1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
41 #include <asm/uaccess.h>
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
44 #define MEM_CGROUP_RECLAIM_RETRIES 5
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly
;
49 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
51 #define do_swap_account (0)
54 static DEFINE_MUTEX(memcg_tasklist
); /* can be hold under cgroup_mutex */
57 * Statistics for memory cgroup.
59 enum mem_cgroup_stat_index
{
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
65 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
68 MEM_CGROUP_STAT_NSTATS
,
71 struct mem_cgroup_stat_cpu
{
72 s64 count
[MEM_CGROUP_STAT_NSTATS
];
73 } ____cacheline_aligned_in_smp
;
75 struct mem_cgroup_stat
{
76 struct mem_cgroup_stat_cpu cpustat
[0];
80 * For accounting under irq disable, no need for increment preempt count.
82 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu
*stat
,
83 enum mem_cgroup_stat_index idx
, int val
)
85 stat
->count
[idx
] += val
;
88 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
89 enum mem_cgroup_stat_index idx
)
93 for_each_possible_cpu(cpu
)
94 ret
+= stat
->cpustat
[cpu
].count
[idx
];
99 * per-zone information in memory controller.
101 struct mem_cgroup_per_zone
{
103 * spin_lock to protect the per cgroup LRU
105 struct list_head lists
[NR_LRU_LISTS
];
106 unsigned long count
[NR_LRU_LISTS
];
108 struct zone_reclaim_stat reclaim_stat
;
110 /* Macro for accessing counter */
111 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
113 struct mem_cgroup_per_node
{
114 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
117 struct mem_cgroup_lru_info
{
118 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
133 struct cgroup_subsys_state css
;
135 * the counter to account for memory usage
137 struct res_counter res
;
139 * the counter to account for mem+swap usage.
141 struct res_counter memsw
;
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
146 struct mem_cgroup_lru_info info
;
149 protect against reclaim related member.
151 spinlock_t reclaim_param_lock
;
153 int prev_priority
; /* for recording reclaim priority */
156 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by hierarchy_mutex
159 struct mem_cgroup
*last_scanned_child
;
161 * Should the accounting and control be hierarchical, per subtree?
164 unsigned long last_oom_jiffies
;
167 unsigned int swappiness
;
170 * statistics. This must be placed at the end of memcg.
172 struct mem_cgroup_stat stat
;
176 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
178 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
179 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
184 /* only for here (for easy reading.) */
185 #define PCGF_CACHE (1UL << PCG_CACHE)
186 #define PCGF_USED (1UL << PCG_USED)
187 #define PCGF_LOCK (1UL << PCG_LOCK)
188 static const unsigned long
189 pcg_default_flags
[NR_CHARGE_TYPE
] = {
190 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* File Cache */
191 PCGF_USED
| PCGF_LOCK
, /* Anon */
192 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* Shmem */
196 /* for encoding cft->private value on file */
199 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201 #define MEMFILE_ATTR(val) ((val) & 0xffff)
203 static void mem_cgroup_get(struct mem_cgroup
*mem
);
204 static void mem_cgroup_put(struct mem_cgroup
*mem
);
206 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
207 struct page_cgroup
*pc
,
210 int val
= (charge
)? 1 : -1;
211 struct mem_cgroup_stat
*stat
= &mem
->stat
;
212 struct mem_cgroup_stat_cpu
*cpustat
;
215 cpustat
= &stat
->cpustat
[cpu
];
216 if (PageCgroupCache(pc
))
217 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_CACHE
, val
);
219 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_RSS
, val
);
222 __mem_cgroup_stat_add_safe(cpustat
,
223 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
225 __mem_cgroup_stat_add_safe(cpustat
,
226 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
230 static struct mem_cgroup_per_zone
*
231 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
233 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
236 static struct mem_cgroup_per_zone
*
237 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
239 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
240 int nid
= page_cgroup_nid(pc
);
241 int zid
= page_cgroup_zid(pc
);
246 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
249 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup
*mem
,
253 struct mem_cgroup_per_zone
*mz
;
256 for_each_online_node(nid
)
257 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
258 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
259 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
264 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
266 return container_of(cgroup_subsys_state(cont
,
267 mem_cgroup_subsys_id
), struct mem_cgroup
,
271 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
281 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
282 struct mem_cgroup
, css
);
285 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
287 struct mem_cgroup
*mem
= NULL
;
289 * Because we have no locks, mm->owner's may be being moved to other
290 * cgroup. We use css_tryget() here even if this looks
291 * pessimistic (rather than adding locks here).
295 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
298 } while (!css_tryget(&mem
->css
));
303 static bool mem_cgroup_is_obsolete(struct mem_cgroup
*mem
)
307 return css_is_removed(&mem
->css
);
311 * Following LRU functions are allowed to be used without PCG_LOCK.
312 * Operations are called by routine of global LRU independently from memcg.
313 * What we have to take care of here is validness of pc->mem_cgroup.
315 * Changes to pc->mem_cgroup happens when
318 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319 * It is added to LRU before charge.
320 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321 * When moving account, the page is not on LRU. It's isolated.
324 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
326 struct page_cgroup
*pc
;
327 struct mem_cgroup
*mem
;
328 struct mem_cgroup_per_zone
*mz
;
330 if (mem_cgroup_disabled())
332 pc
= lookup_page_cgroup(page
);
333 /* can happen while we handle swapcache. */
334 if (list_empty(&pc
->lru
) || !pc
->mem_cgroup
)
337 * We don't check PCG_USED bit. It's cleared when the "page" is finally
338 * removed from global LRU.
340 mz
= page_cgroup_zoneinfo(pc
);
341 mem
= pc
->mem_cgroup
;
342 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
343 list_del_init(&pc
->lru
);
347 void mem_cgroup_del_lru(struct page
*page
)
349 mem_cgroup_del_lru_list(page
, page_lru(page
));
352 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
354 struct mem_cgroup_per_zone
*mz
;
355 struct page_cgroup
*pc
;
357 if (mem_cgroup_disabled())
360 pc
= lookup_page_cgroup(page
);
362 /* unused page is not rotated. */
363 if (!PageCgroupUsed(pc
))
365 mz
= page_cgroup_zoneinfo(pc
);
366 list_move(&pc
->lru
, &mz
->lists
[lru
]);
369 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
371 struct page_cgroup
*pc
;
372 struct mem_cgroup_per_zone
*mz
;
374 if (mem_cgroup_disabled())
376 pc
= lookup_page_cgroup(page
);
377 /* barrier to sync with "charge" */
379 if (!PageCgroupUsed(pc
))
382 mz
= page_cgroup_zoneinfo(pc
);
383 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
384 list_add(&pc
->lru
, &mz
->lists
[lru
]);
388 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
389 * lru because the page may.be reused after it's fully uncharged (because of
390 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
391 * it again. This function is only used to charge SwapCache. It's done under
392 * lock_page and expected that zone->lru_lock is never held.
394 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
397 struct zone
*zone
= page_zone(page
);
398 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
400 spin_lock_irqsave(&zone
->lru_lock
, flags
);
402 * Forget old LRU when this page_cgroup is *not* used. This Used bit
403 * is guarded by lock_page() because the page is SwapCache.
405 if (!PageCgroupUsed(pc
))
406 mem_cgroup_del_lru_list(page
, page_lru(page
));
407 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
410 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
413 struct zone
*zone
= page_zone(page
);
414 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
416 spin_lock_irqsave(&zone
->lru_lock
, flags
);
417 /* link when the page is linked to LRU but page_cgroup isn't */
418 if (PageLRU(page
) && list_empty(&pc
->lru
))
419 mem_cgroup_add_lru_list(page
, page_lru(page
));
420 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
424 void mem_cgroup_move_lists(struct page
*page
,
425 enum lru_list from
, enum lru_list to
)
427 if (mem_cgroup_disabled())
429 mem_cgroup_del_lru_list(page
, from
);
430 mem_cgroup_add_lru_list(page
, to
);
433 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
438 ret
= task
->mm
&& mm_match_cgroup(task
->mm
, mem
);
444 * Calculate mapped_ratio under memory controller. This will be used in
445 * vmscan.c for deteremining we have to reclaim mapped pages.
447 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup
*mem
)
452 * usage is recorded in bytes. But, here, we assume the number of
453 * physical pages can be represented by "long" on any arch.
455 total
= (long) (mem
->res
.usage
>> PAGE_SHIFT
) + 1L;
456 rss
= (long)mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
457 return (int)((rss
* 100L) / total
);
461 * prev_priority control...this will be used in memory reclaim path.
463 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
467 spin_lock(&mem
->reclaim_param_lock
);
468 prev_priority
= mem
->prev_priority
;
469 spin_unlock(&mem
->reclaim_param_lock
);
471 return prev_priority
;
474 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
476 spin_lock(&mem
->reclaim_param_lock
);
477 if (priority
< mem
->prev_priority
)
478 mem
->prev_priority
= priority
;
479 spin_unlock(&mem
->reclaim_param_lock
);
482 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
484 spin_lock(&mem
->reclaim_param_lock
);
485 mem
->prev_priority
= priority
;
486 spin_unlock(&mem
->reclaim_param_lock
);
489 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
491 unsigned long active
;
492 unsigned long inactive
;
494 unsigned long inactive_ratio
;
496 inactive
= mem_cgroup_get_all_zonestat(memcg
, LRU_INACTIVE_ANON
);
497 active
= mem_cgroup_get_all_zonestat(memcg
, LRU_ACTIVE_ANON
);
499 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
501 inactive_ratio
= int_sqrt(10 * gb
);
506 present_pages
[0] = inactive
;
507 present_pages
[1] = active
;
510 return inactive_ratio
;
513 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
515 unsigned long active
;
516 unsigned long inactive
;
517 unsigned long present_pages
[2];
518 unsigned long inactive_ratio
;
520 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
522 inactive
= present_pages
[0];
523 active
= present_pages
[1];
525 if (inactive
* inactive_ratio
< active
)
531 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
535 int nid
= zone
->zone_pgdat
->node_id
;
536 int zid
= zone_idx(zone
);
537 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
539 return MEM_CGROUP_ZSTAT(mz
, lru
);
542 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
545 int nid
= zone
->zone_pgdat
->node_id
;
546 int zid
= zone_idx(zone
);
547 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
549 return &mz
->reclaim_stat
;
552 struct zone_reclaim_stat
*
553 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
555 struct page_cgroup
*pc
;
556 struct mem_cgroup_per_zone
*mz
;
558 if (mem_cgroup_disabled())
561 pc
= lookup_page_cgroup(page
);
562 mz
= page_cgroup_zoneinfo(pc
);
566 return &mz
->reclaim_stat
;
569 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
570 struct list_head
*dst
,
571 unsigned long *scanned
, int order
,
572 int mode
, struct zone
*z
,
573 struct mem_cgroup
*mem_cont
,
574 int active
, int file
)
576 unsigned long nr_taken
= 0;
580 struct list_head
*src
;
581 struct page_cgroup
*pc
, *tmp
;
582 int nid
= z
->zone_pgdat
->node_id
;
583 int zid
= zone_idx(z
);
584 struct mem_cgroup_per_zone
*mz
;
585 int lru
= LRU_FILE
* !!file
+ !!active
;
588 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
589 src
= &mz
->lists
[lru
];
592 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
593 if (scan
>= nr_to_scan
)
597 if (unlikely(!PageCgroupUsed(pc
)))
599 if (unlikely(!PageLRU(page
)))
603 if (__isolate_lru_page(page
, mode
, file
) == 0) {
604 list_move(&page
->lru
, dst
);
613 #define mem_cgroup_from_res_counter(counter, member) \
614 container_of(counter, struct mem_cgroup, member)
617 * This routine finds the DFS walk successor. This routine should be
618 * called with hierarchy_mutex held
620 static struct mem_cgroup
*
621 mem_cgroup_get_next_node(struct mem_cgroup
*curr
, struct mem_cgroup
*root_mem
)
623 struct cgroup
*cgroup
, *curr_cgroup
, *root_cgroup
;
625 curr_cgroup
= curr
->css
.cgroup
;
626 root_cgroup
= root_mem
->css
.cgroup
;
628 if (!list_empty(&curr_cgroup
->children
)) {
630 * Walk down to children
632 mem_cgroup_put(curr
);
633 cgroup
= list_entry(curr_cgroup
->children
.next
,
634 struct cgroup
, sibling
);
635 curr
= mem_cgroup_from_cont(cgroup
);
636 mem_cgroup_get(curr
);
641 if (curr_cgroup
== root_cgroup
) {
642 mem_cgroup_put(curr
);
644 mem_cgroup_get(curr
);
651 if (curr_cgroup
->sibling
.next
!= &curr_cgroup
->parent
->children
) {
652 mem_cgroup_put(curr
);
653 cgroup
= list_entry(curr_cgroup
->sibling
.next
, struct cgroup
,
655 curr
= mem_cgroup_from_cont(cgroup
);
656 mem_cgroup_get(curr
);
661 * Go up to next parent and next parent's sibling if need be
663 curr_cgroup
= curr_cgroup
->parent
;
667 root_mem
->last_scanned_child
= curr
;
672 * Visit the first child (need not be the first child as per the ordering
673 * of the cgroup list, since we track last_scanned_child) of @mem and use
674 * that to reclaim free pages from.
676 static struct mem_cgroup
*
677 mem_cgroup_get_first_node(struct mem_cgroup
*root_mem
)
679 struct cgroup
*cgroup
;
680 struct mem_cgroup
*ret
;
683 obsolete
= mem_cgroup_is_obsolete(root_mem
->last_scanned_child
);
686 * Scan all children under the mem_cgroup mem
688 mutex_lock(&mem_cgroup_subsys
.hierarchy_mutex
);
689 if (list_empty(&root_mem
->css
.cgroup
->children
)) {
694 if (!root_mem
->last_scanned_child
|| obsolete
) {
696 if (obsolete
&& root_mem
->last_scanned_child
)
697 mem_cgroup_put(root_mem
->last_scanned_child
);
699 cgroup
= list_first_entry(&root_mem
->css
.cgroup
->children
,
700 struct cgroup
, sibling
);
701 ret
= mem_cgroup_from_cont(cgroup
);
704 ret
= mem_cgroup_get_next_node(root_mem
->last_scanned_child
,
708 root_mem
->last_scanned_child
= ret
;
709 mutex_unlock(&mem_cgroup_subsys
.hierarchy_mutex
);
713 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
715 if (do_swap_account
) {
716 if (res_counter_check_under_limit(&mem
->res
) &&
717 res_counter_check_under_limit(&mem
->memsw
))
720 if (res_counter_check_under_limit(&mem
->res
))
725 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
727 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
728 unsigned int swappiness
;
731 if (cgrp
->parent
== NULL
)
732 return vm_swappiness
;
734 spin_lock(&memcg
->reclaim_param_lock
);
735 swappiness
= memcg
->swappiness
;
736 spin_unlock(&memcg
->reclaim_param_lock
);
742 * Dance down the hierarchy if needed to reclaim memory. We remember the
743 * last child we reclaimed from, so that we don't end up penalizing
744 * one child extensively based on its position in the children list.
746 * root_mem is the original ancestor that we've been reclaim from.
748 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
749 gfp_t gfp_mask
, bool noswap
)
751 struct mem_cgroup
*next_mem
;
755 * Reclaim unconditionally and don't check for return value.
756 * We need to reclaim in the current group and down the tree.
757 * One might think about checking for children before reclaiming,
758 * but there might be left over accounting, even after children
761 ret
= try_to_free_mem_cgroup_pages(root_mem
, gfp_mask
, noswap
,
762 get_swappiness(root_mem
));
763 if (mem_cgroup_check_under_limit(root_mem
))
765 if (!root_mem
->use_hierarchy
)
768 next_mem
= mem_cgroup_get_first_node(root_mem
);
770 while (next_mem
!= root_mem
) {
771 if (mem_cgroup_is_obsolete(next_mem
)) {
772 mem_cgroup_put(next_mem
);
773 next_mem
= mem_cgroup_get_first_node(root_mem
);
776 ret
= try_to_free_mem_cgroup_pages(next_mem
, gfp_mask
, noswap
,
777 get_swappiness(next_mem
));
778 if (mem_cgroup_check_under_limit(root_mem
))
780 mutex_lock(&mem_cgroup_subsys
.hierarchy_mutex
);
781 next_mem
= mem_cgroup_get_next_node(next_mem
, root_mem
);
782 mutex_unlock(&mem_cgroup_subsys
.hierarchy_mutex
);
787 bool mem_cgroup_oom_called(struct task_struct
*task
)
790 struct mem_cgroup
*mem
;
791 struct mm_struct
*mm
;
797 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
798 if (mem
&& time_before(jiffies
, mem
->last_oom_jiffies
+ HZ
/10))
804 * Unlike exported interface, "oom" parameter is added. if oom==true,
805 * oom-killer can be invoked.
807 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
808 gfp_t gfp_mask
, struct mem_cgroup
**memcg
,
811 struct mem_cgroup
*mem
, *mem_over_limit
;
812 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
813 struct res_counter
*fail_res
;
815 if (unlikely(test_thread_flag(TIF_MEMDIE
))) {
816 /* Don't account this! */
822 * We always charge the cgroup the mm_struct belongs to.
823 * The mm_struct's mem_cgroup changes on task migration if the
824 * thread group leader migrates. It's possible that mm is not
825 * set, if so charge the init_mm (happens for pagecache usage).
829 mem
= try_get_mem_cgroup_from_mm(mm
);
837 VM_BUG_ON(mem_cgroup_is_obsolete(mem
));
843 ret
= res_counter_charge(&mem
->res
, PAGE_SIZE
, &fail_res
);
845 if (!do_swap_account
)
847 ret
= res_counter_charge(&mem
->memsw
, PAGE_SIZE
,
851 /* mem+swap counter fails */
852 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
854 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
857 /* mem counter fails */
858 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
861 if (!(gfp_mask
& __GFP_WAIT
))
864 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, gfp_mask
,
868 * try_to_free_mem_cgroup_pages() might not give us a full
869 * picture of reclaim. Some pages are reclaimed and might be
870 * moved to swap cache or just unmapped from the cgroup.
871 * Check the limit again to see if the reclaim reduced the
872 * current usage of the cgroup before giving up
875 if (mem_cgroup_check_under_limit(mem_over_limit
))
880 mutex_lock(&memcg_tasklist
);
881 mem_cgroup_out_of_memory(mem_over_limit
, gfp_mask
);
882 mutex_unlock(&memcg_tasklist
);
883 mem_over_limit
->last_oom_jiffies
= jiffies
;
894 static struct mem_cgroup
*try_get_mem_cgroup_from_swapcache(struct page
*page
)
896 struct mem_cgroup
*mem
;
899 if (!PageSwapCache(page
))
902 ent
.val
= page_private(page
);
903 mem
= lookup_swap_cgroup(ent
);
906 if (!css_tryget(&mem
->css
))
912 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
913 * USED state. If already USED, uncharge and return.
916 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
917 struct page_cgroup
*pc
,
918 enum charge_type ctype
)
920 /* try_charge() can return NULL to *memcg, taking care of it. */
924 lock_page_cgroup(pc
);
925 if (unlikely(PageCgroupUsed(pc
))) {
926 unlock_page_cgroup(pc
);
927 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
929 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
933 pc
->mem_cgroup
= mem
;
935 pc
->flags
= pcg_default_flags
[ctype
];
937 mem_cgroup_charge_statistics(mem
, pc
, true);
939 unlock_page_cgroup(pc
);
943 * mem_cgroup_move_account - move account of the page
944 * @pc: page_cgroup of the page.
945 * @from: mem_cgroup which the page is moved from.
946 * @to: mem_cgroup which the page is moved to. @from != @to.
948 * The caller must confirm following.
949 * - page is not on LRU (isolate_page() is useful.)
951 * returns 0 at success,
952 * returns -EBUSY when lock is busy or "pc" is unstable.
954 * This function does "uncharge" from old cgroup but doesn't do "charge" to
955 * new cgroup. It should be done by a caller.
958 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
959 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
961 struct mem_cgroup_per_zone
*from_mz
, *to_mz
;
965 VM_BUG_ON(from
== to
);
966 VM_BUG_ON(PageLRU(pc
->page
));
968 nid
= page_cgroup_nid(pc
);
969 zid
= page_cgroup_zid(pc
);
970 from_mz
= mem_cgroup_zoneinfo(from
, nid
, zid
);
971 to_mz
= mem_cgroup_zoneinfo(to
, nid
, zid
);
973 if (!trylock_page_cgroup(pc
))
976 if (!PageCgroupUsed(pc
))
979 if (pc
->mem_cgroup
!= from
)
983 res_counter_uncharge(&from
->res
, PAGE_SIZE
);
984 mem_cgroup_charge_statistics(from
, pc
, false);
986 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
988 mem_cgroup_charge_statistics(to
, pc
, true);
992 unlock_page_cgroup(pc
);
997 * move charges to its parent.
1000 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1001 struct mem_cgroup
*child
,
1004 struct page
*page
= pc
->page
;
1005 struct cgroup
*cg
= child
->css
.cgroup
;
1006 struct cgroup
*pcg
= cg
->parent
;
1007 struct mem_cgroup
*parent
;
1015 parent
= mem_cgroup_from_cont(pcg
);
1018 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
1022 if (!get_page_unless_zero(page
))
1025 ret
= isolate_lru_page(page
);
1030 ret
= mem_cgroup_move_account(pc
, child
, parent
);
1032 /* drop extra refcnt by try_charge() (move_account increment one) */
1033 css_put(&parent
->css
);
1034 putback_lru_page(page
);
1039 /* uncharge if move fails */
1041 res_counter_uncharge(&parent
->res
, PAGE_SIZE
);
1042 if (do_swap_account
)
1043 res_counter_uncharge(&parent
->memsw
, PAGE_SIZE
);
1049 * Charge the memory controller for page usage.
1051 * 0 if the charge was successful
1052 * < 0 if the cgroup is over its limit
1054 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1055 gfp_t gfp_mask
, enum charge_type ctype
,
1056 struct mem_cgroup
*memcg
)
1058 struct mem_cgroup
*mem
;
1059 struct page_cgroup
*pc
;
1062 pc
= lookup_page_cgroup(page
);
1063 /* can happen at boot */
1069 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
1073 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1077 int mem_cgroup_newpage_charge(struct page
*page
,
1078 struct mm_struct
*mm
, gfp_t gfp_mask
)
1080 if (mem_cgroup_disabled())
1082 if (PageCompound(page
))
1085 * If already mapped, we don't have to account.
1086 * If page cache, page->mapping has address_space.
1087 * But page->mapping may have out-of-use anon_vma pointer,
1088 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1091 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
1095 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1096 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
1099 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
1102 struct mem_cgroup
*mem
= NULL
;
1105 if (mem_cgroup_disabled())
1107 if (PageCompound(page
))
1110 * Corner case handling. This is called from add_to_page_cache()
1111 * in usual. But some FS (shmem) precharges this page before calling it
1112 * and call add_to_page_cache() with GFP_NOWAIT.
1114 * For GFP_NOWAIT case, the page may be pre-charged before calling
1115 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1116 * charge twice. (It works but has to pay a bit larger cost.)
1117 * And when the page is SwapCache, it should take swap information
1118 * into account. This is under lock_page() now.
1120 if (!(gfp_mask
& __GFP_WAIT
)) {
1121 struct page_cgroup
*pc
;
1124 pc
= lookup_page_cgroup(page
);
1127 lock_page_cgroup(pc
);
1128 if (PageCgroupUsed(pc
)) {
1129 unlock_page_cgroup(pc
);
1132 unlock_page_cgroup(pc
);
1135 if (do_swap_account
&& PageSwapCache(page
)) {
1136 mem
= try_get_mem_cgroup_from_swapcache(page
);
1141 /* SwapCache may be still linked to LRU now. */
1142 mem_cgroup_lru_del_before_commit_swapcache(page
);
1145 if (unlikely(!mm
&& !mem
))
1148 if (page_is_file_cache(page
))
1149 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1150 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
1152 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1153 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
1156 if (PageSwapCache(page
))
1157 mem_cgroup_lru_add_after_commit_swapcache(page
);
1159 if (do_swap_account
&& !ret
&& PageSwapCache(page
)) {
1160 swp_entry_t ent
= {.val
= page_private(page
)};
1161 /* avoid double counting */
1162 mem
= swap_cgroup_record(ent
, NULL
);
1164 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1165 mem_cgroup_put(mem
);
1172 * While swap-in, try_charge -> commit or cancel, the page is locked.
1173 * And when try_charge() successfully returns, one refcnt to memcg without
1174 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1175 * "commit()" or removed by "cancel()"
1177 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
1179 gfp_t mask
, struct mem_cgroup
**ptr
)
1181 struct mem_cgroup
*mem
;
1184 if (mem_cgroup_disabled())
1187 if (!do_swap_account
)
1190 * A racing thread's fault, or swapoff, may have already updated
1191 * the pte, and even removed page from swap cache: return success
1192 * to go on to do_swap_page()'s pte_same() test, which should fail.
1194 if (!PageSwapCache(page
))
1196 mem
= try_get_mem_cgroup_from_swapcache(page
);
1200 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
1201 /* drop extra refcnt from tryget */
1207 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
1210 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
1212 struct page_cgroup
*pc
;
1214 if (mem_cgroup_disabled())
1218 pc
= lookup_page_cgroup(page
);
1219 mem_cgroup_lru_del_before_commit_swapcache(page
);
1220 __mem_cgroup_commit_charge(ptr
, pc
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1221 mem_cgroup_lru_add_after_commit_swapcache(page
);
1223 * Now swap is on-memory. This means this page may be
1224 * counted both as mem and swap....double count.
1225 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1226 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1227 * may call delete_from_swap_cache() before reach here.
1229 if (do_swap_account
&& PageSwapCache(page
)) {
1230 swp_entry_t ent
= {.val
= page_private(page
)};
1231 struct mem_cgroup
*memcg
;
1232 memcg
= swap_cgroup_record(ent
, NULL
);
1234 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1235 mem_cgroup_put(memcg
);
1239 /* add this page(page_cgroup) to the LRU we want. */
1243 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
1245 if (mem_cgroup_disabled())
1249 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1250 if (do_swap_account
)
1251 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1257 * uncharge if !page_mapped(page)
1259 static struct mem_cgroup
*
1260 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
1262 struct page_cgroup
*pc
;
1263 struct mem_cgroup
*mem
= NULL
;
1264 struct mem_cgroup_per_zone
*mz
;
1266 if (mem_cgroup_disabled())
1269 if (PageSwapCache(page
))
1273 * Check if our page_cgroup is valid
1275 pc
= lookup_page_cgroup(page
);
1276 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
1279 lock_page_cgroup(pc
);
1281 mem
= pc
->mem_cgroup
;
1283 if (!PageCgroupUsed(pc
))
1287 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1288 if (page_mapped(page
))
1291 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
1292 if (!PageAnon(page
)) { /* Shared memory */
1293 if (page
->mapping
&& !page_is_file_cache(page
))
1295 } else if (page_mapped(page
)) /* Anon */
1302 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1303 if (do_swap_account
&& (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
))
1304 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1306 mem_cgroup_charge_statistics(mem
, pc
, false);
1307 ClearPageCgroupUsed(pc
);
1309 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1310 * freed from LRU. This is safe because uncharged page is expected not
1311 * to be reused (freed soon). Exception is SwapCache, it's handled by
1312 * special functions.
1315 mz
= page_cgroup_zoneinfo(pc
);
1316 unlock_page_cgroup(pc
);
1318 /* at swapout, this memcg will be accessed to record to swap */
1319 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
1325 unlock_page_cgroup(pc
);
1329 void mem_cgroup_uncharge_page(struct page
*page
)
1332 if (page_mapped(page
))
1334 if (page
->mapping
&& !PageAnon(page
))
1336 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1339 void mem_cgroup_uncharge_cache_page(struct page
*page
)
1341 VM_BUG_ON(page_mapped(page
));
1342 VM_BUG_ON(page
->mapping
);
1343 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
1347 * called from __delete_from_swap_cache() and drop "page" account.
1348 * memcg information is recorded to swap_cgroup of "ent"
1350 void mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
)
1352 struct mem_cgroup
*memcg
;
1354 memcg
= __mem_cgroup_uncharge_common(page
,
1355 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
);
1356 /* record memcg information */
1357 if (do_swap_account
&& memcg
) {
1358 swap_cgroup_record(ent
, memcg
);
1359 mem_cgroup_get(memcg
);
1362 css_put(&memcg
->css
);
1365 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1367 * called from swap_entry_free(). remove record in swap_cgroup and
1368 * uncharge "memsw" account.
1370 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
1372 struct mem_cgroup
*memcg
;
1374 if (!do_swap_account
)
1377 memcg
= swap_cgroup_record(ent
, NULL
);
1379 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1380 mem_cgroup_put(memcg
);
1386 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1389 int mem_cgroup_prepare_migration(struct page
*page
, struct mem_cgroup
**ptr
)
1391 struct page_cgroup
*pc
;
1392 struct mem_cgroup
*mem
= NULL
;
1395 if (mem_cgroup_disabled())
1398 pc
= lookup_page_cgroup(page
);
1399 lock_page_cgroup(pc
);
1400 if (PageCgroupUsed(pc
)) {
1401 mem
= pc
->mem_cgroup
;
1404 unlock_page_cgroup(pc
);
1407 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
1414 /* remove redundant charge if migration failed*/
1415 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
1416 struct page
*oldpage
, struct page
*newpage
)
1418 struct page
*target
, *unused
;
1419 struct page_cgroup
*pc
;
1420 enum charge_type ctype
;
1425 /* at migration success, oldpage->mapping is NULL. */
1426 if (oldpage
->mapping
) {
1434 if (PageAnon(target
))
1435 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
1436 else if (page_is_file_cache(target
))
1437 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
1439 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
1441 /* unused page is not on radix-tree now. */
1443 __mem_cgroup_uncharge_common(unused
, ctype
);
1445 pc
= lookup_page_cgroup(target
);
1447 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1448 * So, double-counting is effectively avoided.
1450 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1453 * Both of oldpage and newpage are still under lock_page().
1454 * Then, we don't have to care about race in radix-tree.
1455 * But we have to be careful that this page is unmapped or not.
1457 * There is a case for !page_mapped(). At the start of
1458 * migration, oldpage was mapped. But now, it's zapped.
1459 * But we know *target* page is not freed/reused under us.
1460 * mem_cgroup_uncharge_page() does all necessary checks.
1462 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
1463 mem_cgroup_uncharge_page(target
);
1467 * A call to try to shrink memory usage under specified resource controller.
1468 * This is typically used for page reclaiming for shmem for reducing side
1469 * effect of page allocation from shmem, which is used by some mem_cgroup.
1471 int mem_cgroup_shrink_usage(struct page
*page
,
1472 struct mm_struct
*mm
,
1475 struct mem_cgroup
*mem
= NULL
;
1477 int retry
= MEM_CGROUP_RECLAIM_RETRIES
;
1479 if (mem_cgroup_disabled())
1482 mem
= try_get_mem_cgroup_from_swapcache(page
);
1484 mem
= try_get_mem_cgroup_from_mm(mm
);
1489 progress
= mem_cgroup_hierarchical_reclaim(mem
, gfp_mask
, true);
1490 progress
+= mem_cgroup_check_under_limit(mem
);
1491 } while (!progress
&& --retry
);
1499 static DEFINE_MUTEX(set_limit_mutex
);
1501 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
1502 unsigned long long val
)
1505 int retry_count
= MEM_CGROUP_RECLAIM_RETRIES
;
1510 while (retry_count
) {
1511 if (signal_pending(current
)) {
1516 * Rather than hide all in some function, I do this in
1517 * open coded manner. You see what this really does.
1518 * We have to guarantee mem->res.limit < mem->memsw.limit.
1520 mutex_lock(&set_limit_mutex
);
1521 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1522 if (memswlimit
< val
) {
1524 mutex_unlock(&set_limit_mutex
);
1527 ret
= res_counter_set_limit(&memcg
->res
, val
);
1528 mutex_unlock(&set_limit_mutex
);
1533 progress
= mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
,
1535 if (!progress
) retry_count
--;
1541 int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
1542 unsigned long long val
)
1544 int retry_count
= MEM_CGROUP_RECLAIM_RETRIES
;
1545 u64 memlimit
, oldusage
, curusage
;
1548 if (!do_swap_account
)
1551 while (retry_count
) {
1552 if (signal_pending(current
)) {
1557 * Rather than hide all in some function, I do this in
1558 * open coded manner. You see what this really does.
1559 * We have to guarantee mem->res.limit < mem->memsw.limit.
1561 mutex_lock(&set_limit_mutex
);
1562 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1563 if (memlimit
> val
) {
1565 mutex_unlock(&set_limit_mutex
);
1568 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
1569 mutex_unlock(&set_limit_mutex
);
1574 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1575 mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
, true);
1576 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1577 if (curusage
>= oldusage
)
1584 * This routine traverse page_cgroup in given list and drop them all.
1585 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1587 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
1588 int node
, int zid
, enum lru_list lru
)
1591 struct mem_cgroup_per_zone
*mz
;
1592 struct page_cgroup
*pc
, *busy
;
1593 unsigned long flags
, loop
;
1594 struct list_head
*list
;
1597 zone
= &NODE_DATA(node
)->node_zones
[zid
];
1598 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
1599 list
= &mz
->lists
[lru
];
1601 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
1602 /* give some margin against EBUSY etc...*/
1607 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1608 if (list_empty(list
)) {
1609 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1612 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
1614 list_move(&pc
->lru
, list
);
1616 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1619 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1621 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
1625 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
1626 /* found lock contention or "pc" is obsolete. */
1633 if (!ret
&& !list_empty(list
))
1639 * make mem_cgroup's charge to be 0 if there is no task.
1640 * This enables deleting this mem_cgroup.
1642 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
1645 int node
, zid
, shrink
;
1646 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1647 struct cgroup
*cgrp
= mem
->css
.cgroup
;
1652 /* should free all ? */
1656 while (mem
->res
.usage
> 0) {
1658 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
1661 if (signal_pending(current
))
1663 /* This is for making all *used* pages to be on LRU. */
1664 lru_add_drain_all();
1666 for_each_node_state(node
, N_POSSIBLE
) {
1667 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
1670 ret
= mem_cgroup_force_empty_list(mem
,
1679 /* it seems parent cgroup doesn't have enough mem */
1690 /* returns EBUSY if there is a task or if we come here twice. */
1691 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
1695 /* we call try-to-free pages for make this cgroup empty */
1696 lru_add_drain_all();
1697 /* try to free all pages in this cgroup */
1699 while (nr_retries
&& mem
->res
.usage
> 0) {
1702 if (signal_pending(current
)) {
1706 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
1707 false, get_swappiness(mem
));
1710 /* maybe some writeback is necessary */
1711 congestion_wait(WRITE
, HZ
/10);
1716 /* try move_account...there may be some *locked* pages. */
1723 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
1725 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
1729 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
1731 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
1734 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
1738 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1739 struct cgroup
*parent
= cont
->parent
;
1740 struct mem_cgroup
*parent_mem
= NULL
;
1743 parent_mem
= mem_cgroup_from_cont(parent
);
1747 * If parent's use_hiearchy is set, we can't make any modifications
1748 * in the child subtrees. If it is unset, then the change can
1749 * occur, provided the current cgroup has no children.
1751 * For the root cgroup, parent_mem is NULL, we allow value to be
1752 * set if there are no children.
1754 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
1755 (val
== 1 || val
== 0)) {
1756 if (list_empty(&cont
->children
))
1757 mem
->use_hierarchy
= val
;
1767 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
1769 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1773 type
= MEMFILE_TYPE(cft
->private);
1774 name
= MEMFILE_ATTR(cft
->private);
1777 val
= res_counter_read_u64(&mem
->res
, name
);
1780 if (do_swap_account
)
1781 val
= res_counter_read_u64(&mem
->memsw
, name
);
1790 * The user of this function is...
1793 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
1796 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
1798 unsigned long long val
;
1801 type
= MEMFILE_TYPE(cft
->private);
1802 name
= MEMFILE_ATTR(cft
->private);
1805 /* This function does all necessary parse...reuse it */
1806 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
1810 ret
= mem_cgroup_resize_limit(memcg
, val
);
1812 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
1815 ret
= -EINVAL
; /* should be BUG() ? */
1821 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
1822 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
1824 struct cgroup
*cgroup
;
1825 unsigned long long min_limit
, min_memsw_limit
, tmp
;
1827 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1828 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1829 cgroup
= memcg
->css
.cgroup
;
1830 if (!memcg
->use_hierarchy
)
1833 while (cgroup
->parent
) {
1834 cgroup
= cgroup
->parent
;
1835 memcg
= mem_cgroup_from_cont(cgroup
);
1836 if (!memcg
->use_hierarchy
)
1838 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1839 min_limit
= min(min_limit
, tmp
);
1840 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1841 min_memsw_limit
= min(min_memsw_limit
, tmp
);
1844 *mem_limit
= min_limit
;
1845 *memsw_limit
= min_memsw_limit
;
1849 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
1851 struct mem_cgroup
*mem
;
1854 mem
= mem_cgroup_from_cont(cont
);
1855 type
= MEMFILE_TYPE(event
);
1856 name
= MEMFILE_ATTR(event
);
1860 res_counter_reset_max(&mem
->res
);
1862 res_counter_reset_max(&mem
->memsw
);
1866 res_counter_reset_failcnt(&mem
->res
);
1868 res_counter_reset_failcnt(&mem
->memsw
);
1874 static const struct mem_cgroup_stat_desc
{
1877 } mem_cgroup_stat_desc
[] = {
1878 [MEM_CGROUP_STAT_CACHE
] = { "cache", PAGE_SIZE
, },
1879 [MEM_CGROUP_STAT_RSS
] = { "rss", PAGE_SIZE
, },
1880 [MEM_CGROUP_STAT_PGPGIN_COUNT
] = {"pgpgin", 1, },
1881 [MEM_CGROUP_STAT_PGPGOUT_COUNT
] = {"pgpgout", 1, },
1884 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
1885 struct cgroup_map_cb
*cb
)
1887 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
1888 struct mem_cgroup_stat
*stat
= &mem_cont
->stat
;
1891 for (i
= 0; i
< ARRAY_SIZE(stat
->cpustat
[0].count
); i
++) {
1894 val
= mem_cgroup_read_stat(stat
, i
);
1895 val
*= mem_cgroup_stat_desc
[i
].unit
;
1896 cb
->fill(cb
, mem_cgroup_stat_desc
[i
].msg
, val
);
1898 /* showing # of active pages */
1900 unsigned long active_anon
, inactive_anon
;
1901 unsigned long active_file
, inactive_file
;
1902 unsigned long unevictable
;
1904 inactive_anon
= mem_cgroup_get_all_zonestat(mem_cont
,
1906 active_anon
= mem_cgroup_get_all_zonestat(mem_cont
,
1908 inactive_file
= mem_cgroup_get_all_zonestat(mem_cont
,
1910 active_file
= mem_cgroup_get_all_zonestat(mem_cont
,
1912 unevictable
= mem_cgroup_get_all_zonestat(mem_cont
,
1915 cb
->fill(cb
, "active_anon", (active_anon
) * PAGE_SIZE
);
1916 cb
->fill(cb
, "inactive_anon", (inactive_anon
) * PAGE_SIZE
);
1917 cb
->fill(cb
, "active_file", (active_file
) * PAGE_SIZE
);
1918 cb
->fill(cb
, "inactive_file", (inactive_file
) * PAGE_SIZE
);
1919 cb
->fill(cb
, "unevictable", unevictable
* PAGE_SIZE
);
1923 unsigned long long limit
, memsw_limit
;
1924 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
1925 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
1926 if (do_swap_account
)
1927 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
1930 #ifdef CONFIG_DEBUG_VM
1931 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
1935 struct mem_cgroup_per_zone
*mz
;
1936 unsigned long recent_rotated
[2] = {0, 0};
1937 unsigned long recent_scanned
[2] = {0, 0};
1939 for_each_online_node(nid
)
1940 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1941 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1943 recent_rotated
[0] +=
1944 mz
->reclaim_stat
.recent_rotated
[0];
1945 recent_rotated
[1] +=
1946 mz
->reclaim_stat
.recent_rotated
[1];
1947 recent_scanned
[0] +=
1948 mz
->reclaim_stat
.recent_scanned
[0];
1949 recent_scanned
[1] +=
1950 mz
->reclaim_stat
.recent_scanned
[1];
1952 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
1953 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
1954 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
1955 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
1962 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
1964 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
1966 return get_swappiness(memcg
);
1969 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1972 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
1973 struct mem_cgroup
*parent
;
1977 if (cgrp
->parent
== NULL
)
1980 parent
= mem_cgroup_from_cont(cgrp
->parent
);
1981 /* If under hierarchy, only empty-root can set this value */
1982 if ((parent
->use_hierarchy
) ||
1983 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
)))
1986 spin_lock(&memcg
->reclaim_param_lock
);
1987 memcg
->swappiness
= val
;
1988 spin_unlock(&memcg
->reclaim_param_lock
);
1994 static struct cftype mem_cgroup_files
[] = {
1996 .name
= "usage_in_bytes",
1997 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
1998 .read_u64
= mem_cgroup_read
,
2001 .name
= "max_usage_in_bytes",
2002 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
2003 .trigger
= mem_cgroup_reset
,
2004 .read_u64
= mem_cgroup_read
,
2007 .name
= "limit_in_bytes",
2008 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
2009 .write_string
= mem_cgroup_write
,
2010 .read_u64
= mem_cgroup_read
,
2014 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
2015 .trigger
= mem_cgroup_reset
,
2016 .read_u64
= mem_cgroup_read
,
2020 .read_map
= mem_control_stat_show
,
2023 .name
= "force_empty",
2024 .trigger
= mem_cgroup_force_empty_write
,
2027 .name
= "use_hierarchy",
2028 .write_u64
= mem_cgroup_hierarchy_write
,
2029 .read_u64
= mem_cgroup_hierarchy_read
,
2032 .name
= "swappiness",
2033 .read_u64
= mem_cgroup_swappiness_read
,
2034 .write_u64
= mem_cgroup_swappiness_write
,
2038 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2039 static struct cftype memsw_cgroup_files
[] = {
2041 .name
= "memsw.usage_in_bytes",
2042 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
2043 .read_u64
= mem_cgroup_read
,
2046 .name
= "memsw.max_usage_in_bytes",
2047 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
2048 .trigger
= mem_cgroup_reset
,
2049 .read_u64
= mem_cgroup_read
,
2052 .name
= "memsw.limit_in_bytes",
2053 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
2054 .write_string
= mem_cgroup_write
,
2055 .read_u64
= mem_cgroup_read
,
2058 .name
= "memsw.failcnt",
2059 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
2060 .trigger
= mem_cgroup_reset
,
2061 .read_u64
= mem_cgroup_read
,
2065 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2067 if (!do_swap_account
)
2069 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
2070 ARRAY_SIZE(memsw_cgroup_files
));
2073 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2079 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2081 struct mem_cgroup_per_node
*pn
;
2082 struct mem_cgroup_per_zone
*mz
;
2084 int zone
, tmp
= node
;
2086 * This routine is called against possible nodes.
2087 * But it's BUG to call kmalloc() against offline node.
2089 * TODO: this routine can waste much memory for nodes which will
2090 * never be onlined. It's better to use memory hotplug callback
2093 if (!node_state(node
, N_NORMAL_MEMORY
))
2095 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
2099 mem
->info
.nodeinfo
[node
] = pn
;
2100 memset(pn
, 0, sizeof(*pn
));
2102 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
2103 mz
= &pn
->zoneinfo
[zone
];
2105 INIT_LIST_HEAD(&mz
->lists
[l
]);
2110 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2112 kfree(mem
->info
.nodeinfo
[node
]);
2115 static int mem_cgroup_size(void)
2117 int cpustat_size
= nr_cpu_ids
* sizeof(struct mem_cgroup_stat_cpu
);
2118 return sizeof(struct mem_cgroup
) + cpustat_size
;
2121 static struct mem_cgroup
*mem_cgroup_alloc(void)
2123 struct mem_cgroup
*mem
;
2124 int size
= mem_cgroup_size();
2126 if (size
< PAGE_SIZE
)
2127 mem
= kmalloc(size
, GFP_KERNEL
);
2129 mem
= vmalloc(size
);
2132 memset(mem
, 0, size
);
2137 * At destroying mem_cgroup, references from swap_cgroup can remain.
2138 * (scanning all at force_empty is too costly...)
2140 * Instead of clearing all references at force_empty, we remember
2141 * the number of reference from swap_cgroup and free mem_cgroup when
2142 * it goes down to 0.
2144 * Removal of cgroup itself succeeds regardless of refs from swap.
2147 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
2151 for_each_node_state(node
, N_POSSIBLE
)
2152 free_mem_cgroup_per_zone_info(mem
, node
);
2154 if (mem_cgroup_size() < PAGE_SIZE
)
2160 static void mem_cgroup_get(struct mem_cgroup
*mem
)
2162 atomic_inc(&mem
->refcnt
);
2165 static void mem_cgroup_put(struct mem_cgroup
*mem
)
2167 if (atomic_dec_and_test(&mem
->refcnt
))
2168 __mem_cgroup_free(mem
);
2172 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2173 static void __init
enable_swap_cgroup(void)
2175 if (!mem_cgroup_disabled() && really_do_swap_account
)
2176 do_swap_account
= 1;
2179 static void __init
enable_swap_cgroup(void)
2184 static struct cgroup_subsys_state
*
2185 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
2187 struct mem_cgroup
*mem
, *parent
;
2190 mem
= mem_cgroup_alloc();
2192 return ERR_PTR(-ENOMEM
);
2194 for_each_node_state(node
, N_POSSIBLE
)
2195 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
2198 if (cont
->parent
== NULL
) {
2199 enable_swap_cgroup();
2202 parent
= mem_cgroup_from_cont(cont
->parent
);
2203 mem
->use_hierarchy
= parent
->use_hierarchy
;
2206 if (parent
&& parent
->use_hierarchy
) {
2207 res_counter_init(&mem
->res
, &parent
->res
);
2208 res_counter_init(&mem
->memsw
, &parent
->memsw
);
2210 res_counter_init(&mem
->res
, NULL
);
2211 res_counter_init(&mem
->memsw
, NULL
);
2213 mem
->last_scanned_child
= NULL
;
2214 spin_lock_init(&mem
->reclaim_param_lock
);
2217 mem
->swappiness
= get_swappiness(parent
);
2218 atomic_set(&mem
->refcnt
, 1);
2221 __mem_cgroup_free(mem
);
2222 return ERR_PTR(-ENOMEM
);
2225 static void mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
2226 struct cgroup
*cont
)
2228 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2229 mem_cgroup_force_empty(mem
, false);
2232 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
2233 struct cgroup
*cont
)
2235 mem_cgroup_put(mem_cgroup_from_cont(cont
));
2238 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
2239 struct cgroup
*cont
)
2243 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
2244 ARRAY_SIZE(mem_cgroup_files
));
2247 ret
= register_memsw_files(cont
, ss
);
2251 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
2252 struct cgroup
*cont
,
2253 struct cgroup
*old_cont
,
2254 struct task_struct
*p
)
2256 mutex_lock(&memcg_tasklist
);
2258 * FIXME: It's better to move charges of this process from old
2259 * memcg to new memcg. But it's just on TODO-List now.
2261 mutex_unlock(&memcg_tasklist
);
2264 struct cgroup_subsys mem_cgroup_subsys
= {
2266 .subsys_id
= mem_cgroup_subsys_id
,
2267 .create
= mem_cgroup_create
,
2268 .pre_destroy
= mem_cgroup_pre_destroy
,
2269 .destroy
= mem_cgroup_destroy
,
2270 .populate
= mem_cgroup_populate
,
2271 .attach
= mem_cgroup_move_task
,
2275 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2277 static int __init
disable_swap_account(char *s
)
2279 really_do_swap_account
= 0;
2282 __setup("noswapaccount", disable_swap_account
);