[PATCH] ecryptfs: fix crypto_alloc_blkcipher() error check
[linux-2.6/mini2440.git] / drivers / scsi / scsi_lib.c
blob3ac4890ce086cfab2ff6519c1f9858760b764de5
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE 32
36 struct scsi_host_sg_pool {
37 size_t size;
38 char *name;
39 kmem_cache_t *slab;
40 mempool_t *pool;
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 SP(8),
50 SP(16),
51 SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
67 static void scsi_run_queue(struct request_queue *q);
70 * Function: scsi_unprep_request()
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
75 * Arguments: req - request to unprepare
77 * Lock status: Assumed that no locks are held upon entry.
79 * Returns: Nothing.
81 static void scsi_unprep_request(struct request *req)
83 struct scsi_cmnd *cmd = req->special;
85 req->cmd_flags &= ~REQ_DONTPREP;
86 req->special = NULL;
88 scsi_put_command(cmd);
92 * Function: scsi_queue_insert()
94 * Purpose: Insert a command in the midlevel queue.
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
99 * Lock status: Assumed that lock is not held upon entry.
101 * Returns: Nothing.
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
106 * commands.
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
115 unsigned long flags;
117 SCSI_LOG_MLQUEUE(1,
118 printk("Inserting command %p into mlqueue\n", cmd));
121 * Set the appropriate busy bit for the device/host.
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
142 scsi_device_unbusy(device);
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
159 scsi_run_queue(q);
161 return 0;
165 * scsi_execute - insert request and wait for the result
166 * @sdev: scsi device
167 * @cmd: scsi command
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
176 * returns the req->errors value which is the the scsi_cmnd result
177 * field.
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
183 struct request *req;
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
191 goto out;
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
195 req->sense = sense;
196 req->sense_len = 0;
197 req->retries = retries;
198 req->timeout = timeout;
199 req->cmd_type = REQ_TYPE_BLOCK_PC;
200 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
203 * head injection *required* here otherwise quiesce won't work
205 blk_execute_rq(req->q, NULL, req, 1);
207 ret = req->errors;
208 out:
209 blk_put_request(req);
211 return ret;
213 EXPORT_SYMBOL(scsi_execute);
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 struct scsi_sense_hdr *sshdr, int timeout, int retries)
220 char *sense = NULL;
221 int result;
223 if (sshdr) {
224 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 if (!sense)
226 return DRIVER_ERROR << 24;
228 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 sense, timeout, retries, 0);
230 if (sshdr)
231 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
233 kfree(sense);
234 return result;
236 EXPORT_SYMBOL(scsi_execute_req);
238 struct scsi_io_context {
239 void *data;
240 void (*done)(void *data, char *sense, int result, int resid);
241 char sense[SCSI_SENSE_BUFFERSIZE];
244 static kmem_cache_t *scsi_io_context_cache;
246 static void scsi_end_async(struct request *req, int uptodate)
248 struct scsi_io_context *sioc = req->end_io_data;
250 if (sioc->done)
251 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
253 kmem_cache_free(scsi_io_context_cache, sioc);
254 __blk_put_request(req->q, req);
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
259 struct request_queue *q = rq->q;
261 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 if (rq_data_dir(rq) == WRITE)
263 bio->bi_rw |= (1 << BIO_RW);
264 blk_queue_bounce(q, &bio);
266 if (!rq->bio)
267 blk_rq_bio_prep(q, rq, bio);
268 else if (!q->back_merge_fn(q, rq, bio))
269 return -EINVAL;
270 else {
271 rq->biotail->bi_next = bio;
272 rq->biotail = bio;
273 rq->hard_nr_sectors += bio_sectors(bio);
274 rq->nr_sectors = rq->hard_nr_sectors;
277 return 0;
280 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
282 if (bio->bi_size)
283 return 1;
285 bio_put(bio);
286 return 0;
290 * scsi_req_map_sg - map a scatterlist into a request
291 * @rq: request to fill
292 * @sg: scatterlist
293 * @nsegs: number of elements
294 * @bufflen: len of buffer
295 * @gfp: memory allocation flags
297 * scsi_req_map_sg maps a scatterlist into a request so that the
298 * request can be sent to the block layer. We do not trust the scatterlist
299 * sent to use, as some ULDs use that struct to only organize the pages.
301 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
302 int nsegs, unsigned bufflen, gfp_t gfp)
304 struct request_queue *q = rq->q;
305 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
306 unsigned int data_len = 0, len, bytes, off;
307 struct page *page;
308 struct bio *bio = NULL;
309 int i, err, nr_vecs = 0;
311 for (i = 0; i < nsegs; i++) {
312 page = sgl[i].page;
313 off = sgl[i].offset;
314 len = sgl[i].length;
315 data_len += len;
317 while (len > 0) {
318 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
320 if (!bio) {
321 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
322 nr_pages -= nr_vecs;
324 bio = bio_alloc(gfp, nr_vecs);
325 if (!bio) {
326 err = -ENOMEM;
327 goto free_bios;
329 bio->bi_end_io = scsi_bi_endio;
332 if (bio_add_pc_page(q, bio, page, bytes, off) !=
333 bytes) {
334 bio_put(bio);
335 err = -EINVAL;
336 goto free_bios;
339 if (bio->bi_vcnt >= nr_vecs) {
340 err = scsi_merge_bio(rq, bio);
341 if (err) {
342 bio_endio(bio, bio->bi_size, 0);
343 goto free_bios;
345 bio = NULL;
348 page++;
349 len -= bytes;
350 off = 0;
354 rq->buffer = rq->data = NULL;
355 rq->data_len = data_len;
356 return 0;
358 free_bios:
359 while ((bio = rq->bio) != NULL) {
360 rq->bio = bio->bi_next;
362 * call endio instead of bio_put incase it was bounced
364 bio_endio(bio, bio->bi_size, 0);
367 return err;
371 * scsi_execute_async - insert request
372 * @sdev: scsi device
373 * @cmd: scsi command
374 * @cmd_len: length of scsi cdb
375 * @data_direction: data direction
376 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
377 * @bufflen: len of buffer
378 * @use_sg: if buffer is a scatterlist this is the number of elements
379 * @timeout: request timeout in seconds
380 * @retries: number of times to retry request
381 * @flags: or into request flags
383 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
384 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
385 int use_sg, int timeout, int retries, void *privdata,
386 void (*done)(void *, char *, int, int), gfp_t gfp)
388 struct request *req;
389 struct scsi_io_context *sioc;
390 int err = 0;
391 int write = (data_direction == DMA_TO_DEVICE);
393 sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
394 if (!sioc)
395 return DRIVER_ERROR << 24;
396 memset(sioc, 0, sizeof(*sioc));
398 req = blk_get_request(sdev->request_queue, write, gfp);
399 if (!req)
400 goto free_sense;
401 req->cmd_type = REQ_TYPE_BLOCK_PC;
402 req->cmd_flags |= REQ_QUIET;
404 if (use_sg)
405 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
406 else if (bufflen)
407 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
409 if (err)
410 goto free_req;
412 req->cmd_len = cmd_len;
413 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
414 memcpy(req->cmd, cmd, req->cmd_len);
415 req->sense = sioc->sense;
416 req->sense_len = 0;
417 req->timeout = timeout;
418 req->retries = retries;
419 req->end_io_data = sioc;
421 sioc->data = privdata;
422 sioc->done = done;
424 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
425 return 0;
427 free_req:
428 blk_put_request(req);
429 free_sense:
430 kmem_cache_free(scsi_io_context_cache, sioc);
431 return DRIVER_ERROR << 24;
433 EXPORT_SYMBOL_GPL(scsi_execute_async);
436 * Function: scsi_init_cmd_errh()
438 * Purpose: Initialize cmd fields related to error handling.
440 * Arguments: cmd - command that is ready to be queued.
442 * Notes: This function has the job of initializing a number of
443 * fields related to error handling. Typically this will
444 * be called once for each command, as required.
446 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
448 cmd->serial_number = 0;
449 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
450 if (cmd->cmd_len == 0)
451 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
454 void scsi_device_unbusy(struct scsi_device *sdev)
456 struct Scsi_Host *shost = sdev->host;
457 unsigned long flags;
459 spin_lock_irqsave(shost->host_lock, flags);
460 shost->host_busy--;
461 if (unlikely(scsi_host_in_recovery(shost) &&
462 (shost->host_failed || shost->host_eh_scheduled)))
463 scsi_eh_wakeup(shost);
464 spin_unlock(shost->host_lock);
465 spin_lock(sdev->request_queue->queue_lock);
466 sdev->device_busy--;
467 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
471 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
472 * and call blk_run_queue for all the scsi_devices on the target -
473 * including current_sdev first.
475 * Called with *no* scsi locks held.
477 static void scsi_single_lun_run(struct scsi_device *current_sdev)
479 struct Scsi_Host *shost = current_sdev->host;
480 struct scsi_device *sdev, *tmp;
481 struct scsi_target *starget = scsi_target(current_sdev);
482 unsigned long flags;
484 spin_lock_irqsave(shost->host_lock, flags);
485 starget->starget_sdev_user = NULL;
486 spin_unlock_irqrestore(shost->host_lock, flags);
489 * Call blk_run_queue for all LUNs on the target, starting with
490 * current_sdev. We race with others (to set starget_sdev_user),
491 * but in most cases, we will be first. Ideally, each LU on the
492 * target would get some limited time or requests on the target.
494 blk_run_queue(current_sdev->request_queue);
496 spin_lock_irqsave(shost->host_lock, flags);
497 if (starget->starget_sdev_user)
498 goto out;
499 list_for_each_entry_safe(sdev, tmp, &starget->devices,
500 same_target_siblings) {
501 if (sdev == current_sdev)
502 continue;
503 if (scsi_device_get(sdev))
504 continue;
506 spin_unlock_irqrestore(shost->host_lock, flags);
507 blk_run_queue(sdev->request_queue);
508 spin_lock_irqsave(shost->host_lock, flags);
510 scsi_device_put(sdev);
512 out:
513 spin_unlock_irqrestore(shost->host_lock, flags);
517 * Function: scsi_run_queue()
519 * Purpose: Select a proper request queue to serve next
521 * Arguments: q - last request's queue
523 * Returns: Nothing
525 * Notes: The previous command was completely finished, start
526 * a new one if possible.
528 static void scsi_run_queue(struct request_queue *q)
530 struct scsi_device *sdev = q->queuedata;
531 struct Scsi_Host *shost = sdev->host;
532 unsigned long flags;
534 if (sdev->single_lun)
535 scsi_single_lun_run(sdev);
537 spin_lock_irqsave(shost->host_lock, flags);
538 while (!list_empty(&shost->starved_list) &&
539 !shost->host_blocked && !shost->host_self_blocked &&
540 !((shost->can_queue > 0) &&
541 (shost->host_busy >= shost->can_queue))) {
543 * As long as shost is accepting commands and we have
544 * starved queues, call blk_run_queue. scsi_request_fn
545 * drops the queue_lock and can add us back to the
546 * starved_list.
548 * host_lock protects the starved_list and starved_entry.
549 * scsi_request_fn must get the host_lock before checking
550 * or modifying starved_list or starved_entry.
552 sdev = list_entry(shost->starved_list.next,
553 struct scsi_device, starved_entry);
554 list_del_init(&sdev->starved_entry);
555 spin_unlock_irqrestore(shost->host_lock, flags);
558 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
559 !test_and_set_bit(QUEUE_FLAG_REENTER,
560 &sdev->request_queue->queue_flags)) {
561 blk_run_queue(sdev->request_queue);
562 clear_bit(QUEUE_FLAG_REENTER,
563 &sdev->request_queue->queue_flags);
564 } else
565 blk_run_queue(sdev->request_queue);
567 spin_lock_irqsave(shost->host_lock, flags);
568 if (unlikely(!list_empty(&sdev->starved_entry)))
570 * sdev lost a race, and was put back on the
571 * starved list. This is unlikely but without this
572 * in theory we could loop forever.
574 break;
576 spin_unlock_irqrestore(shost->host_lock, flags);
578 blk_run_queue(q);
582 * Function: scsi_requeue_command()
584 * Purpose: Handle post-processing of completed commands.
586 * Arguments: q - queue to operate on
587 * cmd - command that may need to be requeued.
589 * Returns: Nothing
591 * Notes: After command completion, there may be blocks left
592 * over which weren't finished by the previous command
593 * this can be for a number of reasons - the main one is
594 * I/O errors in the middle of the request, in which case
595 * we need to request the blocks that come after the bad
596 * sector.
597 * Notes: Upon return, cmd is a stale pointer.
599 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
601 struct request *req = cmd->request;
602 unsigned long flags;
604 scsi_unprep_request(req);
605 spin_lock_irqsave(q->queue_lock, flags);
606 blk_requeue_request(q, req);
607 spin_unlock_irqrestore(q->queue_lock, flags);
609 scsi_run_queue(q);
612 void scsi_next_command(struct scsi_cmnd *cmd)
614 struct scsi_device *sdev = cmd->device;
615 struct request_queue *q = sdev->request_queue;
617 /* need to hold a reference on the device before we let go of the cmd */
618 get_device(&sdev->sdev_gendev);
620 scsi_put_command(cmd);
621 scsi_run_queue(q);
623 /* ok to remove device now */
624 put_device(&sdev->sdev_gendev);
627 void scsi_run_host_queues(struct Scsi_Host *shost)
629 struct scsi_device *sdev;
631 shost_for_each_device(sdev, shost)
632 scsi_run_queue(sdev->request_queue);
636 * Function: scsi_end_request()
638 * Purpose: Post-processing of completed commands (usually invoked at end
639 * of upper level post-processing and scsi_io_completion).
641 * Arguments: cmd - command that is complete.
642 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
643 * bytes - number of bytes of completed I/O
644 * requeue - indicates whether we should requeue leftovers.
646 * Lock status: Assumed that lock is not held upon entry.
648 * Returns: cmd if requeue required, NULL otherwise.
650 * Notes: This is called for block device requests in order to
651 * mark some number of sectors as complete.
653 * We are guaranteeing that the request queue will be goosed
654 * at some point during this call.
655 * Notes: If cmd was requeued, upon return it will be a stale pointer.
657 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
658 int bytes, int requeue)
660 request_queue_t *q = cmd->device->request_queue;
661 struct request *req = cmd->request;
662 unsigned long flags;
665 * If there are blocks left over at the end, set up the command
666 * to queue the remainder of them.
668 if (end_that_request_chunk(req, uptodate, bytes)) {
669 int leftover = (req->hard_nr_sectors << 9);
671 if (blk_pc_request(req))
672 leftover = req->data_len;
674 /* kill remainder if no retrys */
675 if (!uptodate && blk_noretry_request(req))
676 end_that_request_chunk(req, 0, leftover);
677 else {
678 if (requeue) {
680 * Bleah. Leftovers again. Stick the
681 * leftovers in the front of the
682 * queue, and goose the queue again.
684 scsi_requeue_command(q, cmd);
685 cmd = NULL;
687 return cmd;
691 add_disk_randomness(req->rq_disk);
693 spin_lock_irqsave(q->queue_lock, flags);
694 if (blk_rq_tagged(req))
695 blk_queue_end_tag(q, req);
696 end_that_request_last(req, uptodate);
697 spin_unlock_irqrestore(q->queue_lock, flags);
700 * This will goose the queue request function at the end, so we don't
701 * need to worry about launching another command.
703 scsi_next_command(cmd);
704 return NULL;
707 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
709 struct scsi_host_sg_pool *sgp;
710 struct scatterlist *sgl;
712 BUG_ON(!cmd->use_sg);
714 switch (cmd->use_sg) {
715 case 1 ... 8:
716 cmd->sglist_len = 0;
717 break;
718 case 9 ... 16:
719 cmd->sglist_len = 1;
720 break;
721 case 17 ... 32:
722 cmd->sglist_len = 2;
723 break;
724 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
725 case 33 ... 64:
726 cmd->sglist_len = 3;
727 break;
728 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
729 case 65 ... 128:
730 cmd->sglist_len = 4;
731 break;
732 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
733 case 129 ... 256:
734 cmd->sglist_len = 5;
735 break;
736 #endif
737 #endif
738 #endif
739 default:
740 return NULL;
743 sgp = scsi_sg_pools + cmd->sglist_len;
744 sgl = mempool_alloc(sgp->pool, gfp_mask);
745 return sgl;
748 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
750 struct scsi_host_sg_pool *sgp;
752 BUG_ON(index >= SG_MEMPOOL_NR);
754 sgp = scsi_sg_pools + index;
755 mempool_free(sgl, sgp->pool);
759 * Function: scsi_release_buffers()
761 * Purpose: Completion processing for block device I/O requests.
763 * Arguments: cmd - command that we are bailing.
765 * Lock status: Assumed that no lock is held upon entry.
767 * Returns: Nothing
769 * Notes: In the event that an upper level driver rejects a
770 * command, we must release resources allocated during
771 * the __init_io() function. Primarily this would involve
772 * the scatter-gather table, and potentially any bounce
773 * buffers.
775 static void scsi_release_buffers(struct scsi_cmnd *cmd)
777 if (cmd->use_sg)
778 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
781 * Zero these out. They now point to freed memory, and it is
782 * dangerous to hang onto the pointers.
784 cmd->request_buffer = NULL;
785 cmd->request_bufflen = 0;
789 * Function: scsi_io_completion()
791 * Purpose: Completion processing for block device I/O requests.
793 * Arguments: cmd - command that is finished.
795 * Lock status: Assumed that no lock is held upon entry.
797 * Returns: Nothing
799 * Notes: This function is matched in terms of capabilities to
800 * the function that created the scatter-gather list.
801 * In other words, if there are no bounce buffers
802 * (the normal case for most drivers), we don't need
803 * the logic to deal with cleaning up afterwards.
805 * We must do one of several things here:
807 * a) Call scsi_end_request. This will finish off the
808 * specified number of sectors. If we are done, the
809 * command block will be released, and the queue
810 * function will be goosed. If we are not done, then
811 * scsi_end_request will directly goose the queue.
813 * b) We can just use scsi_requeue_command() here. This would
814 * be used if we just wanted to retry, for example.
816 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
818 int result = cmd->result;
819 int this_count = cmd->request_bufflen;
820 request_queue_t *q = cmd->device->request_queue;
821 struct request *req = cmd->request;
822 int clear_errors = 1;
823 struct scsi_sense_hdr sshdr;
824 int sense_valid = 0;
825 int sense_deferred = 0;
827 scsi_release_buffers(cmd);
829 if (result) {
830 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
831 if (sense_valid)
832 sense_deferred = scsi_sense_is_deferred(&sshdr);
835 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
836 req->errors = result;
837 if (result) {
838 clear_errors = 0;
839 if (sense_valid && req->sense) {
841 * SG_IO wants current and deferred errors
843 int len = 8 + cmd->sense_buffer[7];
845 if (len > SCSI_SENSE_BUFFERSIZE)
846 len = SCSI_SENSE_BUFFERSIZE;
847 memcpy(req->sense, cmd->sense_buffer, len);
848 req->sense_len = len;
850 } else
851 req->data_len = cmd->resid;
855 * Next deal with any sectors which we were able to correctly
856 * handle.
858 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
859 "%d bytes done.\n",
860 req->nr_sectors, good_bytes));
861 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
863 if (clear_errors)
864 req->errors = 0;
866 /* A number of bytes were successfully read. If there
867 * are leftovers and there is some kind of error
868 * (result != 0), retry the rest.
870 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
871 return;
873 /* good_bytes = 0, or (inclusive) there were leftovers and
874 * result = 0, so scsi_end_request couldn't retry.
876 if (sense_valid && !sense_deferred) {
877 switch (sshdr.sense_key) {
878 case UNIT_ATTENTION:
879 if (cmd->device->removable) {
880 /* Detected disc change. Set a bit
881 * and quietly refuse further access.
883 cmd->device->changed = 1;
884 scsi_end_request(cmd, 0, this_count, 1);
885 return;
886 } else {
887 /* Must have been a power glitch, or a
888 * bus reset. Could not have been a
889 * media change, so we just retry the
890 * request and see what happens.
892 scsi_requeue_command(q, cmd);
893 return;
895 break;
896 case ILLEGAL_REQUEST:
897 /* If we had an ILLEGAL REQUEST returned, then
898 * we may have performed an unsupported
899 * command. The only thing this should be
900 * would be a ten byte read where only a six
901 * byte read was supported. Also, on a system
902 * where READ CAPACITY failed, we may have
903 * read past the end of the disk.
905 if ((cmd->device->use_10_for_rw &&
906 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
907 (cmd->cmnd[0] == READ_10 ||
908 cmd->cmnd[0] == WRITE_10)) {
909 cmd->device->use_10_for_rw = 0;
910 /* This will cause a retry with a
911 * 6-byte command.
913 scsi_requeue_command(q, cmd);
914 return;
915 } else {
916 scsi_end_request(cmd, 0, this_count, 1);
917 return;
919 break;
920 case NOT_READY:
921 /* If the device is in the process of becoming
922 * ready, or has a temporary blockage, retry.
924 if (sshdr.asc == 0x04) {
925 switch (sshdr.ascq) {
926 case 0x01: /* becoming ready */
927 case 0x04: /* format in progress */
928 case 0x05: /* rebuild in progress */
929 case 0x06: /* recalculation in progress */
930 case 0x07: /* operation in progress */
931 case 0x08: /* Long write in progress */
932 case 0x09: /* self test in progress */
933 scsi_requeue_command(q, cmd);
934 return;
935 default:
936 break;
939 if (!(req->cmd_flags & REQ_QUIET)) {
940 scmd_printk(KERN_INFO, cmd,
941 "Device not ready: ");
942 scsi_print_sense_hdr("", &sshdr);
944 scsi_end_request(cmd, 0, this_count, 1);
945 return;
946 case VOLUME_OVERFLOW:
947 if (!(req->cmd_flags & REQ_QUIET)) {
948 scmd_printk(KERN_INFO, cmd,
949 "Volume overflow, CDB: ");
950 __scsi_print_command(cmd->cmnd);
951 scsi_print_sense("", cmd);
953 /* See SSC3rXX or current. */
954 scsi_end_request(cmd, 0, this_count, 1);
955 return;
956 default:
957 break;
960 if (host_byte(result) == DID_RESET) {
961 /* Third party bus reset or reset for error recovery
962 * reasons. Just retry the request and see what
963 * happens.
965 scsi_requeue_command(q, cmd);
966 return;
968 if (result) {
969 if (!(req->cmd_flags & REQ_QUIET)) {
970 scmd_printk(KERN_INFO, cmd,
971 "SCSI error: return code = 0x%08x\n",
972 result);
973 if (driver_byte(result) & DRIVER_SENSE)
974 scsi_print_sense("", cmd);
977 scsi_end_request(cmd, 0, this_count, !result);
979 EXPORT_SYMBOL(scsi_io_completion);
982 * Function: scsi_init_io()
984 * Purpose: SCSI I/O initialize function.
986 * Arguments: cmd - Command descriptor we wish to initialize
988 * Returns: 0 on success
989 * BLKPREP_DEFER if the failure is retryable
990 * BLKPREP_KILL if the failure is fatal
992 static int scsi_init_io(struct scsi_cmnd *cmd)
994 struct request *req = cmd->request;
995 struct scatterlist *sgpnt;
996 int count;
999 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1001 if (blk_pc_request(req) && !req->bio) {
1002 cmd->request_bufflen = req->data_len;
1003 cmd->request_buffer = req->data;
1004 req->buffer = req->data;
1005 cmd->use_sg = 0;
1006 return 0;
1010 * we used to not use scatter-gather for single segment request,
1011 * but now we do (it makes highmem I/O easier to support without
1012 * kmapping pages)
1014 cmd->use_sg = req->nr_phys_segments;
1017 * if sg table allocation fails, requeue request later.
1019 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1020 if (unlikely(!sgpnt)) {
1021 scsi_unprep_request(req);
1022 return BLKPREP_DEFER;
1025 cmd->request_buffer = (char *) sgpnt;
1026 cmd->request_bufflen = req->nr_sectors << 9;
1027 if (blk_pc_request(req))
1028 cmd->request_bufflen = req->data_len;
1029 req->buffer = NULL;
1032 * Next, walk the list, and fill in the addresses and sizes of
1033 * each segment.
1035 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1038 * mapped well, send it off
1040 if (likely(count <= cmd->use_sg)) {
1041 cmd->use_sg = count;
1042 return 0;
1045 printk(KERN_ERR "Incorrect number of segments after building list\n");
1046 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1047 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1048 req->current_nr_sectors);
1050 /* release the command and kill it */
1051 scsi_release_buffers(cmd);
1052 scsi_put_command(cmd);
1053 return BLKPREP_KILL;
1056 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1057 sector_t *error_sector)
1059 struct scsi_device *sdev = q->queuedata;
1060 struct scsi_driver *drv;
1062 if (sdev->sdev_state != SDEV_RUNNING)
1063 return -ENXIO;
1065 drv = *(struct scsi_driver **) disk->private_data;
1066 if (drv->issue_flush)
1067 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1069 return -EOPNOTSUPP;
1072 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1074 BUG_ON(!blk_pc_request(cmd->request));
1076 * This will complete the whole command with uptodate=1 so
1077 * as far as the block layer is concerned the command completed
1078 * successfully. Since this is a REQ_BLOCK_PC command the
1079 * caller should check the request's errors value
1081 scsi_io_completion(cmd, cmd->request_bufflen);
1084 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1086 struct request *req = cmd->request;
1088 BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1089 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1090 cmd->cmd_len = req->cmd_len;
1091 if (!req->data_len)
1092 cmd->sc_data_direction = DMA_NONE;
1093 else if (rq_data_dir(req) == WRITE)
1094 cmd->sc_data_direction = DMA_TO_DEVICE;
1095 else
1096 cmd->sc_data_direction = DMA_FROM_DEVICE;
1098 cmd->transfersize = req->data_len;
1099 cmd->allowed = req->retries;
1100 cmd->timeout_per_command = req->timeout;
1101 cmd->done = scsi_blk_pc_done;
1104 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1106 struct scsi_device *sdev = q->queuedata;
1107 struct scsi_cmnd *cmd;
1108 int specials_only = 0;
1111 * Just check to see if the device is online. If it isn't, we
1112 * refuse to process any commands. The device must be brought
1113 * online before trying any recovery commands
1115 if (unlikely(!scsi_device_online(sdev))) {
1116 sdev_printk(KERN_ERR, sdev,
1117 "rejecting I/O to offline device\n");
1118 goto kill;
1120 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1121 /* OK, we're not in a running state don't prep
1122 * user commands */
1123 if (sdev->sdev_state == SDEV_DEL) {
1124 /* Device is fully deleted, no commands
1125 * at all allowed down */
1126 sdev_printk(KERN_ERR, sdev,
1127 "rejecting I/O to dead device\n");
1128 goto kill;
1130 /* OK, we only allow special commands (i.e. not
1131 * user initiated ones */
1132 specials_only = sdev->sdev_state;
1136 * Find the actual device driver associated with this command.
1137 * The SPECIAL requests are things like character device or
1138 * ioctls, which did not originate from ll_rw_blk. Note that
1139 * the special field is also used to indicate the cmd for
1140 * the remainder of a partially fulfilled request that can
1141 * come up when there is a medium error. We have to treat
1142 * these two cases differently. We differentiate by looking
1143 * at request->cmd, as this tells us the real story.
1145 if (blk_special_request(req) && req->special)
1146 cmd = req->special;
1147 else if (blk_pc_request(req) || blk_fs_request(req)) {
1148 if (unlikely(specials_only) && !(req->cmd_flags & REQ_PREEMPT)){
1149 if (specials_only == SDEV_QUIESCE ||
1150 specials_only == SDEV_BLOCK)
1151 goto defer;
1153 sdev_printk(KERN_ERR, sdev,
1154 "rejecting I/O to device being removed\n");
1155 goto kill;
1159 * Now try and find a command block that we can use.
1161 if (!req->special) {
1162 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1163 if (unlikely(!cmd))
1164 goto defer;
1165 } else
1166 cmd = req->special;
1168 /* pull a tag out of the request if we have one */
1169 cmd->tag = req->tag;
1170 } else {
1171 blk_dump_rq_flags(req, "SCSI bad req");
1172 goto kill;
1175 /* note the overloading of req->special. When the tag
1176 * is active it always means cmd. If the tag goes
1177 * back for re-queueing, it may be reset */
1178 req->special = cmd;
1179 cmd->request = req;
1182 * FIXME: drop the lock here because the functions below
1183 * expect to be called without the queue lock held. Also,
1184 * previously, we dequeued the request before dropping the
1185 * lock. We hope REQ_STARTED prevents anything untoward from
1186 * happening now.
1188 if (blk_fs_request(req) || blk_pc_request(req)) {
1189 int ret;
1192 * This will do a couple of things:
1193 * 1) Fill in the actual SCSI command.
1194 * 2) Fill in any other upper-level specific fields
1195 * (timeout).
1197 * If this returns 0, it means that the request failed
1198 * (reading past end of disk, reading offline device,
1199 * etc). This won't actually talk to the device, but
1200 * some kinds of consistency checking may cause the
1201 * request to be rejected immediately.
1205 * This sets up the scatter-gather table (allocating if
1206 * required).
1208 ret = scsi_init_io(cmd);
1209 switch(ret) {
1210 /* For BLKPREP_KILL/DEFER the cmd was released */
1211 case BLKPREP_KILL:
1212 goto kill;
1213 case BLKPREP_DEFER:
1214 goto defer;
1218 * Initialize the actual SCSI command for this request.
1220 if (blk_pc_request(req)) {
1221 scsi_setup_blk_pc_cmnd(cmd);
1222 } else if (req->rq_disk) {
1223 struct scsi_driver *drv;
1225 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1226 if (unlikely(!drv->init_command(cmd))) {
1227 scsi_release_buffers(cmd);
1228 scsi_put_command(cmd);
1229 goto kill;
1235 * The request is now prepped, no need to come back here
1237 req->cmd_flags |= REQ_DONTPREP;
1238 return BLKPREP_OK;
1240 defer:
1241 /* If we defer, the elv_next_request() returns NULL, but the
1242 * queue must be restarted, so we plug here if no returning
1243 * command will automatically do that. */
1244 if (sdev->device_busy == 0)
1245 blk_plug_device(q);
1246 return BLKPREP_DEFER;
1247 kill:
1248 req->errors = DID_NO_CONNECT << 16;
1249 return BLKPREP_KILL;
1253 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1254 * return 0.
1256 * Called with the queue_lock held.
1258 static inline int scsi_dev_queue_ready(struct request_queue *q,
1259 struct scsi_device *sdev)
1261 if (sdev->device_busy >= sdev->queue_depth)
1262 return 0;
1263 if (sdev->device_busy == 0 && sdev->device_blocked) {
1265 * unblock after device_blocked iterates to zero
1267 if (--sdev->device_blocked == 0) {
1268 SCSI_LOG_MLQUEUE(3,
1269 sdev_printk(KERN_INFO, sdev,
1270 "unblocking device at zero depth\n"));
1271 } else {
1272 blk_plug_device(q);
1273 return 0;
1276 if (sdev->device_blocked)
1277 return 0;
1279 return 1;
1283 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1284 * return 0. We must end up running the queue again whenever 0 is
1285 * returned, else IO can hang.
1287 * Called with host_lock held.
1289 static inline int scsi_host_queue_ready(struct request_queue *q,
1290 struct Scsi_Host *shost,
1291 struct scsi_device *sdev)
1293 if (scsi_host_in_recovery(shost))
1294 return 0;
1295 if (shost->host_busy == 0 && shost->host_blocked) {
1297 * unblock after host_blocked iterates to zero
1299 if (--shost->host_blocked == 0) {
1300 SCSI_LOG_MLQUEUE(3,
1301 printk("scsi%d unblocking host at zero depth\n",
1302 shost->host_no));
1303 } else {
1304 blk_plug_device(q);
1305 return 0;
1308 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1309 shost->host_blocked || shost->host_self_blocked) {
1310 if (list_empty(&sdev->starved_entry))
1311 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1312 return 0;
1315 /* We're OK to process the command, so we can't be starved */
1316 if (!list_empty(&sdev->starved_entry))
1317 list_del_init(&sdev->starved_entry);
1319 return 1;
1323 * Kill a request for a dead device
1325 static void scsi_kill_request(struct request *req, request_queue_t *q)
1327 struct scsi_cmnd *cmd = req->special;
1328 struct scsi_device *sdev = cmd->device;
1329 struct Scsi_Host *shost = sdev->host;
1331 blkdev_dequeue_request(req);
1333 if (unlikely(cmd == NULL)) {
1334 printk(KERN_CRIT "impossible request in %s.\n",
1335 __FUNCTION__);
1336 BUG();
1339 scsi_init_cmd_errh(cmd);
1340 cmd->result = DID_NO_CONNECT << 16;
1341 atomic_inc(&cmd->device->iorequest_cnt);
1344 * SCSI request completion path will do scsi_device_unbusy(),
1345 * bump busy counts. To bump the counters, we need to dance
1346 * with the locks as normal issue path does.
1348 sdev->device_busy++;
1349 spin_unlock(sdev->request_queue->queue_lock);
1350 spin_lock(shost->host_lock);
1351 shost->host_busy++;
1352 spin_unlock(shost->host_lock);
1353 spin_lock(sdev->request_queue->queue_lock);
1355 __scsi_done(cmd);
1358 static void scsi_softirq_done(struct request *rq)
1360 struct scsi_cmnd *cmd = rq->completion_data;
1361 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1362 int disposition;
1364 INIT_LIST_HEAD(&cmd->eh_entry);
1366 disposition = scsi_decide_disposition(cmd);
1367 if (disposition != SUCCESS &&
1368 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1369 sdev_printk(KERN_ERR, cmd->device,
1370 "timing out command, waited %lus\n",
1371 wait_for/HZ);
1372 disposition = SUCCESS;
1375 scsi_log_completion(cmd, disposition);
1377 switch (disposition) {
1378 case SUCCESS:
1379 scsi_finish_command(cmd);
1380 break;
1381 case NEEDS_RETRY:
1382 scsi_retry_command(cmd);
1383 break;
1384 case ADD_TO_MLQUEUE:
1385 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1386 break;
1387 default:
1388 if (!scsi_eh_scmd_add(cmd, 0))
1389 scsi_finish_command(cmd);
1394 * Function: scsi_request_fn()
1396 * Purpose: Main strategy routine for SCSI.
1398 * Arguments: q - Pointer to actual queue.
1400 * Returns: Nothing
1402 * Lock status: IO request lock assumed to be held when called.
1404 static void scsi_request_fn(struct request_queue *q)
1406 struct scsi_device *sdev = q->queuedata;
1407 struct Scsi_Host *shost;
1408 struct scsi_cmnd *cmd;
1409 struct request *req;
1411 if (!sdev) {
1412 printk("scsi: killing requests for dead queue\n");
1413 while ((req = elv_next_request(q)) != NULL)
1414 scsi_kill_request(req, q);
1415 return;
1418 if(!get_device(&sdev->sdev_gendev))
1419 /* We must be tearing the block queue down already */
1420 return;
1423 * To start with, we keep looping until the queue is empty, or until
1424 * the host is no longer able to accept any more requests.
1426 shost = sdev->host;
1427 while (!blk_queue_plugged(q)) {
1428 int rtn;
1430 * get next queueable request. We do this early to make sure
1431 * that the request is fully prepared even if we cannot
1432 * accept it.
1434 req = elv_next_request(q);
1435 if (!req || !scsi_dev_queue_ready(q, sdev))
1436 break;
1438 if (unlikely(!scsi_device_online(sdev))) {
1439 sdev_printk(KERN_ERR, sdev,
1440 "rejecting I/O to offline device\n");
1441 scsi_kill_request(req, q);
1442 continue;
1447 * Remove the request from the request list.
1449 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1450 blkdev_dequeue_request(req);
1451 sdev->device_busy++;
1453 spin_unlock(q->queue_lock);
1454 cmd = req->special;
1455 if (unlikely(cmd == NULL)) {
1456 printk(KERN_CRIT "impossible request in %s.\n"
1457 "please mail a stack trace to "
1458 "linux-scsi@vger.kernel.org\n",
1459 __FUNCTION__);
1460 blk_dump_rq_flags(req, "foo");
1461 BUG();
1463 spin_lock(shost->host_lock);
1465 if (!scsi_host_queue_ready(q, shost, sdev))
1466 goto not_ready;
1467 if (sdev->single_lun) {
1468 if (scsi_target(sdev)->starget_sdev_user &&
1469 scsi_target(sdev)->starget_sdev_user != sdev)
1470 goto not_ready;
1471 scsi_target(sdev)->starget_sdev_user = sdev;
1473 shost->host_busy++;
1476 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1477 * take the lock again.
1479 spin_unlock_irq(shost->host_lock);
1482 * Finally, initialize any error handling parameters, and set up
1483 * the timers for timeouts.
1485 scsi_init_cmd_errh(cmd);
1488 * Dispatch the command to the low-level driver.
1490 rtn = scsi_dispatch_cmd(cmd);
1491 spin_lock_irq(q->queue_lock);
1492 if(rtn) {
1493 /* we're refusing the command; because of
1494 * the way locks get dropped, we need to
1495 * check here if plugging is required */
1496 if(sdev->device_busy == 0)
1497 blk_plug_device(q);
1499 break;
1503 goto out;
1505 not_ready:
1506 spin_unlock_irq(shost->host_lock);
1509 * lock q, handle tag, requeue req, and decrement device_busy. We
1510 * must return with queue_lock held.
1512 * Decrementing device_busy without checking it is OK, as all such
1513 * cases (host limits or settings) should run the queue at some
1514 * later time.
1516 spin_lock_irq(q->queue_lock);
1517 blk_requeue_request(q, req);
1518 sdev->device_busy--;
1519 if(sdev->device_busy == 0)
1520 blk_plug_device(q);
1521 out:
1522 /* must be careful here...if we trigger the ->remove() function
1523 * we cannot be holding the q lock */
1524 spin_unlock_irq(q->queue_lock);
1525 put_device(&sdev->sdev_gendev);
1526 spin_lock_irq(q->queue_lock);
1529 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1531 struct device *host_dev;
1532 u64 bounce_limit = 0xffffffff;
1534 if (shost->unchecked_isa_dma)
1535 return BLK_BOUNCE_ISA;
1537 * Platforms with virtual-DMA translation
1538 * hardware have no practical limit.
1540 if (!PCI_DMA_BUS_IS_PHYS)
1541 return BLK_BOUNCE_ANY;
1543 host_dev = scsi_get_device(shost);
1544 if (host_dev && host_dev->dma_mask)
1545 bounce_limit = *host_dev->dma_mask;
1547 return bounce_limit;
1549 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1551 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1553 struct Scsi_Host *shost = sdev->host;
1554 struct request_queue *q;
1556 q = blk_init_queue(scsi_request_fn, NULL);
1557 if (!q)
1558 return NULL;
1560 blk_queue_prep_rq(q, scsi_prep_fn);
1562 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1563 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1564 blk_queue_max_sectors(q, shost->max_sectors);
1565 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1566 blk_queue_segment_boundary(q, shost->dma_boundary);
1567 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1568 blk_queue_softirq_done(q, scsi_softirq_done);
1570 if (!shost->use_clustering)
1571 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1572 return q;
1575 void scsi_free_queue(struct request_queue *q)
1577 blk_cleanup_queue(q);
1581 * Function: scsi_block_requests()
1583 * Purpose: Utility function used by low-level drivers to prevent further
1584 * commands from being queued to the device.
1586 * Arguments: shost - Host in question
1588 * Returns: Nothing
1590 * Lock status: No locks are assumed held.
1592 * Notes: There is no timer nor any other means by which the requests
1593 * get unblocked other than the low-level driver calling
1594 * scsi_unblock_requests().
1596 void scsi_block_requests(struct Scsi_Host *shost)
1598 shost->host_self_blocked = 1;
1600 EXPORT_SYMBOL(scsi_block_requests);
1603 * Function: scsi_unblock_requests()
1605 * Purpose: Utility function used by low-level drivers to allow further
1606 * commands from being queued to the device.
1608 * Arguments: shost - Host in question
1610 * Returns: Nothing
1612 * Lock status: No locks are assumed held.
1614 * Notes: There is no timer nor any other means by which the requests
1615 * get unblocked other than the low-level driver calling
1616 * scsi_unblock_requests().
1618 * This is done as an API function so that changes to the
1619 * internals of the scsi mid-layer won't require wholesale
1620 * changes to drivers that use this feature.
1622 void scsi_unblock_requests(struct Scsi_Host *shost)
1624 shost->host_self_blocked = 0;
1625 scsi_run_host_queues(shost);
1627 EXPORT_SYMBOL(scsi_unblock_requests);
1629 int __init scsi_init_queue(void)
1631 int i;
1633 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1634 sizeof(struct scsi_io_context),
1635 0, 0, NULL, NULL);
1636 if (!scsi_io_context_cache) {
1637 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1638 return -ENOMEM;
1641 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1642 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1643 int size = sgp->size * sizeof(struct scatterlist);
1645 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1646 SLAB_HWCACHE_ALIGN, NULL, NULL);
1647 if (!sgp->slab) {
1648 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1649 sgp->name);
1652 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1653 sgp->slab);
1654 if (!sgp->pool) {
1655 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1656 sgp->name);
1660 return 0;
1663 void scsi_exit_queue(void)
1665 int i;
1667 kmem_cache_destroy(scsi_io_context_cache);
1669 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1670 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1671 mempool_destroy(sgp->pool);
1672 kmem_cache_destroy(sgp->slab);
1677 * scsi_mode_select - issue a mode select
1678 * @sdev: SCSI device to be queried
1679 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1680 * @sp: Save page bit (0 == don't save, 1 == save)
1681 * @modepage: mode page being requested
1682 * @buffer: request buffer (may not be smaller than eight bytes)
1683 * @len: length of request buffer.
1684 * @timeout: command timeout
1685 * @retries: number of retries before failing
1686 * @data: returns a structure abstracting the mode header data
1687 * @sense: place to put sense data (or NULL if no sense to be collected).
1688 * must be SCSI_SENSE_BUFFERSIZE big.
1690 * Returns zero if successful; negative error number or scsi
1691 * status on error
1695 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1696 unsigned char *buffer, int len, int timeout, int retries,
1697 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1699 unsigned char cmd[10];
1700 unsigned char *real_buffer;
1701 int ret;
1703 memset(cmd, 0, sizeof(cmd));
1704 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1706 if (sdev->use_10_for_ms) {
1707 if (len > 65535)
1708 return -EINVAL;
1709 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1710 if (!real_buffer)
1711 return -ENOMEM;
1712 memcpy(real_buffer + 8, buffer, len);
1713 len += 8;
1714 real_buffer[0] = 0;
1715 real_buffer[1] = 0;
1716 real_buffer[2] = data->medium_type;
1717 real_buffer[3] = data->device_specific;
1718 real_buffer[4] = data->longlba ? 0x01 : 0;
1719 real_buffer[5] = 0;
1720 real_buffer[6] = data->block_descriptor_length >> 8;
1721 real_buffer[7] = data->block_descriptor_length;
1723 cmd[0] = MODE_SELECT_10;
1724 cmd[7] = len >> 8;
1725 cmd[8] = len;
1726 } else {
1727 if (len > 255 || data->block_descriptor_length > 255 ||
1728 data->longlba)
1729 return -EINVAL;
1731 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1732 if (!real_buffer)
1733 return -ENOMEM;
1734 memcpy(real_buffer + 4, buffer, len);
1735 len += 4;
1736 real_buffer[0] = 0;
1737 real_buffer[1] = data->medium_type;
1738 real_buffer[2] = data->device_specific;
1739 real_buffer[3] = data->block_descriptor_length;
1742 cmd[0] = MODE_SELECT;
1743 cmd[4] = len;
1746 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1747 sshdr, timeout, retries);
1748 kfree(real_buffer);
1749 return ret;
1751 EXPORT_SYMBOL_GPL(scsi_mode_select);
1754 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1755 * six bytes if necessary.
1756 * @sdev: SCSI device to be queried
1757 * @dbd: set if mode sense will allow block descriptors to be returned
1758 * @modepage: mode page being requested
1759 * @buffer: request buffer (may not be smaller than eight bytes)
1760 * @len: length of request buffer.
1761 * @timeout: command timeout
1762 * @retries: number of retries before failing
1763 * @data: returns a structure abstracting the mode header data
1764 * @sense: place to put sense data (or NULL if no sense to be collected).
1765 * must be SCSI_SENSE_BUFFERSIZE big.
1767 * Returns zero if unsuccessful, or the header offset (either 4
1768 * or 8 depending on whether a six or ten byte command was
1769 * issued) if successful.
1772 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1773 unsigned char *buffer, int len, int timeout, int retries,
1774 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1776 unsigned char cmd[12];
1777 int use_10_for_ms;
1778 int header_length;
1779 int result;
1780 struct scsi_sense_hdr my_sshdr;
1782 memset(data, 0, sizeof(*data));
1783 memset(&cmd[0], 0, 12);
1784 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1785 cmd[2] = modepage;
1787 /* caller might not be interested in sense, but we need it */
1788 if (!sshdr)
1789 sshdr = &my_sshdr;
1791 retry:
1792 use_10_for_ms = sdev->use_10_for_ms;
1794 if (use_10_for_ms) {
1795 if (len < 8)
1796 len = 8;
1798 cmd[0] = MODE_SENSE_10;
1799 cmd[8] = len;
1800 header_length = 8;
1801 } else {
1802 if (len < 4)
1803 len = 4;
1805 cmd[0] = MODE_SENSE;
1806 cmd[4] = len;
1807 header_length = 4;
1810 memset(buffer, 0, len);
1812 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1813 sshdr, timeout, retries);
1815 /* This code looks awful: what it's doing is making sure an
1816 * ILLEGAL REQUEST sense return identifies the actual command
1817 * byte as the problem. MODE_SENSE commands can return
1818 * ILLEGAL REQUEST if the code page isn't supported */
1820 if (use_10_for_ms && !scsi_status_is_good(result) &&
1821 (driver_byte(result) & DRIVER_SENSE)) {
1822 if (scsi_sense_valid(sshdr)) {
1823 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1824 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1826 * Invalid command operation code
1828 sdev->use_10_for_ms = 0;
1829 goto retry;
1834 if(scsi_status_is_good(result)) {
1835 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1836 (modepage == 6 || modepage == 8))) {
1837 /* Initio breakage? */
1838 header_length = 0;
1839 data->length = 13;
1840 data->medium_type = 0;
1841 data->device_specific = 0;
1842 data->longlba = 0;
1843 data->block_descriptor_length = 0;
1844 } else if(use_10_for_ms) {
1845 data->length = buffer[0]*256 + buffer[1] + 2;
1846 data->medium_type = buffer[2];
1847 data->device_specific = buffer[3];
1848 data->longlba = buffer[4] & 0x01;
1849 data->block_descriptor_length = buffer[6]*256
1850 + buffer[7];
1851 } else {
1852 data->length = buffer[0] + 1;
1853 data->medium_type = buffer[1];
1854 data->device_specific = buffer[2];
1855 data->block_descriptor_length = buffer[3];
1857 data->header_length = header_length;
1860 return result;
1862 EXPORT_SYMBOL(scsi_mode_sense);
1865 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1867 char cmd[] = {
1868 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1870 struct scsi_sense_hdr sshdr;
1871 int result;
1873 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1874 timeout, retries);
1876 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1878 if ((scsi_sense_valid(&sshdr)) &&
1879 ((sshdr.sense_key == UNIT_ATTENTION) ||
1880 (sshdr.sense_key == NOT_READY))) {
1881 sdev->changed = 1;
1882 result = 0;
1885 return result;
1887 EXPORT_SYMBOL(scsi_test_unit_ready);
1890 * scsi_device_set_state - Take the given device through the device
1891 * state model.
1892 * @sdev: scsi device to change the state of.
1893 * @state: state to change to.
1895 * Returns zero if unsuccessful or an error if the requested
1896 * transition is illegal.
1899 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1901 enum scsi_device_state oldstate = sdev->sdev_state;
1903 if (state == oldstate)
1904 return 0;
1906 switch (state) {
1907 case SDEV_CREATED:
1908 /* There are no legal states that come back to
1909 * created. This is the manually initialised start
1910 * state */
1911 goto illegal;
1913 case SDEV_RUNNING:
1914 switch (oldstate) {
1915 case SDEV_CREATED:
1916 case SDEV_OFFLINE:
1917 case SDEV_QUIESCE:
1918 case SDEV_BLOCK:
1919 break;
1920 default:
1921 goto illegal;
1923 break;
1925 case SDEV_QUIESCE:
1926 switch (oldstate) {
1927 case SDEV_RUNNING:
1928 case SDEV_OFFLINE:
1929 break;
1930 default:
1931 goto illegal;
1933 break;
1935 case SDEV_OFFLINE:
1936 switch (oldstate) {
1937 case SDEV_CREATED:
1938 case SDEV_RUNNING:
1939 case SDEV_QUIESCE:
1940 case SDEV_BLOCK:
1941 break;
1942 default:
1943 goto illegal;
1945 break;
1947 case SDEV_BLOCK:
1948 switch (oldstate) {
1949 case SDEV_CREATED:
1950 case SDEV_RUNNING:
1951 break;
1952 default:
1953 goto illegal;
1955 break;
1957 case SDEV_CANCEL:
1958 switch (oldstate) {
1959 case SDEV_CREATED:
1960 case SDEV_RUNNING:
1961 case SDEV_QUIESCE:
1962 case SDEV_OFFLINE:
1963 case SDEV_BLOCK:
1964 break;
1965 default:
1966 goto illegal;
1968 break;
1970 case SDEV_DEL:
1971 switch (oldstate) {
1972 case SDEV_CREATED:
1973 case SDEV_RUNNING:
1974 case SDEV_OFFLINE:
1975 case SDEV_CANCEL:
1976 break;
1977 default:
1978 goto illegal;
1980 break;
1983 sdev->sdev_state = state;
1984 return 0;
1986 illegal:
1987 SCSI_LOG_ERROR_RECOVERY(1,
1988 sdev_printk(KERN_ERR, sdev,
1989 "Illegal state transition %s->%s\n",
1990 scsi_device_state_name(oldstate),
1991 scsi_device_state_name(state))
1993 return -EINVAL;
1995 EXPORT_SYMBOL(scsi_device_set_state);
1998 * scsi_device_quiesce - Block user issued commands.
1999 * @sdev: scsi device to quiesce.
2001 * This works by trying to transition to the SDEV_QUIESCE state
2002 * (which must be a legal transition). When the device is in this
2003 * state, only special requests will be accepted, all others will
2004 * be deferred. Since special requests may also be requeued requests,
2005 * a successful return doesn't guarantee the device will be
2006 * totally quiescent.
2008 * Must be called with user context, may sleep.
2010 * Returns zero if unsuccessful or an error if not.
2013 scsi_device_quiesce(struct scsi_device *sdev)
2015 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2016 if (err)
2017 return err;
2019 scsi_run_queue(sdev->request_queue);
2020 while (sdev->device_busy) {
2021 msleep_interruptible(200);
2022 scsi_run_queue(sdev->request_queue);
2024 return 0;
2026 EXPORT_SYMBOL(scsi_device_quiesce);
2029 * scsi_device_resume - Restart user issued commands to a quiesced device.
2030 * @sdev: scsi device to resume.
2032 * Moves the device from quiesced back to running and restarts the
2033 * queues.
2035 * Must be called with user context, may sleep.
2037 void
2038 scsi_device_resume(struct scsi_device *sdev)
2040 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2041 return;
2042 scsi_run_queue(sdev->request_queue);
2044 EXPORT_SYMBOL(scsi_device_resume);
2046 static void
2047 device_quiesce_fn(struct scsi_device *sdev, void *data)
2049 scsi_device_quiesce(sdev);
2052 void
2053 scsi_target_quiesce(struct scsi_target *starget)
2055 starget_for_each_device(starget, NULL, device_quiesce_fn);
2057 EXPORT_SYMBOL(scsi_target_quiesce);
2059 static void
2060 device_resume_fn(struct scsi_device *sdev, void *data)
2062 scsi_device_resume(sdev);
2065 void
2066 scsi_target_resume(struct scsi_target *starget)
2068 starget_for_each_device(starget, NULL, device_resume_fn);
2070 EXPORT_SYMBOL(scsi_target_resume);
2073 * scsi_internal_device_block - internal function to put a device
2074 * temporarily into the SDEV_BLOCK state
2075 * @sdev: device to block
2077 * Block request made by scsi lld's to temporarily stop all
2078 * scsi commands on the specified device. Called from interrupt
2079 * or normal process context.
2081 * Returns zero if successful or error if not
2083 * Notes:
2084 * This routine transitions the device to the SDEV_BLOCK state
2085 * (which must be a legal transition). When the device is in this
2086 * state, all commands are deferred until the scsi lld reenables
2087 * the device with scsi_device_unblock or device_block_tmo fires.
2088 * This routine assumes the host_lock is held on entry.
2091 scsi_internal_device_block(struct scsi_device *sdev)
2093 request_queue_t *q = sdev->request_queue;
2094 unsigned long flags;
2095 int err = 0;
2097 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2098 if (err)
2099 return err;
2102 * The device has transitioned to SDEV_BLOCK. Stop the
2103 * block layer from calling the midlayer with this device's
2104 * request queue.
2106 spin_lock_irqsave(q->queue_lock, flags);
2107 blk_stop_queue(q);
2108 spin_unlock_irqrestore(q->queue_lock, flags);
2110 return 0;
2112 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2115 * scsi_internal_device_unblock - resume a device after a block request
2116 * @sdev: device to resume
2118 * Called by scsi lld's or the midlayer to restart the device queue
2119 * for the previously suspended scsi device. Called from interrupt or
2120 * normal process context.
2122 * Returns zero if successful or error if not.
2124 * Notes:
2125 * This routine transitions the device to the SDEV_RUNNING state
2126 * (which must be a legal transition) allowing the midlayer to
2127 * goose the queue for this device. This routine assumes the
2128 * host_lock is held upon entry.
2131 scsi_internal_device_unblock(struct scsi_device *sdev)
2133 request_queue_t *q = sdev->request_queue;
2134 int err;
2135 unsigned long flags;
2138 * Try to transition the scsi device to SDEV_RUNNING
2139 * and goose the device queue if successful.
2141 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2142 if (err)
2143 return err;
2145 spin_lock_irqsave(q->queue_lock, flags);
2146 blk_start_queue(q);
2147 spin_unlock_irqrestore(q->queue_lock, flags);
2149 return 0;
2151 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2153 static void
2154 device_block(struct scsi_device *sdev, void *data)
2156 scsi_internal_device_block(sdev);
2159 static int
2160 target_block(struct device *dev, void *data)
2162 if (scsi_is_target_device(dev))
2163 starget_for_each_device(to_scsi_target(dev), NULL,
2164 device_block);
2165 return 0;
2168 void
2169 scsi_target_block(struct device *dev)
2171 if (scsi_is_target_device(dev))
2172 starget_for_each_device(to_scsi_target(dev), NULL,
2173 device_block);
2174 else
2175 device_for_each_child(dev, NULL, target_block);
2177 EXPORT_SYMBOL_GPL(scsi_target_block);
2179 static void
2180 device_unblock(struct scsi_device *sdev, void *data)
2182 scsi_internal_device_unblock(sdev);
2185 static int
2186 target_unblock(struct device *dev, void *data)
2188 if (scsi_is_target_device(dev))
2189 starget_for_each_device(to_scsi_target(dev), NULL,
2190 device_unblock);
2191 return 0;
2194 void
2195 scsi_target_unblock(struct device *dev)
2197 if (scsi_is_target_device(dev))
2198 starget_for_each_device(to_scsi_target(dev), NULL,
2199 device_unblock);
2200 else
2201 device_for_each_child(dev, NULL, target_unblock);
2203 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2206 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2207 * @sg: scatter-gather list
2208 * @sg_count: number of segments in sg
2209 * @offset: offset in bytes into sg, on return offset into the mapped area
2210 * @len: bytes to map, on return number of bytes mapped
2212 * Returns virtual address of the start of the mapped page
2214 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2215 size_t *offset, size_t *len)
2217 int i;
2218 size_t sg_len = 0, len_complete = 0;
2219 struct page *page;
2221 for (i = 0; i < sg_count; i++) {
2222 len_complete = sg_len; /* Complete sg-entries */
2223 sg_len += sg[i].length;
2224 if (sg_len > *offset)
2225 break;
2228 if (unlikely(i == sg_count)) {
2229 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2230 "elements %d\n",
2231 __FUNCTION__, sg_len, *offset, sg_count);
2232 WARN_ON(1);
2233 return NULL;
2236 /* Offset starting from the beginning of first page in this sg-entry */
2237 *offset = *offset - len_complete + sg[i].offset;
2239 /* Assumption: contiguous pages can be accessed as "page + i" */
2240 page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2241 *offset &= ~PAGE_MASK;
2243 /* Bytes in this sg-entry from *offset to the end of the page */
2244 sg_len = PAGE_SIZE - *offset;
2245 if (*len > sg_len)
2246 *len = sg_len;
2248 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2250 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2253 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2254 * mapped with scsi_kmap_atomic_sg
2255 * @virt: virtual address to be unmapped
2257 void scsi_kunmap_atomic_sg(void *virt)
2259 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2261 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);