x86, apic: Don't use logical-flat mode when CPU hotplug may exceed 8 CPUs
[linux-2.6/mini2440.git] / arch / x86 / kernel / tlb_uv.c
blob364d015efebcc88dd6966cbfb741dfc41ccc410a
1 /*
2 * SGI UltraViolet TLB flush routines.
4 * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/kernel.h>
13 #include <asm/mmu_context.h>
14 #include <asm/uv/uv.h>
15 #include <asm/uv/uv_mmrs.h>
16 #include <asm/uv/uv_hub.h>
17 #include <asm/uv/uv_bau.h>
18 #include <asm/apic.h>
19 #include <asm/idle.h>
20 #include <asm/tsc.h>
21 #include <asm/irq_vectors.h>
23 static struct bau_control **uv_bau_table_bases __read_mostly;
24 static int uv_bau_retry_limit __read_mostly;
26 /* base pnode in this partition */
27 static int uv_partition_base_pnode __read_mostly;
29 static unsigned long uv_mmask __read_mostly;
31 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
32 static DEFINE_PER_CPU(struct bau_control, bau_control);
35 * Determine the first node on a blade.
37 static int __init blade_to_first_node(int blade)
39 int node, b;
41 for_each_online_node(node) {
42 b = uv_node_to_blade_id(node);
43 if (blade == b)
44 return node;
46 return -1; /* shouldn't happen */
50 * Determine the apicid of the first cpu on a blade.
52 static int __init blade_to_first_apicid(int blade)
54 int cpu;
56 for_each_present_cpu(cpu)
57 if (blade == uv_cpu_to_blade_id(cpu))
58 return per_cpu(x86_cpu_to_apicid, cpu);
59 return -1;
63 * Free a software acknowledge hardware resource by clearing its Pending
64 * bit. This will return a reply to the sender.
65 * If the message has timed out, a reply has already been sent by the
66 * hardware but the resource has not been released. In that case our
67 * clear of the Timeout bit (as well) will free the resource. No reply will
68 * be sent (the hardware will only do one reply per message).
70 static void uv_reply_to_message(int resource,
71 struct bau_payload_queue_entry *msg,
72 struct bau_msg_status *msp)
74 unsigned long dw;
76 dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
77 msg->replied_to = 1;
78 msg->sw_ack_vector = 0;
79 if (msp)
80 msp->seen_by.bits = 0;
81 uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
85 * Do all the things a cpu should do for a TLB shootdown message.
86 * Other cpu's may come here at the same time for this message.
88 static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
89 int msg_slot, int sw_ack_slot)
91 unsigned long this_cpu_mask;
92 struct bau_msg_status *msp;
93 int cpu;
95 msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
96 cpu = uv_blade_processor_id();
97 msg->number_of_cpus =
98 uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
99 this_cpu_mask = 1UL << cpu;
100 if (msp->seen_by.bits & this_cpu_mask)
101 return;
102 atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
104 if (msg->replied_to == 1)
105 return;
107 if (msg->address == TLB_FLUSH_ALL) {
108 local_flush_tlb();
109 __get_cpu_var(ptcstats).alltlb++;
110 } else {
111 __flush_tlb_one(msg->address);
112 __get_cpu_var(ptcstats).onetlb++;
115 __get_cpu_var(ptcstats).requestee++;
117 atomic_inc_short(&msg->acknowledge_count);
118 if (msg->number_of_cpus == msg->acknowledge_count)
119 uv_reply_to_message(sw_ack_slot, msg, msp);
123 * Examine the payload queue on one distribution node to see
124 * which messages have not been seen, and which cpu(s) have not seen them.
126 * Returns the number of cpu's that have not responded.
128 static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
130 struct bau_payload_queue_entry *msg;
131 struct bau_msg_status *msp;
132 int count = 0;
133 int i;
134 int j;
136 for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
137 msg++, i++) {
138 if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
139 msp = bau_tablesp->msg_statuses + i;
140 printk(KERN_DEBUG
141 "blade %d: address:%#lx %d of %d, not cpu(s): ",
142 i, msg->address, msg->acknowledge_count,
143 msg->number_of_cpus);
144 for (j = 0; j < msg->number_of_cpus; j++) {
145 if (!((1L << j) & msp->seen_by.bits)) {
146 count++;
147 printk("%d ", j);
150 printk("\n");
153 return count;
157 * Examine the payload queue on all the distribution nodes to see
158 * which messages have not been seen, and which cpu(s) have not seen them.
160 * Returns the number of cpu's that have not responded.
162 static int uv_examine_destinations(struct bau_target_nodemask *distribution)
164 int sender;
165 int i;
166 int count = 0;
168 sender = smp_processor_id();
169 for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
170 if (!bau_node_isset(i, distribution))
171 continue;
172 count += uv_examine_destination(uv_bau_table_bases[i], sender);
174 return count;
178 * wait for completion of a broadcast message
180 * return COMPLETE, RETRY or GIVEUP
182 static int uv_wait_completion(struct bau_desc *bau_desc,
183 unsigned long mmr_offset, int right_shift)
185 int exams = 0;
186 long destination_timeouts = 0;
187 long source_timeouts = 0;
188 unsigned long descriptor_status;
190 while ((descriptor_status = (((unsigned long)
191 uv_read_local_mmr(mmr_offset) >>
192 right_shift) & UV_ACT_STATUS_MASK)) !=
193 DESC_STATUS_IDLE) {
194 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
195 source_timeouts++;
196 if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
197 source_timeouts = 0;
198 __get_cpu_var(ptcstats).s_retry++;
199 return FLUSH_RETRY;
202 * spin here looking for progress at the destinations
204 if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
205 destination_timeouts++;
206 if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
208 * returns number of cpus not responding
210 if (uv_examine_destinations
211 (&bau_desc->distribution) == 0) {
212 __get_cpu_var(ptcstats).d_retry++;
213 return FLUSH_RETRY;
215 exams++;
216 if (exams >= uv_bau_retry_limit) {
217 printk(KERN_DEBUG
218 "uv_flush_tlb_others");
219 printk("giving up on cpu %d\n",
220 smp_processor_id());
221 return FLUSH_GIVEUP;
224 * delays can hang the simulator
225 udelay(1000);
227 destination_timeouts = 0;
230 cpu_relax();
232 return FLUSH_COMPLETE;
236 * uv_flush_send_and_wait
238 * Send a broadcast and wait for a broadcast message to complete.
240 * The flush_mask contains the cpus the broadcast was sent to.
242 * Returns NULL if all remote flushing was done. The mask is zeroed.
243 * Returns @flush_mask if some remote flushing remains to be done. The
244 * mask will have some bits still set.
246 const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
247 struct bau_desc *bau_desc,
248 struct cpumask *flush_mask)
250 int completion_status = 0;
251 int right_shift;
252 int tries = 0;
253 int pnode;
254 int bit;
255 unsigned long mmr_offset;
256 unsigned long index;
257 cycles_t time1;
258 cycles_t time2;
260 if (cpu < UV_CPUS_PER_ACT_STATUS) {
261 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
262 right_shift = cpu * UV_ACT_STATUS_SIZE;
263 } else {
264 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
265 right_shift =
266 ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
268 time1 = get_cycles();
269 do {
270 tries++;
271 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
272 cpu;
273 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
274 completion_status = uv_wait_completion(bau_desc, mmr_offset,
275 right_shift);
276 } while (completion_status == FLUSH_RETRY);
277 time2 = get_cycles();
278 __get_cpu_var(ptcstats).sflush += (time2 - time1);
279 if (tries > 1)
280 __get_cpu_var(ptcstats).retriesok++;
282 if (completion_status == FLUSH_GIVEUP) {
284 * Cause the caller to do an IPI-style TLB shootdown on
285 * the cpu's, all of which are still in the mask.
287 __get_cpu_var(ptcstats).ptc_i++;
288 return flush_mask;
292 * Success, so clear the remote cpu's from the mask so we don't
293 * use the IPI method of shootdown on them.
295 for_each_cpu(bit, flush_mask) {
296 pnode = uv_cpu_to_pnode(bit);
297 if (pnode == this_pnode)
298 continue;
299 cpumask_clear_cpu(bit, flush_mask);
301 if (!cpumask_empty(flush_mask))
302 return flush_mask;
303 return NULL;
306 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
309 * uv_flush_tlb_others - globally purge translation cache of a virtual
310 * address or all TLB's
311 * @cpumask: mask of all cpu's in which the address is to be removed
312 * @mm: mm_struct containing virtual address range
313 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
314 * @cpu: the current cpu
316 * This is the entry point for initiating any UV global TLB shootdown.
318 * Purges the translation caches of all specified processors of the given
319 * virtual address, or purges all TLB's on specified processors.
321 * The caller has derived the cpumask from the mm_struct. This function
322 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
324 * The cpumask is converted into a nodemask of the nodes containing
325 * the cpus.
327 * Note that this function should be called with preemption disabled.
329 * Returns NULL if all remote flushing was done.
330 * Returns pointer to cpumask if some remote flushing remains to be
331 * done. The returned pointer is valid till preemption is re-enabled.
333 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
334 struct mm_struct *mm,
335 unsigned long va, unsigned int cpu)
337 struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask);
338 int i;
339 int bit;
340 int pnode;
341 int uv_cpu;
342 int this_pnode;
343 int locals = 0;
344 struct bau_desc *bau_desc;
346 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
348 uv_cpu = uv_blade_processor_id();
349 this_pnode = uv_hub_info->pnode;
350 bau_desc = __get_cpu_var(bau_control).descriptor_base;
351 bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
353 bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
355 i = 0;
356 for_each_cpu(bit, flush_mask) {
357 pnode = uv_cpu_to_pnode(bit);
358 BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
359 if (pnode == this_pnode) {
360 locals++;
361 continue;
363 bau_node_set(pnode - uv_partition_base_pnode,
364 &bau_desc->distribution);
365 i++;
367 if (i == 0) {
369 * no off_node flushing; return status for local node
371 if (locals)
372 return flush_mask;
373 else
374 return NULL;
376 __get_cpu_var(ptcstats).requestor++;
377 __get_cpu_var(ptcstats).ntargeted += i;
379 bau_desc->payload.address = va;
380 bau_desc->payload.sending_cpu = cpu;
382 return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
386 * The BAU message interrupt comes here. (registered by set_intr_gate)
387 * See entry_64.S
389 * We received a broadcast assist message.
391 * Interrupts may have been disabled; this interrupt could represent
392 * the receipt of several messages.
394 * All cores/threads on this node get this interrupt.
395 * The last one to see it does the s/w ack.
396 * (the resource will not be freed until noninterruptable cpus see this
397 * interrupt; hardware will timeout the s/w ack and reply ERROR)
399 void uv_bau_message_interrupt(struct pt_regs *regs)
401 struct bau_payload_queue_entry *va_queue_first;
402 struct bau_payload_queue_entry *va_queue_last;
403 struct bau_payload_queue_entry *msg;
404 struct pt_regs *old_regs = set_irq_regs(regs);
405 cycles_t time1;
406 cycles_t time2;
407 int msg_slot;
408 int sw_ack_slot;
409 int fw;
410 int count = 0;
411 unsigned long local_pnode;
413 ack_APIC_irq();
414 exit_idle();
415 irq_enter();
417 time1 = get_cycles();
419 local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
421 va_queue_first = __get_cpu_var(bau_control).va_queue_first;
422 va_queue_last = __get_cpu_var(bau_control).va_queue_last;
424 msg = __get_cpu_var(bau_control).bau_msg_head;
425 while (msg->sw_ack_vector) {
426 count++;
427 fw = msg->sw_ack_vector;
428 msg_slot = msg - va_queue_first;
429 sw_ack_slot = ffs(fw) - 1;
431 uv_bau_process_message(msg, msg_slot, sw_ack_slot);
433 msg++;
434 if (msg > va_queue_last)
435 msg = va_queue_first;
436 __get_cpu_var(bau_control).bau_msg_head = msg;
438 if (!count)
439 __get_cpu_var(ptcstats).nomsg++;
440 else if (count > 1)
441 __get_cpu_var(ptcstats).multmsg++;
443 time2 = get_cycles();
444 __get_cpu_var(ptcstats).dflush += (time2 - time1);
446 irq_exit();
447 set_irq_regs(old_regs);
451 * uv_enable_timeouts
453 * Each target blade (i.e. blades that have cpu's) needs to have
454 * shootdown message timeouts enabled. The timeout does not cause
455 * an interrupt, but causes an error message to be returned to
456 * the sender.
458 static void uv_enable_timeouts(void)
460 int blade;
461 int nblades;
462 int pnode;
463 unsigned long mmr_image;
465 nblades = uv_num_possible_blades();
467 for (blade = 0; blade < nblades; blade++) {
468 if (!uv_blade_nr_possible_cpus(blade))
469 continue;
471 pnode = uv_blade_to_pnode(blade);
472 mmr_image =
473 uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
475 * Set the timeout period and then lock it in, in three
476 * steps; captures and locks in the period.
478 * To program the period, the SOFT_ACK_MODE must be off.
480 mmr_image &= ~((unsigned long)1 <<
481 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
482 uv_write_global_mmr64
483 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
485 * Set the 4-bit period.
487 mmr_image &= ~((unsigned long)0xf <<
488 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
489 mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
490 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
491 uv_write_global_mmr64
492 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
494 * Subsequent reversals of the timebase bit (3) cause an
495 * immediate timeout of one or all INTD resources as
496 * indicated in bits 2:0 (7 causes all of them to timeout).
498 mmr_image |= ((unsigned long)1 <<
499 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
500 uv_write_global_mmr64
501 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
505 static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
507 if (*offset < num_possible_cpus())
508 return offset;
509 return NULL;
512 static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
514 (*offset)++;
515 if (*offset < num_possible_cpus())
516 return offset;
517 return NULL;
520 static void uv_ptc_seq_stop(struct seq_file *file, void *data)
525 * Display the statistics thru /proc
526 * data points to the cpu number
528 static int uv_ptc_seq_show(struct seq_file *file, void *data)
530 struct ptc_stats *stat;
531 int cpu;
533 cpu = *(loff_t *)data;
535 if (!cpu) {
536 seq_printf(file,
537 "# cpu requestor requestee one all sretry dretry ptc_i ");
538 seq_printf(file,
539 "sw_ack sflush dflush sok dnomsg dmult starget\n");
541 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
542 stat = &per_cpu(ptcstats, cpu);
543 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
544 cpu, stat->requestor,
545 stat->requestee, stat->onetlb, stat->alltlb,
546 stat->s_retry, stat->d_retry, stat->ptc_i);
547 seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
548 uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
549 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
550 stat->sflush, stat->dflush,
551 stat->retriesok, stat->nomsg,
552 stat->multmsg, stat->ntargeted);
555 return 0;
559 * 0: display meaning of the statistics
560 * >0: retry limit
562 static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
563 size_t count, loff_t *data)
565 long newmode;
566 char optstr[64];
568 if (count == 0 || count > sizeof(optstr))
569 return -EINVAL;
570 if (copy_from_user(optstr, user, count))
571 return -EFAULT;
572 optstr[count - 1] = '\0';
573 if (strict_strtoul(optstr, 10, &newmode) < 0) {
574 printk(KERN_DEBUG "%s is invalid\n", optstr);
575 return -EINVAL;
578 if (newmode == 0) {
579 printk(KERN_DEBUG "# cpu: cpu number\n");
580 printk(KERN_DEBUG
581 "requestor: times this cpu was the flush requestor\n");
582 printk(KERN_DEBUG
583 "requestee: times this cpu was requested to flush its TLBs\n");
584 printk(KERN_DEBUG
585 "one: times requested to flush a single address\n");
586 printk(KERN_DEBUG
587 "all: times requested to flush all TLB's\n");
588 printk(KERN_DEBUG
589 "sretry: number of retries of source-side timeouts\n");
590 printk(KERN_DEBUG
591 "dretry: number of retries of destination-side timeouts\n");
592 printk(KERN_DEBUG
593 "ptc_i: times UV fell through to IPI-style flushes\n");
594 printk(KERN_DEBUG
595 "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
596 printk(KERN_DEBUG
597 "sflush_us: cycles spent in uv_flush_tlb_others()\n");
598 printk(KERN_DEBUG
599 "dflush_us: cycles spent in handling flush requests\n");
600 printk(KERN_DEBUG "sok: successes on retry\n");
601 printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
602 printk(KERN_DEBUG
603 "dmult: interrupts with multiple messages\n");
604 printk(KERN_DEBUG "starget: nodes targeted\n");
605 } else {
606 uv_bau_retry_limit = newmode;
607 printk(KERN_DEBUG "timeout retry limit:%d\n",
608 uv_bau_retry_limit);
611 return count;
614 static const struct seq_operations uv_ptc_seq_ops = {
615 .start = uv_ptc_seq_start,
616 .next = uv_ptc_seq_next,
617 .stop = uv_ptc_seq_stop,
618 .show = uv_ptc_seq_show
621 static int uv_ptc_proc_open(struct inode *inode, struct file *file)
623 return seq_open(file, &uv_ptc_seq_ops);
626 static const struct file_operations proc_uv_ptc_operations = {
627 .open = uv_ptc_proc_open,
628 .read = seq_read,
629 .write = uv_ptc_proc_write,
630 .llseek = seq_lseek,
631 .release = seq_release,
634 static int __init uv_ptc_init(void)
636 struct proc_dir_entry *proc_uv_ptc;
638 if (!is_uv_system())
639 return 0;
641 proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
642 &proc_uv_ptc_operations);
643 if (!proc_uv_ptc) {
644 printk(KERN_ERR "unable to create %s proc entry\n",
645 UV_PTC_BASENAME);
646 return -EINVAL;
648 return 0;
652 * begin the initialization of the per-blade control structures
654 static struct bau_control * __init uv_table_bases_init(int blade, int node)
656 int i;
657 struct bau_msg_status *msp;
658 struct bau_control *bau_tabp;
660 bau_tabp =
661 kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
662 BUG_ON(!bau_tabp);
664 bau_tabp->msg_statuses =
665 kmalloc_node(sizeof(struct bau_msg_status) *
666 DEST_Q_SIZE, GFP_KERNEL, node);
667 BUG_ON(!bau_tabp->msg_statuses);
669 for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
670 bau_cpubits_clear(&msp->seen_by, (int)
671 uv_blade_nr_possible_cpus(blade));
673 uv_bau_table_bases[blade] = bau_tabp;
675 return bau_tabp;
679 * finish the initialization of the per-blade control structures
681 static void __init
682 uv_table_bases_finish(int blade,
683 struct bau_control *bau_tablesp,
684 struct bau_desc *adp)
686 struct bau_control *bcp;
687 int cpu;
689 for_each_present_cpu(cpu) {
690 if (blade != uv_cpu_to_blade_id(cpu))
691 continue;
693 bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
694 bcp->bau_msg_head = bau_tablesp->va_queue_first;
695 bcp->va_queue_first = bau_tablesp->va_queue_first;
696 bcp->va_queue_last = bau_tablesp->va_queue_last;
697 bcp->msg_statuses = bau_tablesp->msg_statuses;
698 bcp->descriptor_base = adp;
703 * initialize the sending side's sending buffers
705 static struct bau_desc * __init
706 uv_activation_descriptor_init(int node, int pnode)
708 int i;
709 unsigned long pa;
710 unsigned long m;
711 unsigned long n;
712 struct bau_desc *adp;
713 struct bau_desc *ad2;
716 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
717 * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per blade
719 adp = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*
720 UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
721 BUG_ON(!adp);
723 pa = uv_gpa(adp); /* need the real nasid*/
724 n = uv_gpa_to_pnode(pa);
725 m = pa & uv_mmask;
727 uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
728 (n << UV_DESC_BASE_PNODE_SHIFT | m));
731 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
732 * cpu even though we only use the first one; one descriptor can
733 * describe a broadcast to 256 nodes.
735 for (i = 0, ad2 = adp; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
736 i++, ad2++) {
737 memset(ad2, 0, sizeof(struct bau_desc));
738 ad2->header.sw_ack_flag = 1;
740 * base_dest_nodeid is the first node in the partition, so
741 * the bit map will indicate partition-relative node numbers.
742 * note that base_dest_nodeid is actually a nasid.
744 ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
745 ad2->header.dest_subnodeid = 0x10; /* the LB */
746 ad2->header.command = UV_NET_ENDPOINT_INTD;
747 ad2->header.int_both = 1;
749 * all others need to be set to zero:
750 * fairness chaining multilevel count replied_to
753 return adp;
757 * initialize the destination side's receiving buffers
759 static struct bau_payload_queue_entry * __init
760 uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
762 struct bau_payload_queue_entry *pqp;
763 unsigned long pa;
764 int pn;
765 char *cp;
767 pqp = (struct bau_payload_queue_entry *) kmalloc_node(
768 (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
769 GFP_KERNEL, node);
770 BUG_ON(!pqp);
772 cp = (char *)pqp + 31;
773 pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
774 bau_tablesp->va_queue_first = pqp;
776 * need the pnode of where the memory was really allocated
778 pa = uv_gpa(pqp);
779 pn = uv_gpa_to_pnode(pa);
780 uv_write_global_mmr64(pnode,
781 UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
782 ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
783 uv_physnodeaddr(pqp));
784 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
785 uv_physnodeaddr(pqp));
786 bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
787 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
788 (unsigned long)
789 uv_physnodeaddr(bau_tablesp->va_queue_last));
790 memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
792 return pqp;
796 * Initialization of each UV blade's structures
798 static int __init uv_init_blade(int blade)
800 int node;
801 int pnode;
802 unsigned long pa;
803 unsigned long apicid;
804 struct bau_desc *adp;
805 struct bau_payload_queue_entry *pqp;
806 struct bau_control *bau_tablesp;
808 node = blade_to_first_node(blade);
809 bau_tablesp = uv_table_bases_init(blade, node);
810 pnode = uv_blade_to_pnode(blade);
811 adp = uv_activation_descriptor_init(node, pnode);
812 pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
813 uv_table_bases_finish(blade, bau_tablesp, adp);
815 * the below initialization can't be in firmware because the
816 * messaging IRQ will be determined by the OS
818 apicid = blade_to_first_apicid(blade);
819 pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
820 uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
821 ((apicid << 32) | UV_BAU_MESSAGE));
822 return 0;
826 * Initialization of BAU-related structures
828 static int __init uv_bau_init(void)
830 int blade;
831 int nblades;
832 int cur_cpu;
834 if (!is_uv_system())
835 return 0;
837 for_each_possible_cpu(cur_cpu)
838 zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
839 GFP_KERNEL, cpu_to_node(cur_cpu));
841 uv_bau_retry_limit = 1;
842 uv_mmask = (1UL << uv_hub_info->m_val) - 1;
843 nblades = uv_num_possible_blades();
845 uv_bau_table_bases = (struct bau_control **)
846 kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
847 BUG_ON(!uv_bau_table_bases);
849 uv_partition_base_pnode = 0x7fffffff;
850 for (blade = 0; blade < nblades; blade++)
851 if (uv_blade_nr_possible_cpus(blade) &&
852 (uv_blade_to_pnode(blade) < uv_partition_base_pnode))
853 uv_partition_base_pnode = uv_blade_to_pnode(blade);
854 for (blade = 0; blade < nblades; blade++)
855 if (uv_blade_nr_possible_cpus(blade))
856 uv_init_blade(blade);
858 alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
859 uv_enable_timeouts();
861 return 0;
863 __initcall(uv_bau_init);
864 __initcall(uv_ptc_init);