[POWERPC] Depend on ->initialized in calc_steal_time
[linux-2.6/mini2440.git] / arch / powerpc / kernel / time.c
blob398cd0c7b60f8b48397779b20e319d765e6863ab
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
72 #endif
74 /* powerpc clocksource/clockevent code */
76 #include <linux/clockchips.h>
77 #include <linux/clocksource.h>
79 static cycle_t rtc_read(void);
80 static struct clocksource clocksource_rtc = {
81 .name = "rtc",
82 .rating = 400,
83 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
84 .mask = CLOCKSOURCE_MASK(64),
85 .shift = 22,
86 .mult = 0, /* To be filled in */
87 .read = rtc_read,
90 static cycle_t timebase_read(void);
91 static struct clocksource clocksource_timebase = {
92 .name = "timebase",
93 .rating = 400,
94 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
95 .mask = CLOCKSOURCE_MASK(64),
96 .shift = 22,
97 .mult = 0, /* To be filled in */
98 .read = timebase_read,
101 #define DECREMENTER_MAX 0x7fffffff
103 static int decrementer_set_next_event(unsigned long evt,
104 struct clock_event_device *dev);
105 static void decrementer_set_mode(enum clock_event_mode mode,
106 struct clock_event_device *dev);
108 static struct clock_event_device decrementer_clockevent = {
109 .name = "decrementer",
110 .rating = 200,
111 .shift = 16,
112 .mult = 0, /* To be filled in */
113 .irq = 0,
114 .set_next_event = decrementer_set_next_event,
115 .set_mode = decrementer_set_mode,
116 .features = CLOCK_EVT_FEAT_ONESHOT,
119 struct decrementer_clock {
120 struct clock_event_device event;
121 u64 next_tb;
124 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
126 #ifdef CONFIG_PPC_ISERIES
127 static unsigned long __initdata iSeries_recal_titan;
128 static signed long __initdata iSeries_recal_tb;
130 /* Forward declaration is only needed for iSereis compiles */
131 void __init clocksource_init(void);
132 #endif
134 #define XSEC_PER_SEC (1024*1024)
136 #ifdef CONFIG_PPC64
137 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
138 #else
139 /* compute ((xsec << 12) * max) >> 32 */
140 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
141 #endif
143 unsigned long tb_ticks_per_jiffy;
144 unsigned long tb_ticks_per_usec = 100; /* sane default */
145 EXPORT_SYMBOL(tb_ticks_per_usec);
146 unsigned long tb_ticks_per_sec;
147 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
148 u64 tb_to_xs;
149 unsigned tb_to_us;
151 #define TICKLEN_SCALE TICK_LENGTH_SHIFT
152 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
153 u64 ticklen_to_xs; /* 0.64 fraction */
155 /* If last_tick_len corresponds to about 1/HZ seconds, then
156 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
157 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
159 DEFINE_SPINLOCK(rtc_lock);
160 EXPORT_SYMBOL_GPL(rtc_lock);
162 static u64 tb_to_ns_scale __read_mostly;
163 static unsigned tb_to_ns_shift __read_mostly;
164 static unsigned long boot_tb __read_mostly;
166 struct gettimeofday_struct do_gtod;
168 extern struct timezone sys_tz;
169 static long timezone_offset;
171 unsigned long ppc_proc_freq;
172 EXPORT_SYMBOL(ppc_proc_freq);
173 unsigned long ppc_tb_freq;
175 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
176 static DEFINE_PER_CPU(u64, last_jiffy);
178 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
180 * Factors for converting from cputime_t (timebase ticks) to
181 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
182 * These are all stored as 0.64 fixed-point binary fractions.
184 u64 __cputime_jiffies_factor;
185 EXPORT_SYMBOL(__cputime_jiffies_factor);
186 u64 __cputime_msec_factor;
187 EXPORT_SYMBOL(__cputime_msec_factor);
188 u64 __cputime_sec_factor;
189 EXPORT_SYMBOL(__cputime_sec_factor);
190 u64 __cputime_clockt_factor;
191 EXPORT_SYMBOL(__cputime_clockt_factor);
193 static void calc_cputime_factors(void)
195 struct div_result res;
197 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
198 __cputime_jiffies_factor = res.result_low;
199 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
200 __cputime_msec_factor = res.result_low;
201 div128_by_32(1, 0, tb_ticks_per_sec, &res);
202 __cputime_sec_factor = res.result_low;
203 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
204 __cputime_clockt_factor = res.result_low;
208 * Read the PURR on systems that have it, otherwise the timebase.
210 static u64 read_purr(void)
212 if (cpu_has_feature(CPU_FTR_PURR))
213 return mfspr(SPRN_PURR);
214 return mftb();
218 * Read the SPURR on systems that have it, otherwise the purr
220 static u64 read_spurr(u64 purr)
222 if (cpu_has_feature(CPU_FTR_SPURR))
223 return mfspr(SPRN_SPURR);
224 return purr;
228 * Account time for a transition between system, hard irq
229 * or soft irq state.
231 void account_system_vtime(struct task_struct *tsk)
233 u64 now, nowscaled, delta, deltascaled;
234 unsigned long flags;
236 local_irq_save(flags);
237 now = read_purr();
238 delta = now - get_paca()->startpurr;
239 get_paca()->startpurr = now;
240 nowscaled = read_spurr(now);
241 deltascaled = nowscaled - get_paca()->startspurr;
242 get_paca()->startspurr = nowscaled;
243 if (!in_interrupt()) {
244 /* deltascaled includes both user and system time.
245 * Hence scale it based on the purr ratio to estimate
246 * the system time */
247 if (get_paca()->user_time)
248 deltascaled = deltascaled * get_paca()->system_time /
249 (get_paca()->system_time + get_paca()->user_time);
250 delta += get_paca()->system_time;
251 get_paca()->system_time = 0;
253 account_system_time(tsk, 0, delta);
254 get_paca()->purrdelta = delta;
255 account_system_time_scaled(tsk, deltascaled);
256 get_paca()->spurrdelta = deltascaled;
257 local_irq_restore(flags);
261 * Transfer the user and system times accumulated in the paca
262 * by the exception entry and exit code to the generic process
263 * user and system time records.
264 * Must be called with interrupts disabled.
266 void account_process_tick(struct task_struct *tsk, int user_tick)
268 cputime_t utime, utimescaled;
270 utime = get_paca()->user_time;
271 get_paca()->user_time = 0;
272 account_user_time(tsk, utime);
274 /* Estimate the scaled utime by scaling the real utime based
275 * on the last spurr to purr ratio */
276 utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
277 get_paca()->spurrdelta = get_paca()->purrdelta = 0;
278 account_user_time_scaled(tsk, utimescaled);
282 * Stuff for accounting stolen time.
284 struct cpu_purr_data {
285 int initialized; /* thread is running */
286 u64 tb; /* last TB value read */
287 u64 purr; /* last PURR value read */
288 u64 spurr; /* last SPURR value read */
292 * Each entry in the cpu_purr_data array is manipulated only by its
293 * "owner" cpu -- usually in the timer interrupt but also occasionally
294 * in process context for cpu online. As long as cpus do not touch
295 * each others' cpu_purr_data, disabling local interrupts is
296 * sufficient to serialize accesses.
298 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
300 static void snapshot_tb_and_purr(void *data)
302 unsigned long flags;
303 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
305 local_irq_save(flags);
306 p->tb = get_tb_or_rtc();
307 p->purr = mfspr(SPRN_PURR);
308 wmb();
309 p->initialized = 1;
310 local_irq_restore(flags);
314 * Called during boot when all cpus have come up.
316 void snapshot_timebases(void)
318 if (!cpu_has_feature(CPU_FTR_PURR))
319 return;
320 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
324 * Must be called with interrupts disabled.
326 void calculate_steal_time(void)
328 u64 tb, purr;
329 s64 stolen;
330 struct cpu_purr_data *pme;
332 pme = &__get_cpu_var(cpu_purr_data);
333 if (!pme->initialized)
334 return; /* !CPU_FTR_PURR or early in early boot */
335 tb = mftb();
336 purr = mfspr(SPRN_PURR);
337 stolen = (tb - pme->tb) - (purr - pme->purr);
338 if (stolen > 0)
339 account_steal_time(current, stolen);
340 pme->tb = tb;
341 pme->purr = purr;
344 #ifdef CONFIG_PPC_SPLPAR
346 * Must be called before the cpu is added to the online map when
347 * a cpu is being brought up at runtime.
349 static void snapshot_purr(void)
351 struct cpu_purr_data *pme;
352 unsigned long flags;
354 if (!cpu_has_feature(CPU_FTR_PURR))
355 return;
356 local_irq_save(flags);
357 pme = &__get_cpu_var(cpu_purr_data);
358 pme->tb = mftb();
359 pme->purr = mfspr(SPRN_PURR);
360 pme->initialized = 1;
361 local_irq_restore(flags);
364 #endif /* CONFIG_PPC_SPLPAR */
366 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
367 #define calc_cputime_factors()
368 #define calculate_steal_time() do { } while (0)
369 #endif
371 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
372 #define snapshot_purr() do { } while (0)
373 #endif
376 * Called when a cpu comes up after the system has finished booting,
377 * i.e. as a result of a hotplug cpu action.
379 void snapshot_timebase(void)
381 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
382 snapshot_purr();
385 void __delay(unsigned long loops)
387 unsigned long start;
388 int diff;
390 if (__USE_RTC()) {
391 start = get_rtcl();
392 do {
393 /* the RTCL register wraps at 1000000000 */
394 diff = get_rtcl() - start;
395 if (diff < 0)
396 diff += 1000000000;
397 } while (diff < loops);
398 } else {
399 start = get_tbl();
400 while (get_tbl() - start < loops)
401 HMT_low();
402 HMT_medium();
405 EXPORT_SYMBOL(__delay);
407 void udelay(unsigned long usecs)
409 __delay(tb_ticks_per_usec * usecs);
411 EXPORT_SYMBOL(udelay);
415 * There are two copies of tb_to_xs and stamp_xsec so that no
416 * lock is needed to access and use these values in
417 * do_gettimeofday. We alternate the copies and as long as a
418 * reasonable time elapses between changes, there will never
419 * be inconsistent values. ntpd has a minimum of one minute
420 * between updates.
422 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
423 u64 new_tb_to_xs)
425 unsigned temp_idx;
426 struct gettimeofday_vars *temp_varp;
428 temp_idx = (do_gtod.var_idx == 0);
429 temp_varp = &do_gtod.vars[temp_idx];
431 temp_varp->tb_to_xs = new_tb_to_xs;
432 temp_varp->tb_orig_stamp = new_tb_stamp;
433 temp_varp->stamp_xsec = new_stamp_xsec;
434 smp_mb();
435 do_gtod.varp = temp_varp;
436 do_gtod.var_idx = temp_idx;
439 * tb_update_count is used to allow the userspace gettimeofday code
440 * to assure itself that it sees a consistent view of the tb_to_xs and
441 * stamp_xsec variables. It reads the tb_update_count, then reads
442 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
443 * the two values of tb_update_count match and are even then the
444 * tb_to_xs and stamp_xsec values are consistent. If not, then it
445 * loops back and reads them again until this criteria is met.
446 * We expect the caller to have done the first increment of
447 * vdso_data->tb_update_count already.
449 vdso_data->tb_orig_stamp = new_tb_stamp;
450 vdso_data->stamp_xsec = new_stamp_xsec;
451 vdso_data->tb_to_xs = new_tb_to_xs;
452 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
453 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
454 smp_wmb();
455 ++(vdso_data->tb_update_count);
458 #ifdef CONFIG_SMP
459 unsigned long profile_pc(struct pt_regs *regs)
461 unsigned long pc = instruction_pointer(regs);
463 if (in_lock_functions(pc))
464 return regs->link;
466 return pc;
468 EXPORT_SYMBOL(profile_pc);
469 #endif
471 #ifdef CONFIG_PPC_ISERIES
474 * This function recalibrates the timebase based on the 49-bit time-of-day
475 * value in the Titan chip. The Titan is much more accurate than the value
476 * returned by the service processor for the timebase frequency.
479 static int __init iSeries_tb_recal(void)
481 struct div_result divres;
482 unsigned long titan, tb;
484 /* Make sure we only run on iSeries */
485 if (!firmware_has_feature(FW_FEATURE_ISERIES))
486 return -ENODEV;
488 tb = get_tb();
489 titan = HvCallXm_loadTod();
490 if ( iSeries_recal_titan ) {
491 unsigned long tb_ticks = tb - iSeries_recal_tb;
492 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
493 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
494 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
495 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
496 char sign = '+';
497 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
498 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
500 if ( tick_diff < 0 ) {
501 tick_diff = -tick_diff;
502 sign = '-';
504 if ( tick_diff ) {
505 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
506 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
507 new_tb_ticks_per_jiffy, sign, tick_diff );
508 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
509 tb_ticks_per_sec = new_tb_ticks_per_sec;
510 calc_cputime_factors();
511 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
512 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
513 tb_to_xs = divres.result_low;
514 do_gtod.varp->tb_to_xs = tb_to_xs;
515 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
516 vdso_data->tb_to_xs = tb_to_xs;
518 else {
519 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
520 " new tb_ticks_per_jiffy = %lu\n"
521 " old tb_ticks_per_jiffy = %lu\n",
522 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
526 iSeries_recal_titan = titan;
527 iSeries_recal_tb = tb;
529 /* Called here as now we know accurate values for the timebase */
530 clocksource_init();
531 return 0;
533 late_initcall(iSeries_tb_recal);
535 /* Called from platform early init */
536 void __init iSeries_time_init_early(void)
538 iSeries_recal_tb = get_tb();
539 iSeries_recal_titan = HvCallXm_loadTod();
541 #endif /* CONFIG_PPC_ISERIES */
544 * For iSeries shared processors, we have to let the hypervisor
545 * set the hardware decrementer. We set a virtual decrementer
546 * in the lppaca and call the hypervisor if the virtual
547 * decrementer is less than the current value in the hardware
548 * decrementer. (almost always the new decrementer value will
549 * be greater than the current hardware decementer so the hypervisor
550 * call will not be needed)
554 * timer_interrupt - gets called when the decrementer overflows,
555 * with interrupts disabled.
557 void timer_interrupt(struct pt_regs * regs)
559 struct pt_regs *old_regs;
560 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
561 struct clock_event_device *evt = &decrementer->event;
562 u64 now;
564 /* Ensure a positive value is written to the decrementer, or else
565 * some CPUs will continuue to take decrementer exceptions */
566 set_dec(DECREMENTER_MAX);
568 #ifdef CONFIG_PPC32
569 if (atomic_read(&ppc_n_lost_interrupts) != 0)
570 do_IRQ(regs);
571 #endif
573 now = get_tb_or_rtc();
574 if (now < decrementer->next_tb) {
575 /* not time for this event yet */
576 now = decrementer->next_tb - now;
577 if (now <= DECREMENTER_MAX)
578 set_dec((int)now);
579 return;
581 old_regs = set_irq_regs(regs);
582 irq_enter();
584 calculate_steal_time();
586 #ifdef CONFIG_PPC_ISERIES
587 if (firmware_has_feature(FW_FEATURE_ISERIES))
588 get_lppaca()->int_dword.fields.decr_int = 0;
589 #endif
591 if (evt->event_handler)
592 evt->event_handler(evt);
594 #ifdef CONFIG_PPC_ISERIES
595 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
596 process_hvlpevents();
597 #endif
599 #ifdef CONFIG_PPC64
600 /* collect purr register values often, for accurate calculations */
601 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
602 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
603 cu->current_tb = mfspr(SPRN_PURR);
605 #endif
607 irq_exit();
608 set_irq_regs(old_regs);
611 void wakeup_decrementer(void)
613 unsigned long ticks;
616 * The timebase gets saved on sleep and restored on wakeup,
617 * so all we need to do is to reset the decrementer.
619 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
620 if (ticks < tb_ticks_per_jiffy)
621 ticks = tb_ticks_per_jiffy - ticks;
622 else
623 ticks = 1;
624 set_dec(ticks);
627 #ifdef CONFIG_SMP
628 void __init smp_space_timers(unsigned int max_cpus)
630 int i;
631 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
633 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
634 previous_tb -= tb_ticks_per_jiffy;
636 for_each_possible_cpu(i) {
637 if (i == boot_cpuid)
638 continue;
639 per_cpu(last_jiffy, i) = previous_tb;
642 #endif
645 * Scheduler clock - returns current time in nanosec units.
647 * Note: mulhdu(a, b) (multiply high double unsigned) returns
648 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
649 * are 64-bit unsigned numbers.
651 unsigned long long sched_clock(void)
653 if (__USE_RTC())
654 return get_rtc();
655 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
658 static int __init get_freq(char *name, int cells, unsigned long *val)
660 struct device_node *cpu;
661 const unsigned int *fp;
662 int found = 0;
664 /* The cpu node should have timebase and clock frequency properties */
665 cpu = of_find_node_by_type(NULL, "cpu");
667 if (cpu) {
668 fp = of_get_property(cpu, name, NULL);
669 if (fp) {
670 found = 1;
671 *val = of_read_ulong(fp, cells);
674 of_node_put(cpu);
677 return found;
680 void __init generic_calibrate_decr(void)
682 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
684 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
685 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
687 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
688 "(not found)\n");
691 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
693 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
694 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
696 printk(KERN_ERR "WARNING: Estimating processor frequency "
697 "(not found)\n");
700 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
701 /* Set the time base to zero */
702 mtspr(SPRN_TBWL, 0);
703 mtspr(SPRN_TBWU, 0);
705 /* Clear any pending timer interrupts */
706 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
708 /* Enable decrementer interrupt */
709 mtspr(SPRN_TCR, TCR_DIE);
710 #endif
713 int update_persistent_clock(struct timespec now)
715 struct rtc_time tm;
717 if (!ppc_md.set_rtc_time)
718 return 0;
720 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
721 tm.tm_year -= 1900;
722 tm.tm_mon -= 1;
724 return ppc_md.set_rtc_time(&tm);
727 unsigned long read_persistent_clock(void)
729 struct rtc_time tm;
730 static int first = 1;
732 /* XXX this is a litle fragile but will work okay in the short term */
733 if (first) {
734 first = 0;
735 if (ppc_md.time_init)
736 timezone_offset = ppc_md.time_init();
738 /* get_boot_time() isn't guaranteed to be safe to call late */
739 if (ppc_md.get_boot_time)
740 return ppc_md.get_boot_time() -timezone_offset;
742 if (!ppc_md.get_rtc_time)
743 return 0;
744 ppc_md.get_rtc_time(&tm);
745 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
746 tm.tm_hour, tm.tm_min, tm.tm_sec);
749 /* clocksource code */
750 static cycle_t rtc_read(void)
752 return (cycle_t)get_rtc();
755 static cycle_t timebase_read(void)
757 return (cycle_t)get_tb();
760 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
762 u64 t2x, stamp_xsec;
764 if (clock != &clocksource_timebase)
765 return;
767 /* Make userspace gettimeofday spin until we're done. */
768 ++vdso_data->tb_update_count;
769 smp_mb();
771 /* XXX this assumes clock->shift == 22 */
772 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
773 t2x = (u64) clock->mult * 4611686018ULL;
774 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
775 do_div(stamp_xsec, 1000000000);
776 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
777 update_gtod(clock->cycle_last, stamp_xsec, t2x);
780 void update_vsyscall_tz(void)
782 /* Make userspace gettimeofday spin until we're done. */
783 ++vdso_data->tb_update_count;
784 smp_mb();
785 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
786 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
787 smp_mb();
788 ++vdso_data->tb_update_count;
791 void __init clocksource_init(void)
793 struct clocksource *clock;
795 if (__USE_RTC())
796 clock = &clocksource_rtc;
797 else
798 clock = &clocksource_timebase;
800 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
802 if (clocksource_register(clock)) {
803 printk(KERN_ERR "clocksource: %s is already registered\n",
804 clock->name);
805 return;
808 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
809 clock->name, clock->mult, clock->shift);
812 static int decrementer_set_next_event(unsigned long evt,
813 struct clock_event_device *dev)
815 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
816 set_dec(evt);
817 return 0;
820 static void decrementer_set_mode(enum clock_event_mode mode,
821 struct clock_event_device *dev)
823 if (mode != CLOCK_EVT_MODE_ONESHOT)
824 decrementer_set_next_event(DECREMENTER_MAX, dev);
827 static void register_decrementer_clockevent(int cpu)
829 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
831 *dec = decrementer_clockevent;
832 dec->cpumask = cpumask_of_cpu(cpu);
834 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
835 dec->name, dec->mult, dec->shift, cpu);
837 clockevents_register_device(dec);
840 static void __init init_decrementer_clockevent(void)
842 int cpu = smp_processor_id();
844 decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
845 decrementer_clockevent.shift);
846 decrementer_clockevent.max_delta_ns =
847 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
848 decrementer_clockevent.min_delta_ns =
849 clockevent_delta2ns(2, &decrementer_clockevent);
851 register_decrementer_clockevent(cpu);
854 void secondary_cpu_time_init(void)
856 /* FIME: Should make unrelatred change to move snapshot_timebase
857 * call here ! */
858 register_decrementer_clockevent(smp_processor_id());
861 /* This function is only called on the boot processor */
862 void __init time_init(void)
864 unsigned long flags;
865 struct div_result res;
866 u64 scale, x;
867 unsigned shift;
869 if (__USE_RTC()) {
870 /* 601 processor: dec counts down by 128 every 128ns */
871 ppc_tb_freq = 1000000000;
872 tb_last_jiffy = get_rtcl();
873 } else {
874 /* Normal PowerPC with timebase register */
875 ppc_md.calibrate_decr();
876 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
877 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
878 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
879 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
880 tb_last_jiffy = get_tb();
883 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
884 tb_ticks_per_sec = ppc_tb_freq;
885 tb_ticks_per_usec = ppc_tb_freq / 1000000;
886 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
887 calc_cputime_factors();
890 * Calculate the length of each tick in ns. It will not be
891 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
892 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
893 * rounded up.
895 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
896 do_div(x, ppc_tb_freq);
897 tick_nsec = x;
898 last_tick_len = x << TICKLEN_SCALE;
901 * Compute ticklen_to_xs, which is a factor which gets multiplied
902 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
903 * It is computed as:
904 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
905 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
906 * which turns out to be N = 51 - SHIFT_HZ.
907 * This gives the result as a 0.64 fixed-point fraction.
908 * That value is reduced by an offset amounting to 1 xsec per
909 * 2^31 timebase ticks to avoid problems with time going backwards
910 * by 1 xsec when we do timer_recalc_offset due to losing the
911 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
912 * since there are 2^20 xsec in a second.
914 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
915 tb_ticks_per_jiffy << SHIFT_HZ, &res);
916 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
917 ticklen_to_xs = res.result_low;
919 /* Compute tb_to_xs from tick_nsec */
920 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
923 * Compute scale factor for sched_clock.
924 * The calibrate_decr() function has set tb_ticks_per_sec,
925 * which is the timebase frequency.
926 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
927 * the 128-bit result as a 64.64 fixed-point number.
928 * We then shift that number right until it is less than 1.0,
929 * giving us the scale factor and shift count to use in
930 * sched_clock().
932 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
933 scale = res.result_low;
934 for (shift = 0; res.result_high != 0; ++shift) {
935 scale = (scale >> 1) | (res.result_high << 63);
936 res.result_high >>= 1;
938 tb_to_ns_scale = scale;
939 tb_to_ns_shift = shift;
940 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
941 boot_tb = get_tb_or_rtc();
943 write_seqlock_irqsave(&xtime_lock, flags);
945 /* If platform provided a timezone (pmac), we correct the time */
946 if (timezone_offset) {
947 sys_tz.tz_minuteswest = -timezone_offset / 60;
948 sys_tz.tz_dsttime = 0;
951 do_gtod.varp = &do_gtod.vars[0];
952 do_gtod.var_idx = 0;
953 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
954 __get_cpu_var(last_jiffy) = tb_last_jiffy;
955 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
956 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
957 do_gtod.varp->tb_to_xs = tb_to_xs;
958 do_gtod.tb_to_us = tb_to_us;
960 vdso_data->tb_orig_stamp = tb_last_jiffy;
961 vdso_data->tb_update_count = 0;
962 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
963 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
964 vdso_data->tb_to_xs = tb_to_xs;
966 time_freq = 0;
968 write_sequnlock_irqrestore(&xtime_lock, flags);
970 /* Register the clocksource, if we're not running on iSeries */
971 if (!firmware_has_feature(FW_FEATURE_ISERIES))
972 clocksource_init();
974 init_decrementer_clockevent();
978 #define FEBRUARY 2
979 #define STARTOFTIME 1970
980 #define SECDAY 86400L
981 #define SECYR (SECDAY * 365)
982 #define leapyear(year) ((year) % 4 == 0 && \
983 ((year) % 100 != 0 || (year) % 400 == 0))
984 #define days_in_year(a) (leapyear(a) ? 366 : 365)
985 #define days_in_month(a) (month_days[(a) - 1])
987 static int month_days[12] = {
988 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
992 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
994 void GregorianDay(struct rtc_time * tm)
996 int leapsToDate;
997 int lastYear;
998 int day;
999 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1001 lastYear = tm->tm_year - 1;
1004 * Number of leap corrections to apply up to end of last year
1006 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1009 * This year is a leap year if it is divisible by 4 except when it is
1010 * divisible by 100 unless it is divisible by 400
1012 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1014 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1016 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1017 tm->tm_mday;
1019 tm->tm_wday = day % 7;
1022 void to_tm(int tim, struct rtc_time * tm)
1024 register int i;
1025 register long hms, day;
1027 day = tim / SECDAY;
1028 hms = tim % SECDAY;
1030 /* Hours, minutes, seconds are easy */
1031 tm->tm_hour = hms / 3600;
1032 tm->tm_min = (hms % 3600) / 60;
1033 tm->tm_sec = (hms % 3600) % 60;
1035 /* Number of years in days */
1036 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1037 day -= days_in_year(i);
1038 tm->tm_year = i;
1040 /* Number of months in days left */
1041 if (leapyear(tm->tm_year))
1042 days_in_month(FEBRUARY) = 29;
1043 for (i = 1; day >= days_in_month(i); i++)
1044 day -= days_in_month(i);
1045 days_in_month(FEBRUARY) = 28;
1046 tm->tm_mon = i;
1048 /* Days are what is left over (+1) from all that. */
1049 tm->tm_mday = day + 1;
1052 * Determine the day of week
1054 GregorianDay(tm);
1057 /* Auxiliary function to compute scaling factors */
1058 /* Actually the choice of a timebase running at 1/4 the of the bus
1059 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1060 * It makes this computation very precise (27-28 bits typically) which
1061 * is optimistic considering the stability of most processor clock
1062 * oscillators and the precision with which the timebase frequency
1063 * is measured but does not harm.
1065 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1067 unsigned mlt=0, tmp, err;
1068 /* No concern for performance, it's done once: use a stupid
1069 * but safe and compact method to find the multiplier.
1072 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1073 if (mulhwu(inscale, mlt|tmp) < outscale)
1074 mlt |= tmp;
1077 /* We might still be off by 1 for the best approximation.
1078 * A side effect of this is that if outscale is too large
1079 * the returned value will be zero.
1080 * Many corner cases have been checked and seem to work,
1081 * some might have been forgotten in the test however.
1084 err = inscale * (mlt+1);
1085 if (err <= inscale/2)
1086 mlt++;
1087 return mlt;
1091 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1092 * result.
1094 void div128_by_32(u64 dividend_high, u64 dividend_low,
1095 unsigned divisor, struct div_result *dr)
1097 unsigned long a, b, c, d;
1098 unsigned long w, x, y, z;
1099 u64 ra, rb, rc;
1101 a = dividend_high >> 32;
1102 b = dividend_high & 0xffffffff;
1103 c = dividend_low >> 32;
1104 d = dividend_low & 0xffffffff;
1106 w = a / divisor;
1107 ra = ((u64)(a - (w * divisor)) << 32) + b;
1109 rb = ((u64) do_div(ra, divisor) << 32) + c;
1110 x = ra;
1112 rc = ((u64) do_div(rb, divisor) << 32) + d;
1113 y = rb;
1115 do_div(rc, divisor);
1116 z = rc;
1118 dr->result_high = ((u64)w << 32) + x;
1119 dr->result_low = ((u64)y << 32) + z;