
+ offset
+
185 (sizeof(struct spaceBitmapDesc
) << 3);
189 block_group
= block
>> (sb
->s_blocksize_bits
+ 3);
190 bit
= block
% (sb
->s_blocksize
<< 3);
193 * Check to see if we are freeing blocks across a group boundary.
195 if (bit
+ count
> (sb
->s_blocksize
<< 3)) {
196 overflow
= bit
+ count
- (sb
->s_blocksize
<< 3);
199 bitmap_nr
= load_block_bitmap(sb
, bitmap
, block_group
);
203 bh
= bitmap
->s_block_bitmap
[bitmap_nr
];
204 for (i
= 0; i
< count
; i
++) {
205 if (udf_set_bit(bit
+ i
, bh
->b_data
)) {
206 udf_debug("bit %ld already set\n", bit
+ i
);
207 udf_debug("byte=%2x\n",
208 ((char *)bh
->b_data
)[(bit
+ i
) >> 3]);
211 vfs_dq_free_block(inode
, 1);
212 udf_add_free_space(sb
, sbi
->s_partition
, 1);
215 mark_buffer_dirty(bh
);
223 mutex_unlock(&sbi
->s_alloc_mutex
);
226 static int udf_bitmap_prealloc_blocks(struct super_block
*sb
,
228 struct udf_bitmap
*bitmap
,
229 uint16_t partition
, uint32_t first_block
,
230 uint32_t block_count
)
232 struct udf_sb_info
*sbi
= UDF_SB(sb
);
234 int bit
, block
, block_group
, group_start
;
235 int nr_groups
, bitmap_nr
;
236 struct buffer_head
*bh
;
239 mutex_lock(&sbi
->s_alloc_mutex
);
240 part_len
= sbi
->s_partmaps
[partition
].s_partition_len
;
241 if (first_block
< 0 || first_block
>= part_len
)
244 if (first_block
+ block_count
> part_len
)
245 block_count
= part_len
- first_block
;
248 nr_groups
= udf_compute_nr_groups(sb
, partition
);
249 block
= first_block
+ (sizeof(struct spaceBitmapDesc
) << 3);
250 block_group
= block
>> (sb
->s_blocksize_bits
+ 3);
251 group_start
= block_group
? 0 : sizeof(struct spaceBitmapDesc
);
253 bitmap_nr
= load_block_bitmap(sb
, bitmap
, block_group
);
256 bh
= bitmap
->s_block_bitmap
[bitmap_nr
];
258 bit
= block
% (sb
->s_blocksize
<< 3);
260 while (bit
< (sb
->s_blocksize
<< 3) && block_count
> 0) {
261 if (!udf_test_bit(bit
, bh
->b_data
))
263 else if (vfs_dq_prealloc_block(inode
, 1))
265 else if (!udf_clear_bit(bit
, bh
->b_data
)) {
266 udf_debug("bit already cleared for block %d\n", bit
);
267 vfs_dq_free_block(inode
, 1);
275 mark_buffer_dirty(bh
);
276 } while (block_count
> 0);
279 udf_add_free_space(sb
, partition
, -alloc_count
);
280 mutex_unlock(&sbi
->s_alloc_mutex
);
284 static int udf_bitmap_new_block(struct super_block
*sb
,
286 struct udf_bitmap
*bitmap
, uint16_t partition
,
287 uint32_t goal
, int *err
)
289 struct udf_sb_info
*sbi
= UDF_SB(sb
);
290 int newbit
, bit
= 0, block
, block_group
, group_start
;
291 int end_goal
, nr_groups
, bitmap_nr
, i
;
292 struct buffer_head
*bh
= NULL
;
297 mutex_lock(&sbi
->s_alloc_mutex
);
300 if (goal
< 0 || goal
>= sbi
->s_partmaps
[partition
].s_partition_len
)
303 nr_groups
= bitmap
->s_nr_groups
;
304 block
= goal
+ (sizeof(struct spaceBitmapDesc
) << 3);
305 block_group
= block
>> (sb
->s_blocksize_bits
+ 3);
306 group_start
= block_group
? 0 : sizeof(struct spaceBitmapDesc
);
308 bitmap_nr
= load_block_bitmap(sb
, bitmap
, block_group
);
311 bh
= bitmap
->s_block_bitmap
[bitmap_nr
];
312 ptr
= memscan((char *)bh
->b_data
+ group_start
, 0xFF,
313 sb
->s_blocksize
- group_start
);
315 if ((ptr
- ((char *)bh
->b_data
)) < sb
->s_blocksize
) {
316 bit
= block
% (sb
->s_blocksize
<< 3);
317 if (udf_test_bit(bit
, bh
->b_data
))
320 end_goal
= (bit
+ 63) & ~63;
321 bit
= udf_find_next_one_bit(bh
->b_data
, end_goal
, bit
);
325 ptr
= memscan((char *)bh
->b_data
+ (bit
>> 3), 0xFF,
326 sb
->s_blocksize
- ((bit
+ 7) >> 3));
327 newbit
= (ptr
- ((char *)bh
->b_data
)) << 3;
328 if (newbit
< sb
->s_blocksize
<< 3) {
333 newbit
= udf_find_next_one_bit(bh
->b_data
,
334 sb
->s_blocksize
<< 3, bit
);
335 if (newbit
< sb
->s_blocksize
<< 3) {
341 for (i
= 0; i
< (nr_groups
* 2); i
++) {
343 if (block_group
>= nr_groups
)
345 group_start
= block_group
? 0 : sizeof(struct spaceBitmapDesc
);
347 bitmap_nr
= load_block_bitmap(sb
, bitmap
, block_group
);
350 bh
= bitmap
->s_block_bitmap
[bitmap_nr
];
352 ptr
= memscan((char *)bh
->b_data
+ group_start
, 0xFF,
353 sb
->s_blocksize
- group_start
);
354 if ((ptr
- ((char *)bh
->b_data
)) < sb
->s_blocksize
) {
355 bit
= (ptr
- ((char *)bh
->b_data
)) << 3;
359 bit
= udf_find_next_one_bit((char *)bh
->b_data
,
360 sb
->s_blocksize
<< 3,
362 if (bit
< sb
->s_blocksize
<< 3)
366 if (i
>= (nr_groups
* 2)) {
367 mutex_unlock(&sbi
->s_alloc_mutex
);
370 if (bit
< sb
->s_blocksize
<< 3)
373 bit
= udf_find_next_one_bit(bh
->b_data
, sb
->s_blocksize
<< 3,
375 if (bit
>= sb
->s_blocksize
<< 3) {
376 mutex_unlock(&sbi
->s_alloc_mutex
);
382 while (i
< 7 && bit
> (group_start
<< 3) &&
383 udf_test_bit(bit
- 1, bh
->b_data
)) {
391 * Check quota for allocation of this block.
393 if (inode
&& vfs_dq_alloc_block(inode
, 1)) {
394 mutex_unlock(&sbi
->s_alloc_mutex
);
399 newblock
= bit
+ (block_group
<< (sb
->s_blocksize_bits
+ 3)) -
400 (sizeof(struct spaceBitmapDesc
) << 3);
402 if (!udf_clear_bit(bit
, bh
->b_data
)) {
403 udf_debug("bit already cleared for block %d\n", bit
);
407 mark_buffer_dirty(bh
);
409 udf_add_free_space(sb
, partition
, -1);
410 mutex_unlock(&sbi
->s_alloc_mutex
);
416 mutex_unlock(&sbi
->s_alloc_mutex
);
420 static void udf_table_free_blocks(struct super_block
*sb
,
423 struct kernel_lb_addr
*bloc
,
427 struct udf_sb_info
*sbi
= UDF_SB(sb
);
428 struct udf_part_map
*partmap
;
431 struct kernel_lb_addr eloc
;
432 struct extent_position oepos
, epos
;
435 struct udf_inode_info
*iinfo
;
437 mutex_lock(&sbi
->s_alloc_mutex
);
438 partmap
= &sbi
->s_partmaps
[bloc
->partitionReferenceNum
];
439 if (bloc
->logicalBlockNum
< 0 ||
440 (bloc
->logicalBlockNum
+ count
) >
441 partmap
->s_partition_len
) {
442 udf_debug("%d < %d || %d + %d > %d\n",
443 bloc
.logicalBlockNum
, 0, bloc
.logicalBlockNum
, count
,
444 partmap
->s_partition_len
);
448 iinfo
= UDF_I(table
);
449 /* We do this up front - There are some error conditions that
450 could occure, but.. oh well */
452 vfs_dq_free_block(inode
, count
);
453 udf_add_free_space(sb
, sbi
->s_partition
, count
);
455 start
= bloc
->logicalBlockNum
+ offset
;
456 end
= bloc
->logicalBlockNum
+ offset
+ count
- 1;
458 epos
.offset
= oepos
.offset
= sizeof(struct unallocSpaceEntry
);
460 epos
.block
= oepos
.block
= iinfo
->i_location
;
461 epos
.bh
= oepos
.bh
= NULL
;
464 (etype
= udf_next_aext(table
, &epos
, &eloc
, &elen
, 1)) != -1) {
465 if (((eloc
.logicalBlockNum
+
466 (elen
>> sb
->s_blocksize_bits
)) == start
)) {
467 if ((0x3FFFFFFF - elen
) <
468 (count
<< sb
->s_blocksize_bits
)) {
469 uint32_t tmp
= ((0x3FFFFFFF - elen
) >>
470 sb
->s_blocksize_bits
);
473 elen
= (etype
<< 30) |
474 (0x40000000 - sb
->s_blocksize
);
476 elen
= (etype
<< 30) |
478 (count
<< sb
->s_blocksize_bits
));
482 udf_write_aext(table
, &oepos
, &eloc
, elen
, 1);
483 } else if (eloc
.logicalBlockNum
== (end
+ 1)) {
484 if ((0x3FFFFFFF - elen
) <
485 (count
<< sb
->s_blocksize_bits
)) {
486 uint32_t tmp
= ((0x3FFFFFFF - elen
) >>
487 sb
->s_blocksize_bits
);
490 eloc
.logicalBlockNum
-= tmp
;
491 elen
= (etype
<< 30) |
492 (0x40000000 - sb
->s_blocksize
);
494 eloc
.logicalBlockNum
= start
;
495 elen
= (etype
<< 30) |
497 (count
<< sb
->s_blocksize_bits
));
501 udf_write_aext(table
, &oepos
, &eloc
, elen
, 1);
504 if (epos
.bh
!= oepos
.bh
) {
506 oepos
.block
= epos
.block
;
512 oepos
.offset
= epos
.offset
;
518 * NOTE: we CANNOT use udf_add_aext here, as it can try to
519 * allocate a new block, and since we hold the super block
520 * lock already very bad things would happen :)
522 * We copy the behavior of udf_add_aext, but instead of
523 * trying to allocate a new block close to the existing one,
524 * we just steal a block from the extent we are trying to add.
526 * It would be nice if the blocks were close together, but it
531 struct short_ad
*sad
= NULL
;
532 struct long_ad
*lad
= NULL
;
533 struct allocExtDesc
*aed
;
535 eloc
.logicalBlockNum
= start
;
536 elen
= EXT_RECORDED_ALLOCATED
|
537 (count
<< sb
->s_blocksize_bits
);
539 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
540 adsize
= sizeof(struct short_ad
);
541 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
542 adsize
= sizeof(struct long_ad
);
549 if (epos
.offset
+ (2 * adsize
) > sb
->s_blocksize
) {
556 /* Steal a block from the extent being free'd */
557 epos
.block
.logicalBlockNum
= eloc
.logicalBlockNum
;
558 eloc
.logicalBlockNum
++;
559 elen
-= sb
->s_blocksize
;
561 epos
.bh
= udf_tread(sb
,
562 udf_get_lb_pblock(sb
, &epos
.block
, 0));
567 aed
= (struct allocExtDesc
*)(epos
.bh
->b_data
);
568 aed
->previousAllocExtLocation
=
569 cpu_to_le32(oepos
.block
.logicalBlockNum
);
570 if (epos
.offset
+ adsize
> sb
->s_blocksize
) {
571 loffset
= epos
.offset
;
572 aed
->lengthAllocDescs
= cpu_to_le32(adsize
);
573 sptr
= iinfo
->i_ext
.i_data
+ epos
.offset
575 dptr
= epos
.bh
->b_data
+
576 sizeof(struct allocExtDesc
);
577 memcpy(dptr
, sptr
, adsize
);
578 epos
.offset
= sizeof(struct allocExtDesc
) +
581 loffset
= epos
.offset
+ adsize
;
582 aed
->lengthAllocDescs
= cpu_to_le32(0);
584 sptr
= oepos
.bh
->b_data
+ epos
.offset
;
585 aed
= (struct allocExtDesc
*)
587 le32_add_cpu(&aed
->lengthAllocDescs
,
590 sptr
= iinfo
->i_ext
.i_data
+
592 iinfo
->i_lenAlloc
+= adsize
;
593 mark_inode_dirty(table
);
595 epos
.offset
= sizeof(struct allocExtDesc
);
597 if (sbi
->s_udfrev
>= 0x0200)
598 udf_new_tag(epos
.bh
->b_data
, TAG_IDENT_AED
,
599 3, 1, epos
.block
.logicalBlockNum
,
602 udf_new_tag(epos
.bh
->b_data
, TAG_IDENT_AED
,
603 2, 1, epos
.block
.logicalBlockNum
,
606 switch (iinfo
->i_alloc_type
) {
607 case ICBTAG_FLAG_AD_SHORT
:
608 sad
= (struct short_ad
*)sptr
;
609 sad
->extLength
= cpu_to_le32(
610 EXT_NEXT_EXTENT_ALLOCDECS
|
613 cpu_to_le32(epos
.block
.logicalBlockNum
);
615 case ICBTAG_FLAG_AD_LONG
:
616 lad
= (struct long_ad
*)sptr
;
617 lad
->extLength
= cpu_to_le32(
618 EXT_NEXT_EXTENT_ALLOCDECS
|
621 cpu_to_lelb(epos
.block
);
625 udf_update_tag(oepos
.bh
->b_data
, loffset
);
626 mark_buffer_dirty(oepos
.bh
);
628 mark_inode_dirty(table
);
632 /* It's possible that stealing the block emptied the extent */
634 udf_write_aext(table
, &epos
, &eloc
, elen
, 1);
637 iinfo
->i_lenAlloc
+= adsize
;
638 mark_inode_dirty(table
);
640 aed
= (struct allocExtDesc
*)epos
.bh
->b_data
;
641 le32_add_cpu(&aed
->lengthAllocDescs
, adsize
);
642 udf_update_tag(epos
.bh
->b_data
, epos
.offset
);
643 mark_buffer_dirty(epos
.bh
);
652 mutex_unlock(&sbi
->s_alloc_mutex
);
656 static int udf_table_prealloc_blocks(struct super_block
*sb
,
658 struct inode
*table
, uint16_t partition
,
659 uint32_t first_block
, uint32_t block_count
)
661 struct udf_sb_info
*sbi
= UDF_SB(sb
);
663 uint32_t elen
, adsize
;
664 struct kernel_lb_addr eloc
;
665 struct extent_position epos
;
667 struct udf_inode_info
*iinfo
;
669 if (first_block
< 0 ||
670 first_block
>= sbi
->s_partmaps
[partition
].s_partition_len
)
673 iinfo
= UDF_I(table
);
674 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
675 adsize
= sizeof(struct short_ad
);
676 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
677 adsize
= sizeof(struct long_ad
);
681 mutex_lock(&sbi
->s_alloc_mutex
);
682 epos
.offset
= sizeof(struct unallocSpaceEntry
);
683 epos
.block
= iinfo
->i_location
;
685 eloc
.logicalBlockNum
= 0xFFFFFFFF;
687 while (first_block
!= eloc
.logicalBlockNum
&&
688 (etype
= udf_next_aext(table
, &epos
, &eloc
, &elen
, 1)) != -1) {
689 udf_debug("eloc=%d, elen=%d, first_block=%d\n",
690 eloc
.logicalBlockNum
, elen
, first_block
);
691 ; /* empty loop body */
694 if (first_block
== eloc
.logicalBlockNum
) {
695 epos
.offset
-= adsize
;
697 alloc_count
= (elen
>> sb
->s_blocksize_bits
);
698 if (inode
&& vfs_dq_prealloc_block(inode
,
699 alloc_count
> block_count
? block_count
: alloc_count
))
701 else if (alloc_count
> block_count
) {
702 alloc_count
= block_count
;
703 eloc
.logicalBlockNum
+= alloc_count
;
704 elen
-= (alloc_count
<< sb
->s_blocksize_bits
);
705 udf_write_aext(table
, &epos
, &eloc
,
706 (etype
<< 30) | elen
, 1);
708 udf_delete_aext(table
, epos
, eloc
,
709 (etype
<< 30) | elen
);
717 udf_add_free_space(sb
, partition
, -alloc_count
);
718 mutex_unlock(&sbi
->s_alloc_mutex
);
722 static int udf_table_new_block(struct super_block
*sb
,
724 struct inode
*table
, uint16_t partition
,
725 uint32_t goal
, int *err
)
727 struct udf_sb_info
*sbi
= UDF_SB(sb
);
728 uint32_t spread
= 0xFFFFFFFF, nspread
= 0xFFFFFFFF;
729 uint32_t newblock
= 0, adsize
;
730 uint32_t elen
, goal_elen
= 0;
731 struct kernel_lb_addr eloc
, uninitialized_var(goal_eloc
);
732 struct extent_position epos
, goal_epos
;
734 struct udf_inode_info
*iinfo
= UDF_I(table
);
738 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
739 adsize
= sizeof(struct short_ad
);
740 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
741 adsize
= sizeof(struct long_ad
);
745 mutex_lock(&sbi
->s_alloc_mutex
);
746 if (goal
< 0 || goal
>= sbi
->s_partmaps
[partition
].s_partition_len
)
749 /* We search for the closest matching block to goal. If we find
750 a exact hit, we stop. Otherwise we keep going till we run out
751 of extents. We store the buffer_head, bloc, and extoffset
752 of the current closest match and use that when we are done.
754 epos
.offset
= sizeof(struct unallocSpaceEntry
);
755 epos
.block
= iinfo
->i_location
;
756 epos
.bh
= goal_epos
.bh
= NULL
;
759 (etype
= udf_next_aext(table
, &epos
, &eloc
, &elen
, 1)) != -1) {
760 if (goal
>= eloc
.logicalBlockNum
) {
761 if (goal
< eloc
.logicalBlockNum
+
762 (elen
>> sb
->s_blocksize_bits
))
765 nspread
= goal
- eloc
.logicalBlockNum
-
766 (elen
>> sb
->s_blocksize_bits
);
768 nspread
= eloc
.logicalBlockNum
- goal
;
771 if (nspread
< spread
) {
773 if (goal_epos
.bh
!= epos
.bh
) {
774 brelse(goal_epos
.bh
);
775 goal_epos
.bh
= epos
.bh
;
776 get_bh(goal_epos
.bh
);
778 goal_epos
.block
= epos
.block
;
779 goal_epos
.offset
= epos
.offset
- adsize
;
781 goal_elen
= (etype
<< 30) | elen
;
787 if (spread
== 0xFFFFFFFF) {
788 brelse(goal_epos
.bh
);
789 mutex_unlock(&sbi
->s_alloc_mutex
);
793 /* Only allocate blocks from the beginning of the extent.
794 That way, we only delete (empty) extents, never have to insert an
795 extent because of splitting */
796 /* This works, but very poorly.... */
798 newblock
= goal_eloc
.logicalBlockNum
;
799 goal_eloc
.logicalBlockNum
++;
800 goal_elen
-= sb
->s_blocksize
;
802 if (inode
&& vfs_dq_alloc_block(inode
, 1)) {
803 brelse(goal_epos
.bh
);
804 mutex_unlock(&sbi
->s_alloc_mutex
);
810 udf_write_aext(table
, &goal_epos
, &goal_eloc
, goal_elen
, 1);
812 udf_delete_aext(table
, goal_epos
, goal_eloc
, goal_elen
);
813 brelse(goal_epos
.bh
);
815 udf_add_free_space(sb
, partition
, -1);
817 mutex_unlock(&sbi
->s_alloc_mutex
);
822 void udf_free_blocks(struct super_block
*sb
, struct inode
*inode
,
823 struct kernel_lb_addr
*bloc
, uint32_t offset
,
826 uint16_t partition
= bloc
->partitionReferenceNum
;
827 struct udf_part_map
*map
= &UDF_SB(sb
)->s_partmaps
[partition
];
829 if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_BITMAP
) {
830 udf_bitmap_free_blocks(sb
, inode
, map
->s_uspace
.s_bitmap
,
831 bloc
, offset
, count
);
832 } else if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_TABLE
) {
833 udf_table_free_blocks(sb
, inode
, map
->s_uspace
.s_table
,
834 bloc
, offset
, count
);
835 } else if (map
->s_partition_flags
& UDF_PART_FLAG_FREED_BITMAP
) {
836 udf_bitmap_free_blocks(sb
, inode
, map
->s_fspace
.s_bitmap
,
837 bloc
, offset
, count
);
838 } else if (map
->s_partition_flags
& UDF_PART_FLAG_FREED_TABLE
) {
839 udf_table_free_blocks(sb
, inode
, map
->s_fspace
.s_table
,
840 bloc
, offset
, count
);
844 inline int udf_prealloc_blocks(struct super_block
*sb
,
846 uint16_t partition
, uint32_t first_block
,
847 uint32_t block_count
)
849 struct udf_part_map
*map
= &UDF_SB(sb
)->s_partmaps
[partition
];
851 if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_BITMAP
)
852 return udf_bitmap_prealloc_blocks(sb
, inode
,
853 map
->s_uspace
.s_bitmap
,
854 partition
, first_block
,
856 else if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_TABLE
)
857 return udf_table_prealloc_blocks(sb
, inode
,
858 map
->s_uspace
.s_table
,
859 partition
, first_block
,
861 else if (map
->s_partition_flags
& UDF_PART_FLAG_FREED_BITMAP
)
862 return udf_bitmap_prealloc_blocks(sb
, inode
,
863 map
->s_fspace
.s_bitmap
,
864 partition
, first_block
,
866 else if (map
->s_partition_flags
& UDF_PART_FLAG_FREED_TABLE
)
867 return udf_table_prealloc_blocks(sb
, inode
,
868 map
->s_fspace
.s_table
,
869 partition
, first_block
,
875 inline int udf_new_block(struct super_block
*sb
,
877 uint16_t partition
, uint32_t goal
, int *err
)
879 struct udf_part_map
*map
= &UDF_SB(sb
)->s_partmaps
[partition
];
881 if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_BITMAP
)
882 return udf_bitmap_new_block(sb
, inode
,
883 map
->s_uspace
.s_bitmap
,
884 partition
, goal
, err
);
885 else if (map
->s_partition_flags
& UDF_PART_FLAG_UNALLOC_TABLE
)
886 return udf_table_new_block(sb
, inode
,
887 map
->s_uspace
.s_table
,
888 partition
, goal
, err
);
889 else if (map
->s_partition_flags
& UDF_PART_FLAG_FREED_BITMAP
)
890 return udf_bitmap_new_block(sb
, inode
,
891 map
->s_fspace
.s_bitmap
,
892 partition
, goal
, err
);
893 else if (map
->s_partition_flags
& UDF_PART_FLAG_FREED_TABLE
)
894 return udf_table_new_block(sb
, inode
,
895 map
->s_fspace
.s_table
,
896 partition
, goal
, err
);