x86, apic: Don't use logical-flat mode when CPU hotplug may exceed 8 CPUs
[linux-2.6/mini2440.git] / arch / powerpc / kernel / time.c
bloba136a11c490d0f36a9b32812132e682c38262f8f
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_event.h>
58 #include <asm/io.h>
59 #include <asm/processor.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <asm/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/cputime.h>
72 #ifdef CONFIG_PPC_ISERIES
73 #include <asm/iseries/it_lp_queue.h>
74 #include <asm/iseries/hv_call_xm.h>
75 #endif
77 /* powerpc clocksource/clockevent code */
79 #include <linux/clockchips.h>
80 #include <linux/clocksource.h>
82 static cycle_t rtc_read(struct clocksource *);
83 static struct clocksource clocksource_rtc = {
84 .name = "rtc",
85 .rating = 400,
86 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
87 .mask = CLOCKSOURCE_MASK(64),
88 .shift = 22,
89 .mult = 0, /* To be filled in */
90 .read = rtc_read,
93 static cycle_t timebase_read(struct clocksource *);
94 static struct clocksource clocksource_timebase = {
95 .name = "timebase",
96 .rating = 400,
97 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
98 .mask = CLOCKSOURCE_MASK(64),
99 .shift = 22,
100 .mult = 0, /* To be filled in */
101 .read = timebase_read,
104 #define DECREMENTER_MAX 0x7fffffff
106 static int decrementer_set_next_event(unsigned long evt,
107 struct clock_event_device *dev);
108 static void decrementer_set_mode(enum clock_event_mode mode,
109 struct clock_event_device *dev);
111 static struct clock_event_device decrementer_clockevent = {
112 .name = "decrementer",
113 .rating = 200,
114 .shift = 0, /* To be filled in */
115 .mult = 0, /* To be filled in */
116 .irq = 0,
117 .set_next_event = decrementer_set_next_event,
118 .set_mode = decrementer_set_mode,
119 .features = CLOCK_EVT_FEAT_ONESHOT,
122 struct decrementer_clock {
123 struct clock_event_device event;
124 u64 next_tb;
127 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
129 #ifdef CONFIG_PPC_ISERIES
130 static unsigned long __initdata iSeries_recal_titan;
131 static signed long __initdata iSeries_recal_tb;
133 /* Forward declaration is only needed for iSereis compiles */
134 static void __init clocksource_init(void);
135 #endif
137 #define XSEC_PER_SEC (1024*1024)
139 #ifdef CONFIG_PPC64
140 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
141 #else
142 /* compute ((xsec << 12) * max) >> 32 */
143 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
144 #endif
146 unsigned long tb_ticks_per_jiffy;
147 unsigned long tb_ticks_per_usec = 100; /* sane default */
148 EXPORT_SYMBOL(tb_ticks_per_usec);
149 unsigned long tb_ticks_per_sec;
150 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
151 u64 tb_to_xs;
152 unsigned tb_to_us;
154 #define TICKLEN_SCALE NTP_SCALE_SHIFT
155 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
156 static u64 ticklen_to_xs; /* 0.64 fraction */
158 /* If last_tick_len corresponds to about 1/HZ seconds, then
159 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
160 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
162 DEFINE_SPINLOCK(rtc_lock);
163 EXPORT_SYMBOL_GPL(rtc_lock);
165 static u64 tb_to_ns_scale __read_mostly;
166 static unsigned tb_to_ns_shift __read_mostly;
167 static unsigned long boot_tb __read_mostly;
169 extern struct timezone sys_tz;
170 static long timezone_offset;
172 unsigned long ppc_proc_freq;
173 EXPORT_SYMBOL(ppc_proc_freq);
174 unsigned long ppc_tb_freq;
176 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
177 static DEFINE_PER_CPU(u64, last_jiffy);
179 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
181 * Factors for converting from cputime_t (timebase ticks) to
182 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
183 * These are all stored as 0.64 fixed-point binary fractions.
185 u64 __cputime_jiffies_factor;
186 EXPORT_SYMBOL(__cputime_jiffies_factor);
187 u64 __cputime_msec_factor;
188 EXPORT_SYMBOL(__cputime_msec_factor);
189 u64 __cputime_sec_factor;
190 EXPORT_SYMBOL(__cputime_sec_factor);
191 u64 __cputime_clockt_factor;
192 EXPORT_SYMBOL(__cputime_clockt_factor);
193 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
194 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
196 cputime_t cputime_one_jiffy;
198 static void calc_cputime_factors(void)
200 struct div_result res;
202 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
203 __cputime_jiffies_factor = res.result_low;
204 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
205 __cputime_msec_factor = res.result_low;
206 div128_by_32(1, 0, tb_ticks_per_sec, &res);
207 __cputime_sec_factor = res.result_low;
208 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
209 __cputime_clockt_factor = res.result_low;
213 * Read the PURR on systems that have it, otherwise the timebase.
215 static u64 read_purr(void)
217 if (cpu_has_feature(CPU_FTR_PURR))
218 return mfspr(SPRN_PURR);
219 return mftb();
223 * Read the SPURR on systems that have it, otherwise the purr
225 static u64 read_spurr(u64 purr)
228 * cpus without PURR won't have a SPURR
229 * We already know the former when we use this, so tell gcc
231 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
232 return mfspr(SPRN_SPURR);
233 return purr;
237 * Account time for a transition between system, hard irq
238 * or soft irq state.
240 void account_system_vtime(struct task_struct *tsk)
242 u64 now, nowscaled, delta, deltascaled, sys_time;
243 unsigned long flags;
245 local_irq_save(flags);
246 now = read_purr();
247 nowscaled = read_spurr(now);
248 delta = now - get_paca()->startpurr;
249 deltascaled = nowscaled - get_paca()->startspurr;
250 get_paca()->startpurr = now;
251 get_paca()->startspurr = nowscaled;
252 if (!in_interrupt()) {
253 /* deltascaled includes both user and system time.
254 * Hence scale it based on the purr ratio to estimate
255 * the system time */
256 sys_time = get_paca()->system_time;
257 if (get_paca()->user_time)
258 deltascaled = deltascaled * sys_time /
259 (sys_time + get_paca()->user_time);
260 delta += sys_time;
261 get_paca()->system_time = 0;
263 if (in_irq() || idle_task(smp_processor_id()) != tsk)
264 account_system_time(tsk, 0, delta, deltascaled);
265 else
266 account_idle_time(delta);
267 per_cpu(cputime_last_delta, smp_processor_id()) = delta;
268 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
269 local_irq_restore(flags);
273 * Transfer the user and system times accumulated in the paca
274 * by the exception entry and exit code to the generic process
275 * user and system time records.
276 * Must be called with interrupts disabled.
278 void account_process_tick(struct task_struct *tsk, int user_tick)
280 cputime_t utime, utimescaled;
282 utime = get_paca()->user_time;
283 get_paca()->user_time = 0;
284 utimescaled = cputime_to_scaled(utime);
285 account_user_time(tsk, utime, utimescaled);
289 * Stuff for accounting stolen time.
291 struct cpu_purr_data {
292 int initialized; /* thread is running */
293 u64 tb; /* last TB value read */
294 u64 purr; /* last PURR value read */
295 u64 spurr; /* last SPURR value read */
299 * Each entry in the cpu_purr_data array is manipulated only by its
300 * "owner" cpu -- usually in the timer interrupt but also occasionally
301 * in process context for cpu online. As long as cpus do not touch
302 * each others' cpu_purr_data, disabling local interrupts is
303 * sufficient to serialize accesses.
305 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
307 static void snapshot_tb_and_purr(void *data)
309 unsigned long flags;
310 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
312 local_irq_save(flags);
313 p->tb = get_tb_or_rtc();
314 p->purr = mfspr(SPRN_PURR);
315 wmb();
316 p->initialized = 1;
317 local_irq_restore(flags);
321 * Called during boot when all cpus have come up.
323 void snapshot_timebases(void)
325 if (!cpu_has_feature(CPU_FTR_PURR))
326 return;
327 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
331 * Must be called with interrupts disabled.
333 void calculate_steal_time(void)
335 u64 tb, purr;
336 s64 stolen;
337 struct cpu_purr_data *pme;
339 pme = &__get_cpu_var(cpu_purr_data);
340 if (!pme->initialized)
341 return; /* !CPU_FTR_PURR or early in early boot */
342 tb = mftb();
343 purr = mfspr(SPRN_PURR);
344 stolen = (tb - pme->tb) - (purr - pme->purr);
345 if (stolen > 0) {
346 if (idle_task(smp_processor_id()) != current)
347 account_steal_time(stolen);
348 else
349 account_idle_time(stolen);
351 pme->tb = tb;
352 pme->purr = purr;
355 #ifdef CONFIG_PPC_SPLPAR
357 * Must be called before the cpu is added to the online map when
358 * a cpu is being brought up at runtime.
360 static void snapshot_purr(void)
362 struct cpu_purr_data *pme;
363 unsigned long flags;
365 if (!cpu_has_feature(CPU_FTR_PURR))
366 return;
367 local_irq_save(flags);
368 pme = &__get_cpu_var(cpu_purr_data);
369 pme->tb = mftb();
370 pme->purr = mfspr(SPRN_PURR);
371 pme->initialized = 1;
372 local_irq_restore(flags);
375 #endif /* CONFIG_PPC_SPLPAR */
377 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
378 #define calc_cputime_factors()
379 #define calculate_steal_time() do { } while (0)
380 #endif
382 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
383 #define snapshot_purr() do { } while (0)
384 #endif
387 * Called when a cpu comes up after the system has finished booting,
388 * i.e. as a result of a hotplug cpu action.
390 void snapshot_timebase(void)
392 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
393 snapshot_purr();
396 void __delay(unsigned long loops)
398 unsigned long start;
399 int diff;
401 if (__USE_RTC()) {
402 start = get_rtcl();
403 do {
404 /* the RTCL register wraps at 1000000000 */
405 diff = get_rtcl() - start;
406 if (diff < 0)
407 diff += 1000000000;
408 } while (diff < loops);
409 } else {
410 start = get_tbl();
411 while (get_tbl() - start < loops)
412 HMT_low();
413 HMT_medium();
416 EXPORT_SYMBOL(__delay);
418 void udelay(unsigned long usecs)
420 __delay(tb_ticks_per_usec * usecs);
422 EXPORT_SYMBOL(udelay);
424 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
425 u64 new_tb_to_xs)
428 * tb_update_count is used to allow the userspace gettimeofday code
429 * to assure itself that it sees a consistent view of the tb_to_xs and
430 * stamp_xsec variables. It reads the tb_update_count, then reads
431 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
432 * the two values of tb_update_count match and are even then the
433 * tb_to_xs and stamp_xsec values are consistent. If not, then it
434 * loops back and reads them again until this criteria is met.
435 * We expect the caller to have done the first increment of
436 * vdso_data->tb_update_count already.
438 vdso_data->tb_orig_stamp = new_tb_stamp;
439 vdso_data->stamp_xsec = new_stamp_xsec;
440 vdso_data->tb_to_xs = new_tb_to_xs;
441 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
442 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
443 vdso_data->stamp_xtime = xtime;
444 smp_wmb();
445 ++(vdso_data->tb_update_count);
448 #ifdef CONFIG_SMP
449 unsigned long profile_pc(struct pt_regs *regs)
451 unsigned long pc = instruction_pointer(regs);
453 if (in_lock_functions(pc))
454 return regs->link;
456 return pc;
458 EXPORT_SYMBOL(profile_pc);
459 #endif
461 #ifdef CONFIG_PPC_ISERIES
464 * This function recalibrates the timebase based on the 49-bit time-of-day
465 * value in the Titan chip. The Titan is much more accurate than the value
466 * returned by the service processor for the timebase frequency.
469 static int __init iSeries_tb_recal(void)
471 struct div_result divres;
472 unsigned long titan, tb;
474 /* Make sure we only run on iSeries */
475 if (!firmware_has_feature(FW_FEATURE_ISERIES))
476 return -ENODEV;
478 tb = get_tb();
479 titan = HvCallXm_loadTod();
480 if ( iSeries_recal_titan ) {
481 unsigned long tb_ticks = tb - iSeries_recal_tb;
482 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
483 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
484 unsigned long new_tb_ticks_per_jiffy =
485 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
486 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
487 char sign = '+';
488 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
489 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
491 if ( tick_diff < 0 ) {
492 tick_diff = -tick_diff;
493 sign = '-';
495 if ( tick_diff ) {
496 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
497 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
498 new_tb_ticks_per_jiffy, sign, tick_diff );
499 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
500 tb_ticks_per_sec = new_tb_ticks_per_sec;
501 calc_cputime_factors();
502 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
503 tb_to_xs = divres.result_low;
504 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
505 vdso_data->tb_to_xs = tb_to_xs;
506 setup_cputime_one_jiffy();
508 else {
509 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
510 " new tb_ticks_per_jiffy = %lu\n"
511 " old tb_ticks_per_jiffy = %lu\n",
512 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
516 iSeries_recal_titan = titan;
517 iSeries_recal_tb = tb;
519 /* Called here as now we know accurate values for the timebase */
520 clocksource_init();
521 return 0;
523 late_initcall(iSeries_tb_recal);
525 /* Called from platform early init */
526 void __init iSeries_time_init_early(void)
528 iSeries_recal_tb = get_tb();
529 iSeries_recal_titan = HvCallXm_loadTod();
531 #endif /* CONFIG_PPC_ISERIES */
533 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
534 DEFINE_PER_CPU(u8, perf_event_pending);
536 void set_perf_event_pending(void)
538 get_cpu_var(perf_event_pending) = 1;
539 set_dec(1);
540 put_cpu_var(perf_event_pending);
543 #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
544 #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
546 #else /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
548 #define test_perf_event_pending() 0
549 #define clear_perf_event_pending()
551 #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
554 * For iSeries shared processors, we have to let the hypervisor
555 * set the hardware decrementer. We set a virtual decrementer
556 * in the lppaca and call the hypervisor if the virtual
557 * decrementer is less than the current value in the hardware
558 * decrementer. (almost always the new decrementer value will
559 * be greater than the current hardware decementer so the hypervisor
560 * call will not be needed)
564 * timer_interrupt - gets called when the decrementer overflows,
565 * with interrupts disabled.
567 void timer_interrupt(struct pt_regs * regs)
569 struct pt_regs *old_regs;
570 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
571 struct clock_event_device *evt = &decrementer->event;
572 u64 now;
574 /* Ensure a positive value is written to the decrementer, or else
575 * some CPUs will continuue to take decrementer exceptions */
576 set_dec(DECREMENTER_MAX);
578 #ifdef CONFIG_PPC32
579 if (test_perf_event_pending()) {
580 clear_perf_event_pending();
581 perf_event_do_pending();
583 if (atomic_read(&ppc_n_lost_interrupts) != 0)
584 do_IRQ(regs);
585 #endif
587 now = get_tb_or_rtc();
588 if (now < decrementer->next_tb) {
589 /* not time for this event yet */
590 now = decrementer->next_tb - now;
591 if (now <= DECREMENTER_MAX)
592 set_dec((int)now);
593 return;
595 old_regs = set_irq_regs(regs);
596 irq_enter();
598 calculate_steal_time();
600 #ifdef CONFIG_PPC_ISERIES
601 if (firmware_has_feature(FW_FEATURE_ISERIES))
602 get_lppaca()->int_dword.fields.decr_int = 0;
603 #endif
605 if (evt->event_handler)
606 evt->event_handler(evt);
608 #ifdef CONFIG_PPC_ISERIES
609 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
610 process_hvlpevents();
611 #endif
613 #ifdef CONFIG_PPC64
614 /* collect purr register values often, for accurate calculations */
615 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
616 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
617 cu->current_tb = mfspr(SPRN_PURR);
619 #endif
621 irq_exit();
622 set_irq_regs(old_regs);
625 void wakeup_decrementer(void)
627 unsigned long ticks;
630 * The timebase gets saved on sleep and restored on wakeup,
631 * so all we need to do is to reset the decrementer.
633 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
634 if (ticks < tb_ticks_per_jiffy)
635 ticks = tb_ticks_per_jiffy - ticks;
636 else
637 ticks = 1;
638 set_dec(ticks);
641 #ifdef CONFIG_SUSPEND
642 void generic_suspend_disable_irqs(void)
644 preempt_disable();
646 /* Disable the decrementer, so that it doesn't interfere
647 * with suspending.
650 set_dec(0x7fffffff);
651 local_irq_disable();
652 set_dec(0x7fffffff);
655 void generic_suspend_enable_irqs(void)
657 wakeup_decrementer();
659 local_irq_enable();
660 preempt_enable();
663 /* Overrides the weak version in kernel/power/main.c */
664 void arch_suspend_disable_irqs(void)
666 if (ppc_md.suspend_disable_irqs)
667 ppc_md.suspend_disable_irqs();
668 generic_suspend_disable_irqs();
671 /* Overrides the weak version in kernel/power/main.c */
672 void arch_suspend_enable_irqs(void)
674 generic_suspend_enable_irqs();
675 if (ppc_md.suspend_enable_irqs)
676 ppc_md.suspend_enable_irqs();
678 #endif
680 #ifdef CONFIG_SMP
681 void __init smp_space_timers(unsigned int max_cpus)
683 int i;
684 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
686 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
687 previous_tb -= tb_ticks_per_jiffy;
689 for_each_possible_cpu(i) {
690 if (i == boot_cpuid)
691 continue;
692 per_cpu(last_jiffy, i) = previous_tb;
695 #endif
698 * Scheduler clock - returns current time in nanosec units.
700 * Note: mulhdu(a, b) (multiply high double unsigned) returns
701 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
702 * are 64-bit unsigned numbers.
704 unsigned long long sched_clock(void)
706 if (__USE_RTC())
707 return get_rtc();
708 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
711 static int __init get_freq(char *name, int cells, unsigned long *val)
713 struct device_node *cpu;
714 const unsigned int *fp;
715 int found = 0;
717 /* The cpu node should have timebase and clock frequency properties */
718 cpu = of_find_node_by_type(NULL, "cpu");
720 if (cpu) {
721 fp = of_get_property(cpu, name, NULL);
722 if (fp) {
723 found = 1;
724 *val = of_read_ulong(fp, cells);
727 of_node_put(cpu);
730 return found;
733 /* should become __cpuinit when secondary_cpu_time_init also is */
734 void start_cpu_decrementer(void)
736 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
737 /* Clear any pending timer interrupts */
738 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
740 /* Enable decrementer interrupt */
741 mtspr(SPRN_TCR, TCR_DIE);
742 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
745 void __init generic_calibrate_decr(void)
747 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
749 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
750 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
752 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
753 "(not found)\n");
756 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
758 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
759 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
761 printk(KERN_ERR "WARNING: Estimating processor frequency "
762 "(not found)\n");
766 int update_persistent_clock(struct timespec now)
768 struct rtc_time tm;
770 if (!ppc_md.set_rtc_time)
771 return 0;
773 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
774 tm.tm_year -= 1900;
775 tm.tm_mon -= 1;
777 return ppc_md.set_rtc_time(&tm);
780 static void __read_persistent_clock(struct timespec *ts)
782 struct rtc_time tm;
783 static int first = 1;
785 ts->tv_nsec = 0;
786 /* XXX this is a litle fragile but will work okay in the short term */
787 if (first) {
788 first = 0;
789 if (ppc_md.time_init)
790 timezone_offset = ppc_md.time_init();
792 /* get_boot_time() isn't guaranteed to be safe to call late */
793 if (ppc_md.get_boot_time) {
794 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
795 return;
798 if (!ppc_md.get_rtc_time) {
799 ts->tv_sec = 0;
800 return;
802 ppc_md.get_rtc_time(&tm);
804 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
805 tm.tm_hour, tm.tm_min, tm.tm_sec);
808 void read_persistent_clock(struct timespec *ts)
810 __read_persistent_clock(ts);
812 /* Sanitize it in case real time clock is set below EPOCH */
813 if (ts->tv_sec < 0) {
814 ts->tv_sec = 0;
815 ts->tv_nsec = 0;
820 /* clocksource code */
821 static cycle_t rtc_read(struct clocksource *cs)
823 return (cycle_t)get_rtc();
826 static cycle_t timebase_read(struct clocksource *cs)
828 return (cycle_t)get_tb();
831 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
833 u64 t2x, stamp_xsec;
835 if (clock != &clocksource_timebase)
836 return;
838 /* Make userspace gettimeofday spin until we're done. */
839 ++vdso_data->tb_update_count;
840 smp_mb();
842 /* XXX this assumes clock->shift == 22 */
843 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
844 t2x = (u64) clock->mult * 4611686018ULL;
845 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
846 do_div(stamp_xsec, 1000000000);
847 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
848 update_gtod(clock->cycle_last, stamp_xsec, t2x);
851 void update_vsyscall_tz(void)
853 /* Make userspace gettimeofday spin until we're done. */
854 ++vdso_data->tb_update_count;
855 smp_mb();
856 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
857 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
858 smp_mb();
859 ++vdso_data->tb_update_count;
862 static void __init clocksource_init(void)
864 struct clocksource *clock;
866 if (__USE_RTC())
867 clock = &clocksource_rtc;
868 else
869 clock = &clocksource_timebase;
871 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
873 if (clocksource_register(clock)) {
874 printk(KERN_ERR "clocksource: %s is already registered\n",
875 clock->name);
876 return;
879 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
880 clock->name, clock->mult, clock->shift);
883 static int decrementer_set_next_event(unsigned long evt,
884 struct clock_event_device *dev)
886 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
887 set_dec(evt);
888 return 0;
891 static void decrementer_set_mode(enum clock_event_mode mode,
892 struct clock_event_device *dev)
894 if (mode != CLOCK_EVT_MODE_ONESHOT)
895 decrementer_set_next_event(DECREMENTER_MAX, dev);
898 static void __init setup_clockevent_multiplier(unsigned long hz)
900 u64 mult, shift = 32;
902 while (1) {
903 mult = div_sc(hz, NSEC_PER_SEC, shift);
904 if (mult && (mult >> 32UL) == 0UL)
905 break;
907 shift--;
910 decrementer_clockevent.shift = shift;
911 decrementer_clockevent.mult = mult;
914 static void register_decrementer_clockevent(int cpu)
916 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
918 *dec = decrementer_clockevent;
919 dec->cpumask = cpumask_of(cpu);
921 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
922 dec->name, dec->mult, dec->shift, cpu);
924 clockevents_register_device(dec);
927 static void __init init_decrementer_clockevent(void)
929 int cpu = smp_processor_id();
931 setup_clockevent_multiplier(ppc_tb_freq);
932 decrementer_clockevent.max_delta_ns =
933 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
934 decrementer_clockevent.min_delta_ns =
935 clockevent_delta2ns(2, &decrementer_clockevent);
937 register_decrementer_clockevent(cpu);
940 void secondary_cpu_time_init(void)
942 /* Start the decrementer on CPUs that have manual control
943 * such as BookE
945 start_cpu_decrementer();
947 /* FIME: Should make unrelatred change to move snapshot_timebase
948 * call here ! */
949 register_decrementer_clockevent(smp_processor_id());
952 /* This function is only called on the boot processor */
953 void __init time_init(void)
955 unsigned long flags;
956 struct div_result res;
957 u64 scale, x;
958 unsigned shift;
960 if (__USE_RTC()) {
961 /* 601 processor: dec counts down by 128 every 128ns */
962 ppc_tb_freq = 1000000000;
963 tb_last_jiffy = get_rtcl();
964 } else {
965 /* Normal PowerPC with timebase register */
966 ppc_md.calibrate_decr();
967 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
968 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
969 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
970 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
971 tb_last_jiffy = get_tb();
974 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
975 tb_ticks_per_sec = ppc_tb_freq;
976 tb_ticks_per_usec = ppc_tb_freq / 1000000;
977 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
978 calc_cputime_factors();
979 setup_cputime_one_jiffy();
982 * Calculate the length of each tick in ns. It will not be
983 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
984 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
985 * rounded up.
987 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
988 do_div(x, ppc_tb_freq);
989 tick_nsec = x;
990 last_tick_len = x << TICKLEN_SCALE;
993 * Compute ticklen_to_xs, which is a factor which gets multiplied
994 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
995 * It is computed as:
996 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
997 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
998 * which turns out to be N = 51 - SHIFT_HZ.
999 * This gives the result as a 0.64 fixed-point fraction.
1000 * That value is reduced by an offset amounting to 1 xsec per
1001 * 2^31 timebase ticks to avoid problems with time going backwards
1002 * by 1 xsec when we do timer_recalc_offset due to losing the
1003 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
1004 * since there are 2^20 xsec in a second.
1006 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
1007 tb_ticks_per_jiffy << SHIFT_HZ, &res);
1008 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
1009 ticklen_to_xs = res.result_low;
1011 /* Compute tb_to_xs from tick_nsec */
1012 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
1015 * Compute scale factor for sched_clock.
1016 * The calibrate_decr() function has set tb_ticks_per_sec,
1017 * which is the timebase frequency.
1018 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1019 * the 128-bit result as a 64.64 fixed-point number.
1020 * We then shift that number right until it is less than 1.0,
1021 * giving us the scale factor and shift count to use in
1022 * sched_clock().
1024 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1025 scale = res.result_low;
1026 for (shift = 0; res.result_high != 0; ++shift) {
1027 scale = (scale >> 1) | (res.result_high << 63);
1028 res.result_high >>= 1;
1030 tb_to_ns_scale = scale;
1031 tb_to_ns_shift = shift;
1032 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1033 boot_tb = get_tb_or_rtc();
1035 write_seqlock_irqsave(&xtime_lock, flags);
1037 /* If platform provided a timezone (pmac), we correct the time */
1038 if (timezone_offset) {
1039 sys_tz.tz_minuteswest = -timezone_offset / 60;
1040 sys_tz.tz_dsttime = 0;
1043 vdso_data->tb_orig_stamp = tb_last_jiffy;
1044 vdso_data->tb_update_count = 0;
1045 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1046 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1047 vdso_data->tb_to_xs = tb_to_xs;
1049 write_sequnlock_irqrestore(&xtime_lock, flags);
1051 /* Start the decrementer on CPUs that have manual control
1052 * such as BookE
1054 start_cpu_decrementer();
1056 /* Register the clocksource, if we're not running on iSeries */
1057 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1058 clocksource_init();
1060 init_decrementer_clockevent();
1064 #define FEBRUARY 2
1065 #define STARTOFTIME 1970
1066 #define SECDAY 86400L
1067 #define SECYR (SECDAY * 365)
1068 #define leapyear(year) ((year) % 4 == 0 && \
1069 ((year) % 100 != 0 || (year) % 400 == 0))
1070 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1071 #define days_in_month(a) (month_days[(a) - 1])
1073 static int month_days[12] = {
1074 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1078 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1080 void GregorianDay(struct rtc_time * tm)
1082 int leapsToDate;
1083 int lastYear;
1084 int day;
1085 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1087 lastYear = tm->tm_year - 1;
1090 * Number of leap corrections to apply up to end of last year
1092 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1095 * This year is a leap year if it is divisible by 4 except when it is
1096 * divisible by 100 unless it is divisible by 400
1098 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1100 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1102 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1103 tm->tm_mday;
1105 tm->tm_wday = day % 7;
1108 void to_tm(int tim, struct rtc_time * tm)
1110 register int i;
1111 register long hms, day;
1113 day = tim / SECDAY;
1114 hms = tim % SECDAY;
1116 /* Hours, minutes, seconds are easy */
1117 tm->tm_hour = hms / 3600;
1118 tm->tm_min = (hms % 3600) / 60;
1119 tm->tm_sec = (hms % 3600) % 60;
1121 /* Number of years in days */
1122 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1123 day -= days_in_year(i);
1124 tm->tm_year = i;
1126 /* Number of months in days left */
1127 if (leapyear(tm->tm_year))
1128 days_in_month(FEBRUARY) = 29;
1129 for (i = 1; day >= days_in_month(i); i++)
1130 day -= days_in_month(i);
1131 days_in_month(FEBRUARY) = 28;
1132 tm->tm_mon = i;
1134 /* Days are what is left over (+1) from all that. */
1135 tm->tm_mday = day + 1;
1138 * Determine the day of week
1140 GregorianDay(tm);
1143 /* Auxiliary function to compute scaling factors */
1144 /* Actually the choice of a timebase running at 1/4 the of the bus
1145 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1146 * It makes this computation very precise (27-28 bits typically) which
1147 * is optimistic considering the stability of most processor clock
1148 * oscillators and the precision with which the timebase frequency
1149 * is measured but does not harm.
1151 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1153 unsigned mlt=0, tmp, err;
1154 /* No concern for performance, it's done once: use a stupid
1155 * but safe and compact method to find the multiplier.
1158 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1159 if (mulhwu(inscale, mlt|tmp) < outscale)
1160 mlt |= tmp;
1163 /* We might still be off by 1 for the best approximation.
1164 * A side effect of this is that if outscale is too large
1165 * the returned value will be zero.
1166 * Many corner cases have been checked and seem to work,
1167 * some might have been forgotten in the test however.
1170 err = inscale * (mlt+1);
1171 if (err <= inscale/2)
1172 mlt++;
1173 return mlt;
1177 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1178 * result.
1180 void div128_by_32(u64 dividend_high, u64 dividend_low,
1181 unsigned divisor, struct div_result *dr)
1183 unsigned long a, b, c, d;
1184 unsigned long w, x, y, z;
1185 u64 ra, rb, rc;
1187 a = dividend_high >> 32;
1188 b = dividend_high & 0xffffffff;
1189 c = dividend_low >> 32;
1190 d = dividend_low & 0xffffffff;
1192 w = a / divisor;
1193 ra = ((u64)(a - (w * divisor)) << 32) + b;
1195 rb = ((u64) do_div(ra, divisor) << 32) + c;
1196 x = ra;
1198 rc = ((u64) do_div(rb, divisor) << 32) + d;
1199 y = rb;
1201 do_div(rc, divisor);
1202 z = rc;
1204 dr->result_high = ((u64)w << 32) + x;
1205 dr->result_low = ((u64)y << 32) + z;
1209 /* We don't need to calibrate delay, we use the CPU timebase for that */
1210 void calibrate_delay(void)
1212 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1213 * as the number of __delay(1) in a jiffy, so make it so
1215 loops_per_jiffy = tb_ticks_per_jiffy;
1218 static int __init rtc_init(void)
1220 struct platform_device *pdev;
1222 if (!ppc_md.get_rtc_time)
1223 return -ENODEV;
1225 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1226 if (IS_ERR(pdev))
1227 return PTR_ERR(pdev);
1229 return 0;
1232 module_init(rtc_init);