VT-d: adapt domain map and unmap functions for IOMMU API
[linux-2.6/mini2440.git] / lib / swiotlb.c
blobfa2dc4e5f9baca6a9ae5c71534c8b4caa16557d6
1 /*
2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
19 #include <linux/cache.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/swiotlb.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/types.h>
28 #include <linux/ctype.h>
29 #include <linux/highmem.h>
31 #include <asm/io.h>
32 #include <asm/dma.h>
33 #include <asm/scatterlist.h>
35 #include <linux/init.h>
36 #include <linux/bootmem.h>
37 #include <linux/iommu-helper.h>
39 #define OFFSET(val,align) ((unsigned long) \
40 ( (val) & ( (align) - 1)))
42 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45 * Minimum IO TLB size to bother booting with. Systems with mainly
46 * 64bit capable cards will only lightly use the swiotlb. If we can't
47 * allocate a contiguous 1MB, we're probably in trouble anyway.
49 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52 * Enumeration for sync targets
54 enum dma_sync_target {
55 SYNC_FOR_CPU = 0,
56 SYNC_FOR_DEVICE = 1,
59 int swiotlb_force;
62 * Used to do a quick range check in swiotlb_unmap_single and
63 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
64 * API.
66 static char *io_tlb_start, *io_tlb_end;
69 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
70 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
72 static unsigned long io_tlb_nslabs;
75 * When the IOMMU overflows we return a fallback buffer. This sets the size.
77 static unsigned long io_tlb_overflow = 32*1024;
79 void *io_tlb_overflow_buffer;
82 * This is a free list describing the number of free entries available from
83 * each index
85 static unsigned int *io_tlb_list;
86 static unsigned int io_tlb_index;
89 * We need to save away the original address corresponding to a mapped entry
90 * for the sync operations.
92 static struct swiotlb_phys_addr {
93 struct page *page;
94 unsigned int offset;
95 } *io_tlb_orig_addr;
98 * Protect the above data structures in the map and unmap calls
100 static DEFINE_SPINLOCK(io_tlb_lock);
102 static int __init
103 setup_io_tlb_npages(char *str)
105 if (isdigit(*str)) {
106 io_tlb_nslabs = simple_strtoul(str, &str, 0);
107 /* avoid tail segment of size < IO_TLB_SEGSIZE */
108 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
110 if (*str == ',')
111 ++str;
112 if (!strcmp(str, "force"))
113 swiotlb_force = 1;
114 return 1;
116 __setup("swiotlb=", setup_io_tlb_npages);
117 /* make io_tlb_overflow tunable too? */
119 void * __weak swiotlb_alloc_boot(size_t size, unsigned long nslabs)
121 return alloc_bootmem_low_pages(size);
124 void * __weak swiotlb_alloc(unsigned order, unsigned long nslabs)
126 return (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order);
129 dma_addr_t __weak swiotlb_phys_to_bus(phys_addr_t paddr)
131 return paddr;
134 phys_addr_t __weak swiotlb_bus_to_phys(dma_addr_t baddr)
136 return baddr;
139 static dma_addr_t swiotlb_virt_to_bus(volatile void *address)
141 return swiotlb_phys_to_bus(virt_to_phys(address));
144 static void *swiotlb_bus_to_virt(dma_addr_t address)
146 return phys_to_virt(swiotlb_bus_to_phys(address));
149 int __weak swiotlb_arch_range_needs_mapping(void *ptr, size_t size)
151 return 0;
154 static dma_addr_t swiotlb_sg_to_bus(struct scatterlist *sg)
156 return swiotlb_phys_to_bus(page_to_phys(sg_page(sg)) + sg->offset);
159 static void swiotlb_print_info(unsigned long bytes)
161 phys_addr_t pstart, pend;
162 dma_addr_t bstart, bend;
164 pstart = virt_to_phys(io_tlb_start);
165 pend = virt_to_phys(io_tlb_end);
167 bstart = swiotlb_phys_to_bus(pstart);
168 bend = swiotlb_phys_to_bus(pend);
170 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
171 bytes >> 20, io_tlb_start, io_tlb_end);
172 if (pstart != bstart || pend != bend)
173 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx"
174 " bus %#llx - %#llx\n",
175 (unsigned long long)pstart,
176 (unsigned long long)pend,
177 (unsigned long long)bstart,
178 (unsigned long long)bend);
179 else
180 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
181 (unsigned long long)pstart,
182 (unsigned long long)pend);
186 * Statically reserve bounce buffer space and initialize bounce buffer data
187 * structures for the software IO TLB used to implement the DMA API.
189 void __init
190 swiotlb_init_with_default_size(size_t default_size)
192 unsigned long i, bytes;
194 if (!io_tlb_nslabs) {
195 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
196 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
199 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
202 * Get IO TLB memory from the low pages
204 io_tlb_start = swiotlb_alloc_boot(bytes, io_tlb_nslabs);
205 if (!io_tlb_start)
206 panic("Cannot allocate SWIOTLB buffer");
207 io_tlb_end = io_tlb_start + bytes;
210 * Allocate and initialize the free list array. This array is used
211 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
212 * between io_tlb_start and io_tlb_end.
214 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
215 for (i = 0; i < io_tlb_nslabs; i++)
216 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
217 io_tlb_index = 0;
218 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(struct swiotlb_phys_addr));
221 * Get the overflow emergency buffer
223 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
224 if (!io_tlb_overflow_buffer)
225 panic("Cannot allocate SWIOTLB overflow buffer!\n");
227 swiotlb_print_info(bytes);
230 void __init
231 swiotlb_init(void)
233 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
237 * Systems with larger DMA zones (those that don't support ISA) can
238 * initialize the swiotlb later using the slab allocator if needed.
239 * This should be just like above, but with some error catching.
242 swiotlb_late_init_with_default_size(size_t default_size)
244 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
245 unsigned int order;
247 if (!io_tlb_nslabs) {
248 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
249 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
253 * Get IO TLB memory from the low pages
255 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
256 io_tlb_nslabs = SLABS_PER_PAGE << order;
257 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
259 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
260 io_tlb_start = swiotlb_alloc(order, io_tlb_nslabs);
261 if (io_tlb_start)
262 break;
263 order--;
266 if (!io_tlb_start)
267 goto cleanup1;
269 if (order != get_order(bytes)) {
270 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
271 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
272 io_tlb_nslabs = SLABS_PER_PAGE << order;
273 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
275 io_tlb_end = io_tlb_start + bytes;
276 memset(io_tlb_start, 0, bytes);
279 * Allocate and initialize the free list array. This array is used
280 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
281 * between io_tlb_start and io_tlb_end.
283 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
284 get_order(io_tlb_nslabs * sizeof(int)));
285 if (!io_tlb_list)
286 goto cleanup2;
288 for (i = 0; i < io_tlb_nslabs; i++)
289 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
290 io_tlb_index = 0;
292 io_tlb_orig_addr = (struct swiotlb_phys_addr *)__get_free_pages(GFP_KERNEL,
293 get_order(io_tlb_nslabs * sizeof(struct swiotlb_phys_addr)));
294 if (!io_tlb_orig_addr)
295 goto cleanup3;
297 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(struct swiotlb_phys_addr));
300 * Get the overflow emergency buffer
302 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
303 get_order(io_tlb_overflow));
304 if (!io_tlb_overflow_buffer)
305 goto cleanup4;
307 swiotlb_print_info(bytes);
309 return 0;
311 cleanup4:
312 free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
313 sizeof(char *)));
314 io_tlb_orig_addr = NULL;
315 cleanup3:
316 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
317 sizeof(int)));
318 io_tlb_list = NULL;
319 cleanup2:
320 io_tlb_end = NULL;
321 free_pages((unsigned long)io_tlb_start, order);
322 io_tlb_start = NULL;
323 cleanup1:
324 io_tlb_nslabs = req_nslabs;
325 return -ENOMEM;
328 static int
329 address_needs_mapping(struct device *hwdev, dma_addr_t addr, size_t size)
331 return !is_buffer_dma_capable(dma_get_mask(hwdev), addr, size);
334 static inline int range_needs_mapping(void *ptr, size_t size)
336 return swiotlb_force || swiotlb_arch_range_needs_mapping(ptr, size);
339 static int is_swiotlb_buffer(char *addr)
341 return addr >= io_tlb_start && addr < io_tlb_end;
344 static struct swiotlb_phys_addr swiotlb_bus_to_phys_addr(char *dma_addr)
346 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
347 struct swiotlb_phys_addr buffer = io_tlb_orig_addr[index];
348 buffer.offset += (long)dma_addr & ((1 << IO_TLB_SHIFT) - 1);
349 buffer.page += buffer.offset >> PAGE_SHIFT;
350 buffer.offset &= PAGE_SIZE - 1;
351 return buffer;
354 static void
355 __sync_single(struct swiotlb_phys_addr buffer, char *dma_addr, size_t size, int dir)
357 if (PageHighMem(buffer.page)) {
358 size_t len, bytes;
359 char *dev, *host, *kmp;
361 len = size;
362 while (len != 0) {
363 unsigned long flags;
365 bytes = len;
366 if ((bytes + buffer.offset) > PAGE_SIZE)
367 bytes = PAGE_SIZE - buffer.offset;
368 local_irq_save(flags); /* protects KM_BOUNCE_READ */
369 kmp = kmap_atomic(buffer.page, KM_BOUNCE_READ);
370 dev = dma_addr + size - len;
371 host = kmp + buffer.offset;
372 if (dir == DMA_FROM_DEVICE)
373 memcpy(host, dev, bytes);
374 else
375 memcpy(dev, host, bytes);
376 kunmap_atomic(kmp, KM_BOUNCE_READ);
377 local_irq_restore(flags);
378 len -= bytes;
379 buffer.page++;
380 buffer.offset = 0;
382 } else {
383 void *v = page_address(buffer.page) + buffer.offset;
385 if (dir == DMA_TO_DEVICE)
386 memcpy(dma_addr, v, size);
387 else
388 memcpy(v, dma_addr, size);
393 * Allocates bounce buffer and returns its kernel virtual address.
395 static void *
396 map_single(struct device *hwdev, struct swiotlb_phys_addr buffer, size_t size, int dir)
398 unsigned long flags;
399 char *dma_addr;
400 unsigned int nslots, stride, index, wrap;
401 int i;
402 unsigned long start_dma_addr;
403 unsigned long mask;
404 unsigned long offset_slots;
405 unsigned long max_slots;
406 struct swiotlb_phys_addr slot_buf;
408 mask = dma_get_seg_boundary(hwdev);
409 start_dma_addr = swiotlb_virt_to_bus(io_tlb_start) & mask;
411 offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
414 * Carefully handle integer overflow which can occur when mask == ~0UL.
416 max_slots = mask + 1
417 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
418 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
421 * For mappings greater than a page, we limit the stride (and
422 * hence alignment) to a page size.
424 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
425 if (size > PAGE_SIZE)
426 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
427 else
428 stride = 1;
430 BUG_ON(!nslots);
433 * Find suitable number of IO TLB entries size that will fit this
434 * request and allocate a buffer from that IO TLB pool.
436 spin_lock_irqsave(&io_tlb_lock, flags);
437 index = ALIGN(io_tlb_index, stride);
438 if (index >= io_tlb_nslabs)
439 index = 0;
440 wrap = index;
442 do {
443 while (iommu_is_span_boundary(index, nslots, offset_slots,
444 max_slots)) {
445 index += stride;
446 if (index >= io_tlb_nslabs)
447 index = 0;
448 if (index == wrap)
449 goto not_found;
453 * If we find a slot that indicates we have 'nslots' number of
454 * contiguous buffers, we allocate the buffers from that slot
455 * and mark the entries as '0' indicating unavailable.
457 if (io_tlb_list[index] >= nslots) {
458 int count = 0;
460 for (i = index; i < (int) (index + nslots); i++)
461 io_tlb_list[i] = 0;
462 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
463 io_tlb_list[i] = ++count;
464 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
467 * Update the indices to avoid searching in the next
468 * round.
470 io_tlb_index = ((index + nslots) < io_tlb_nslabs
471 ? (index + nslots) : 0);
473 goto found;
475 index += stride;
476 if (index >= io_tlb_nslabs)
477 index = 0;
478 } while (index != wrap);
480 not_found:
481 spin_unlock_irqrestore(&io_tlb_lock, flags);
482 return NULL;
483 found:
484 spin_unlock_irqrestore(&io_tlb_lock, flags);
487 * Save away the mapping from the original address to the DMA address.
488 * This is needed when we sync the memory. Then we sync the buffer if
489 * needed.
491 slot_buf = buffer;
492 for (i = 0; i < nslots; i++) {
493 slot_buf.page += slot_buf.offset >> PAGE_SHIFT;
494 slot_buf.offset &= PAGE_SIZE - 1;
495 io_tlb_orig_addr[index+i] = slot_buf;
496 slot_buf.offset += 1 << IO_TLB_SHIFT;
498 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
499 __sync_single(buffer, dma_addr, size, DMA_TO_DEVICE);
501 return dma_addr;
505 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
507 static void
508 unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
510 unsigned long flags;
511 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
512 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
513 struct swiotlb_phys_addr buffer = swiotlb_bus_to_phys_addr(dma_addr);
516 * First, sync the memory before unmapping the entry
518 if ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))
520 * bounce... copy the data back into the original buffer * and
521 * delete the bounce buffer.
523 __sync_single(buffer, dma_addr, size, DMA_FROM_DEVICE);
526 * Return the buffer to the free list by setting the corresponding
527 * entries to indicate the number of contigous entries available.
528 * While returning the entries to the free list, we merge the entries
529 * with slots below and above the pool being returned.
531 spin_lock_irqsave(&io_tlb_lock, flags);
533 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
534 io_tlb_list[index + nslots] : 0);
536 * Step 1: return the slots to the free list, merging the
537 * slots with superceeding slots
539 for (i = index + nslots - 1; i >= index; i--)
540 io_tlb_list[i] = ++count;
542 * Step 2: merge the returned slots with the preceding slots,
543 * if available (non zero)
545 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
546 io_tlb_list[i] = ++count;
548 spin_unlock_irqrestore(&io_tlb_lock, flags);
551 static void
552 sync_single(struct device *hwdev, char *dma_addr, size_t size,
553 int dir, int target)
555 struct swiotlb_phys_addr buffer = swiotlb_bus_to_phys_addr(dma_addr);
557 switch (target) {
558 case SYNC_FOR_CPU:
559 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
560 __sync_single(buffer, dma_addr, size, DMA_FROM_DEVICE);
561 else
562 BUG_ON(dir != DMA_TO_DEVICE);
563 break;
564 case SYNC_FOR_DEVICE:
565 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
566 __sync_single(buffer, dma_addr, size, DMA_TO_DEVICE);
567 else
568 BUG_ON(dir != DMA_FROM_DEVICE);
569 break;
570 default:
571 BUG();
575 void *
576 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
577 dma_addr_t *dma_handle, gfp_t flags)
579 dma_addr_t dev_addr;
580 void *ret;
581 int order = get_order(size);
582 u64 dma_mask = DMA_32BIT_MASK;
584 if (hwdev && hwdev->coherent_dma_mask)
585 dma_mask = hwdev->coherent_dma_mask;
587 ret = (void *)__get_free_pages(flags, order);
588 if (ret && !is_buffer_dma_capable(dma_mask, swiotlb_virt_to_bus(ret), size)) {
590 * The allocated memory isn't reachable by the device.
591 * Fall back on swiotlb_map_single().
593 free_pages((unsigned long) ret, order);
594 ret = NULL;
596 if (!ret) {
598 * We are either out of memory or the device can't DMA
599 * to GFP_DMA memory; fall back on
600 * swiotlb_map_single(), which will grab memory from
601 * the lowest available address range.
603 struct swiotlb_phys_addr buffer;
604 buffer.page = virt_to_page(NULL);
605 buffer.offset = 0;
606 ret = map_single(hwdev, buffer, size, DMA_FROM_DEVICE);
607 if (!ret)
608 return NULL;
611 memset(ret, 0, size);
612 dev_addr = swiotlb_virt_to_bus(ret);
614 /* Confirm address can be DMA'd by device */
615 if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) {
616 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
617 (unsigned long long)dma_mask,
618 (unsigned long long)dev_addr);
620 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
621 unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
622 return NULL;
624 *dma_handle = dev_addr;
625 return ret;
628 void
629 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
630 dma_addr_t dma_handle)
632 WARN_ON(irqs_disabled());
633 if (!is_swiotlb_buffer(vaddr))
634 free_pages((unsigned long) vaddr, get_order(size));
635 else
636 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
637 unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
640 static void
641 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
644 * Ran out of IOMMU space for this operation. This is very bad.
645 * Unfortunately the drivers cannot handle this operation properly.
646 * unless they check for dma_mapping_error (most don't)
647 * When the mapping is small enough return a static buffer to limit
648 * the damage, or panic when the transfer is too big.
650 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
651 "device %s\n", size, dev ? dev->bus_id : "?");
653 if (size > io_tlb_overflow && do_panic) {
654 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
655 panic("DMA: Memory would be corrupted\n");
656 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
657 panic("DMA: Random memory would be DMAed\n");
662 * Map a single buffer of the indicated size for DMA in streaming mode. The
663 * physical address to use is returned.
665 * Once the device is given the dma address, the device owns this memory until
666 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
668 dma_addr_t
669 swiotlb_map_single_attrs(struct device *hwdev, void *ptr, size_t size,
670 int dir, struct dma_attrs *attrs)
672 dma_addr_t dev_addr = swiotlb_virt_to_bus(ptr);
673 void *map;
674 struct swiotlb_phys_addr buffer;
676 BUG_ON(dir == DMA_NONE);
678 * If the pointer passed in happens to be in the device's DMA window,
679 * we can safely return the device addr and not worry about bounce
680 * buffering it.
682 if (!address_needs_mapping(hwdev, dev_addr, size) &&
683 !range_needs_mapping(ptr, size))
684 return dev_addr;
687 * Oh well, have to allocate and map a bounce buffer.
689 buffer.page = virt_to_page(ptr);
690 buffer.offset = (unsigned long)ptr & ~PAGE_MASK;
691 map = map_single(hwdev, buffer, size, dir);
692 if (!map) {
693 swiotlb_full(hwdev, size, dir, 1);
694 map = io_tlb_overflow_buffer;
697 dev_addr = swiotlb_virt_to_bus(map);
700 * Ensure that the address returned is DMA'ble
702 if (address_needs_mapping(hwdev, dev_addr, size))
703 panic("map_single: bounce buffer is not DMA'ble");
705 return dev_addr;
707 EXPORT_SYMBOL(swiotlb_map_single_attrs);
709 dma_addr_t
710 swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir)
712 return swiotlb_map_single_attrs(hwdev, ptr, size, dir, NULL);
716 * Unmap a single streaming mode DMA translation. The dma_addr and size must
717 * match what was provided for in a previous swiotlb_map_single call. All
718 * other usages are undefined.
720 * After this call, reads by the cpu to the buffer are guaranteed to see
721 * whatever the device wrote there.
723 void
724 swiotlb_unmap_single_attrs(struct device *hwdev, dma_addr_t dev_addr,
725 size_t size, int dir, struct dma_attrs *attrs)
727 char *dma_addr = swiotlb_bus_to_virt(dev_addr);
729 BUG_ON(dir == DMA_NONE);
730 if (is_swiotlb_buffer(dma_addr))
731 unmap_single(hwdev, dma_addr, size, dir);
732 else if (dir == DMA_FROM_DEVICE)
733 dma_mark_clean(dma_addr, size);
735 EXPORT_SYMBOL(swiotlb_unmap_single_attrs);
737 void
738 swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size,
739 int dir)
741 return swiotlb_unmap_single_attrs(hwdev, dev_addr, size, dir, NULL);
744 * Make physical memory consistent for a single streaming mode DMA translation
745 * after a transfer.
747 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
748 * using the cpu, yet do not wish to teardown the dma mapping, you must
749 * call this function before doing so. At the next point you give the dma
750 * address back to the card, you must first perform a
751 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
753 static void
754 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
755 size_t size, int dir, int target)
757 char *dma_addr = swiotlb_bus_to_virt(dev_addr);
759 BUG_ON(dir == DMA_NONE);
760 if (is_swiotlb_buffer(dma_addr))
761 sync_single(hwdev, dma_addr, size, dir, target);
762 else if (dir == DMA_FROM_DEVICE)
763 dma_mark_clean(dma_addr, size);
766 void
767 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
768 size_t size, int dir)
770 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
773 void
774 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
775 size_t size, int dir)
777 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
781 * Same as above, but for a sub-range of the mapping.
783 static void
784 swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
785 unsigned long offset, size_t size,
786 int dir, int target)
788 char *dma_addr = swiotlb_bus_to_virt(dev_addr) + offset;
790 BUG_ON(dir == DMA_NONE);
791 if (is_swiotlb_buffer(dma_addr))
792 sync_single(hwdev, dma_addr, size, dir, target);
793 else if (dir == DMA_FROM_DEVICE)
794 dma_mark_clean(dma_addr, size);
797 void
798 swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
799 unsigned long offset, size_t size, int dir)
801 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
802 SYNC_FOR_CPU);
805 void
806 swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
807 unsigned long offset, size_t size, int dir)
809 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
810 SYNC_FOR_DEVICE);
813 void swiotlb_unmap_sg_attrs(struct device *, struct scatterlist *, int, int,
814 struct dma_attrs *);
816 * Map a set of buffers described by scatterlist in streaming mode for DMA.
817 * This is the scatter-gather version of the above swiotlb_map_single
818 * interface. Here the scatter gather list elements are each tagged with the
819 * appropriate dma address and length. They are obtained via
820 * sg_dma_{address,length}(SG).
822 * NOTE: An implementation may be able to use a smaller number of
823 * DMA address/length pairs than there are SG table elements.
824 * (for example via virtual mapping capabilities)
825 * The routine returns the number of addr/length pairs actually
826 * used, at most nents.
828 * Device ownership issues as mentioned above for swiotlb_map_single are the
829 * same here.
832 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
833 int dir, struct dma_attrs *attrs)
835 struct scatterlist *sg;
836 struct swiotlb_phys_addr buffer;
837 dma_addr_t dev_addr;
838 int i;
840 BUG_ON(dir == DMA_NONE);
842 for_each_sg(sgl, sg, nelems, i) {
843 dev_addr = swiotlb_sg_to_bus(sg);
844 if (range_needs_mapping(sg_virt(sg), sg->length) ||
845 address_needs_mapping(hwdev, dev_addr, sg->length)) {
846 void *map;
847 buffer.page = sg_page(sg);
848 buffer.offset = sg->offset;
849 map = map_single(hwdev, buffer, sg->length, dir);
850 if (!map) {
851 /* Don't panic here, we expect map_sg users
852 to do proper error handling. */
853 swiotlb_full(hwdev, sg->length, dir, 0);
854 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
855 attrs);
856 sgl[0].dma_length = 0;
857 return 0;
859 sg->dma_address = swiotlb_virt_to_bus(map);
860 } else
861 sg->dma_address = dev_addr;
862 sg->dma_length = sg->length;
864 return nelems;
866 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
869 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
870 int dir)
872 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
876 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
877 * concerning calls here are the same as for swiotlb_unmap_single() above.
879 void
880 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
881 int nelems, int dir, struct dma_attrs *attrs)
883 struct scatterlist *sg;
884 int i;
886 BUG_ON(dir == DMA_NONE);
888 for_each_sg(sgl, sg, nelems, i) {
889 if (sg->dma_address != swiotlb_sg_to_bus(sg))
890 unmap_single(hwdev, swiotlb_bus_to_virt(sg->dma_address),
891 sg->dma_length, dir);
892 else if (dir == DMA_FROM_DEVICE)
893 dma_mark_clean(swiotlb_bus_to_virt(sg->dma_address), sg->dma_length);
896 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
898 void
899 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
900 int dir)
902 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
906 * Make physical memory consistent for a set of streaming mode DMA translations
907 * after a transfer.
909 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
910 * and usage.
912 static void
913 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
914 int nelems, int dir, int target)
916 struct scatterlist *sg;
917 int i;
919 BUG_ON(dir == DMA_NONE);
921 for_each_sg(sgl, sg, nelems, i) {
922 if (sg->dma_address != swiotlb_sg_to_bus(sg))
923 sync_single(hwdev, swiotlb_bus_to_virt(sg->dma_address),
924 sg->dma_length, dir, target);
925 else if (dir == DMA_FROM_DEVICE)
926 dma_mark_clean(swiotlb_bus_to_virt(sg->dma_address), sg->dma_length);
930 void
931 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
932 int nelems, int dir)
934 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
937 void
938 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
939 int nelems, int dir)
941 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
945 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
947 return (dma_addr == swiotlb_virt_to_bus(io_tlb_overflow_buffer));
951 * Return whether the given device DMA address mask can be supported
952 * properly. For example, if your device can only drive the low 24-bits
953 * during bus mastering, then you would pass 0x00ffffff as the mask to
954 * this function.
957 swiotlb_dma_supported(struct device *hwdev, u64 mask)
959 return swiotlb_virt_to_bus(io_tlb_end - 1) <= mask;
962 EXPORT_SYMBOL(swiotlb_map_single);
963 EXPORT_SYMBOL(swiotlb_unmap_single);
964 EXPORT_SYMBOL(swiotlb_map_sg);
965 EXPORT_SYMBOL(swiotlb_unmap_sg);
966 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
967 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
968 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
969 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
970 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
971 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
972 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
973 EXPORT_SYMBOL(swiotlb_alloc_coherent);
974 EXPORT_SYMBOL(swiotlb_free_coherent);
975 EXPORT_SYMBOL(swiotlb_dma_supported);