x86, apic: Don't use logical-flat mode when CPU hotplug may exceed 8 CPUs
[linux-2.6/mini2440.git] / arch / x86 / mm / pgtable.c
blobc9ba9deafe83f30daaae9b0e998c3de715671d43
1 #include <linux/mm.h>
2 #include <asm/pgalloc.h>
3 #include <asm/pgtable.h>
4 #include <asm/tlb.h>
5 #include <asm/fixmap.h>
7 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9 #ifdef CONFIG_HIGHPTE
10 #define PGALLOC_USER_GFP __GFP_HIGHMEM
11 #else
12 #define PGALLOC_USER_GFP 0
13 #endif
15 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 return (pte_t *)__get_free_page(PGALLOC_GFP);
22 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 struct page *pte;
26 pte = alloc_pages(__userpte_alloc_gfp, 0);
27 if (pte)
28 pgtable_page_ctor(pte);
29 return pte;
32 static int __init setup_userpte(char *arg)
34 if (!arg)
35 return -EINVAL;
38 * "userpte=nohigh" disables allocation of user pagetables in
39 * high memory.
41 if (strcmp(arg, "nohigh") == 0)
42 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
43 else
44 return -EINVAL;
45 return 0;
47 early_param("userpte", setup_userpte);
49 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
51 pgtable_page_dtor(pte);
52 paravirt_release_pte(page_to_pfn(pte));
53 tlb_remove_page(tlb, pte);
56 #if PAGETABLE_LEVELS > 2
57 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
59 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
60 tlb_remove_page(tlb, virt_to_page(pmd));
63 #if PAGETABLE_LEVELS > 3
64 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
66 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
67 tlb_remove_page(tlb, virt_to_page(pud));
69 #endif /* PAGETABLE_LEVELS > 3 */
70 #endif /* PAGETABLE_LEVELS > 2 */
72 static inline void pgd_list_add(pgd_t *pgd)
74 struct page *page = virt_to_page(pgd);
76 list_add(&page->lru, &pgd_list);
79 static inline void pgd_list_del(pgd_t *pgd)
81 struct page *page = virt_to_page(pgd);
83 list_del(&page->lru);
86 #define UNSHARED_PTRS_PER_PGD \
87 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
89 static void pgd_ctor(pgd_t *pgd)
91 /* If the pgd points to a shared pagetable level (either the
92 ptes in non-PAE, or shared PMD in PAE), then just copy the
93 references from swapper_pg_dir. */
94 if (PAGETABLE_LEVELS == 2 ||
95 (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
96 PAGETABLE_LEVELS == 4) {
97 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
98 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
99 KERNEL_PGD_PTRS);
100 paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
101 __pa(swapper_pg_dir) >> PAGE_SHIFT,
102 KERNEL_PGD_BOUNDARY,
103 KERNEL_PGD_PTRS);
106 /* list required to sync kernel mapping updates */
107 if (!SHARED_KERNEL_PMD)
108 pgd_list_add(pgd);
111 static void pgd_dtor(pgd_t *pgd)
113 unsigned long flags; /* can be called from interrupt context */
115 if (SHARED_KERNEL_PMD)
116 return;
118 spin_lock_irqsave(&pgd_lock, flags);
119 pgd_list_del(pgd);
120 spin_unlock_irqrestore(&pgd_lock, flags);
124 * List of all pgd's needed for non-PAE so it can invalidate entries
125 * in both cached and uncached pgd's; not needed for PAE since the
126 * kernel pmd is shared. If PAE were not to share the pmd a similar
127 * tactic would be needed. This is essentially codepath-based locking
128 * against pageattr.c; it is the unique case in which a valid change
129 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
130 * vmalloc faults work because attached pagetables are never freed.
131 * -- wli
134 #ifdef CONFIG_X86_PAE
136 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
137 * updating the top-level pagetable entries to guarantee the
138 * processor notices the update. Since this is expensive, and
139 * all 4 top-level entries are used almost immediately in a
140 * new process's life, we just pre-populate them here.
142 * Also, if we're in a paravirt environment where the kernel pmd is
143 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
144 * and initialize the kernel pmds here.
146 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
148 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
150 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
152 /* Note: almost everything apart from _PAGE_PRESENT is
153 reserved at the pmd (PDPT) level. */
154 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
157 * According to Intel App note "TLBs, Paging-Structure Caches,
158 * and Their Invalidation", April 2007, document 317080-001,
159 * section 8.1: in PAE mode we explicitly have to flush the
160 * TLB via cr3 if the top-level pgd is changed...
162 if (mm == current->active_mm)
163 write_cr3(read_cr3());
165 #else /* !CONFIG_X86_PAE */
167 /* No need to prepopulate any pagetable entries in non-PAE modes. */
168 #define PREALLOCATED_PMDS 0
170 #endif /* CONFIG_X86_PAE */
172 static void free_pmds(pmd_t *pmds[])
174 int i;
176 for(i = 0; i < PREALLOCATED_PMDS; i++)
177 if (pmds[i])
178 free_page((unsigned long)pmds[i]);
181 static int preallocate_pmds(pmd_t *pmds[])
183 int i;
184 bool failed = false;
186 for(i = 0; i < PREALLOCATED_PMDS; i++) {
187 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
188 if (pmd == NULL)
189 failed = true;
190 pmds[i] = pmd;
193 if (failed) {
194 free_pmds(pmds);
195 return -ENOMEM;
198 return 0;
202 * Mop up any pmd pages which may still be attached to the pgd.
203 * Normally they will be freed by munmap/exit_mmap, but any pmd we
204 * preallocate which never got a corresponding vma will need to be
205 * freed manually.
207 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
209 int i;
211 for(i = 0; i < PREALLOCATED_PMDS; i++) {
212 pgd_t pgd = pgdp[i];
214 if (pgd_val(pgd) != 0) {
215 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
217 pgdp[i] = native_make_pgd(0);
219 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
220 pmd_free(mm, pmd);
225 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
227 pud_t *pud;
228 unsigned long addr;
229 int i;
231 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
232 return;
234 pud = pud_offset(pgd, 0);
236 for (addr = i = 0; i < PREALLOCATED_PMDS;
237 i++, pud++, addr += PUD_SIZE) {
238 pmd_t *pmd = pmds[i];
240 if (i >= KERNEL_PGD_BOUNDARY)
241 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
242 sizeof(pmd_t) * PTRS_PER_PMD);
244 pud_populate(mm, pud, pmd);
248 pgd_t *pgd_alloc(struct mm_struct *mm)
250 pgd_t *pgd;
251 pmd_t *pmds[PREALLOCATED_PMDS];
252 unsigned long flags;
254 pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
256 if (pgd == NULL)
257 goto out;
259 mm->pgd = pgd;
261 if (preallocate_pmds(pmds) != 0)
262 goto out_free_pgd;
264 if (paravirt_pgd_alloc(mm) != 0)
265 goto out_free_pmds;
268 * Make sure that pre-populating the pmds is atomic with
269 * respect to anything walking the pgd_list, so that they
270 * never see a partially populated pgd.
272 spin_lock_irqsave(&pgd_lock, flags);
274 pgd_ctor(pgd);
275 pgd_prepopulate_pmd(mm, pgd, pmds);
277 spin_unlock_irqrestore(&pgd_lock, flags);
279 return pgd;
281 out_free_pmds:
282 free_pmds(pmds);
283 out_free_pgd:
284 free_page((unsigned long)pgd);
285 out:
286 return NULL;
289 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
291 pgd_mop_up_pmds(mm, pgd);
292 pgd_dtor(pgd);
293 paravirt_pgd_free(mm, pgd);
294 free_page((unsigned long)pgd);
297 int ptep_set_access_flags(struct vm_area_struct *vma,
298 unsigned long address, pte_t *ptep,
299 pte_t entry, int dirty)
301 int changed = !pte_same(*ptep, entry);
303 if (changed && dirty) {
304 *ptep = entry;
305 pte_update_defer(vma->vm_mm, address, ptep);
306 flush_tlb_page(vma, address);
309 return changed;
312 int ptep_test_and_clear_young(struct vm_area_struct *vma,
313 unsigned long addr, pte_t *ptep)
315 int ret = 0;
317 if (pte_young(*ptep))
318 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
319 (unsigned long *) &ptep->pte);
321 if (ret)
322 pte_update(vma->vm_mm, addr, ptep);
324 return ret;
327 int ptep_clear_flush_young(struct vm_area_struct *vma,
328 unsigned long address, pte_t *ptep)
330 int young;
332 young = ptep_test_and_clear_young(vma, address, ptep);
333 if (young)
334 flush_tlb_page(vma, address);
336 return young;
340 * reserve_top_address - reserves a hole in the top of kernel address space
341 * @reserve - size of hole to reserve
343 * Can be used to relocate the fixmap area and poke a hole in the top
344 * of kernel address space to make room for a hypervisor.
346 void __init reserve_top_address(unsigned long reserve)
348 #ifdef CONFIG_X86_32
349 BUG_ON(fixmaps_set > 0);
350 printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
351 (int)-reserve);
352 __FIXADDR_TOP = -reserve - PAGE_SIZE;
353 #endif
356 int fixmaps_set;
358 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
360 unsigned long address = __fix_to_virt(idx);
362 if (idx >= __end_of_fixed_addresses) {
363 BUG();
364 return;
366 set_pte_vaddr(address, pte);
367 fixmaps_set++;
370 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
371 pgprot_t flags)
373 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));