4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mman.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
60 #include <linux/kmod.h>
64 /* for /sbin/loader handling in search_binary_handler() */
65 #include <linux/a.out.h>
69 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
70 int suid_dumpable
= 0;
72 /* The maximal length of core_pattern is also specified in sysctl.c */
74 static LIST_HEAD(formats
);
75 static DEFINE_RWLOCK(binfmt_lock
);
77 int register_binfmt(struct linux_binfmt
* fmt
)
81 write_lock(&binfmt_lock
);
82 list_add(&fmt
->lh
, &formats
);
83 write_unlock(&binfmt_lock
);
87 EXPORT_SYMBOL(register_binfmt
);
89 void unregister_binfmt(struct linux_binfmt
* fmt
)
91 write_lock(&binfmt_lock
);
93 write_unlock(&binfmt_lock
);
96 EXPORT_SYMBOL(unregister_binfmt
);
98 static inline void put_binfmt(struct linux_binfmt
* fmt
)
100 module_put(fmt
->module
);
104 * Note that a shared library must be both readable and executable due to
107 * Also note that we take the address to load from from the file itself.
109 asmlinkage
long sys_uselib(const char __user
* library
)
115 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
120 if (!S_ISREG(nd
.path
.dentry
->d_inode
->i_mode
))
123 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
);
127 file
= nameidata_to_filp(&nd
, O_RDONLY
|O_LARGEFILE
);
128 error
= PTR_ERR(file
);
134 struct linux_binfmt
* fmt
;
136 read_lock(&binfmt_lock
);
137 list_for_each_entry(fmt
, &formats
, lh
) {
138 if (!fmt
->load_shlib
)
140 if (!try_module_get(fmt
->module
))
142 read_unlock(&binfmt_lock
);
143 error
= fmt
->load_shlib(file
);
144 read_lock(&binfmt_lock
);
146 if (error
!= -ENOEXEC
)
149 read_unlock(&binfmt_lock
);
155 release_open_intent(&nd
);
162 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
168 #ifdef CONFIG_STACK_GROWSUP
170 ret
= expand_stack_downwards(bprm
->vma
, pos
);
175 ret
= get_user_pages(current
, bprm
->mm
, pos
,
176 1, write
, 1, &page
, NULL
);
181 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
185 * We've historically supported up to 32 pages (ARG_MAX)
186 * of argument strings even with small stacks
192 * Limit to 1/4-th the stack size for the argv+env strings.
194 * - the remaining binfmt code will not run out of stack space,
195 * - the program will have a reasonable amount of stack left
198 rlim
= current
->signal
->rlim
;
199 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
208 static void put_arg_page(struct page
*page
)
213 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
217 static void free_arg_pages(struct linux_binprm
*bprm
)
221 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
224 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
227 static int __bprm_mm_init(struct linux_binprm
*bprm
)
230 struct vm_area_struct
*vma
= NULL
;
231 struct mm_struct
*mm
= bprm
->mm
;
233 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
237 down_write(&mm
->mmap_sem
);
241 * Place the stack at the largest stack address the architecture
242 * supports. Later, we'll move this to an appropriate place. We don't
243 * use STACK_TOP because that can depend on attributes which aren't
246 vma
->vm_end
= STACK_TOP_MAX
;
247 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
249 vma
->vm_flags
= VM_STACK_FLAGS
;
250 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
251 err
= insert_vm_struct(mm
, vma
);
253 up_write(&mm
->mmap_sem
);
257 mm
->stack_vm
= mm
->total_vm
= 1;
258 up_write(&mm
->mmap_sem
);
260 bprm
->p
= vma
->vm_end
- sizeof(void *);
267 kmem_cache_free(vm_area_cachep
, vma
);
273 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
275 return len
<= MAX_ARG_STRLEN
;
280 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
285 page
= bprm
->page
[pos
/ PAGE_SIZE
];
286 if (!page
&& write
) {
287 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
290 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
296 static void put_arg_page(struct page
*page
)
300 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
303 __free_page(bprm
->page
[i
]);
304 bprm
->page
[i
] = NULL
;
308 static void free_arg_pages(struct linux_binprm
*bprm
)
312 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
313 free_arg_page(bprm
, i
);
316 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
321 static int __bprm_mm_init(struct linux_binprm
*bprm
)
323 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
327 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
329 return len
<= bprm
->p
;
332 #endif /* CONFIG_MMU */
335 * Create a new mm_struct and populate it with a temporary stack
336 * vm_area_struct. We don't have enough context at this point to set the stack
337 * flags, permissions, and offset, so we use temporary values. We'll update
338 * them later in setup_arg_pages().
340 int bprm_mm_init(struct linux_binprm
*bprm
)
343 struct mm_struct
*mm
= NULL
;
345 bprm
->mm
= mm
= mm_alloc();
350 err
= init_new_context(current
, mm
);
354 err
= __bprm_mm_init(bprm
);
370 * count() counts the number of strings in array ARGV.
372 static int count(char __user
* __user
* argv
, int max
)
380 if (get_user(p
, argv
))
394 * 'copy_strings()' copies argument/environment strings from the old
395 * processes's memory to the new process's stack. The call to get_user_pages()
396 * ensures the destination page is created and not swapped out.
398 static int copy_strings(int argc
, char __user
* __user
* argv
,
399 struct linux_binprm
*bprm
)
401 struct page
*kmapped_page
= NULL
;
403 unsigned long kpos
= 0;
411 if (get_user(str
, argv
+argc
) ||
412 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
417 if (!valid_arg_len(bprm
, len
)) {
422 /* We're going to work our way backwords. */
428 int offset
, bytes_to_copy
;
430 offset
= pos
% PAGE_SIZE
;
434 bytes_to_copy
= offset
;
435 if (bytes_to_copy
> len
)
438 offset
-= bytes_to_copy
;
439 pos
-= bytes_to_copy
;
440 str
-= bytes_to_copy
;
441 len
-= bytes_to_copy
;
443 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
446 page
= get_arg_page(bprm
, pos
, 1);
453 flush_kernel_dcache_page(kmapped_page
);
454 kunmap(kmapped_page
);
455 put_arg_page(kmapped_page
);
458 kaddr
= kmap(kmapped_page
);
459 kpos
= pos
& PAGE_MASK
;
460 flush_arg_page(bprm
, kpos
, kmapped_page
);
462 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
471 flush_kernel_dcache_page(kmapped_page
);
472 kunmap(kmapped_page
);
473 put_arg_page(kmapped_page
);
479 * Like copy_strings, but get argv and its values from kernel memory.
481 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
484 mm_segment_t oldfs
= get_fs();
486 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
490 EXPORT_SYMBOL(copy_strings_kernel
);
495 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
496 * the binfmt code determines where the new stack should reside, we shift it to
497 * its final location. The process proceeds as follows:
499 * 1) Use shift to calculate the new vma endpoints.
500 * 2) Extend vma to cover both the old and new ranges. This ensures the
501 * arguments passed to subsequent functions are consistent.
502 * 3) Move vma's page tables to the new range.
503 * 4) Free up any cleared pgd range.
504 * 5) Shrink the vma to cover only the new range.
506 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
508 struct mm_struct
*mm
= vma
->vm_mm
;
509 unsigned long old_start
= vma
->vm_start
;
510 unsigned long old_end
= vma
->vm_end
;
511 unsigned long length
= old_end
- old_start
;
512 unsigned long new_start
= old_start
- shift
;
513 unsigned long new_end
= old_end
- shift
;
514 struct mmu_gather
*tlb
;
516 BUG_ON(new_start
> new_end
);
519 * ensure there are no vmas between where we want to go
522 if (vma
!= find_vma(mm
, new_start
))
526 * cover the whole range: [new_start, old_end)
528 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
531 * move the page tables downwards, on failure we rely on
532 * process cleanup to remove whatever mess we made.
534 if (length
!= move_page_tables(vma
, old_start
,
535 vma
, new_start
, length
))
539 tlb
= tlb_gather_mmu(mm
, 0);
540 if (new_end
> old_start
) {
542 * when the old and new regions overlap clear from new_end.
544 free_pgd_range(tlb
, new_end
, old_end
, new_end
,
545 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
548 * otherwise, clean from old_start; this is done to not touch
549 * the address space in [new_end, old_start) some architectures
550 * have constraints on va-space that make this illegal (IA64) -
551 * for the others its just a little faster.
553 free_pgd_range(tlb
, old_start
, old_end
, new_end
,
554 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
556 tlb_finish_mmu(tlb
, new_end
, old_end
);
559 * shrink the vma to just the new range.
561 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
566 #define EXTRA_STACK_VM_PAGES 20 /* random */
569 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
570 * the stack is optionally relocated, and some extra space is added.
572 int setup_arg_pages(struct linux_binprm
*bprm
,
573 unsigned long stack_top
,
574 int executable_stack
)
577 unsigned long stack_shift
;
578 struct mm_struct
*mm
= current
->mm
;
579 struct vm_area_struct
*vma
= bprm
->vma
;
580 struct vm_area_struct
*prev
= NULL
;
581 unsigned long vm_flags
;
582 unsigned long stack_base
;
584 #ifdef CONFIG_STACK_GROWSUP
585 /* Limit stack size to 1GB */
586 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
587 if (stack_base
> (1 << 30))
588 stack_base
= 1 << 30;
590 /* Make sure we didn't let the argument array grow too large. */
591 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
594 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
596 stack_shift
= vma
->vm_start
- stack_base
;
597 mm
->arg_start
= bprm
->p
- stack_shift
;
598 bprm
->p
= vma
->vm_end
- stack_shift
;
600 stack_top
= arch_align_stack(stack_top
);
601 stack_top
= PAGE_ALIGN(stack_top
);
602 stack_shift
= vma
->vm_end
- stack_top
;
604 bprm
->p
-= stack_shift
;
605 mm
->arg_start
= bprm
->p
;
609 bprm
->loader
-= stack_shift
;
610 bprm
->exec
-= stack_shift
;
612 down_write(&mm
->mmap_sem
);
613 vm_flags
= VM_STACK_FLAGS
;
616 * Adjust stack execute permissions; explicitly enable for
617 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
618 * (arch default) otherwise.
620 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
622 else if (executable_stack
== EXSTACK_DISABLE_X
)
623 vm_flags
&= ~VM_EXEC
;
624 vm_flags
|= mm
->def_flags
;
626 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
632 /* Move stack pages down in memory. */
634 ret
= shift_arg_pages(vma
, stack_shift
);
636 up_write(&mm
->mmap_sem
);
641 #ifdef CONFIG_STACK_GROWSUP
642 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
644 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
646 ret
= expand_stack(vma
, stack_base
);
651 up_write(&mm
->mmap_sem
);
654 EXPORT_SYMBOL(setup_arg_pages
);
656 #endif /* CONFIG_MMU */
658 struct file
*open_exec(const char *name
)
664 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
668 struct inode
*inode
= nd
.path
.dentry
->d_inode
;
669 file
= ERR_PTR(-EACCES
);
670 if (S_ISREG(inode
->i_mode
)) {
671 int err
= vfs_permission(&nd
, MAY_EXEC
);
674 file
= nameidata_to_filp(&nd
,
675 O_RDONLY
|O_LARGEFILE
);
677 err
= deny_write_access(file
);
687 release_open_intent(&nd
);
693 EXPORT_SYMBOL(open_exec
);
695 int kernel_read(struct file
*file
, unsigned long offset
,
696 char *addr
, unsigned long count
)
704 /* The cast to a user pointer is valid due to the set_fs() */
705 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
710 EXPORT_SYMBOL(kernel_read
);
712 static int exec_mmap(struct mm_struct
*mm
)
714 struct task_struct
*tsk
;
715 struct mm_struct
* old_mm
, *active_mm
;
717 /* Notify parent that we're no longer interested in the old VM */
719 old_mm
= current
->mm
;
720 mm_release(tsk
, old_mm
);
724 * Make sure that if there is a core dump in progress
725 * for the old mm, we get out and die instead of going
726 * through with the exec. We must hold mmap_sem around
727 * checking core_waiters and changing tsk->mm. The
728 * core-inducing thread will increment core_waiters for
729 * each thread whose ->mm == old_mm.
731 down_read(&old_mm
->mmap_sem
);
732 if (unlikely(old_mm
->core_waiters
)) {
733 up_read(&old_mm
->mmap_sem
);
738 active_mm
= tsk
->active_mm
;
741 activate_mm(active_mm
, mm
);
743 mm_update_next_owner(old_mm
);
744 arch_pick_mmap_layout(mm
);
746 up_read(&old_mm
->mmap_sem
);
747 BUG_ON(active_mm
!= old_mm
);
756 * This function makes sure the current process has its own signal table,
757 * so that flush_signal_handlers can later reset the handlers without
758 * disturbing other processes. (Other processes might share the signal
759 * table via the CLONE_SIGHAND option to clone().)
761 static int de_thread(struct task_struct
*tsk
)
763 struct signal_struct
*sig
= tsk
->signal
;
764 struct sighand_struct
*oldsighand
= tsk
->sighand
;
765 spinlock_t
*lock
= &oldsighand
->siglock
;
766 struct task_struct
*leader
= NULL
;
769 if (thread_group_empty(tsk
))
770 goto no_thread_group
;
773 * Kill all other threads in the thread group.
776 if (signal_group_exit(sig
)) {
778 * Another group action in progress, just
779 * return so that the signal is processed.
781 spin_unlock_irq(lock
);
784 sig
->group_exit_task
= tsk
;
785 zap_other_threads(tsk
);
787 /* Account for the thread group leader hanging around: */
788 count
= thread_group_leader(tsk
) ? 1 : 2;
789 sig
->notify_count
= count
;
790 while (atomic_read(&sig
->count
) > count
) {
791 __set_current_state(TASK_UNINTERRUPTIBLE
);
792 spin_unlock_irq(lock
);
796 spin_unlock_irq(lock
);
799 * At this point all other threads have exited, all we have to
800 * do is to wait for the thread group leader to become inactive,
801 * and to assume its PID:
803 if (!thread_group_leader(tsk
)) {
804 leader
= tsk
->group_leader
;
806 sig
->notify_count
= -1; /* for exit_notify() */
808 write_lock_irq(&tasklist_lock
);
809 if (likely(leader
->exit_state
))
811 __set_current_state(TASK_UNINTERRUPTIBLE
);
812 write_unlock_irq(&tasklist_lock
);
816 if (unlikely(task_child_reaper(tsk
) == leader
))
817 task_active_pid_ns(tsk
)->child_reaper
= tsk
;
819 * The only record we have of the real-time age of a
820 * process, regardless of execs it's done, is start_time.
821 * All the past CPU time is accumulated in signal_struct
822 * from sister threads now dead. But in this non-leader
823 * exec, nothing survives from the original leader thread,
824 * whose birth marks the true age of this process now.
825 * When we take on its identity by switching to its PID, we
826 * also take its birthdate (always earlier than our own).
828 tsk
->start_time
= leader
->start_time
;
830 BUG_ON(!same_thread_group(leader
, tsk
));
831 BUG_ON(has_group_leader_pid(tsk
));
833 * An exec() starts a new thread group with the
834 * TGID of the previous thread group. Rehash the
835 * two threads with a switched PID, and release
836 * the former thread group leader:
839 /* Become a process group leader with the old leader's pid.
840 * The old leader becomes a thread of the this thread group.
841 * Note: The old leader also uses this pid until release_task
842 * is called. Odd but simple and correct.
844 detach_pid(tsk
, PIDTYPE_PID
);
845 tsk
->pid
= leader
->pid
;
846 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
847 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
848 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
849 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
851 tsk
->group_leader
= tsk
;
852 leader
->group_leader
= tsk
;
854 tsk
->exit_signal
= SIGCHLD
;
856 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
857 leader
->exit_state
= EXIT_DEAD
;
859 write_unlock_irq(&tasklist_lock
);
862 sig
->group_exit_task
= NULL
;
863 sig
->notify_count
= 0;
867 flush_itimer_signals();
869 release_task(leader
);
871 if (atomic_read(&oldsighand
->count
) != 1) {
872 struct sighand_struct
*newsighand
;
874 * This ->sighand is shared with the CLONE_SIGHAND
875 * but not CLONE_THREAD task, switch to the new one.
877 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
881 atomic_set(&newsighand
->count
, 1);
882 memcpy(newsighand
->action
, oldsighand
->action
,
883 sizeof(newsighand
->action
));
885 write_lock_irq(&tasklist_lock
);
886 spin_lock(&oldsighand
->siglock
);
887 rcu_assign_pointer(tsk
->sighand
, newsighand
);
888 spin_unlock(&oldsighand
->siglock
);
889 write_unlock_irq(&tasklist_lock
);
891 __cleanup_sighand(oldsighand
);
894 BUG_ON(!thread_group_leader(tsk
));
899 * These functions flushes out all traces of the currently running executable
900 * so that a new one can be started
902 static void flush_old_files(struct files_struct
* files
)
907 spin_lock(&files
->file_lock
);
909 unsigned long set
, i
;
913 fdt
= files_fdtable(files
);
914 if (i
>= fdt
->max_fds
)
916 set
= fdt
->close_on_exec
->fds_bits
[j
];
919 fdt
->close_on_exec
->fds_bits
[j
] = 0;
920 spin_unlock(&files
->file_lock
);
921 for ( ; set
; i
++,set
>>= 1) {
926 spin_lock(&files
->file_lock
);
929 spin_unlock(&files
->file_lock
);
932 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
934 /* buf must be at least sizeof(tsk->comm) in size */
936 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
941 void set_task_comm(struct task_struct
*tsk
, char *buf
)
944 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
948 int flush_old_exec(struct linux_binprm
* bprm
)
952 char tcomm
[sizeof(current
->comm
)];
955 * Make sure we have a private signal table and that
956 * we are unassociated from the previous thread group.
958 retval
= de_thread(current
);
962 set_mm_exe_file(bprm
->mm
, bprm
->file
);
965 * Release all of the old mmap stuff
967 retval
= exec_mmap(bprm
->mm
);
971 bprm
->mm
= NULL
; /* We're using it now */
973 /* This is the point of no return */
974 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
976 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
977 set_dumpable(current
->mm
, 1);
979 set_dumpable(current
->mm
, suid_dumpable
);
981 name
= bprm
->filename
;
983 /* Copies the binary name from after last slash */
984 for (i
=0; (ch
= *(name
++)) != '\0';) {
986 i
= 0; /* overwrite what we wrote */
988 if (i
< (sizeof(tcomm
) - 1))
992 set_task_comm(current
, tcomm
);
994 current
->flags
&= ~PF_RANDOMIZE
;
997 /* Set the new mm task size. We have to do that late because it may
998 * depend on TIF_32BIT which is only updated in flush_thread() on
999 * some architectures like powerpc
1001 current
->mm
->task_size
= TASK_SIZE
;
1003 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
) {
1005 set_dumpable(current
->mm
, suid_dumpable
);
1006 current
->pdeath_signal
= 0;
1007 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1008 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
1010 set_dumpable(current
->mm
, suid_dumpable
);
1013 /* An exec changes our domain. We are no longer part of the thread
1016 current
->self_exec_id
++;
1018 flush_signal_handlers(current
, 0);
1019 flush_old_files(current
->files
);
1027 EXPORT_SYMBOL(flush_old_exec
);
1030 * Fill the binprm structure from the inode.
1031 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1033 int prepare_binprm(struct linux_binprm
*bprm
)
1036 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1039 mode
= inode
->i_mode
;
1040 if (bprm
->file
->f_op
== NULL
)
1043 bprm
->e_uid
= current
->euid
;
1044 bprm
->e_gid
= current
->egid
;
1046 if(!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1048 if (mode
& S_ISUID
) {
1049 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1050 bprm
->e_uid
= inode
->i_uid
;
1055 * If setgid is set but no group execute bit then this
1056 * is a candidate for mandatory locking, not a setgid
1059 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1060 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1061 bprm
->e_gid
= inode
->i_gid
;
1065 /* fill in binprm security blob */
1066 retval
= security_bprm_set(bprm
);
1070 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
1071 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
1074 EXPORT_SYMBOL(prepare_binprm
);
1076 static int unsafe_exec(struct task_struct
*p
)
1079 if (p
->ptrace
& PT_PTRACED
) {
1080 if (p
->ptrace
& PT_PTRACE_CAP
)
1081 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1083 unsafe
|= LSM_UNSAFE_PTRACE
;
1085 if (atomic_read(&p
->fs
->count
) > 1 ||
1086 atomic_read(&p
->files
->count
) > 1 ||
1087 atomic_read(&p
->sighand
->count
) > 1)
1088 unsafe
|= LSM_UNSAFE_SHARE
;
1093 void compute_creds(struct linux_binprm
*bprm
)
1097 if (bprm
->e_uid
!= current
->uid
) {
1099 current
->pdeath_signal
= 0;
1104 unsafe
= unsafe_exec(current
);
1105 security_bprm_apply_creds(bprm
, unsafe
);
1106 task_unlock(current
);
1107 security_bprm_post_apply_creds(bprm
);
1109 EXPORT_SYMBOL(compute_creds
);
1112 * Arguments are '\0' separated strings found at the location bprm->p
1113 * points to; chop off the first by relocating brpm->p to right after
1114 * the first '\0' encountered.
1116 int remove_arg_zero(struct linux_binprm
*bprm
)
1119 unsigned long offset
;
1127 offset
= bprm
->p
& ~PAGE_MASK
;
1128 page
= get_arg_page(bprm
, bprm
->p
, 0);
1133 kaddr
= kmap_atomic(page
, KM_USER0
);
1135 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1136 offset
++, bprm
->p
++)
1139 kunmap_atomic(kaddr
, KM_USER0
);
1142 if (offset
== PAGE_SIZE
)
1143 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1144 } while (offset
== PAGE_SIZE
);
1153 EXPORT_SYMBOL(remove_arg_zero
);
1156 * cycle the list of binary formats handler, until one recognizes the image
1158 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1161 struct linux_binfmt
*fmt
;
1163 /* handle /sbin/loader.. */
1165 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1167 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1168 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1171 unsigned long loader
;
1173 allow_write_access(bprm
->file
);
1177 loader
= bprm
->vma
->vm_end
- sizeof(void *);
1179 file
= open_exec("/sbin/loader");
1180 retval
= PTR_ERR(file
);
1184 /* Remember if the application is TASO. */
1185 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1188 bprm
->loader
= loader
;
1189 retval
= prepare_binprm(bprm
);
1192 /* should call search_binary_handler recursively here,
1193 but it does not matter */
1197 retval
= security_bprm_check(bprm
);
1201 /* kernel module loader fixup */
1202 /* so we don't try to load run modprobe in kernel space. */
1205 retval
= audit_bprm(bprm
);
1210 for (try=0; try<2; try++) {
1211 read_lock(&binfmt_lock
);
1212 list_for_each_entry(fmt
, &formats
, lh
) {
1213 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1216 if (!try_module_get(fmt
->module
))
1218 read_unlock(&binfmt_lock
);
1219 retval
= fn(bprm
, regs
);
1222 allow_write_access(bprm
->file
);
1226 current
->did_exec
= 1;
1227 proc_exec_connector(current
);
1230 read_lock(&binfmt_lock
);
1232 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1235 read_unlock(&binfmt_lock
);
1239 read_unlock(&binfmt_lock
);
1240 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1244 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1245 if (printable(bprm
->buf
[0]) &&
1246 printable(bprm
->buf
[1]) &&
1247 printable(bprm
->buf
[2]) &&
1248 printable(bprm
->buf
[3]))
1249 break; /* -ENOEXEC */
1250 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1257 EXPORT_SYMBOL(search_binary_handler
);
1259 void free_bprm(struct linux_binprm
*bprm
)
1261 free_arg_pages(bprm
);
1266 * sys_execve() executes a new program.
1268 int do_execve(char * filename
,
1269 char __user
*__user
*argv
,
1270 char __user
*__user
*envp
,
1271 struct pt_regs
* regs
)
1273 struct linux_binprm
*bprm
;
1275 struct files_struct
*displaced
;
1278 retval
= unshare_files(&displaced
);
1283 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1287 file
= open_exec(filename
);
1288 retval
= PTR_ERR(file
);
1295 bprm
->filename
= filename
;
1296 bprm
->interp
= filename
;
1298 retval
= bprm_mm_init(bprm
);
1302 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1303 if ((retval
= bprm
->argc
) < 0)
1306 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1307 if ((retval
= bprm
->envc
) < 0)
1310 retval
= security_bprm_alloc(bprm
);
1314 retval
= prepare_binprm(bprm
);
1318 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1322 bprm
->exec
= bprm
->p
;
1323 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1327 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1331 retval
= search_binary_handler(bprm
,regs
);
1333 /* execve success */
1334 security_bprm_free(bprm
);
1335 acct_update_integrals(current
);
1338 put_files_struct(displaced
);
1344 security_bprm_free(bprm
);
1352 allow_write_access(bprm
->file
);
1360 reset_files_struct(displaced
);
1365 int set_binfmt(struct linux_binfmt
*new)
1367 struct linux_binfmt
*old
= current
->binfmt
;
1370 if (!try_module_get(new->module
))
1373 current
->binfmt
= new;
1375 module_put(old
->module
);
1379 EXPORT_SYMBOL(set_binfmt
);
1381 /* format_corename will inspect the pattern parameter, and output a
1382 * name into corename, which must have space for at least
1383 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1385 static int format_corename(char *corename
, const char *pattern
, long signr
)
1387 const char *pat_ptr
= pattern
;
1388 char *out_ptr
= corename
;
1389 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1391 int pid_in_pattern
= 0;
1394 if (*pattern
== '|')
1397 /* Repeat as long as we have more pattern to process and more output
1400 if (*pat_ptr
!= '%') {
1401 if (out_ptr
== out_end
)
1403 *out_ptr
++ = *pat_ptr
++;
1405 switch (*++pat_ptr
) {
1408 /* Double percent, output one percent */
1410 if (out_ptr
== out_end
)
1417 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1418 "%d", task_tgid_vnr(current
));
1419 if (rc
> out_end
- out_ptr
)
1425 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1426 "%d", current
->uid
);
1427 if (rc
> out_end
- out_ptr
)
1433 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1434 "%d", current
->gid
);
1435 if (rc
> out_end
- out_ptr
)
1439 /* signal that caused the coredump */
1441 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1443 if (rc
> out_end
- out_ptr
)
1447 /* UNIX time of coredump */
1450 do_gettimeofday(&tv
);
1451 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1453 if (rc
> out_end
- out_ptr
)
1460 down_read(&uts_sem
);
1461 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1462 "%s", utsname()->nodename
);
1464 if (rc
> out_end
- out_ptr
)
1470 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1471 "%s", current
->comm
);
1472 if (rc
> out_end
- out_ptr
)
1476 /* core limit size */
1478 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1479 "%lu", current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
);
1480 if (rc
> out_end
- out_ptr
)
1490 /* Backward compatibility with core_uses_pid:
1492 * If core_pattern does not include a %p (as is the default)
1493 * and core_uses_pid is set, then .%pid will be appended to
1494 * the filename. Do not do this for piped commands. */
1495 if (!ispipe
&& !pid_in_pattern
1496 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1497 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1498 ".%d", task_tgid_vnr(current
));
1499 if (rc
> out_end
- out_ptr
)
1508 static void zap_process(struct task_struct
*start
)
1510 struct task_struct
*t
;
1512 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1513 start
->signal
->group_stop_count
= 0;
1517 if (t
!= current
&& t
->mm
) {
1518 t
->mm
->core_waiters
++;
1519 sigaddset(&t
->pending
.signal
, SIGKILL
);
1520 signal_wake_up(t
, 1);
1522 } while ((t
= next_thread(t
)) != start
);
1525 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1528 struct task_struct
*g
, *p
;
1529 unsigned long flags
;
1532 spin_lock_irq(&tsk
->sighand
->siglock
);
1533 if (!signal_group_exit(tsk
->signal
)) {
1534 tsk
->signal
->group_exit_code
= exit_code
;
1538 spin_unlock_irq(&tsk
->sighand
->siglock
);
1542 if (atomic_read(&mm
->mm_users
) == mm
->core_waiters
+ 1)
1546 for_each_process(g
) {
1547 if (g
== tsk
->group_leader
)
1555 * p->sighand can't disappear, but
1556 * may be changed by de_thread()
1558 lock_task_sighand(p
, &flags
);
1560 unlock_task_sighand(p
, &flags
);
1564 } while ((p
= next_thread(p
)) != g
);
1568 return mm
->core_waiters
;
1571 static int coredump_wait(int exit_code
)
1573 struct task_struct
*tsk
= current
;
1574 struct mm_struct
*mm
= tsk
->mm
;
1575 struct completion startup_done
;
1576 struct completion
*vfork_done
;
1579 init_completion(&mm
->core_done
);
1580 init_completion(&startup_done
);
1581 mm
->core_startup_done
= &startup_done
;
1583 core_waiters
= zap_threads(tsk
, mm
, exit_code
);
1584 up_write(&mm
->mmap_sem
);
1586 if (unlikely(core_waiters
< 0))
1590 * Make sure nobody is waiting for us to release the VM,
1591 * otherwise we can deadlock when we wait on each other
1593 vfork_done
= tsk
->vfork_done
;
1595 tsk
->vfork_done
= NULL
;
1596 complete(vfork_done
);
1600 wait_for_completion(&startup_done
);
1602 BUG_ON(mm
->core_waiters
);
1603 return core_waiters
;
1607 * set_dumpable converts traditional three-value dumpable to two flags and
1608 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1609 * these bits are not changed atomically. So get_dumpable can observe the
1610 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1611 * return either old dumpable or new one by paying attention to the order of
1612 * modifying the bits.
1614 * dumpable | mm->flags (binary)
1615 * old new | initial interim final
1616 * ---------+-----------------------
1624 * (*) get_dumpable regards interim value of 10 as 11.
1626 void set_dumpable(struct mm_struct
*mm
, int value
)
1630 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1632 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1635 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1637 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1640 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1642 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1647 int get_dumpable(struct mm_struct
*mm
)
1651 ret
= mm
->flags
& 0x3;
1652 return (ret
>= 2) ? 2 : ret
;
1655 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1657 char corename
[CORENAME_MAX_SIZE
+ 1];
1658 struct mm_struct
*mm
= current
->mm
;
1659 struct linux_binfmt
* binfmt
;
1660 struct inode
* inode
;
1663 int fsuid
= current
->fsuid
;
1666 unsigned long core_limit
= current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
;
1667 char **helper_argv
= NULL
;
1668 int helper_argc
= 0;
1671 audit_core_dumps(signr
);
1673 binfmt
= current
->binfmt
;
1674 if (!binfmt
|| !binfmt
->core_dump
)
1676 down_write(&mm
->mmap_sem
);
1678 * If another thread got here first, or we are not dumpable, bail out.
1680 if (mm
->core_waiters
|| !get_dumpable(mm
)) {
1681 up_write(&mm
->mmap_sem
);
1686 * We cannot trust fsuid as being the "true" uid of the
1687 * process nor do we know its entire history. We only know it
1688 * was tainted so we dump it as root in mode 2.
1690 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1691 flag
= O_EXCL
; /* Stop rewrite attacks */
1692 current
->fsuid
= 0; /* Dump root private */
1695 retval
= coredump_wait(exit_code
);
1700 * Clear any false indication of pending signals that might
1701 * be seen by the filesystem code called to write the core file.
1703 clear_thread_flag(TIF_SIGPENDING
);
1706 * lock_kernel() because format_corename() is controlled by sysctl, which
1707 * uses lock_kernel()
1710 ispipe
= format_corename(corename
, core_pattern
, signr
);
1713 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1714 * to a pipe. Since we're not writing directly to the filesystem
1715 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1716 * created unless the pipe reader choses to write out the core file
1717 * at which point file size limits and permissions will be imposed
1718 * as it does with any other process
1720 if ((!ispipe
) && (core_limit
< binfmt
->min_coredump
))
1724 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, &helper_argc
);
1725 /* Terminate the string before the first option */
1726 delimit
= strchr(corename
, ' ');
1729 delimit
= strrchr(helper_argv
[0], '/');
1733 delimit
= helper_argv
[0];
1734 if (!strcmp(delimit
, current
->comm
)) {
1735 printk(KERN_NOTICE
"Recursive core dump detected, "
1740 core_limit
= RLIM_INFINITY
;
1742 /* SIGPIPE can happen, but it's just never processed */
1743 if (call_usermodehelper_pipe(corename
+1, helper_argv
, NULL
,
1745 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1750 file
= filp_open(corename
,
1751 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1755 inode
= file
->f_path
.dentry
->d_inode
;
1756 if (inode
->i_nlink
> 1)
1757 goto close_fail
; /* multiple links - don't dump */
1758 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1761 /* AK: actually i see no reason to not allow this for named pipes etc.,
1762 but keep the previous behaviour for now. */
1763 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1766 * Dont allow local users get cute and trick others to coredump
1767 * into their pre-created files:
1769 if (inode
->i_uid
!= current
->fsuid
)
1773 if (!file
->f_op
->write
)
1775 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1778 retval
= binfmt
->core_dump(signr
, regs
, file
, core_limit
);
1781 current
->signal
->group_exit_code
|= 0x80;
1783 filp_close(file
, NULL
);
1786 argv_free(helper_argv
);
1788 current
->fsuid
= fsuid
;
1789 complete_all(&mm
->core_done
);