x86, apic: refactor ->cpu_mask_to_apicid*()
[linux-2.6/mini2440.git] / arch / x86 / kernel / io_apic.c
blob01a2505d72751e3eb3134dba2e42f1f678f8b408
1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
4 * Copyright (C) 1997, 1998, 1999, 2000 Ingo Molnar, Hajnalka Szabo
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44 #include <linux/hpet.h>
46 #include <asm/idle.h>
47 #include <asm/io.h>
48 #include <asm/smp.h>
49 #include <asm/cpu.h>
50 #include <asm/desc.h>
51 #include <asm/proto.h>
52 #include <asm/acpi.h>
53 #include <asm/dma.h>
54 #include <asm/timer.h>
55 #include <asm/i8259.h>
56 #include <asm/nmi.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/uv/uv_hub.h>
63 #include <asm/uv/uv_irq.h>
65 #include <mach_ipi.h>
66 #include <mach_apic.h>
67 #include <mach_apicdef.h>
69 #define __apicdebuginit(type) static type __init
72 * Is the SiS APIC rmw bug present ?
73 * -1 = don't know, 0 = no, 1 = yes
75 int sis_apic_bug = -1;
77 static DEFINE_SPINLOCK(ioapic_lock);
78 static DEFINE_SPINLOCK(vector_lock);
81 * # of IRQ routing registers
83 int nr_ioapic_registers[MAX_IO_APICS];
85 /* I/O APIC entries */
86 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
87 int nr_ioapics;
89 /* MP IRQ source entries */
90 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
92 /* # of MP IRQ source entries */
93 int mp_irq_entries;
95 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
96 int mp_bus_id_to_type[MAX_MP_BUSSES];
97 #endif
99 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
101 int skip_ioapic_setup;
103 static int __init parse_noapic(char *str)
105 /* disable IO-APIC */
106 disable_ioapic_setup();
107 return 0;
109 early_param("noapic", parse_noapic);
111 struct irq_pin_list;
114 * This is performance-critical, we want to do it O(1)
116 * the indexing order of this array favors 1:1 mappings
117 * between pins and IRQs.
120 struct irq_pin_list {
121 int apic, pin;
122 struct irq_pin_list *next;
125 static struct irq_pin_list *get_one_free_irq_2_pin(int cpu)
127 struct irq_pin_list *pin;
128 int node;
130 node = cpu_to_node(cpu);
132 pin = kzalloc_node(sizeof(*pin), GFP_ATOMIC, node);
134 return pin;
137 struct irq_cfg {
138 struct irq_pin_list *irq_2_pin;
139 cpumask_var_t domain;
140 cpumask_var_t old_domain;
141 unsigned move_cleanup_count;
142 u8 vector;
143 u8 move_in_progress : 1;
144 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
145 u8 move_desc_pending : 1;
146 #endif
149 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
150 #ifdef CONFIG_SPARSE_IRQ
151 static struct irq_cfg irq_cfgx[] = {
152 #else
153 static struct irq_cfg irq_cfgx[NR_IRQS] = {
154 #endif
155 [0] = { .vector = IRQ0_VECTOR, },
156 [1] = { .vector = IRQ1_VECTOR, },
157 [2] = { .vector = IRQ2_VECTOR, },
158 [3] = { .vector = IRQ3_VECTOR, },
159 [4] = { .vector = IRQ4_VECTOR, },
160 [5] = { .vector = IRQ5_VECTOR, },
161 [6] = { .vector = IRQ6_VECTOR, },
162 [7] = { .vector = IRQ7_VECTOR, },
163 [8] = { .vector = IRQ8_VECTOR, },
164 [9] = { .vector = IRQ9_VECTOR, },
165 [10] = { .vector = IRQ10_VECTOR, },
166 [11] = { .vector = IRQ11_VECTOR, },
167 [12] = { .vector = IRQ12_VECTOR, },
168 [13] = { .vector = IRQ13_VECTOR, },
169 [14] = { .vector = IRQ14_VECTOR, },
170 [15] = { .vector = IRQ15_VECTOR, },
173 int __init arch_early_irq_init(void)
175 struct irq_cfg *cfg;
176 struct irq_desc *desc;
177 int count;
178 int i;
180 cfg = irq_cfgx;
181 count = ARRAY_SIZE(irq_cfgx);
183 for (i = 0; i < count; i++) {
184 desc = irq_to_desc(i);
185 desc->chip_data = &cfg[i];
186 alloc_bootmem_cpumask_var(&cfg[i].domain);
187 alloc_bootmem_cpumask_var(&cfg[i].old_domain);
188 if (i < NR_IRQS_LEGACY)
189 cpumask_setall(cfg[i].domain);
192 return 0;
195 #ifdef CONFIG_SPARSE_IRQ
196 static struct irq_cfg *irq_cfg(unsigned int irq)
198 struct irq_cfg *cfg = NULL;
199 struct irq_desc *desc;
201 desc = irq_to_desc(irq);
202 if (desc)
203 cfg = desc->chip_data;
205 return cfg;
208 static struct irq_cfg *get_one_free_irq_cfg(int cpu)
210 struct irq_cfg *cfg;
211 int node;
213 node = cpu_to_node(cpu);
215 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
216 if (cfg) {
217 if (!alloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node)) {
218 kfree(cfg);
219 cfg = NULL;
220 } else if (!alloc_cpumask_var_node(&cfg->old_domain,
221 GFP_ATOMIC, node)) {
222 free_cpumask_var(cfg->domain);
223 kfree(cfg);
224 cfg = NULL;
225 } else {
226 cpumask_clear(cfg->domain);
227 cpumask_clear(cfg->old_domain);
231 return cfg;
234 int arch_init_chip_data(struct irq_desc *desc, int cpu)
236 struct irq_cfg *cfg;
238 cfg = desc->chip_data;
239 if (!cfg) {
240 desc->chip_data = get_one_free_irq_cfg(cpu);
241 if (!desc->chip_data) {
242 printk(KERN_ERR "can not alloc irq_cfg\n");
243 BUG_ON(1);
247 return 0;
250 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
252 static void
253 init_copy_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg, int cpu)
255 struct irq_pin_list *old_entry, *head, *tail, *entry;
257 cfg->irq_2_pin = NULL;
258 old_entry = old_cfg->irq_2_pin;
259 if (!old_entry)
260 return;
262 entry = get_one_free_irq_2_pin(cpu);
263 if (!entry)
264 return;
266 entry->apic = old_entry->apic;
267 entry->pin = old_entry->pin;
268 head = entry;
269 tail = entry;
270 old_entry = old_entry->next;
271 while (old_entry) {
272 entry = get_one_free_irq_2_pin(cpu);
273 if (!entry) {
274 entry = head;
275 while (entry) {
276 head = entry->next;
277 kfree(entry);
278 entry = head;
280 /* still use the old one */
281 return;
283 entry->apic = old_entry->apic;
284 entry->pin = old_entry->pin;
285 tail->next = entry;
286 tail = entry;
287 old_entry = old_entry->next;
290 tail->next = NULL;
291 cfg->irq_2_pin = head;
294 static void free_irq_2_pin(struct irq_cfg *old_cfg, struct irq_cfg *cfg)
296 struct irq_pin_list *entry, *next;
298 if (old_cfg->irq_2_pin == cfg->irq_2_pin)
299 return;
301 entry = old_cfg->irq_2_pin;
303 while (entry) {
304 next = entry->next;
305 kfree(entry);
306 entry = next;
308 old_cfg->irq_2_pin = NULL;
311 void arch_init_copy_chip_data(struct irq_desc *old_desc,
312 struct irq_desc *desc, int cpu)
314 struct irq_cfg *cfg;
315 struct irq_cfg *old_cfg;
317 cfg = get_one_free_irq_cfg(cpu);
319 if (!cfg)
320 return;
322 desc->chip_data = cfg;
324 old_cfg = old_desc->chip_data;
326 memcpy(cfg, old_cfg, sizeof(struct irq_cfg));
328 init_copy_irq_2_pin(old_cfg, cfg, cpu);
331 static void free_irq_cfg(struct irq_cfg *old_cfg)
333 kfree(old_cfg);
336 void arch_free_chip_data(struct irq_desc *old_desc, struct irq_desc *desc)
338 struct irq_cfg *old_cfg, *cfg;
340 old_cfg = old_desc->chip_data;
341 cfg = desc->chip_data;
343 if (old_cfg == cfg)
344 return;
346 if (old_cfg) {
347 free_irq_2_pin(old_cfg, cfg);
348 free_irq_cfg(old_cfg);
349 old_desc->chip_data = NULL;
353 static void
354 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
356 struct irq_cfg *cfg = desc->chip_data;
358 if (!cfg->move_in_progress) {
359 /* it means that domain is not changed */
360 if (!cpumask_intersects(desc->affinity, mask))
361 cfg->move_desc_pending = 1;
364 #endif
366 #else
367 static struct irq_cfg *irq_cfg(unsigned int irq)
369 return irq < nr_irqs ? irq_cfgx + irq : NULL;
372 #endif
374 #ifndef CONFIG_NUMA_MIGRATE_IRQ_DESC
375 static inline void
376 set_extra_move_desc(struct irq_desc *desc, const struct cpumask *mask)
379 #endif
381 struct io_apic {
382 unsigned int index;
383 unsigned int unused[3];
384 unsigned int data;
387 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
389 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
390 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
393 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
395 struct io_apic __iomem *io_apic = io_apic_base(apic);
396 writel(reg, &io_apic->index);
397 return readl(&io_apic->data);
400 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
402 struct io_apic __iomem *io_apic = io_apic_base(apic);
403 writel(reg, &io_apic->index);
404 writel(value, &io_apic->data);
408 * Re-write a value: to be used for read-modify-write
409 * cycles where the read already set up the index register.
411 * Older SiS APIC requires we rewrite the index register
413 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
415 struct io_apic __iomem *io_apic = io_apic_base(apic);
417 if (sis_apic_bug)
418 writel(reg, &io_apic->index);
419 writel(value, &io_apic->data);
422 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
424 struct irq_pin_list *entry;
425 unsigned long flags;
427 spin_lock_irqsave(&ioapic_lock, flags);
428 entry = cfg->irq_2_pin;
429 for (;;) {
430 unsigned int reg;
431 int pin;
433 if (!entry)
434 break;
435 pin = entry->pin;
436 reg = io_apic_read(entry->apic, 0x10 + pin*2);
437 /* Is the remote IRR bit set? */
438 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
439 spin_unlock_irqrestore(&ioapic_lock, flags);
440 return true;
442 if (!entry->next)
443 break;
444 entry = entry->next;
446 spin_unlock_irqrestore(&ioapic_lock, flags);
448 return false;
451 union entry_union {
452 struct { u32 w1, w2; };
453 struct IO_APIC_route_entry entry;
456 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
458 union entry_union eu;
459 unsigned long flags;
460 spin_lock_irqsave(&ioapic_lock, flags);
461 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
462 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
463 spin_unlock_irqrestore(&ioapic_lock, flags);
464 return eu.entry;
468 * When we write a new IO APIC routing entry, we need to write the high
469 * word first! If the mask bit in the low word is clear, we will enable
470 * the interrupt, and we need to make sure the entry is fully populated
471 * before that happens.
473 static void
474 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
476 union entry_union eu;
477 eu.entry = e;
478 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
479 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
482 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
484 unsigned long flags;
485 spin_lock_irqsave(&ioapic_lock, flags);
486 __ioapic_write_entry(apic, pin, e);
487 spin_unlock_irqrestore(&ioapic_lock, flags);
491 * When we mask an IO APIC routing entry, we need to write the low
492 * word first, in order to set the mask bit before we change the
493 * high bits!
495 static void ioapic_mask_entry(int apic, int pin)
497 unsigned long flags;
498 union entry_union eu = { .entry.mask = 1 };
500 spin_lock_irqsave(&ioapic_lock, flags);
501 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
502 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
503 spin_unlock_irqrestore(&ioapic_lock, flags);
506 #ifdef CONFIG_SMP
507 static void send_cleanup_vector(struct irq_cfg *cfg)
509 cpumask_var_t cleanup_mask;
511 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
512 unsigned int i;
513 cfg->move_cleanup_count = 0;
514 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
515 cfg->move_cleanup_count++;
516 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
517 send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
518 } else {
519 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
520 cfg->move_cleanup_count = cpumask_weight(cleanup_mask);
521 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
522 free_cpumask_var(cleanup_mask);
524 cfg->move_in_progress = 0;
527 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
529 int apic, pin;
530 struct irq_pin_list *entry;
531 u8 vector = cfg->vector;
533 entry = cfg->irq_2_pin;
534 for (;;) {
535 unsigned int reg;
537 if (!entry)
538 break;
540 apic = entry->apic;
541 pin = entry->pin;
542 #ifdef CONFIG_INTR_REMAP
544 * With interrupt-remapping, destination information comes
545 * from interrupt-remapping table entry.
547 if (!irq_remapped(irq))
548 io_apic_write(apic, 0x11 + pin*2, dest);
549 #else
550 io_apic_write(apic, 0x11 + pin*2, dest);
551 #endif
552 reg = io_apic_read(apic, 0x10 + pin*2);
553 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
554 reg |= vector;
555 io_apic_modify(apic, 0x10 + pin*2, reg);
556 if (!entry->next)
557 break;
558 entry = entry->next;
562 static int
563 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask);
566 * Either sets desc->affinity to a valid value, and returns
567 * ->cpu_mask_to_apicid of that, or returns BAD_APICID and
568 * leaves desc->affinity untouched.
570 static unsigned int
571 set_desc_affinity(struct irq_desc *desc, const struct cpumask *mask)
573 struct irq_cfg *cfg;
574 unsigned int irq;
576 if (!cpumask_intersects(mask, cpu_online_mask))
577 return BAD_APICID;
579 irq = desc->irq;
580 cfg = desc->chip_data;
581 if (assign_irq_vector(irq, cfg, mask))
582 return BAD_APICID;
584 cpumask_and(desc->affinity, cfg->domain, mask);
585 set_extra_move_desc(desc, mask);
587 return apic->cpu_mask_to_apicid_and(desc->affinity, cpu_online_mask);
590 static void
591 set_ioapic_affinity_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
593 struct irq_cfg *cfg;
594 unsigned long flags;
595 unsigned int dest;
596 unsigned int irq;
598 irq = desc->irq;
599 cfg = desc->chip_data;
601 spin_lock_irqsave(&ioapic_lock, flags);
602 dest = set_desc_affinity(desc, mask);
603 if (dest != BAD_APICID) {
604 /* Only the high 8 bits are valid. */
605 dest = SET_APIC_LOGICAL_ID(dest);
606 __target_IO_APIC_irq(irq, dest, cfg);
608 spin_unlock_irqrestore(&ioapic_lock, flags);
611 static void
612 set_ioapic_affinity_irq(unsigned int irq, const struct cpumask *mask)
614 struct irq_desc *desc;
616 desc = irq_to_desc(irq);
618 set_ioapic_affinity_irq_desc(desc, mask);
620 #endif /* CONFIG_SMP */
623 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
624 * shared ISA-space IRQs, so we have to support them. We are super
625 * fast in the common case, and fast for shared ISA-space IRQs.
627 static void add_pin_to_irq_cpu(struct irq_cfg *cfg, int cpu, int apic, int pin)
629 struct irq_pin_list *entry;
631 entry = cfg->irq_2_pin;
632 if (!entry) {
633 entry = get_one_free_irq_2_pin(cpu);
634 if (!entry) {
635 printk(KERN_ERR "can not alloc irq_2_pin to add %d - %d\n",
636 apic, pin);
637 return;
639 cfg->irq_2_pin = entry;
640 entry->apic = apic;
641 entry->pin = pin;
642 return;
645 while (entry->next) {
646 /* not again, please */
647 if (entry->apic == apic && entry->pin == pin)
648 return;
650 entry = entry->next;
653 entry->next = get_one_free_irq_2_pin(cpu);
654 entry = entry->next;
655 entry->apic = apic;
656 entry->pin = pin;
660 * Reroute an IRQ to a different pin.
662 static void __init replace_pin_at_irq_cpu(struct irq_cfg *cfg, int cpu,
663 int oldapic, int oldpin,
664 int newapic, int newpin)
666 struct irq_pin_list *entry = cfg->irq_2_pin;
667 int replaced = 0;
669 while (entry) {
670 if (entry->apic == oldapic && entry->pin == oldpin) {
671 entry->apic = newapic;
672 entry->pin = newpin;
673 replaced = 1;
674 /* every one is different, right? */
675 break;
677 entry = entry->next;
680 /* why? call replace before add? */
681 if (!replaced)
682 add_pin_to_irq_cpu(cfg, cpu, newapic, newpin);
685 static inline void io_apic_modify_irq(struct irq_cfg *cfg,
686 int mask_and, int mask_or,
687 void (*final)(struct irq_pin_list *entry))
689 int pin;
690 struct irq_pin_list *entry;
692 for (entry = cfg->irq_2_pin; entry != NULL; entry = entry->next) {
693 unsigned int reg;
694 pin = entry->pin;
695 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
696 reg &= mask_and;
697 reg |= mask_or;
698 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
699 if (final)
700 final(entry);
704 static void __unmask_IO_APIC_irq(struct irq_cfg *cfg)
706 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
709 #ifdef CONFIG_X86_64
710 static void io_apic_sync(struct irq_pin_list *entry)
713 * Synchronize the IO-APIC and the CPU by doing
714 * a dummy read from the IO-APIC
716 struct io_apic __iomem *io_apic;
717 io_apic = io_apic_base(entry->apic);
718 readl(&io_apic->data);
721 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
723 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
725 #else /* CONFIG_X86_32 */
726 static void __mask_IO_APIC_irq(struct irq_cfg *cfg)
728 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, NULL);
731 static void __mask_and_edge_IO_APIC_irq(struct irq_cfg *cfg)
733 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_LEVEL_TRIGGER,
734 IO_APIC_REDIR_MASKED, NULL);
737 static void __unmask_and_level_IO_APIC_irq(struct irq_cfg *cfg)
739 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED,
740 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
742 #endif /* CONFIG_X86_32 */
744 static void mask_IO_APIC_irq_desc(struct irq_desc *desc)
746 struct irq_cfg *cfg = desc->chip_data;
747 unsigned long flags;
749 BUG_ON(!cfg);
751 spin_lock_irqsave(&ioapic_lock, flags);
752 __mask_IO_APIC_irq(cfg);
753 spin_unlock_irqrestore(&ioapic_lock, flags);
756 static void unmask_IO_APIC_irq_desc(struct irq_desc *desc)
758 struct irq_cfg *cfg = desc->chip_data;
759 unsigned long flags;
761 spin_lock_irqsave(&ioapic_lock, flags);
762 __unmask_IO_APIC_irq(cfg);
763 spin_unlock_irqrestore(&ioapic_lock, flags);
766 static void mask_IO_APIC_irq(unsigned int irq)
768 struct irq_desc *desc = irq_to_desc(irq);
770 mask_IO_APIC_irq_desc(desc);
772 static void unmask_IO_APIC_irq(unsigned int irq)
774 struct irq_desc *desc = irq_to_desc(irq);
776 unmask_IO_APIC_irq_desc(desc);
779 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
781 struct IO_APIC_route_entry entry;
783 /* Check delivery_mode to be sure we're not clearing an SMI pin */
784 entry = ioapic_read_entry(apic, pin);
785 if (entry.delivery_mode == dest_SMI)
786 return;
788 * Disable it in the IO-APIC irq-routing table:
790 ioapic_mask_entry(apic, pin);
793 static void clear_IO_APIC (void)
795 int apic, pin;
797 for (apic = 0; apic < nr_ioapics; apic++)
798 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
799 clear_IO_APIC_pin(apic, pin);
802 #if !defined(CONFIG_SMP) && defined(CONFIG_X86_32)
803 void send_IPI_self(int vector)
805 unsigned int cfg;
808 * Wait for idle.
810 apic_wait_icr_idle();
811 cfg = APIC_DM_FIXED | APIC_DEST_SELF | vector | apic->dest_logical;
813 * Send the IPI. The write to APIC_ICR fires this off.
815 apic_write(APIC_ICR, cfg);
817 #endif /* !CONFIG_SMP && CONFIG_X86_32*/
819 #ifdef CONFIG_X86_32
821 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
822 * specific CPU-side IRQs.
825 #define MAX_PIRQS 8
826 static int pirq_entries [MAX_PIRQS];
827 static int pirqs_enabled;
829 static int __init ioapic_pirq_setup(char *str)
831 int i, max;
832 int ints[MAX_PIRQS+1];
834 get_options(str, ARRAY_SIZE(ints), ints);
836 for (i = 0; i < MAX_PIRQS; i++)
837 pirq_entries[i] = -1;
839 pirqs_enabled = 1;
840 apic_printk(APIC_VERBOSE, KERN_INFO
841 "PIRQ redirection, working around broken MP-BIOS.\n");
842 max = MAX_PIRQS;
843 if (ints[0] < MAX_PIRQS)
844 max = ints[0];
846 for (i = 0; i < max; i++) {
847 apic_printk(APIC_VERBOSE, KERN_DEBUG
848 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
850 * PIRQs are mapped upside down, usually.
852 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
854 return 1;
857 __setup("pirq=", ioapic_pirq_setup);
858 #endif /* CONFIG_X86_32 */
860 #ifdef CONFIG_INTR_REMAP
861 /* I/O APIC RTE contents at the OS boot up */
862 static struct IO_APIC_route_entry *early_ioapic_entries[MAX_IO_APICS];
865 * Saves and masks all the unmasked IO-APIC RTE's
867 int save_mask_IO_APIC_setup(void)
869 union IO_APIC_reg_01 reg_01;
870 unsigned long flags;
871 int apic, pin;
874 * The number of IO-APIC IRQ registers (== #pins):
876 for (apic = 0; apic < nr_ioapics; apic++) {
877 spin_lock_irqsave(&ioapic_lock, flags);
878 reg_01.raw = io_apic_read(apic, 1);
879 spin_unlock_irqrestore(&ioapic_lock, flags);
880 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
883 for (apic = 0; apic < nr_ioapics; apic++) {
884 early_ioapic_entries[apic] =
885 kzalloc(sizeof(struct IO_APIC_route_entry) *
886 nr_ioapic_registers[apic], GFP_KERNEL);
887 if (!early_ioapic_entries[apic])
888 goto nomem;
891 for (apic = 0; apic < nr_ioapics; apic++)
892 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
893 struct IO_APIC_route_entry entry;
895 entry = early_ioapic_entries[apic][pin] =
896 ioapic_read_entry(apic, pin);
897 if (!entry.mask) {
898 entry.mask = 1;
899 ioapic_write_entry(apic, pin, entry);
903 return 0;
905 nomem:
906 while (apic >= 0)
907 kfree(early_ioapic_entries[apic--]);
908 memset(early_ioapic_entries, 0,
909 ARRAY_SIZE(early_ioapic_entries));
911 return -ENOMEM;
914 void restore_IO_APIC_setup(void)
916 int apic, pin;
918 for (apic = 0; apic < nr_ioapics; apic++) {
919 if (!early_ioapic_entries[apic])
920 break;
921 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
922 ioapic_write_entry(apic, pin,
923 early_ioapic_entries[apic][pin]);
924 kfree(early_ioapic_entries[apic]);
925 early_ioapic_entries[apic] = NULL;
929 void reinit_intr_remapped_IO_APIC(int intr_remapping)
932 * for now plain restore of previous settings.
933 * TBD: In the case of OS enabling interrupt-remapping,
934 * IO-APIC RTE's need to be setup to point to interrupt-remapping
935 * table entries. for now, do a plain restore, and wait for
936 * the setup_IO_APIC_irqs() to do proper initialization.
938 restore_IO_APIC_setup();
940 #endif
943 * Find the IRQ entry number of a certain pin.
945 static int find_irq_entry(int apic, int pin, int type)
947 int i;
949 for (i = 0; i < mp_irq_entries; i++)
950 if (mp_irqs[i].irqtype == type &&
951 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
952 mp_irqs[i].dstapic == MP_APIC_ALL) &&
953 mp_irqs[i].dstirq == pin)
954 return i;
956 return -1;
960 * Find the pin to which IRQ[irq] (ISA) is connected
962 static int __init find_isa_irq_pin(int irq, int type)
964 int i;
966 for (i = 0; i < mp_irq_entries; i++) {
967 int lbus = mp_irqs[i].srcbus;
969 if (test_bit(lbus, mp_bus_not_pci) &&
970 (mp_irqs[i].irqtype == type) &&
971 (mp_irqs[i].srcbusirq == irq))
973 return mp_irqs[i].dstirq;
975 return -1;
978 static int __init find_isa_irq_apic(int irq, int type)
980 int i;
982 for (i = 0; i < mp_irq_entries; i++) {
983 int lbus = mp_irqs[i].srcbus;
985 if (test_bit(lbus, mp_bus_not_pci) &&
986 (mp_irqs[i].irqtype == type) &&
987 (mp_irqs[i].srcbusirq == irq))
988 break;
990 if (i < mp_irq_entries) {
991 int apic;
992 for(apic = 0; apic < nr_ioapics; apic++) {
993 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
994 return apic;
998 return -1;
1002 * Find a specific PCI IRQ entry.
1003 * Not an __init, possibly needed by modules
1005 static int pin_2_irq(int idx, int apic, int pin);
1007 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
1009 int apic, i, best_guess = -1;
1011 apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1012 bus, slot, pin);
1013 if (test_bit(bus, mp_bus_not_pci)) {
1014 apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1015 return -1;
1017 for (i = 0; i < mp_irq_entries; i++) {
1018 int lbus = mp_irqs[i].srcbus;
1020 for (apic = 0; apic < nr_ioapics; apic++)
1021 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1022 mp_irqs[i].dstapic == MP_APIC_ALL)
1023 break;
1025 if (!test_bit(lbus, mp_bus_not_pci) &&
1026 !mp_irqs[i].irqtype &&
1027 (bus == lbus) &&
1028 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1029 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1031 if (!(apic || IO_APIC_IRQ(irq)))
1032 continue;
1034 if (pin == (mp_irqs[i].srcbusirq & 3))
1035 return irq;
1037 * Use the first all-but-pin matching entry as a
1038 * best-guess fuzzy result for broken mptables.
1040 if (best_guess < 0)
1041 best_guess = irq;
1044 return best_guess;
1047 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1049 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1051 * EISA Edge/Level control register, ELCR
1053 static int EISA_ELCR(unsigned int irq)
1055 if (irq < NR_IRQS_LEGACY) {
1056 unsigned int port = 0x4d0 + (irq >> 3);
1057 return (inb(port) >> (irq & 7)) & 1;
1059 apic_printk(APIC_VERBOSE, KERN_INFO
1060 "Broken MPtable reports ISA irq %d\n", irq);
1061 return 0;
1064 #endif
1066 /* ISA interrupts are always polarity zero edge triggered,
1067 * when listed as conforming in the MP table. */
1069 #define default_ISA_trigger(idx) (0)
1070 #define default_ISA_polarity(idx) (0)
1072 /* EISA interrupts are always polarity zero and can be edge or level
1073 * trigger depending on the ELCR value. If an interrupt is listed as
1074 * EISA conforming in the MP table, that means its trigger type must
1075 * be read in from the ELCR */
1077 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
1078 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
1080 /* PCI interrupts are always polarity one level triggered,
1081 * when listed as conforming in the MP table. */
1083 #define default_PCI_trigger(idx) (1)
1084 #define default_PCI_polarity(idx) (1)
1086 /* MCA interrupts are always polarity zero level triggered,
1087 * when listed as conforming in the MP table. */
1089 #define default_MCA_trigger(idx) (1)
1090 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
1092 static int MPBIOS_polarity(int idx)
1094 int bus = mp_irqs[idx].srcbus;
1095 int polarity;
1098 * Determine IRQ line polarity (high active or low active):
1100 switch (mp_irqs[idx].irqflag & 3)
1102 case 0: /* conforms, ie. bus-type dependent polarity */
1103 if (test_bit(bus, mp_bus_not_pci))
1104 polarity = default_ISA_polarity(idx);
1105 else
1106 polarity = default_PCI_polarity(idx);
1107 break;
1108 case 1: /* high active */
1110 polarity = 0;
1111 break;
1113 case 2: /* reserved */
1115 printk(KERN_WARNING "broken BIOS!!\n");
1116 polarity = 1;
1117 break;
1119 case 3: /* low active */
1121 polarity = 1;
1122 break;
1124 default: /* invalid */
1126 printk(KERN_WARNING "broken BIOS!!\n");
1127 polarity = 1;
1128 break;
1131 return polarity;
1134 static int MPBIOS_trigger(int idx)
1136 int bus = mp_irqs[idx].srcbus;
1137 int trigger;
1140 * Determine IRQ trigger mode (edge or level sensitive):
1142 switch ((mp_irqs[idx].irqflag>>2) & 3)
1144 case 0: /* conforms, ie. bus-type dependent */
1145 if (test_bit(bus, mp_bus_not_pci))
1146 trigger = default_ISA_trigger(idx);
1147 else
1148 trigger = default_PCI_trigger(idx);
1149 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1150 switch (mp_bus_id_to_type[bus]) {
1151 case MP_BUS_ISA: /* ISA pin */
1153 /* set before the switch */
1154 break;
1156 case MP_BUS_EISA: /* EISA pin */
1158 trigger = default_EISA_trigger(idx);
1159 break;
1161 case MP_BUS_PCI: /* PCI pin */
1163 /* set before the switch */
1164 break;
1166 case MP_BUS_MCA: /* MCA pin */
1168 trigger = default_MCA_trigger(idx);
1169 break;
1171 default:
1173 printk(KERN_WARNING "broken BIOS!!\n");
1174 trigger = 1;
1175 break;
1178 #endif
1179 break;
1180 case 1: /* edge */
1182 trigger = 0;
1183 break;
1185 case 2: /* reserved */
1187 printk(KERN_WARNING "broken BIOS!!\n");
1188 trigger = 1;
1189 break;
1191 case 3: /* level */
1193 trigger = 1;
1194 break;
1196 default: /* invalid */
1198 printk(KERN_WARNING "broken BIOS!!\n");
1199 trigger = 0;
1200 break;
1203 return trigger;
1206 static inline int irq_polarity(int idx)
1208 return MPBIOS_polarity(idx);
1211 static inline int irq_trigger(int idx)
1213 return MPBIOS_trigger(idx);
1216 int (*ioapic_renumber_irq)(int ioapic, int irq);
1217 static int pin_2_irq(int idx, int apic, int pin)
1219 int irq, i;
1220 int bus = mp_irqs[idx].srcbus;
1223 * Debugging check, we are in big trouble if this message pops up!
1225 if (mp_irqs[idx].dstirq != pin)
1226 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1228 if (test_bit(bus, mp_bus_not_pci)) {
1229 irq = mp_irqs[idx].srcbusirq;
1230 } else {
1232 * PCI IRQs are mapped in order
1234 i = irq = 0;
1235 while (i < apic)
1236 irq += nr_ioapic_registers[i++];
1237 irq += pin;
1239 * For MPS mode, so far only needed by ES7000 platform
1241 if (ioapic_renumber_irq)
1242 irq = ioapic_renumber_irq(apic, irq);
1245 #ifdef CONFIG_X86_32
1247 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1249 if ((pin >= 16) && (pin <= 23)) {
1250 if (pirq_entries[pin-16] != -1) {
1251 if (!pirq_entries[pin-16]) {
1252 apic_printk(APIC_VERBOSE, KERN_DEBUG
1253 "disabling PIRQ%d\n", pin-16);
1254 } else {
1255 irq = pirq_entries[pin-16];
1256 apic_printk(APIC_VERBOSE, KERN_DEBUG
1257 "using PIRQ%d -> IRQ %d\n",
1258 pin-16, irq);
1262 #endif
1264 return irq;
1267 void lock_vector_lock(void)
1269 /* Used to the online set of cpus does not change
1270 * during assign_irq_vector.
1272 spin_lock(&vector_lock);
1275 void unlock_vector_lock(void)
1277 spin_unlock(&vector_lock);
1280 static int
1281 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1284 * NOTE! The local APIC isn't very good at handling
1285 * multiple interrupts at the same interrupt level.
1286 * As the interrupt level is determined by taking the
1287 * vector number and shifting that right by 4, we
1288 * want to spread these out a bit so that they don't
1289 * all fall in the same interrupt level.
1291 * Also, we've got to be careful not to trash gate
1292 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1294 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1295 unsigned int old_vector;
1296 int cpu, err;
1297 cpumask_var_t tmp_mask;
1299 if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1300 return -EBUSY;
1302 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1303 return -ENOMEM;
1305 old_vector = cfg->vector;
1306 if (old_vector) {
1307 cpumask_and(tmp_mask, mask, cpu_online_mask);
1308 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1309 if (!cpumask_empty(tmp_mask)) {
1310 free_cpumask_var(tmp_mask);
1311 return 0;
1315 /* Only try and allocate irqs on cpus that are present */
1316 err = -ENOSPC;
1317 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1318 int new_cpu;
1319 int vector, offset;
1321 apic->vector_allocation_domain(cpu, tmp_mask);
1323 vector = current_vector;
1324 offset = current_offset;
1325 next:
1326 vector += 8;
1327 if (vector >= first_system_vector) {
1328 /* If out of vectors on large boxen, must share them. */
1329 offset = (offset + 1) % 8;
1330 vector = FIRST_DEVICE_VECTOR + offset;
1332 if (unlikely(current_vector == vector))
1333 continue;
1335 if (test_bit(vector, used_vectors))
1336 goto next;
1338 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1339 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1340 goto next;
1341 /* Found one! */
1342 current_vector = vector;
1343 current_offset = offset;
1344 if (old_vector) {
1345 cfg->move_in_progress = 1;
1346 cpumask_copy(cfg->old_domain, cfg->domain);
1348 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1349 per_cpu(vector_irq, new_cpu)[vector] = irq;
1350 cfg->vector = vector;
1351 cpumask_copy(cfg->domain, tmp_mask);
1352 err = 0;
1353 break;
1355 free_cpumask_var(tmp_mask);
1356 return err;
1359 static int
1360 assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1362 int err;
1363 unsigned long flags;
1365 spin_lock_irqsave(&vector_lock, flags);
1366 err = __assign_irq_vector(irq, cfg, mask);
1367 spin_unlock_irqrestore(&vector_lock, flags);
1368 return err;
1371 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1373 int cpu, vector;
1375 BUG_ON(!cfg->vector);
1377 vector = cfg->vector;
1378 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1379 per_cpu(vector_irq, cpu)[vector] = -1;
1381 cfg->vector = 0;
1382 cpumask_clear(cfg->domain);
1384 if (likely(!cfg->move_in_progress))
1385 return;
1386 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1387 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1388 vector++) {
1389 if (per_cpu(vector_irq, cpu)[vector] != irq)
1390 continue;
1391 per_cpu(vector_irq, cpu)[vector] = -1;
1392 break;
1395 cfg->move_in_progress = 0;
1398 void __setup_vector_irq(int cpu)
1400 /* Initialize vector_irq on a new cpu */
1401 /* This function must be called with vector_lock held */
1402 int irq, vector;
1403 struct irq_cfg *cfg;
1404 struct irq_desc *desc;
1406 /* Mark the inuse vectors */
1407 for_each_irq_desc(irq, desc) {
1408 cfg = desc->chip_data;
1409 if (!cpumask_test_cpu(cpu, cfg->domain))
1410 continue;
1411 vector = cfg->vector;
1412 per_cpu(vector_irq, cpu)[vector] = irq;
1414 /* Mark the free vectors */
1415 for (vector = 0; vector < NR_VECTORS; ++vector) {
1416 irq = per_cpu(vector_irq, cpu)[vector];
1417 if (irq < 0)
1418 continue;
1420 cfg = irq_cfg(irq);
1421 if (!cpumask_test_cpu(cpu, cfg->domain))
1422 per_cpu(vector_irq, cpu)[vector] = -1;
1426 static struct irq_chip ioapic_chip;
1427 #ifdef CONFIG_INTR_REMAP
1428 static struct irq_chip ir_ioapic_chip;
1429 #endif
1431 #define IOAPIC_AUTO -1
1432 #define IOAPIC_EDGE 0
1433 #define IOAPIC_LEVEL 1
1435 #ifdef CONFIG_X86_32
1436 static inline int IO_APIC_irq_trigger(int irq)
1438 int apic, idx, pin;
1440 for (apic = 0; apic < nr_ioapics; apic++) {
1441 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1442 idx = find_irq_entry(apic, pin, mp_INT);
1443 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1444 return irq_trigger(idx);
1448 * nonexistent IRQs are edge default
1450 return 0;
1452 #else
1453 static inline int IO_APIC_irq_trigger(int irq)
1455 return 1;
1457 #endif
1459 static void ioapic_register_intr(int irq, struct irq_desc *desc, unsigned long trigger)
1462 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1463 trigger == IOAPIC_LEVEL)
1464 desc->status |= IRQ_LEVEL;
1465 else
1466 desc->status &= ~IRQ_LEVEL;
1468 #ifdef CONFIG_INTR_REMAP
1469 if (irq_remapped(irq)) {
1470 desc->status |= IRQ_MOVE_PCNTXT;
1471 if (trigger)
1472 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1473 handle_fasteoi_irq,
1474 "fasteoi");
1475 else
1476 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1477 handle_edge_irq, "edge");
1478 return;
1480 #endif
1481 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1482 trigger == IOAPIC_LEVEL)
1483 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1484 handle_fasteoi_irq,
1485 "fasteoi");
1486 else
1487 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1488 handle_edge_irq, "edge");
1491 static int setup_ioapic_entry(int apic_id, int irq,
1492 struct IO_APIC_route_entry *entry,
1493 unsigned int destination, int trigger,
1494 int polarity, int vector)
1497 * add it to the IO-APIC irq-routing table:
1499 memset(entry,0,sizeof(*entry));
1501 #ifdef CONFIG_INTR_REMAP
1502 if (intr_remapping_enabled) {
1503 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1504 struct irte irte;
1505 struct IR_IO_APIC_route_entry *ir_entry =
1506 (struct IR_IO_APIC_route_entry *) entry;
1507 int index;
1509 if (!iommu)
1510 panic("No mapping iommu for ioapic %d\n", apic_id);
1512 index = alloc_irte(iommu, irq, 1);
1513 if (index < 0)
1514 panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1516 memset(&irte, 0, sizeof(irte));
1518 irte.present = 1;
1519 irte.dst_mode = apic->irq_dest_mode;
1520 irte.trigger_mode = trigger;
1521 irte.dlvry_mode = apic->irq_delivery_mode;
1522 irte.vector = vector;
1523 irte.dest_id = IRTE_DEST(destination);
1525 modify_irte(irq, &irte);
1527 ir_entry->index2 = (index >> 15) & 0x1;
1528 ir_entry->zero = 0;
1529 ir_entry->format = 1;
1530 ir_entry->index = (index & 0x7fff);
1531 } else
1532 #endif
1534 entry->delivery_mode = apic->irq_delivery_mode;
1535 entry->dest_mode = apic->irq_dest_mode;
1536 entry->dest = destination;
1539 entry->mask = 0; /* enable IRQ */
1540 entry->trigger = trigger;
1541 entry->polarity = polarity;
1542 entry->vector = vector;
1544 /* Mask level triggered irqs.
1545 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1547 if (trigger)
1548 entry->mask = 1;
1549 return 0;
1552 static void setup_IO_APIC_irq(int apic_id, int pin, unsigned int irq, struct irq_desc *desc,
1553 int trigger, int polarity)
1555 struct irq_cfg *cfg;
1556 struct IO_APIC_route_entry entry;
1557 unsigned int dest;
1559 if (!IO_APIC_IRQ(irq))
1560 return;
1562 cfg = desc->chip_data;
1564 if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1565 return;
1567 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1569 apic_printk(APIC_VERBOSE,KERN_DEBUG
1570 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1571 "IRQ %d Mode:%i Active:%i)\n",
1572 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1573 irq, trigger, polarity);
1576 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1577 dest, trigger, polarity, cfg->vector)) {
1578 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1579 mp_ioapics[apic_id].apicid, pin);
1580 __clear_irq_vector(irq, cfg);
1581 return;
1584 ioapic_register_intr(irq, desc, trigger);
1585 if (irq < NR_IRQS_LEGACY)
1586 disable_8259A_irq(irq);
1588 ioapic_write_entry(apic_id, pin, entry);
1591 static void __init setup_IO_APIC_irqs(void)
1593 int apic_id, pin, idx, irq;
1594 int notcon = 0;
1595 struct irq_desc *desc;
1596 struct irq_cfg *cfg;
1597 int cpu = boot_cpu_id;
1599 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1601 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1602 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1604 idx = find_irq_entry(apic_id, pin, mp_INT);
1605 if (idx == -1) {
1606 if (!notcon) {
1607 notcon = 1;
1608 apic_printk(APIC_VERBOSE,
1609 KERN_DEBUG " %d-%d",
1610 mp_ioapics[apic_id].apicid, pin);
1611 } else
1612 apic_printk(APIC_VERBOSE, " %d-%d",
1613 mp_ioapics[apic_id].apicid, pin);
1614 continue;
1616 if (notcon) {
1617 apic_printk(APIC_VERBOSE,
1618 " (apicid-pin) not connected\n");
1619 notcon = 0;
1622 irq = pin_2_irq(idx, apic_id, pin);
1625 * Skip the timer IRQ if there's a quirk handler
1626 * installed and if it returns 1:
1628 if (apic->multi_timer_check &&
1629 apic->multi_timer_check(apic_id, irq))
1630 continue;
1632 desc = irq_to_desc_alloc_cpu(irq, cpu);
1633 if (!desc) {
1634 printk(KERN_INFO "can not get irq_desc for %d\n", irq);
1635 continue;
1637 cfg = desc->chip_data;
1638 add_pin_to_irq_cpu(cfg, cpu, apic_id, pin);
1640 setup_IO_APIC_irq(apic_id, pin, irq, desc,
1641 irq_trigger(idx), irq_polarity(idx));
1645 if (notcon)
1646 apic_printk(APIC_VERBOSE,
1647 " (apicid-pin) not connected\n");
1651 * Set up the timer pin, possibly with the 8259A-master behind.
1653 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1654 int vector)
1656 struct IO_APIC_route_entry entry;
1658 #ifdef CONFIG_INTR_REMAP
1659 if (intr_remapping_enabled)
1660 return;
1661 #endif
1663 memset(&entry, 0, sizeof(entry));
1666 * We use logical delivery to get the timer IRQ
1667 * to the first CPU.
1669 entry.dest_mode = apic->irq_dest_mode;
1670 entry.mask = 1; /* mask IRQ now */
1671 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1672 entry.delivery_mode = apic->irq_delivery_mode;
1673 entry.polarity = 0;
1674 entry.trigger = 0;
1675 entry.vector = vector;
1678 * The timer IRQ doesn't have to know that behind the
1679 * scene we may have a 8259A-master in AEOI mode ...
1681 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1684 * Add it to the IO-APIC irq-routing table:
1686 ioapic_write_entry(apic_id, pin, entry);
1690 __apicdebuginit(void) print_IO_APIC(void)
1692 int apic, i;
1693 union IO_APIC_reg_00 reg_00;
1694 union IO_APIC_reg_01 reg_01;
1695 union IO_APIC_reg_02 reg_02;
1696 union IO_APIC_reg_03 reg_03;
1697 unsigned long flags;
1698 struct irq_cfg *cfg;
1699 struct irq_desc *desc;
1700 unsigned int irq;
1702 if (apic_verbosity == APIC_QUIET)
1703 return;
1705 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1706 for (i = 0; i < nr_ioapics; i++)
1707 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1708 mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1711 * We are a bit conservative about what we expect. We have to
1712 * know about every hardware change ASAP.
1714 printk(KERN_INFO "testing the IO APIC.......................\n");
1716 for (apic = 0; apic < nr_ioapics; apic++) {
1718 spin_lock_irqsave(&ioapic_lock, flags);
1719 reg_00.raw = io_apic_read(apic, 0);
1720 reg_01.raw = io_apic_read(apic, 1);
1721 if (reg_01.bits.version >= 0x10)
1722 reg_02.raw = io_apic_read(apic, 2);
1723 if (reg_01.bits.version >= 0x20)
1724 reg_03.raw = io_apic_read(apic, 3);
1725 spin_unlock_irqrestore(&ioapic_lock, flags);
1727 printk("\n");
1728 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1729 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1730 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1731 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1732 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1734 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1735 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1737 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1738 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1741 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1742 * but the value of reg_02 is read as the previous read register
1743 * value, so ignore it if reg_02 == reg_01.
1745 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1746 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1747 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1751 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1752 * or reg_03, but the value of reg_0[23] is read as the previous read
1753 * register value, so ignore it if reg_03 == reg_0[12].
1755 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1756 reg_03.raw != reg_01.raw) {
1757 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1758 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1761 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1763 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1764 " Stat Dmod Deli Vect: \n");
1766 for (i = 0; i <= reg_01.bits.entries; i++) {
1767 struct IO_APIC_route_entry entry;
1769 entry = ioapic_read_entry(apic, i);
1771 printk(KERN_DEBUG " %02x %03X ",
1773 entry.dest
1776 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1777 entry.mask,
1778 entry.trigger,
1779 entry.irr,
1780 entry.polarity,
1781 entry.delivery_status,
1782 entry.dest_mode,
1783 entry.delivery_mode,
1784 entry.vector
1788 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1789 for_each_irq_desc(irq, desc) {
1790 struct irq_pin_list *entry;
1792 cfg = desc->chip_data;
1793 entry = cfg->irq_2_pin;
1794 if (!entry)
1795 continue;
1796 printk(KERN_DEBUG "IRQ%d ", irq);
1797 for (;;) {
1798 printk("-> %d:%d", entry->apic, entry->pin);
1799 if (!entry->next)
1800 break;
1801 entry = entry->next;
1803 printk("\n");
1806 printk(KERN_INFO ".................................... done.\n");
1808 return;
1811 __apicdebuginit(void) print_APIC_bitfield(int base)
1813 unsigned int v;
1814 int i, j;
1816 if (apic_verbosity == APIC_QUIET)
1817 return;
1819 printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1820 for (i = 0; i < 8; i++) {
1821 v = apic_read(base + i*0x10);
1822 for (j = 0; j < 32; j++) {
1823 if (v & (1<<j))
1824 printk("1");
1825 else
1826 printk("0");
1828 printk("\n");
1832 __apicdebuginit(void) print_local_APIC(void *dummy)
1834 unsigned int v, ver, maxlvt;
1835 u64 icr;
1837 if (apic_verbosity == APIC_QUIET)
1838 return;
1840 printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1841 smp_processor_id(), hard_smp_processor_id());
1842 v = apic_read(APIC_ID);
1843 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1844 v = apic_read(APIC_LVR);
1845 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1846 ver = GET_APIC_VERSION(v);
1847 maxlvt = lapic_get_maxlvt();
1849 v = apic_read(APIC_TASKPRI);
1850 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1852 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1853 if (!APIC_XAPIC(ver)) {
1854 v = apic_read(APIC_ARBPRI);
1855 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1856 v & APIC_ARBPRI_MASK);
1858 v = apic_read(APIC_PROCPRI);
1859 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1863 * Remote read supported only in the 82489DX and local APIC for
1864 * Pentium processors.
1866 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1867 v = apic_read(APIC_RRR);
1868 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1871 v = apic_read(APIC_LDR);
1872 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1873 if (!x2apic_enabled()) {
1874 v = apic_read(APIC_DFR);
1875 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1877 v = apic_read(APIC_SPIV);
1878 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1880 printk(KERN_DEBUG "... APIC ISR field:\n");
1881 print_APIC_bitfield(APIC_ISR);
1882 printk(KERN_DEBUG "... APIC TMR field:\n");
1883 print_APIC_bitfield(APIC_TMR);
1884 printk(KERN_DEBUG "... APIC IRR field:\n");
1885 print_APIC_bitfield(APIC_IRR);
1887 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1888 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1889 apic_write(APIC_ESR, 0);
1891 v = apic_read(APIC_ESR);
1892 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1895 icr = apic_icr_read();
1896 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1897 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1899 v = apic_read(APIC_LVTT);
1900 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1902 if (maxlvt > 3) { /* PC is LVT#4. */
1903 v = apic_read(APIC_LVTPC);
1904 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1906 v = apic_read(APIC_LVT0);
1907 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1908 v = apic_read(APIC_LVT1);
1909 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1911 if (maxlvt > 2) { /* ERR is LVT#3. */
1912 v = apic_read(APIC_LVTERR);
1913 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1916 v = apic_read(APIC_TMICT);
1917 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1918 v = apic_read(APIC_TMCCT);
1919 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1920 v = apic_read(APIC_TDCR);
1921 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1922 printk("\n");
1925 __apicdebuginit(void) print_all_local_APICs(void)
1927 int cpu;
1929 preempt_disable();
1930 for_each_online_cpu(cpu)
1931 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1932 preempt_enable();
1935 __apicdebuginit(void) print_PIC(void)
1937 unsigned int v;
1938 unsigned long flags;
1940 if (apic_verbosity == APIC_QUIET)
1941 return;
1943 printk(KERN_DEBUG "\nprinting PIC contents\n");
1945 spin_lock_irqsave(&i8259A_lock, flags);
1947 v = inb(0xa1) << 8 | inb(0x21);
1948 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1950 v = inb(0xa0) << 8 | inb(0x20);
1951 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1953 outb(0x0b,0xa0);
1954 outb(0x0b,0x20);
1955 v = inb(0xa0) << 8 | inb(0x20);
1956 outb(0x0a,0xa0);
1957 outb(0x0a,0x20);
1959 spin_unlock_irqrestore(&i8259A_lock, flags);
1961 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1963 v = inb(0x4d1) << 8 | inb(0x4d0);
1964 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1967 __apicdebuginit(int) print_all_ICs(void)
1969 print_PIC();
1970 print_all_local_APICs();
1971 print_IO_APIC();
1973 return 0;
1976 fs_initcall(print_all_ICs);
1979 /* Where if anywhere is the i8259 connect in external int mode */
1980 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1982 void __init enable_IO_APIC(void)
1984 union IO_APIC_reg_01 reg_01;
1985 int i8259_apic, i8259_pin;
1986 int apic;
1987 unsigned long flags;
1989 #ifdef CONFIG_X86_32
1990 int i;
1991 if (!pirqs_enabled)
1992 for (i = 0; i < MAX_PIRQS; i++)
1993 pirq_entries[i] = -1;
1994 #endif
1997 * The number of IO-APIC IRQ registers (== #pins):
1999 for (apic = 0; apic < nr_ioapics; apic++) {
2000 spin_lock_irqsave(&ioapic_lock, flags);
2001 reg_01.raw = io_apic_read(apic, 1);
2002 spin_unlock_irqrestore(&ioapic_lock, flags);
2003 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
2005 for(apic = 0; apic < nr_ioapics; apic++) {
2006 int pin;
2007 /* See if any of the pins is in ExtINT mode */
2008 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
2009 struct IO_APIC_route_entry entry;
2010 entry = ioapic_read_entry(apic, pin);
2012 /* If the interrupt line is enabled and in ExtInt mode
2013 * I have found the pin where the i8259 is connected.
2015 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
2016 ioapic_i8259.apic = apic;
2017 ioapic_i8259.pin = pin;
2018 goto found_i8259;
2022 found_i8259:
2023 /* Look to see what if the MP table has reported the ExtINT */
2024 /* If we could not find the appropriate pin by looking at the ioapic
2025 * the i8259 probably is not connected the ioapic but give the
2026 * mptable a chance anyway.
2028 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
2029 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
2030 /* Trust the MP table if nothing is setup in the hardware */
2031 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
2032 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
2033 ioapic_i8259.pin = i8259_pin;
2034 ioapic_i8259.apic = i8259_apic;
2036 /* Complain if the MP table and the hardware disagree */
2037 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
2038 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
2040 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
2044 * Do not trust the IO-APIC being empty at bootup
2046 clear_IO_APIC();
2050 * Not an __init, needed by the reboot code
2052 void disable_IO_APIC(void)
2055 * Clear the IO-APIC before rebooting:
2057 clear_IO_APIC();
2060 * If the i8259 is routed through an IOAPIC
2061 * Put that IOAPIC in virtual wire mode
2062 * so legacy interrupts can be delivered.
2064 if (ioapic_i8259.pin != -1) {
2065 struct IO_APIC_route_entry entry;
2067 memset(&entry, 0, sizeof(entry));
2068 entry.mask = 0; /* Enabled */
2069 entry.trigger = 0; /* Edge */
2070 entry.irr = 0;
2071 entry.polarity = 0; /* High */
2072 entry.delivery_status = 0;
2073 entry.dest_mode = 0; /* Physical */
2074 entry.delivery_mode = dest_ExtINT; /* ExtInt */
2075 entry.vector = 0;
2076 entry.dest = read_apic_id();
2079 * Add it to the IO-APIC irq-routing table:
2081 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
2084 disconnect_bsp_APIC(ioapic_i8259.pin != -1);
2087 #ifdef CONFIG_X86_32
2089 * function to set the IO-APIC physical IDs based on the
2090 * values stored in the MPC table.
2092 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
2095 static void __init setup_ioapic_ids_from_mpc(void)
2097 union IO_APIC_reg_00 reg_00;
2098 physid_mask_t phys_id_present_map;
2099 int apic_id;
2100 int i;
2101 unsigned char old_id;
2102 unsigned long flags;
2104 if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2105 return;
2108 * Don't check I/O APIC IDs for xAPIC systems. They have
2109 * no meaning without the serial APIC bus.
2111 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2112 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2113 return;
2115 * This is broken; anything with a real cpu count has to
2116 * circumvent this idiocy regardless.
2118 phys_id_present_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
2121 * Set the IOAPIC ID to the value stored in the MPC table.
2123 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
2125 /* Read the register 0 value */
2126 spin_lock_irqsave(&ioapic_lock, flags);
2127 reg_00.raw = io_apic_read(apic_id, 0);
2128 spin_unlock_irqrestore(&ioapic_lock, flags);
2130 old_id = mp_ioapics[apic_id].apicid;
2132 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
2133 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2134 apic_id, mp_ioapics[apic_id].apicid);
2135 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2136 reg_00.bits.ID);
2137 mp_ioapics[apic_id].apicid = reg_00.bits.ID;
2141 * Sanity check, is the ID really free? Every APIC in a
2142 * system must have a unique ID or we get lots of nice
2143 * 'stuck on smp_invalidate_needed IPI wait' messages.
2145 if (apic->check_apicid_used(phys_id_present_map,
2146 mp_ioapics[apic_id].apicid)) {
2147 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2148 apic_id, mp_ioapics[apic_id].apicid);
2149 for (i = 0; i < get_physical_broadcast(); i++)
2150 if (!physid_isset(i, phys_id_present_map))
2151 break;
2152 if (i >= get_physical_broadcast())
2153 panic("Max APIC ID exceeded!\n");
2154 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2156 physid_set(i, phys_id_present_map);
2157 mp_ioapics[apic_id].apicid = i;
2158 } else {
2159 physid_mask_t tmp;
2160 tmp = apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid);
2161 apic_printk(APIC_VERBOSE, "Setting %d in the "
2162 "phys_id_present_map\n",
2163 mp_ioapics[apic_id].apicid);
2164 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2169 * We need to adjust the IRQ routing table
2170 * if the ID changed.
2172 if (old_id != mp_ioapics[apic_id].apicid)
2173 for (i = 0; i < mp_irq_entries; i++)
2174 if (mp_irqs[i].dstapic == old_id)
2175 mp_irqs[i].dstapic
2176 = mp_ioapics[apic_id].apicid;
2179 * Read the right value from the MPC table and
2180 * write it into the ID register.
2182 apic_printk(APIC_VERBOSE, KERN_INFO
2183 "...changing IO-APIC physical APIC ID to %d ...",
2184 mp_ioapics[apic_id].apicid);
2186 reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2187 spin_lock_irqsave(&ioapic_lock, flags);
2188 io_apic_write(apic_id, 0, reg_00.raw);
2189 spin_unlock_irqrestore(&ioapic_lock, flags);
2192 * Sanity check
2194 spin_lock_irqsave(&ioapic_lock, flags);
2195 reg_00.raw = io_apic_read(apic_id, 0);
2196 spin_unlock_irqrestore(&ioapic_lock, flags);
2197 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2198 printk("could not set ID!\n");
2199 else
2200 apic_printk(APIC_VERBOSE, " ok.\n");
2203 #endif
2205 int no_timer_check __initdata;
2207 static int __init notimercheck(char *s)
2209 no_timer_check = 1;
2210 return 1;
2212 __setup("no_timer_check", notimercheck);
2215 * There is a nasty bug in some older SMP boards, their mptable lies
2216 * about the timer IRQ. We do the following to work around the situation:
2218 * - timer IRQ defaults to IO-APIC IRQ
2219 * - if this function detects that timer IRQs are defunct, then we fall
2220 * back to ISA timer IRQs
2222 static int __init timer_irq_works(void)
2224 unsigned long t1 = jiffies;
2225 unsigned long flags;
2227 if (no_timer_check)
2228 return 1;
2230 local_save_flags(flags);
2231 local_irq_enable();
2232 /* Let ten ticks pass... */
2233 mdelay((10 * 1000) / HZ);
2234 local_irq_restore(flags);
2237 * Expect a few ticks at least, to be sure some possible
2238 * glue logic does not lock up after one or two first
2239 * ticks in a non-ExtINT mode. Also the local APIC
2240 * might have cached one ExtINT interrupt. Finally, at
2241 * least one tick may be lost due to delays.
2244 /* jiffies wrap? */
2245 if (time_after(jiffies, t1 + 4))
2246 return 1;
2247 return 0;
2251 * In the SMP+IOAPIC case it might happen that there are an unspecified
2252 * number of pending IRQ events unhandled. These cases are very rare,
2253 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2254 * better to do it this way as thus we do not have to be aware of
2255 * 'pending' interrupts in the IRQ path, except at this point.
2258 * Edge triggered needs to resend any interrupt
2259 * that was delayed but this is now handled in the device
2260 * independent code.
2264 * Starting up a edge-triggered IO-APIC interrupt is
2265 * nasty - we need to make sure that we get the edge.
2266 * If it is already asserted for some reason, we need
2267 * return 1 to indicate that is was pending.
2269 * This is not complete - we should be able to fake
2270 * an edge even if it isn't on the 8259A...
2273 static unsigned int startup_ioapic_irq(unsigned int irq)
2275 int was_pending = 0;
2276 unsigned long flags;
2277 struct irq_cfg *cfg;
2279 spin_lock_irqsave(&ioapic_lock, flags);
2280 if (irq < NR_IRQS_LEGACY) {
2281 disable_8259A_irq(irq);
2282 if (i8259A_irq_pending(irq))
2283 was_pending = 1;
2285 cfg = irq_cfg(irq);
2286 __unmask_IO_APIC_irq(cfg);
2287 spin_unlock_irqrestore(&ioapic_lock, flags);
2289 return was_pending;
2292 #ifdef CONFIG_X86_64
2293 static int ioapic_retrigger_irq(unsigned int irq)
2296 struct irq_cfg *cfg = irq_cfg(irq);
2297 unsigned long flags;
2299 spin_lock_irqsave(&vector_lock, flags);
2300 send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2301 spin_unlock_irqrestore(&vector_lock, flags);
2303 return 1;
2305 #else
2306 static int ioapic_retrigger_irq(unsigned int irq)
2308 send_IPI_self(irq_cfg(irq)->vector);
2310 return 1;
2312 #endif
2315 * Level and edge triggered IO-APIC interrupts need different handling,
2316 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2317 * handled with the level-triggered descriptor, but that one has slightly
2318 * more overhead. Level-triggered interrupts cannot be handled with the
2319 * edge-triggered handler, without risking IRQ storms and other ugly
2320 * races.
2323 #ifdef CONFIG_SMP
2325 #ifdef CONFIG_INTR_REMAP
2326 static void ir_irq_migration(struct work_struct *work);
2328 static DECLARE_DELAYED_WORK(ir_migration_work, ir_irq_migration);
2331 * Migrate the IO-APIC irq in the presence of intr-remapping.
2333 * For edge triggered, irq migration is a simple atomic update(of vector
2334 * and cpu destination) of IRTE and flush the hardware cache.
2336 * For level triggered, we need to modify the io-apic RTE aswell with the update
2337 * vector information, along with modifying IRTE with vector and destination.
2338 * So irq migration for level triggered is little bit more complex compared to
2339 * edge triggered migration. But the good news is, we use the same algorithm
2340 * for level triggered migration as we have today, only difference being,
2341 * we now initiate the irq migration from process context instead of the
2342 * interrupt context.
2344 * In future, when we do a directed EOI (combined with cpu EOI broadcast
2345 * suppression) to the IO-APIC, level triggered irq migration will also be
2346 * as simple as edge triggered migration and we can do the irq migration
2347 * with a simple atomic update to IO-APIC RTE.
2349 static void
2350 migrate_ioapic_irq_desc(struct irq_desc *desc, const struct cpumask *mask)
2352 struct irq_cfg *cfg;
2353 struct irte irte;
2354 int modify_ioapic_rte;
2355 unsigned int dest;
2356 unsigned long flags;
2357 unsigned int irq;
2359 if (!cpumask_intersects(mask, cpu_online_mask))
2360 return;
2362 irq = desc->irq;
2363 if (get_irte(irq, &irte))
2364 return;
2366 cfg = desc->chip_data;
2367 if (assign_irq_vector(irq, cfg, mask))
2368 return;
2370 set_extra_move_desc(desc, mask);
2372 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2374 modify_ioapic_rte = desc->status & IRQ_LEVEL;
2375 if (modify_ioapic_rte) {
2376 spin_lock_irqsave(&ioapic_lock, flags);
2377 __target_IO_APIC_irq(irq, dest, cfg);
2378 spin_unlock_irqrestore(&ioapic_lock, flags);
2381 irte.vector = cfg->vector;
2382 irte.dest_id = IRTE_DEST(dest);
2385 * Modified the IRTE and flushes the Interrupt entry cache.
2387 modify_irte(irq, &irte);
2389 if (cfg->move_in_progress)
2390 send_cleanup_vector(cfg);
2392 cpumask_copy(desc->affinity, mask);
2395 static int migrate_irq_remapped_level_desc(struct irq_desc *desc)
2397 int ret = -1;
2398 struct irq_cfg *cfg = desc->chip_data;
2400 mask_IO_APIC_irq_desc(desc);
2402 if (io_apic_level_ack_pending(cfg)) {
2404 * Interrupt in progress. Migrating irq now will change the
2405 * vector information in the IO-APIC RTE and that will confuse
2406 * the EOI broadcast performed by cpu.
2407 * So, delay the irq migration to the next instance.
2409 schedule_delayed_work(&ir_migration_work, 1);
2410 goto unmask;
2413 /* everthing is clear. we have right of way */
2414 migrate_ioapic_irq_desc(desc, desc->pending_mask);
2416 ret = 0;
2417 desc->status &= ~IRQ_MOVE_PENDING;
2418 cpumask_clear(desc->pending_mask);
2420 unmask:
2421 unmask_IO_APIC_irq_desc(desc);
2423 return ret;
2426 static void ir_irq_migration(struct work_struct *work)
2428 unsigned int irq;
2429 struct irq_desc *desc;
2431 for_each_irq_desc(irq, desc) {
2432 if (desc->status & IRQ_MOVE_PENDING) {
2433 unsigned long flags;
2435 spin_lock_irqsave(&desc->lock, flags);
2436 if (!desc->chip->set_affinity ||
2437 !(desc->status & IRQ_MOVE_PENDING)) {
2438 desc->status &= ~IRQ_MOVE_PENDING;
2439 spin_unlock_irqrestore(&desc->lock, flags);
2440 continue;
2443 desc->chip->set_affinity(irq, desc->pending_mask);
2444 spin_unlock_irqrestore(&desc->lock, flags);
2450 * Migrates the IRQ destination in the process context.
2452 static void set_ir_ioapic_affinity_irq_desc(struct irq_desc *desc,
2453 const struct cpumask *mask)
2455 if (desc->status & IRQ_LEVEL) {
2456 desc->status |= IRQ_MOVE_PENDING;
2457 cpumask_copy(desc->pending_mask, mask);
2458 migrate_irq_remapped_level_desc(desc);
2459 return;
2462 migrate_ioapic_irq_desc(desc, mask);
2464 static void set_ir_ioapic_affinity_irq(unsigned int irq,
2465 const struct cpumask *mask)
2467 struct irq_desc *desc = irq_to_desc(irq);
2469 set_ir_ioapic_affinity_irq_desc(desc, mask);
2471 #endif
2473 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2475 unsigned vector, me;
2477 ack_APIC_irq();
2478 exit_idle();
2479 irq_enter();
2481 me = smp_processor_id();
2482 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2483 unsigned int irq;
2484 struct irq_desc *desc;
2485 struct irq_cfg *cfg;
2486 irq = __get_cpu_var(vector_irq)[vector];
2488 if (irq == -1)
2489 continue;
2491 desc = irq_to_desc(irq);
2492 if (!desc)
2493 continue;
2495 cfg = irq_cfg(irq);
2496 spin_lock(&desc->lock);
2497 if (!cfg->move_cleanup_count)
2498 goto unlock;
2500 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2501 goto unlock;
2503 __get_cpu_var(vector_irq)[vector] = -1;
2504 cfg->move_cleanup_count--;
2505 unlock:
2506 spin_unlock(&desc->lock);
2509 irq_exit();
2512 static void irq_complete_move(struct irq_desc **descp)
2514 struct irq_desc *desc = *descp;
2515 struct irq_cfg *cfg = desc->chip_data;
2516 unsigned vector, me;
2518 if (likely(!cfg->move_in_progress)) {
2519 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2520 if (likely(!cfg->move_desc_pending))
2521 return;
2523 /* domain has not changed, but affinity did */
2524 me = smp_processor_id();
2525 if (cpumask_test_cpu(me, desc->affinity)) {
2526 *descp = desc = move_irq_desc(desc, me);
2527 /* get the new one */
2528 cfg = desc->chip_data;
2529 cfg->move_desc_pending = 0;
2531 #endif
2532 return;
2535 vector = ~get_irq_regs()->orig_ax;
2536 me = smp_processor_id();
2537 #ifdef CONFIG_NUMA_MIGRATE_IRQ_DESC
2538 *descp = desc = move_irq_desc(desc, me);
2539 /* get the new one */
2540 cfg = desc->chip_data;
2541 #endif
2543 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2544 send_cleanup_vector(cfg);
2546 #else
2547 static inline void irq_complete_move(struct irq_desc **descp) {}
2548 #endif
2550 #ifdef CONFIG_INTR_REMAP
2551 static void ack_x2apic_level(unsigned int irq)
2553 ack_x2APIC_irq();
2556 static void ack_x2apic_edge(unsigned int irq)
2558 ack_x2APIC_irq();
2561 #endif
2563 static void ack_apic_edge(unsigned int irq)
2565 struct irq_desc *desc = irq_to_desc(irq);
2567 irq_complete_move(&desc);
2568 move_native_irq(irq);
2569 ack_APIC_irq();
2572 atomic_t irq_mis_count;
2574 static void ack_apic_level(unsigned int irq)
2576 struct irq_desc *desc = irq_to_desc(irq);
2578 #ifdef CONFIG_X86_32
2579 unsigned long v;
2580 int i;
2581 #endif
2582 struct irq_cfg *cfg;
2583 int do_unmask_irq = 0;
2585 irq_complete_move(&desc);
2586 #ifdef CONFIG_GENERIC_PENDING_IRQ
2587 /* If we are moving the irq we need to mask it */
2588 if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2589 do_unmask_irq = 1;
2590 mask_IO_APIC_irq_desc(desc);
2592 #endif
2594 #ifdef CONFIG_X86_32
2596 * It appears there is an erratum which affects at least version 0x11
2597 * of I/O APIC (that's the 82093AA and cores integrated into various
2598 * chipsets). Under certain conditions a level-triggered interrupt is
2599 * erroneously delivered as edge-triggered one but the respective IRR
2600 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2601 * message but it will never arrive and further interrupts are blocked
2602 * from the source. The exact reason is so far unknown, but the
2603 * phenomenon was observed when two consecutive interrupt requests
2604 * from a given source get delivered to the same CPU and the source is
2605 * temporarily disabled in between.
2607 * A workaround is to simulate an EOI message manually. We achieve it
2608 * by setting the trigger mode to edge and then to level when the edge
2609 * trigger mode gets detected in the TMR of a local APIC for a
2610 * level-triggered interrupt. We mask the source for the time of the
2611 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2612 * The idea is from Manfred Spraul. --macro
2614 cfg = desc->chip_data;
2615 i = cfg->vector;
2617 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2618 #endif
2621 * We must acknowledge the irq before we move it or the acknowledge will
2622 * not propagate properly.
2624 ack_APIC_irq();
2626 /* Now we can move and renable the irq */
2627 if (unlikely(do_unmask_irq)) {
2628 /* Only migrate the irq if the ack has been received.
2630 * On rare occasions the broadcast level triggered ack gets
2631 * delayed going to ioapics, and if we reprogram the
2632 * vector while Remote IRR is still set the irq will never
2633 * fire again.
2635 * To prevent this scenario we read the Remote IRR bit
2636 * of the ioapic. This has two effects.
2637 * - On any sane system the read of the ioapic will
2638 * flush writes (and acks) going to the ioapic from
2639 * this cpu.
2640 * - We get to see if the ACK has actually been delivered.
2642 * Based on failed experiments of reprogramming the
2643 * ioapic entry from outside of irq context starting
2644 * with masking the ioapic entry and then polling until
2645 * Remote IRR was clear before reprogramming the
2646 * ioapic I don't trust the Remote IRR bit to be
2647 * completey accurate.
2649 * However there appears to be no other way to plug
2650 * this race, so if the Remote IRR bit is not
2651 * accurate and is causing problems then it is a hardware bug
2652 * and you can go talk to the chipset vendor about it.
2654 cfg = desc->chip_data;
2655 if (!io_apic_level_ack_pending(cfg))
2656 move_masked_irq(irq);
2657 unmask_IO_APIC_irq_desc(desc);
2660 #ifdef CONFIG_X86_32
2661 if (!(v & (1 << (i & 0x1f)))) {
2662 atomic_inc(&irq_mis_count);
2663 spin_lock(&ioapic_lock);
2664 __mask_and_edge_IO_APIC_irq(cfg);
2665 __unmask_and_level_IO_APIC_irq(cfg);
2666 spin_unlock(&ioapic_lock);
2668 #endif
2671 static struct irq_chip ioapic_chip __read_mostly = {
2672 .name = "IO-APIC",
2673 .startup = startup_ioapic_irq,
2674 .mask = mask_IO_APIC_irq,
2675 .unmask = unmask_IO_APIC_irq,
2676 .ack = ack_apic_edge,
2677 .eoi = ack_apic_level,
2678 #ifdef CONFIG_SMP
2679 .set_affinity = set_ioapic_affinity_irq,
2680 #endif
2681 .retrigger = ioapic_retrigger_irq,
2684 #ifdef CONFIG_INTR_REMAP
2685 static struct irq_chip ir_ioapic_chip __read_mostly = {
2686 .name = "IR-IO-APIC",
2687 .startup = startup_ioapic_irq,
2688 .mask = mask_IO_APIC_irq,
2689 .unmask = unmask_IO_APIC_irq,
2690 .ack = ack_x2apic_edge,
2691 .eoi = ack_x2apic_level,
2692 #ifdef CONFIG_SMP
2693 .set_affinity = set_ir_ioapic_affinity_irq,
2694 #endif
2695 .retrigger = ioapic_retrigger_irq,
2697 #endif
2699 static inline void init_IO_APIC_traps(void)
2701 int irq;
2702 struct irq_desc *desc;
2703 struct irq_cfg *cfg;
2706 * NOTE! The local APIC isn't very good at handling
2707 * multiple interrupts at the same interrupt level.
2708 * As the interrupt level is determined by taking the
2709 * vector number and shifting that right by 4, we
2710 * want to spread these out a bit so that they don't
2711 * all fall in the same interrupt level.
2713 * Also, we've got to be careful not to trash gate
2714 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2716 for_each_irq_desc(irq, desc) {
2717 cfg = desc->chip_data;
2718 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2720 * Hmm.. We don't have an entry for this,
2721 * so default to an old-fashioned 8259
2722 * interrupt if we can..
2724 if (irq < NR_IRQS_LEGACY)
2725 make_8259A_irq(irq);
2726 else
2727 /* Strange. Oh, well.. */
2728 desc->chip = &no_irq_chip;
2734 * The local APIC irq-chip implementation:
2737 static void mask_lapic_irq(unsigned int irq)
2739 unsigned long v;
2741 v = apic_read(APIC_LVT0);
2742 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2745 static void unmask_lapic_irq(unsigned int irq)
2747 unsigned long v;
2749 v = apic_read(APIC_LVT0);
2750 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2753 static void ack_lapic_irq(unsigned int irq)
2755 ack_APIC_irq();
2758 static struct irq_chip lapic_chip __read_mostly = {
2759 .name = "local-APIC",
2760 .mask = mask_lapic_irq,
2761 .unmask = unmask_lapic_irq,
2762 .ack = ack_lapic_irq,
2765 static void lapic_register_intr(int irq, struct irq_desc *desc)
2767 desc->status &= ~IRQ_LEVEL;
2768 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2769 "edge");
2772 static void __init setup_nmi(void)
2775 * Dirty trick to enable the NMI watchdog ...
2776 * We put the 8259A master into AEOI mode and
2777 * unmask on all local APICs LVT0 as NMI.
2779 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2780 * is from Maciej W. Rozycki - so we do not have to EOI from
2781 * the NMI handler or the timer interrupt.
2783 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2785 enable_NMI_through_LVT0();
2787 apic_printk(APIC_VERBOSE, " done.\n");
2791 * This looks a bit hackish but it's about the only one way of sending
2792 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2793 * not support the ExtINT mode, unfortunately. We need to send these
2794 * cycles as some i82489DX-based boards have glue logic that keeps the
2795 * 8259A interrupt line asserted until INTA. --macro
2797 static inline void __init unlock_ExtINT_logic(void)
2799 int apic, pin, i;
2800 struct IO_APIC_route_entry entry0, entry1;
2801 unsigned char save_control, save_freq_select;
2803 pin = find_isa_irq_pin(8, mp_INT);
2804 if (pin == -1) {
2805 WARN_ON_ONCE(1);
2806 return;
2808 apic = find_isa_irq_apic(8, mp_INT);
2809 if (apic == -1) {
2810 WARN_ON_ONCE(1);
2811 return;
2814 entry0 = ioapic_read_entry(apic, pin);
2815 clear_IO_APIC_pin(apic, pin);
2817 memset(&entry1, 0, sizeof(entry1));
2819 entry1.dest_mode = 0; /* physical delivery */
2820 entry1.mask = 0; /* unmask IRQ now */
2821 entry1.dest = hard_smp_processor_id();
2822 entry1.delivery_mode = dest_ExtINT;
2823 entry1.polarity = entry0.polarity;
2824 entry1.trigger = 0;
2825 entry1.vector = 0;
2827 ioapic_write_entry(apic, pin, entry1);
2829 save_control = CMOS_READ(RTC_CONTROL);
2830 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2831 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2832 RTC_FREQ_SELECT);
2833 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2835 i = 100;
2836 while (i-- > 0) {
2837 mdelay(10);
2838 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2839 i -= 10;
2842 CMOS_WRITE(save_control, RTC_CONTROL);
2843 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2844 clear_IO_APIC_pin(apic, pin);
2846 ioapic_write_entry(apic, pin, entry0);
2849 static int disable_timer_pin_1 __initdata;
2850 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2851 static int __init disable_timer_pin_setup(char *arg)
2853 disable_timer_pin_1 = 1;
2854 return 0;
2856 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2858 int timer_through_8259 __initdata;
2861 * This code may look a bit paranoid, but it's supposed to cooperate with
2862 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2863 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2864 * fanatically on his truly buggy board.
2866 * FIXME: really need to revamp this for all platforms.
2868 static inline void __init check_timer(void)
2870 struct irq_desc *desc = irq_to_desc(0);
2871 struct irq_cfg *cfg = desc->chip_data;
2872 int cpu = boot_cpu_id;
2873 int apic1, pin1, apic2, pin2;
2874 unsigned long flags;
2875 unsigned int ver;
2876 int no_pin1 = 0;
2878 local_irq_save(flags);
2880 ver = apic_read(APIC_LVR);
2881 ver = GET_APIC_VERSION(ver);
2884 * get/set the timer IRQ vector:
2886 disable_8259A_irq(0);
2887 assign_irq_vector(0, cfg, apic->target_cpus());
2890 * As IRQ0 is to be enabled in the 8259A, the virtual
2891 * wire has to be disabled in the local APIC. Also
2892 * timer interrupts need to be acknowledged manually in
2893 * the 8259A for the i82489DX when using the NMI
2894 * watchdog as that APIC treats NMIs as level-triggered.
2895 * The AEOI mode will finish them in the 8259A
2896 * automatically.
2898 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2899 init_8259A(1);
2900 #ifdef CONFIG_X86_32
2901 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2902 #endif
2904 pin1 = find_isa_irq_pin(0, mp_INT);
2905 apic1 = find_isa_irq_apic(0, mp_INT);
2906 pin2 = ioapic_i8259.pin;
2907 apic2 = ioapic_i8259.apic;
2909 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2910 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2911 cfg->vector, apic1, pin1, apic2, pin2);
2914 * Some BIOS writers are clueless and report the ExtINTA
2915 * I/O APIC input from the cascaded 8259A as the timer
2916 * interrupt input. So just in case, if only one pin
2917 * was found above, try it both directly and through the
2918 * 8259A.
2920 if (pin1 == -1) {
2921 #ifdef CONFIG_INTR_REMAP
2922 if (intr_remapping_enabled)
2923 panic("BIOS bug: timer not connected to IO-APIC");
2924 #endif
2925 pin1 = pin2;
2926 apic1 = apic2;
2927 no_pin1 = 1;
2928 } else if (pin2 == -1) {
2929 pin2 = pin1;
2930 apic2 = apic1;
2933 if (pin1 != -1) {
2935 * Ok, does IRQ0 through the IOAPIC work?
2937 if (no_pin1) {
2938 add_pin_to_irq_cpu(cfg, cpu, apic1, pin1);
2939 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2941 unmask_IO_APIC_irq_desc(desc);
2942 if (timer_irq_works()) {
2943 if (nmi_watchdog == NMI_IO_APIC) {
2944 setup_nmi();
2945 enable_8259A_irq(0);
2947 if (disable_timer_pin_1 > 0)
2948 clear_IO_APIC_pin(0, pin1);
2949 goto out;
2951 #ifdef CONFIG_INTR_REMAP
2952 if (intr_remapping_enabled)
2953 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2954 #endif
2955 clear_IO_APIC_pin(apic1, pin1);
2956 if (!no_pin1)
2957 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2958 "8254 timer not connected to IO-APIC\n");
2960 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2961 "(IRQ0) through the 8259A ...\n");
2962 apic_printk(APIC_QUIET, KERN_INFO
2963 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2965 * legacy devices should be connected to IO APIC #0
2967 replace_pin_at_irq_cpu(cfg, cpu, apic1, pin1, apic2, pin2);
2968 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2969 unmask_IO_APIC_irq_desc(desc);
2970 enable_8259A_irq(0);
2971 if (timer_irq_works()) {
2972 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2973 timer_through_8259 = 1;
2974 if (nmi_watchdog == NMI_IO_APIC) {
2975 disable_8259A_irq(0);
2976 setup_nmi();
2977 enable_8259A_irq(0);
2979 goto out;
2982 * Cleanup, just in case ...
2984 disable_8259A_irq(0);
2985 clear_IO_APIC_pin(apic2, pin2);
2986 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2989 if (nmi_watchdog == NMI_IO_APIC) {
2990 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
2991 "through the IO-APIC - disabling NMI Watchdog!\n");
2992 nmi_watchdog = NMI_NONE;
2994 #ifdef CONFIG_X86_32
2995 timer_ack = 0;
2996 #endif
2998 apic_printk(APIC_QUIET, KERN_INFO
2999 "...trying to set up timer as Virtual Wire IRQ...\n");
3001 lapic_register_intr(0, desc);
3002 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
3003 enable_8259A_irq(0);
3005 if (timer_irq_works()) {
3006 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3007 goto out;
3009 disable_8259A_irq(0);
3010 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
3011 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
3013 apic_printk(APIC_QUIET, KERN_INFO
3014 "...trying to set up timer as ExtINT IRQ...\n");
3016 init_8259A(0);
3017 make_8259A_irq(0);
3018 apic_write(APIC_LVT0, APIC_DM_EXTINT);
3020 unlock_ExtINT_logic();
3022 if (timer_irq_works()) {
3023 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
3024 goto out;
3026 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
3027 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
3028 "report. Then try booting with the 'noapic' option.\n");
3029 out:
3030 local_irq_restore(flags);
3034 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
3035 * to devices. However there may be an I/O APIC pin available for
3036 * this interrupt regardless. The pin may be left unconnected, but
3037 * typically it will be reused as an ExtINT cascade interrupt for
3038 * the master 8259A. In the MPS case such a pin will normally be
3039 * reported as an ExtINT interrupt in the MP table. With ACPI
3040 * there is no provision for ExtINT interrupts, and in the absence
3041 * of an override it would be treated as an ordinary ISA I/O APIC
3042 * interrupt, that is edge-triggered and unmasked by default. We
3043 * used to do this, but it caused problems on some systems because
3044 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
3045 * the same ExtINT cascade interrupt to drive the local APIC of the
3046 * bootstrap processor. Therefore we refrain from routing IRQ2 to
3047 * the I/O APIC in all cases now. No actual device should request
3048 * it anyway. --macro
3050 #define PIC_IRQS (1 << PIC_CASCADE_IR)
3052 void __init setup_IO_APIC(void)
3055 #ifdef CONFIG_X86_32
3056 enable_IO_APIC();
3057 #else
3059 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
3061 #endif
3063 io_apic_irqs = ~PIC_IRQS;
3065 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
3067 * Set up IO-APIC IRQ routing.
3069 #ifdef CONFIG_X86_32
3070 if (!acpi_ioapic)
3071 setup_ioapic_ids_from_mpc();
3072 #endif
3073 sync_Arb_IDs();
3074 setup_IO_APIC_irqs();
3075 init_IO_APIC_traps();
3076 check_timer();
3080 * Called after all the initialization is done. If we didnt find any
3081 * APIC bugs then we can allow the modify fast path
3084 static int __init io_apic_bug_finalize(void)
3086 if (sis_apic_bug == -1)
3087 sis_apic_bug = 0;
3088 return 0;
3091 late_initcall(io_apic_bug_finalize);
3093 struct sysfs_ioapic_data {
3094 struct sys_device dev;
3095 struct IO_APIC_route_entry entry[0];
3097 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
3099 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
3101 struct IO_APIC_route_entry *entry;
3102 struct sysfs_ioapic_data *data;
3103 int i;
3105 data = container_of(dev, struct sysfs_ioapic_data, dev);
3106 entry = data->entry;
3107 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
3108 *entry = ioapic_read_entry(dev->id, i);
3110 return 0;
3113 static int ioapic_resume(struct sys_device *dev)
3115 struct IO_APIC_route_entry *entry;
3116 struct sysfs_ioapic_data *data;
3117 unsigned long flags;
3118 union IO_APIC_reg_00 reg_00;
3119 int i;
3121 data = container_of(dev, struct sysfs_ioapic_data, dev);
3122 entry = data->entry;
3124 spin_lock_irqsave(&ioapic_lock, flags);
3125 reg_00.raw = io_apic_read(dev->id, 0);
3126 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3127 reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3128 io_apic_write(dev->id, 0, reg_00.raw);
3130 spin_unlock_irqrestore(&ioapic_lock, flags);
3131 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3132 ioapic_write_entry(dev->id, i, entry[i]);
3134 return 0;
3137 static struct sysdev_class ioapic_sysdev_class = {
3138 .name = "ioapic",
3139 .suspend = ioapic_suspend,
3140 .resume = ioapic_resume,
3143 static int __init ioapic_init_sysfs(void)
3145 struct sys_device * dev;
3146 int i, size, error;
3148 error = sysdev_class_register(&ioapic_sysdev_class);
3149 if (error)
3150 return error;
3152 for (i = 0; i < nr_ioapics; i++ ) {
3153 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3154 * sizeof(struct IO_APIC_route_entry);
3155 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3156 if (!mp_ioapic_data[i]) {
3157 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3158 continue;
3160 dev = &mp_ioapic_data[i]->dev;
3161 dev->id = i;
3162 dev->cls = &ioapic_sysdev_class;
3163 error = sysdev_register(dev);
3164 if (error) {
3165 kfree(mp_ioapic_data[i]);
3166 mp_ioapic_data[i] = NULL;
3167 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3168 continue;
3172 return 0;
3175 device_initcall(ioapic_init_sysfs);
3178 * Dynamic irq allocate and deallocation
3180 unsigned int create_irq_nr(unsigned int irq_want)
3182 /* Allocate an unused irq */
3183 unsigned int irq;
3184 unsigned int new;
3185 unsigned long flags;
3186 struct irq_cfg *cfg_new = NULL;
3187 int cpu = boot_cpu_id;
3188 struct irq_desc *desc_new = NULL;
3190 irq = 0;
3191 spin_lock_irqsave(&vector_lock, flags);
3192 for (new = irq_want; new < nr_irqs; new++) {
3193 if (platform_legacy_irq(new))
3194 continue;
3196 desc_new = irq_to_desc_alloc_cpu(new, cpu);
3197 if (!desc_new) {
3198 printk(KERN_INFO "can not get irq_desc for %d\n", new);
3199 continue;
3201 cfg_new = desc_new->chip_data;
3203 if (cfg_new->vector != 0)
3204 continue;
3205 if (__assign_irq_vector(new, cfg_new, apic->target_cpus()) == 0)
3206 irq = new;
3207 break;
3209 spin_unlock_irqrestore(&vector_lock, flags);
3211 if (irq > 0) {
3212 dynamic_irq_init(irq);
3213 /* restore it, in case dynamic_irq_init clear it */
3214 if (desc_new)
3215 desc_new->chip_data = cfg_new;
3217 return irq;
3220 static int nr_irqs_gsi = NR_IRQS_LEGACY;
3221 int create_irq(void)
3223 unsigned int irq_want;
3224 int irq;
3226 irq_want = nr_irqs_gsi;
3227 irq = create_irq_nr(irq_want);
3229 if (irq == 0)
3230 irq = -1;
3232 return irq;
3235 void destroy_irq(unsigned int irq)
3237 unsigned long flags;
3238 struct irq_cfg *cfg;
3239 struct irq_desc *desc;
3241 /* store it, in case dynamic_irq_cleanup clear it */
3242 desc = irq_to_desc(irq);
3243 cfg = desc->chip_data;
3244 dynamic_irq_cleanup(irq);
3245 /* connect back irq_cfg */
3246 if (desc)
3247 desc->chip_data = cfg;
3249 #ifdef CONFIG_INTR_REMAP
3250 free_irte(irq);
3251 #endif
3252 spin_lock_irqsave(&vector_lock, flags);
3253 __clear_irq_vector(irq, cfg);
3254 spin_unlock_irqrestore(&vector_lock, flags);
3258 * MSI message composition
3260 #ifdef CONFIG_PCI_MSI
3261 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3263 struct irq_cfg *cfg;
3264 int err;
3265 unsigned dest;
3267 if (disable_apic)
3268 return -ENXIO;
3270 cfg = irq_cfg(irq);
3271 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3272 if (err)
3273 return err;
3275 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3277 #ifdef CONFIG_INTR_REMAP
3278 if (irq_remapped(irq)) {
3279 struct irte irte;
3280 int ir_index;
3281 u16 sub_handle;
3283 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3284 BUG_ON(ir_index == -1);
3286 memset (&irte, 0, sizeof(irte));
3288 irte.present = 1;
3289 irte.dst_mode = apic->irq_dest_mode;
3290 irte.trigger_mode = 0; /* edge */
3291 irte.dlvry_mode = apic->irq_delivery_mode;
3292 irte.vector = cfg->vector;
3293 irte.dest_id = IRTE_DEST(dest);
3295 modify_irte(irq, &irte);
3297 msg->address_hi = MSI_ADDR_BASE_HI;
3298 msg->data = sub_handle;
3299 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3300 MSI_ADDR_IR_SHV |
3301 MSI_ADDR_IR_INDEX1(ir_index) |
3302 MSI_ADDR_IR_INDEX2(ir_index);
3303 } else
3304 #endif
3306 msg->address_hi = MSI_ADDR_BASE_HI;
3307 msg->address_lo =
3308 MSI_ADDR_BASE_LO |
3309 ((apic->irq_dest_mode == 0) ?
3310 MSI_ADDR_DEST_MODE_PHYSICAL:
3311 MSI_ADDR_DEST_MODE_LOGICAL) |
3312 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3313 MSI_ADDR_REDIRECTION_CPU:
3314 MSI_ADDR_REDIRECTION_LOWPRI) |
3315 MSI_ADDR_DEST_ID(dest);
3317 msg->data =
3318 MSI_DATA_TRIGGER_EDGE |
3319 MSI_DATA_LEVEL_ASSERT |
3320 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3321 MSI_DATA_DELIVERY_FIXED:
3322 MSI_DATA_DELIVERY_LOWPRI) |
3323 MSI_DATA_VECTOR(cfg->vector);
3325 return err;
3328 #ifdef CONFIG_SMP
3329 static void set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3331 struct irq_desc *desc = irq_to_desc(irq);
3332 struct irq_cfg *cfg;
3333 struct msi_msg msg;
3334 unsigned int dest;
3336 dest = set_desc_affinity(desc, mask);
3337 if (dest == BAD_APICID)
3338 return;
3340 cfg = desc->chip_data;
3342 read_msi_msg_desc(desc, &msg);
3344 msg.data &= ~MSI_DATA_VECTOR_MASK;
3345 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3346 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3347 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3349 write_msi_msg_desc(desc, &msg);
3351 #ifdef CONFIG_INTR_REMAP
3353 * Migrate the MSI irq to another cpumask. This migration is
3354 * done in the process context using interrupt-remapping hardware.
3356 static void
3357 ir_set_msi_irq_affinity(unsigned int irq, const struct cpumask *mask)
3359 struct irq_desc *desc = irq_to_desc(irq);
3360 struct irq_cfg *cfg = desc->chip_data;
3361 unsigned int dest;
3362 struct irte irte;
3364 if (get_irte(irq, &irte))
3365 return;
3367 dest = set_desc_affinity(desc, mask);
3368 if (dest == BAD_APICID)
3369 return;
3371 irte.vector = cfg->vector;
3372 irte.dest_id = IRTE_DEST(dest);
3375 * atomically update the IRTE with the new destination and vector.
3377 modify_irte(irq, &irte);
3380 * After this point, all the interrupts will start arriving
3381 * at the new destination. So, time to cleanup the previous
3382 * vector allocation.
3384 if (cfg->move_in_progress)
3385 send_cleanup_vector(cfg);
3388 #endif
3389 #endif /* CONFIG_SMP */
3392 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3393 * which implement the MSI or MSI-X Capability Structure.
3395 static struct irq_chip msi_chip = {
3396 .name = "PCI-MSI",
3397 .unmask = unmask_msi_irq,
3398 .mask = mask_msi_irq,
3399 .ack = ack_apic_edge,
3400 #ifdef CONFIG_SMP
3401 .set_affinity = set_msi_irq_affinity,
3402 #endif
3403 .retrigger = ioapic_retrigger_irq,
3406 #ifdef CONFIG_INTR_REMAP
3407 static struct irq_chip msi_ir_chip = {
3408 .name = "IR-PCI-MSI",
3409 .unmask = unmask_msi_irq,
3410 .mask = mask_msi_irq,
3411 .ack = ack_x2apic_edge,
3412 #ifdef CONFIG_SMP
3413 .set_affinity = ir_set_msi_irq_affinity,
3414 #endif
3415 .retrigger = ioapic_retrigger_irq,
3419 * Map the PCI dev to the corresponding remapping hardware unit
3420 * and allocate 'nvec' consecutive interrupt-remapping table entries
3421 * in it.
3423 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3425 struct intel_iommu *iommu;
3426 int index;
3428 iommu = map_dev_to_ir(dev);
3429 if (!iommu) {
3430 printk(KERN_ERR
3431 "Unable to map PCI %s to iommu\n", pci_name(dev));
3432 return -ENOENT;
3435 index = alloc_irte(iommu, irq, nvec);
3436 if (index < 0) {
3437 printk(KERN_ERR
3438 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3439 pci_name(dev));
3440 return -ENOSPC;
3442 return index;
3444 #endif
3446 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3448 int ret;
3449 struct msi_msg msg;
3451 ret = msi_compose_msg(dev, irq, &msg);
3452 if (ret < 0)
3453 return ret;
3455 set_irq_msi(irq, msidesc);
3456 write_msi_msg(irq, &msg);
3458 #ifdef CONFIG_INTR_REMAP
3459 if (irq_remapped(irq)) {
3460 struct irq_desc *desc = irq_to_desc(irq);
3462 * irq migration in process context
3464 desc->status |= IRQ_MOVE_PCNTXT;
3465 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3466 } else
3467 #endif
3468 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3470 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3472 return 0;
3475 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3477 unsigned int irq;
3478 int ret, sub_handle;
3479 struct msi_desc *msidesc;
3480 unsigned int irq_want;
3482 #ifdef CONFIG_INTR_REMAP
3483 struct intel_iommu *iommu = 0;
3484 int index = 0;
3485 #endif
3487 irq_want = nr_irqs_gsi;
3488 sub_handle = 0;
3489 list_for_each_entry(msidesc, &dev->msi_list, list) {
3490 irq = create_irq_nr(irq_want);
3491 irq_want++;
3492 if (irq == 0)
3493 return -1;
3494 #ifdef CONFIG_INTR_REMAP
3495 if (!intr_remapping_enabled)
3496 goto no_ir;
3498 if (!sub_handle) {
3500 * allocate the consecutive block of IRTE's
3501 * for 'nvec'
3503 index = msi_alloc_irte(dev, irq, nvec);
3504 if (index < 0) {
3505 ret = index;
3506 goto error;
3508 } else {
3509 iommu = map_dev_to_ir(dev);
3510 if (!iommu) {
3511 ret = -ENOENT;
3512 goto error;
3515 * setup the mapping between the irq and the IRTE
3516 * base index, the sub_handle pointing to the
3517 * appropriate interrupt remap table entry.
3519 set_irte_irq(irq, iommu, index, sub_handle);
3521 no_ir:
3522 #endif
3523 ret = setup_msi_irq(dev, msidesc, irq);
3524 if (ret < 0)
3525 goto error;
3526 sub_handle++;
3528 return 0;
3530 error:
3531 destroy_irq(irq);
3532 return ret;
3535 void arch_teardown_msi_irq(unsigned int irq)
3537 destroy_irq(irq);
3540 #ifdef CONFIG_DMAR
3541 #ifdef CONFIG_SMP
3542 static void dmar_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3544 struct irq_desc *desc = irq_to_desc(irq);
3545 struct irq_cfg *cfg;
3546 struct msi_msg msg;
3547 unsigned int dest;
3549 dest = set_desc_affinity(desc, mask);
3550 if (dest == BAD_APICID)
3551 return;
3553 cfg = desc->chip_data;
3555 dmar_msi_read(irq, &msg);
3557 msg.data &= ~MSI_DATA_VECTOR_MASK;
3558 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3559 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3560 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3562 dmar_msi_write(irq, &msg);
3565 #endif /* CONFIG_SMP */
3567 struct irq_chip dmar_msi_type = {
3568 .name = "DMAR_MSI",
3569 .unmask = dmar_msi_unmask,
3570 .mask = dmar_msi_mask,
3571 .ack = ack_apic_edge,
3572 #ifdef CONFIG_SMP
3573 .set_affinity = dmar_msi_set_affinity,
3574 #endif
3575 .retrigger = ioapic_retrigger_irq,
3578 int arch_setup_dmar_msi(unsigned int irq)
3580 int ret;
3581 struct msi_msg msg;
3583 ret = msi_compose_msg(NULL, irq, &msg);
3584 if (ret < 0)
3585 return ret;
3586 dmar_msi_write(irq, &msg);
3587 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3588 "edge");
3589 return 0;
3591 #endif
3593 #ifdef CONFIG_HPET_TIMER
3595 #ifdef CONFIG_SMP
3596 static void hpet_msi_set_affinity(unsigned int irq, const struct cpumask *mask)
3598 struct irq_desc *desc = irq_to_desc(irq);
3599 struct irq_cfg *cfg;
3600 struct msi_msg msg;
3601 unsigned int dest;
3603 dest = set_desc_affinity(desc, mask);
3604 if (dest == BAD_APICID)
3605 return;
3607 cfg = desc->chip_data;
3609 hpet_msi_read(irq, &msg);
3611 msg.data &= ~MSI_DATA_VECTOR_MASK;
3612 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3613 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3614 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3616 hpet_msi_write(irq, &msg);
3619 #endif /* CONFIG_SMP */
3621 struct irq_chip hpet_msi_type = {
3622 .name = "HPET_MSI",
3623 .unmask = hpet_msi_unmask,
3624 .mask = hpet_msi_mask,
3625 .ack = ack_apic_edge,
3626 #ifdef CONFIG_SMP
3627 .set_affinity = hpet_msi_set_affinity,
3628 #endif
3629 .retrigger = ioapic_retrigger_irq,
3632 int arch_setup_hpet_msi(unsigned int irq)
3634 int ret;
3635 struct msi_msg msg;
3637 ret = msi_compose_msg(NULL, irq, &msg);
3638 if (ret < 0)
3639 return ret;
3641 hpet_msi_write(irq, &msg);
3642 set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
3643 "edge");
3645 return 0;
3647 #endif
3649 #endif /* CONFIG_PCI_MSI */
3651 * Hypertransport interrupt support
3653 #ifdef CONFIG_HT_IRQ
3655 #ifdef CONFIG_SMP
3657 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3659 struct ht_irq_msg msg;
3660 fetch_ht_irq_msg(irq, &msg);
3662 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3663 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3665 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3666 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3668 write_ht_irq_msg(irq, &msg);
3671 static void set_ht_irq_affinity(unsigned int irq, const struct cpumask *mask)
3673 struct irq_desc *desc = irq_to_desc(irq);
3674 struct irq_cfg *cfg;
3675 unsigned int dest;
3677 dest = set_desc_affinity(desc, mask);
3678 if (dest == BAD_APICID)
3679 return;
3681 cfg = desc->chip_data;
3683 target_ht_irq(irq, dest, cfg->vector);
3686 #endif
3688 static struct irq_chip ht_irq_chip = {
3689 .name = "PCI-HT",
3690 .mask = mask_ht_irq,
3691 .unmask = unmask_ht_irq,
3692 .ack = ack_apic_edge,
3693 #ifdef CONFIG_SMP
3694 .set_affinity = set_ht_irq_affinity,
3695 #endif
3696 .retrigger = ioapic_retrigger_irq,
3699 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3701 struct irq_cfg *cfg;
3702 int err;
3704 if (disable_apic)
3705 return -ENXIO;
3707 cfg = irq_cfg(irq);
3708 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3709 if (!err) {
3710 struct ht_irq_msg msg;
3711 unsigned dest;
3713 dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3714 apic->target_cpus());
3716 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3718 msg.address_lo =
3719 HT_IRQ_LOW_BASE |
3720 HT_IRQ_LOW_DEST_ID(dest) |
3721 HT_IRQ_LOW_VECTOR(cfg->vector) |
3722 ((apic->irq_dest_mode == 0) ?
3723 HT_IRQ_LOW_DM_PHYSICAL :
3724 HT_IRQ_LOW_DM_LOGICAL) |
3725 HT_IRQ_LOW_RQEOI_EDGE |
3726 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3727 HT_IRQ_LOW_MT_FIXED :
3728 HT_IRQ_LOW_MT_ARBITRATED) |
3729 HT_IRQ_LOW_IRQ_MASKED;
3731 write_ht_irq_msg(irq, &msg);
3733 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3734 handle_edge_irq, "edge");
3736 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3738 return err;
3740 #endif /* CONFIG_HT_IRQ */
3742 #ifdef CONFIG_X86_UV
3744 * Re-target the irq to the specified CPU and enable the specified MMR located
3745 * on the specified blade to allow the sending of MSIs to the specified CPU.
3747 int arch_enable_uv_irq(char *irq_name, unsigned int irq, int cpu, int mmr_blade,
3748 unsigned long mmr_offset)
3750 const struct cpumask *eligible_cpu = cpumask_of(cpu);
3751 struct irq_cfg *cfg;
3752 int mmr_pnode;
3753 unsigned long mmr_value;
3754 struct uv_IO_APIC_route_entry *entry;
3755 unsigned long flags;
3756 int err;
3758 cfg = irq_cfg(irq);
3760 err = assign_irq_vector(irq, cfg, eligible_cpu);
3761 if (err != 0)
3762 return err;
3764 spin_lock_irqsave(&vector_lock, flags);
3765 set_irq_chip_and_handler_name(irq, &uv_irq_chip, handle_percpu_irq,
3766 irq_name);
3767 spin_unlock_irqrestore(&vector_lock, flags);
3769 mmr_value = 0;
3770 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3771 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3773 entry->vector = cfg->vector;
3774 entry->delivery_mode = apic->irq_delivery_mode;
3775 entry->dest_mode = apic->irq_dest_mode;
3776 entry->polarity = 0;
3777 entry->trigger = 0;
3778 entry->mask = 0;
3779 entry->dest = apic->cpu_mask_to_apicid(eligible_cpu);
3781 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3782 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3784 return irq;
3788 * Disable the specified MMR located on the specified blade so that MSIs are
3789 * longer allowed to be sent.
3791 void arch_disable_uv_irq(int mmr_blade, unsigned long mmr_offset)
3793 unsigned long mmr_value;
3794 struct uv_IO_APIC_route_entry *entry;
3795 int mmr_pnode;
3797 mmr_value = 0;
3798 entry = (struct uv_IO_APIC_route_entry *)&mmr_value;
3799 BUG_ON(sizeof(struct uv_IO_APIC_route_entry) != sizeof(unsigned long));
3801 entry->mask = 1;
3803 mmr_pnode = uv_blade_to_pnode(mmr_blade);
3804 uv_write_global_mmr64(mmr_pnode, mmr_offset, mmr_value);
3806 #endif /* CONFIG_X86_64 */
3808 int __init io_apic_get_redir_entries (int ioapic)
3810 union IO_APIC_reg_01 reg_01;
3811 unsigned long flags;
3813 spin_lock_irqsave(&ioapic_lock, flags);
3814 reg_01.raw = io_apic_read(ioapic, 1);
3815 spin_unlock_irqrestore(&ioapic_lock, flags);
3817 return reg_01.bits.entries;
3820 void __init probe_nr_irqs_gsi(void)
3822 int idx;
3823 int nr = 0;
3825 for (idx = 0; idx < nr_ioapics; idx++)
3826 nr += io_apic_get_redir_entries(idx) + 1;
3828 if (nr > nr_irqs_gsi)
3829 nr_irqs_gsi = nr;
3832 #ifdef CONFIG_SPARSE_IRQ
3833 int __init arch_probe_nr_irqs(void)
3835 int nr;
3837 nr = ((8 * nr_cpu_ids) > (32 * nr_ioapics) ?
3838 (NR_VECTORS + (8 * nr_cpu_ids)) :
3839 (NR_VECTORS + (32 * nr_ioapics)));
3841 if (nr < nr_irqs && nr > nr_irqs_gsi)
3842 nr_irqs = nr;
3844 return 0;
3846 #endif
3848 /* --------------------------------------------------------------------------
3849 ACPI-based IOAPIC Configuration
3850 -------------------------------------------------------------------------- */
3852 #ifdef CONFIG_ACPI
3854 #ifdef CONFIG_X86_32
3855 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3857 union IO_APIC_reg_00 reg_00;
3858 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3859 physid_mask_t tmp;
3860 unsigned long flags;
3861 int i = 0;
3864 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3865 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3866 * supports up to 16 on one shared APIC bus.
3868 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3869 * advantage of new APIC bus architecture.
3872 if (physids_empty(apic_id_map))
3873 apic_id_map = apic->ioapic_phys_id_map(phys_cpu_present_map);
3875 spin_lock_irqsave(&ioapic_lock, flags);
3876 reg_00.raw = io_apic_read(ioapic, 0);
3877 spin_unlock_irqrestore(&ioapic_lock, flags);
3879 if (apic_id >= get_physical_broadcast()) {
3880 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3881 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3882 apic_id = reg_00.bits.ID;
3886 * Every APIC in a system must have a unique ID or we get lots of nice
3887 * 'stuck on smp_invalidate_needed IPI wait' messages.
3889 if (apic->check_apicid_used(apic_id_map, apic_id)) {
3891 for (i = 0; i < get_physical_broadcast(); i++) {
3892 if (!apic->check_apicid_used(apic_id_map, i))
3893 break;
3896 if (i == get_physical_broadcast())
3897 panic("Max apic_id exceeded!\n");
3899 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3900 "trying %d\n", ioapic, apic_id, i);
3902 apic_id = i;
3905 tmp = apic->apicid_to_cpu_present(apic_id);
3906 physids_or(apic_id_map, apic_id_map, tmp);
3908 if (reg_00.bits.ID != apic_id) {
3909 reg_00.bits.ID = apic_id;
3911 spin_lock_irqsave(&ioapic_lock, flags);
3912 io_apic_write(ioapic, 0, reg_00.raw);
3913 reg_00.raw = io_apic_read(ioapic, 0);
3914 spin_unlock_irqrestore(&ioapic_lock, flags);
3916 /* Sanity check */
3917 if (reg_00.bits.ID != apic_id) {
3918 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3919 return -1;
3923 apic_printk(APIC_VERBOSE, KERN_INFO
3924 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3926 return apic_id;
3929 int __init io_apic_get_version(int ioapic)
3931 union IO_APIC_reg_01 reg_01;
3932 unsigned long flags;
3934 spin_lock_irqsave(&ioapic_lock, flags);
3935 reg_01.raw = io_apic_read(ioapic, 1);
3936 spin_unlock_irqrestore(&ioapic_lock, flags);
3938 return reg_01.bits.version;
3940 #endif
3942 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
3944 struct irq_desc *desc;
3945 struct irq_cfg *cfg;
3946 int cpu = boot_cpu_id;
3948 if (!IO_APIC_IRQ(irq)) {
3949 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3950 ioapic);
3951 return -EINVAL;
3954 desc = irq_to_desc_alloc_cpu(irq, cpu);
3955 if (!desc) {
3956 printk(KERN_INFO "can not get irq_desc %d\n", irq);
3957 return 0;
3961 * IRQs < 16 are already in the irq_2_pin[] map
3963 if (irq >= NR_IRQS_LEGACY) {
3964 cfg = desc->chip_data;
3965 add_pin_to_irq_cpu(cfg, cpu, ioapic, pin);
3968 setup_IO_APIC_irq(ioapic, pin, irq, desc, triggering, polarity);
3970 return 0;
3974 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
3976 int i;
3978 if (skip_ioapic_setup)
3979 return -1;
3981 for (i = 0; i < mp_irq_entries; i++)
3982 if (mp_irqs[i].irqtype == mp_INT &&
3983 mp_irqs[i].srcbusirq == bus_irq)
3984 break;
3985 if (i >= mp_irq_entries)
3986 return -1;
3988 *trigger = irq_trigger(i);
3989 *polarity = irq_polarity(i);
3990 return 0;
3993 #endif /* CONFIG_ACPI */
3996 * This function currently is only a helper for the i386 smp boot process where
3997 * we need to reprogram the ioredtbls to cater for the cpus which have come online
3998 * so mask in all cases should simply be apic->target_cpus()
4000 #ifdef CONFIG_SMP
4001 void __init setup_ioapic_dest(void)
4003 int pin, ioapic, irq, irq_entry;
4004 struct irq_desc *desc;
4005 struct irq_cfg *cfg;
4006 const struct cpumask *mask;
4008 if (skip_ioapic_setup == 1)
4009 return;
4011 for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
4012 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
4013 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
4014 if (irq_entry == -1)
4015 continue;
4016 irq = pin_2_irq(irq_entry, ioapic, pin);
4018 /* setup_IO_APIC_irqs could fail to get vector for some device
4019 * when you have too many devices, because at that time only boot
4020 * cpu is online.
4022 desc = irq_to_desc(irq);
4023 cfg = desc->chip_data;
4024 if (!cfg->vector) {
4025 setup_IO_APIC_irq(ioapic, pin, irq, desc,
4026 irq_trigger(irq_entry),
4027 irq_polarity(irq_entry));
4028 continue;
4033 * Honour affinities which have been set in early boot
4035 if (desc->status &
4036 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
4037 mask = desc->affinity;
4038 else
4039 mask = apic->target_cpus();
4041 #ifdef CONFIG_INTR_REMAP
4042 if (intr_remapping_enabled)
4043 set_ir_ioapic_affinity_irq_desc(desc, mask);
4044 else
4045 #endif
4046 set_ioapic_affinity_irq_desc(desc, mask);
4051 #endif
4053 #define IOAPIC_RESOURCE_NAME_SIZE 11
4055 static struct resource *ioapic_resources;
4057 static struct resource * __init ioapic_setup_resources(void)
4059 unsigned long n;
4060 struct resource *res;
4061 char *mem;
4062 int i;
4064 if (nr_ioapics <= 0)
4065 return NULL;
4067 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
4068 n *= nr_ioapics;
4070 mem = alloc_bootmem(n);
4071 res = (void *)mem;
4073 if (mem != NULL) {
4074 mem += sizeof(struct resource) * nr_ioapics;
4076 for (i = 0; i < nr_ioapics; i++) {
4077 res[i].name = mem;
4078 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
4079 sprintf(mem, "IOAPIC %u", i);
4080 mem += IOAPIC_RESOURCE_NAME_SIZE;
4084 ioapic_resources = res;
4086 return res;
4089 void __init ioapic_init_mappings(void)
4091 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
4092 struct resource *ioapic_res;
4093 int i;
4095 ioapic_res = ioapic_setup_resources();
4096 for (i = 0; i < nr_ioapics; i++) {
4097 if (smp_found_config) {
4098 ioapic_phys = mp_ioapics[i].apicaddr;
4099 #ifdef CONFIG_X86_32
4100 if (!ioapic_phys) {
4101 printk(KERN_ERR
4102 "WARNING: bogus zero IO-APIC "
4103 "address found in MPTABLE, "
4104 "disabling IO/APIC support!\n");
4105 smp_found_config = 0;
4106 skip_ioapic_setup = 1;
4107 goto fake_ioapic_page;
4109 #endif
4110 } else {
4111 #ifdef CONFIG_X86_32
4112 fake_ioapic_page:
4113 #endif
4114 ioapic_phys = (unsigned long)
4115 alloc_bootmem_pages(PAGE_SIZE);
4116 ioapic_phys = __pa(ioapic_phys);
4118 set_fixmap_nocache(idx, ioapic_phys);
4119 apic_printk(APIC_VERBOSE,
4120 "mapped IOAPIC to %08lx (%08lx)\n",
4121 __fix_to_virt(idx), ioapic_phys);
4122 idx++;
4124 if (ioapic_res != NULL) {
4125 ioapic_res->start = ioapic_phys;
4126 ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
4127 ioapic_res++;
4132 static int __init ioapic_insert_resources(void)
4134 int i;
4135 struct resource *r = ioapic_resources;
4137 if (!r) {
4138 printk(KERN_ERR
4139 "IO APIC resources could be not be allocated.\n");
4140 return -1;
4143 for (i = 0; i < nr_ioapics; i++) {
4144 insert_resource(&iomem_resource, r);
4145 r++;
4148 return 0;
4151 /* Insert the IO APIC resources after PCI initialization has occured to handle
4152 * IO APICS that are mapped in on a BAR in PCI space. */
4153 late_initcall(ioapic_insert_resources);