2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
36 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
39 * For the allocated request tables
41 static struct kmem_cache
*request_cachep
;
44 * For queue allocation
46 struct kmem_cache
*blk_requestq_cachep
;
49 * Controlling structure to kblockd
51 static struct workqueue_struct
*kblockd_workqueue
;
53 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
55 static void drive_stat_acct(struct request
*rq
, int new_io
)
57 int rw
= rq_data_dir(rq
);
59 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
63 __all_stat_inc(rq
->rq_disk
, merges
[rw
], rq
->sector
);
65 struct hd_struct
*part
= get_part(rq
->rq_disk
, rq
->sector
);
66 disk_round_stats(rq
->rq_disk
);
67 rq
->rq_disk
->in_flight
++;
69 part_round_stats(part
);
75 void blk_queue_congestion_threshold(struct request_queue
*q
)
79 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
80 if (nr
> q
->nr_requests
)
82 q
->nr_congestion_on
= nr
;
84 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
87 q
->nr_congestion_off
= nr
;
91 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
94 * Locates the passed device's request queue and returns the address of its
97 * Will return NULL if the request queue cannot be located.
99 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
101 struct backing_dev_info
*ret
= NULL
;
102 struct request_queue
*q
= bdev_get_queue(bdev
);
105 ret
= &q
->backing_dev_info
;
108 EXPORT_SYMBOL(blk_get_backing_dev_info
);
111 * We can't just memset() the structure, since the allocation path
112 * already stored some information in the request.
114 void rq_init(struct request_queue
*q
, struct request
*rq
)
116 INIT_LIST_HEAD(&rq
->queuelist
);
117 INIT_LIST_HEAD(&rq
->donelist
);
119 rq
->sector
= rq
->hard_sector
= (sector_t
) -1;
120 rq
->nr_sectors
= rq
->hard_nr_sectors
= 0;
121 rq
->current_nr_sectors
= rq
->hard_cur_sectors
= 0;
122 rq
->bio
= rq
->biotail
= NULL
;
123 INIT_HLIST_NODE(&rq
->hash
);
124 RB_CLEAR_NODE(&rq
->rb_node
);
126 rq
->nr_phys_segments
= 0;
127 rq
->nr_hw_segments
= 0;
130 rq
->raw_data_len
= 0;
136 memset(rq
->cmd
, 0, sizeof(rq
->cmd
));
142 rq
->end_io_data
= NULL
;
146 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
147 unsigned int nbytes
, int error
)
149 struct request_queue
*q
= rq
->q
;
151 if (&q
->bar_rq
!= rq
) {
153 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
154 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
157 if (unlikely(nbytes
> bio
->bi_size
)) {
158 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
159 __FUNCTION__
, nbytes
, bio
->bi_size
);
160 nbytes
= bio
->bi_size
;
163 bio
->bi_size
-= nbytes
;
164 bio
->bi_sector
+= (nbytes
>> 9);
165 if (bio
->bi_size
== 0)
166 bio_endio(bio
, error
);
170 * Okay, this is the barrier request in progress, just
173 if (error
&& !q
->orderr
)
178 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
182 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
183 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
186 printk(KERN_INFO
" sector %llu, nr/cnr %lu/%u\n",
187 (unsigned long long)rq
->sector
,
189 rq
->current_nr_sectors
);
190 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, data %p, len %u\n",
191 rq
->bio
, rq
->biotail
,
192 rq
->buffer
, rq
->data
,
195 if (blk_pc_request(rq
)) {
196 printk(KERN_INFO
" cdb: ");
197 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
198 printk("%02x ", rq
->cmd
[bit
]);
202 EXPORT_SYMBOL(blk_dump_rq_flags
);
205 * "plug" the device if there are no outstanding requests: this will
206 * force the transfer to start only after we have put all the requests
209 * This is called with interrupts off and no requests on the queue and
210 * with the queue lock held.
212 void blk_plug_device(struct request_queue
*q
)
214 WARN_ON(!irqs_disabled());
217 * don't plug a stopped queue, it must be paired with blk_start_queue()
218 * which will restart the queueing
220 if (blk_queue_stopped(q
))
223 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
224 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
225 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
228 EXPORT_SYMBOL(blk_plug_device
);
231 * remove the queue from the plugged list, if present. called with
232 * queue lock held and interrupts disabled.
234 int blk_remove_plug(struct request_queue
*q
)
236 WARN_ON(!irqs_disabled());
238 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
241 del_timer(&q
->unplug_timer
);
244 EXPORT_SYMBOL(blk_remove_plug
);
247 * remove the plug and let it rip..
249 void __generic_unplug_device(struct request_queue
*q
)
251 if (unlikely(blk_queue_stopped(q
)))
254 if (!blk_remove_plug(q
))
259 EXPORT_SYMBOL(__generic_unplug_device
);
262 * generic_unplug_device - fire a request queue
263 * @q: The &struct request_queue in question
266 * Linux uses plugging to build bigger requests queues before letting
267 * the device have at them. If a queue is plugged, the I/O scheduler
268 * is still adding and merging requests on the queue. Once the queue
269 * gets unplugged, the request_fn defined for the queue is invoked and
272 void generic_unplug_device(struct request_queue
*q
)
274 spin_lock_irq(q
->queue_lock
);
275 __generic_unplug_device(q
);
276 spin_unlock_irq(q
->queue_lock
);
278 EXPORT_SYMBOL(generic_unplug_device
);
280 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
283 struct request_queue
*q
= bdi
->unplug_io_data
;
288 void blk_unplug_work(struct work_struct
*work
)
290 struct request_queue
*q
=
291 container_of(work
, struct request_queue
, unplug_work
);
293 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
294 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
299 void blk_unplug_timeout(unsigned long data
)
301 struct request_queue
*q
= (struct request_queue
*)data
;
303 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
304 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
306 kblockd_schedule_work(&q
->unplug_work
);
309 void blk_unplug(struct request_queue
*q
)
312 * devices don't necessarily have an ->unplug_fn defined
315 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
316 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
321 EXPORT_SYMBOL(blk_unplug
);
324 * blk_start_queue - restart a previously stopped queue
325 * @q: The &struct request_queue in question
328 * blk_start_queue() will clear the stop flag on the queue, and call
329 * the request_fn for the queue if it was in a stopped state when
330 * entered. Also see blk_stop_queue(). Queue lock must be held.
332 void blk_start_queue(struct request_queue
*q
)
334 WARN_ON(!irqs_disabled());
336 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
339 * one level of recursion is ok and is much faster than kicking
340 * the unplug handling
342 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
344 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
347 kblockd_schedule_work(&q
->unplug_work
);
350 EXPORT_SYMBOL(blk_start_queue
);
353 * blk_stop_queue - stop a queue
354 * @q: The &struct request_queue in question
357 * The Linux block layer assumes that a block driver will consume all
358 * entries on the request queue when the request_fn strategy is called.
359 * Often this will not happen, because of hardware limitations (queue
360 * depth settings). If a device driver gets a 'queue full' response,
361 * or if it simply chooses not to queue more I/O at one point, it can
362 * call this function to prevent the request_fn from being called until
363 * the driver has signalled it's ready to go again. This happens by calling
364 * blk_start_queue() to restart queue operations. Queue lock must be held.
366 void blk_stop_queue(struct request_queue
*q
)
369 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
371 EXPORT_SYMBOL(blk_stop_queue
);
374 * blk_sync_queue - cancel any pending callbacks on a queue
378 * The block layer may perform asynchronous callback activity
379 * on a queue, such as calling the unplug function after a timeout.
380 * A block device may call blk_sync_queue to ensure that any
381 * such activity is cancelled, thus allowing it to release resources
382 * that the callbacks might use. The caller must already have made sure
383 * that its ->make_request_fn will not re-add plugging prior to calling
387 void blk_sync_queue(struct request_queue
*q
)
389 del_timer_sync(&q
->unplug_timer
);
390 kblockd_flush_work(&q
->unplug_work
);
392 EXPORT_SYMBOL(blk_sync_queue
);
395 * blk_run_queue - run a single device queue
396 * @q: The queue to run
398 void blk_run_queue(struct request_queue
*q
)
402 spin_lock_irqsave(q
->queue_lock
, flags
);
406 * Only recurse once to avoid overrunning the stack, let the unplug
407 * handling reinvoke the handler shortly if we already got there.
409 if (!elv_queue_empty(q
)) {
410 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
412 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
415 kblockd_schedule_work(&q
->unplug_work
);
419 spin_unlock_irqrestore(q
->queue_lock
, flags
);
421 EXPORT_SYMBOL(blk_run_queue
);
423 void blk_put_queue(struct request_queue
*q
)
425 kobject_put(&q
->kobj
);
427 EXPORT_SYMBOL(blk_put_queue
);
429 void blk_cleanup_queue(struct request_queue
*q
)
431 mutex_lock(&q
->sysfs_lock
);
432 set_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
);
433 mutex_unlock(&q
->sysfs_lock
);
436 elevator_exit(q
->elevator
);
440 EXPORT_SYMBOL(blk_cleanup_queue
);
442 static int blk_init_free_list(struct request_queue
*q
)
444 struct request_list
*rl
= &q
->rq
;
446 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
447 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
449 init_waitqueue_head(&rl
->wait
[READ
]);
450 init_waitqueue_head(&rl
->wait
[WRITE
]);
452 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
453 mempool_free_slab
, request_cachep
, q
->node
);
461 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
463 return blk_alloc_queue_node(gfp_mask
, -1);
465 EXPORT_SYMBOL(blk_alloc_queue
);
467 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
469 struct request_queue
*q
;
472 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
473 gfp_mask
| __GFP_ZERO
, node_id
);
477 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
478 q
->backing_dev_info
.unplug_io_data
= q
;
479 err
= bdi_init(&q
->backing_dev_info
);
481 kmem_cache_free(blk_requestq_cachep
, q
);
485 init_timer(&q
->unplug_timer
);
487 kobject_init(&q
->kobj
, &blk_queue_ktype
);
489 mutex_init(&q
->sysfs_lock
);
493 EXPORT_SYMBOL(blk_alloc_queue_node
);
496 * blk_init_queue - prepare a request queue for use with a block device
497 * @rfn: The function to be called to process requests that have been
498 * placed on the queue.
499 * @lock: Request queue spin lock
502 * If a block device wishes to use the standard request handling procedures,
503 * which sorts requests and coalesces adjacent requests, then it must
504 * call blk_init_queue(). The function @rfn will be called when there
505 * are requests on the queue that need to be processed. If the device
506 * supports plugging, then @rfn may not be called immediately when requests
507 * are available on the queue, but may be called at some time later instead.
508 * Plugged queues are generally unplugged when a buffer belonging to one
509 * of the requests on the queue is needed, or due to memory pressure.
511 * @rfn is not required, or even expected, to remove all requests off the
512 * queue, but only as many as it can handle at a time. If it does leave
513 * requests on the queue, it is responsible for arranging that the requests
514 * get dealt with eventually.
516 * The queue spin lock must be held while manipulating the requests on the
517 * request queue; this lock will be taken also from interrupt context, so irq
518 * disabling is needed for it.
520 * Function returns a pointer to the initialized request queue, or NULL if
524 * blk_init_queue() must be paired with a blk_cleanup_queue() call
525 * when the block device is deactivated (such as at module unload).
528 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
530 return blk_init_queue_node(rfn
, lock
, -1);
532 EXPORT_SYMBOL(blk_init_queue
);
534 struct request_queue
*
535 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
537 struct request_queue
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
543 if (blk_init_free_list(q
)) {
544 kmem_cache_free(blk_requestq_cachep
, q
);
549 * if caller didn't supply a lock, they get per-queue locking with
553 spin_lock_init(&q
->__queue_lock
);
554 lock
= &q
->__queue_lock
;
558 q
->prep_rq_fn
= NULL
;
559 q
->unplug_fn
= generic_unplug_device
;
560 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
561 q
->queue_lock
= lock
;
563 blk_queue_segment_boundary(q
, 0xffffffff);
565 blk_queue_make_request(q
, __make_request
);
566 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
568 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
569 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
571 q
->sg_reserved_size
= INT_MAX
;
576 if (!elevator_init(q
, NULL
)) {
577 blk_queue_congestion_threshold(q
);
584 EXPORT_SYMBOL(blk_init_queue_node
);
586 int blk_get_queue(struct request_queue
*q
)
588 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
589 kobject_get(&q
->kobj
);
595 EXPORT_SYMBOL(blk_get_queue
);
597 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
599 if (rq
->cmd_flags
& REQ_ELVPRIV
)
600 elv_put_request(q
, rq
);
601 mempool_free(rq
, q
->rq
.rq_pool
);
604 static struct request
*
605 blk_alloc_request(struct request_queue
*q
, int rw
, int priv
, gfp_t gfp_mask
)
607 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
613 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
614 * see bio.h and blkdev.h
616 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
619 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
620 mempool_free(rq
, q
->rq
.rq_pool
);
623 rq
->cmd_flags
|= REQ_ELVPRIV
;
630 * ioc_batching returns true if the ioc is a valid batching request and
631 * should be given priority access to a request.
633 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
639 * Make sure the process is able to allocate at least 1 request
640 * even if the batch times out, otherwise we could theoretically
643 return ioc
->nr_batch_requests
== q
->nr_batching
||
644 (ioc
->nr_batch_requests
> 0
645 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
649 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
650 * will cause the process to be a "batcher" on all queues in the system. This
651 * is the behaviour we want though - once it gets a wakeup it should be given
654 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
656 if (!ioc
|| ioc_batching(q
, ioc
))
659 ioc
->nr_batch_requests
= q
->nr_batching
;
660 ioc
->last_waited
= jiffies
;
663 static void __freed_request(struct request_queue
*q
, int rw
)
665 struct request_list
*rl
= &q
->rq
;
667 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
668 blk_clear_queue_congested(q
, rw
);
670 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
671 if (waitqueue_active(&rl
->wait
[rw
]))
672 wake_up(&rl
->wait
[rw
]);
674 blk_clear_queue_full(q
, rw
);
679 * A request has just been released. Account for it, update the full and
680 * congestion status, wake up any waiters. Called under q->queue_lock.
682 static void freed_request(struct request_queue
*q
, int rw
, int priv
)
684 struct request_list
*rl
= &q
->rq
;
690 __freed_request(q
, rw
);
692 if (unlikely(rl
->starved
[rw
^ 1]))
693 __freed_request(q
, rw
^ 1);
696 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
698 * Get a free request, queue_lock must be held.
699 * Returns NULL on failure, with queue_lock held.
700 * Returns !NULL on success, with queue_lock *not held*.
702 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
703 struct bio
*bio
, gfp_t gfp_mask
)
705 struct request
*rq
= NULL
;
706 struct request_list
*rl
= &q
->rq
;
707 struct io_context
*ioc
= NULL
;
708 const int rw
= rw_flags
& 0x01;
711 may_queue
= elv_may_queue(q
, rw_flags
);
712 if (may_queue
== ELV_MQUEUE_NO
)
715 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
716 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
717 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
719 * The queue will fill after this allocation, so set
720 * it as full, and mark this process as "batching".
721 * This process will be allowed to complete a batch of
722 * requests, others will be blocked.
724 if (!blk_queue_full(q
, rw
)) {
725 ioc_set_batching(q
, ioc
);
726 blk_set_queue_full(q
, rw
);
728 if (may_queue
!= ELV_MQUEUE_MUST
729 && !ioc_batching(q
, ioc
)) {
731 * The queue is full and the allocating
732 * process is not a "batcher", and not
733 * exempted by the IO scheduler
739 blk_set_queue_congested(q
, rw
);
743 * Only allow batching queuers to allocate up to 50% over the defined
744 * limit of requests, otherwise we could have thousands of requests
745 * allocated with any setting of ->nr_requests
747 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
753 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
757 spin_unlock_irq(q
->queue_lock
);
759 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
762 * Allocation failed presumably due to memory. Undo anything
763 * we might have messed up.
765 * Allocating task should really be put onto the front of the
766 * wait queue, but this is pretty rare.
768 spin_lock_irq(q
->queue_lock
);
769 freed_request(q
, rw
, priv
);
772 * in the very unlikely event that allocation failed and no
773 * requests for this direction was pending, mark us starved
774 * so that freeing of a request in the other direction will
775 * notice us. another possible fix would be to split the
776 * rq mempool into READ and WRITE
779 if (unlikely(rl
->count
[rw
] == 0))
786 * ioc may be NULL here, and ioc_batching will be false. That's
787 * OK, if the queue is under the request limit then requests need
788 * not count toward the nr_batch_requests limit. There will always
789 * be some limit enforced by BLK_BATCH_TIME.
791 if (ioc_batching(q
, ioc
))
792 ioc
->nr_batch_requests
--;
796 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
802 * No available requests for this queue, unplug the device and wait for some
803 * requests to become available.
805 * Called with q->queue_lock held, and returns with it unlocked.
807 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
810 const int rw
= rw_flags
& 0x01;
813 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
816 struct request_list
*rl
= &q
->rq
;
818 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
819 TASK_UNINTERRUPTIBLE
);
821 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
824 struct io_context
*ioc
;
826 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
828 __generic_unplug_device(q
);
829 spin_unlock_irq(q
->queue_lock
);
833 * After sleeping, we become a "batching" process and
834 * will be able to allocate at least one request, and
835 * up to a big batch of them for a small period time.
836 * See ioc_batching, ioc_set_batching
838 ioc
= current_io_context(GFP_NOIO
, q
->node
);
839 ioc_set_batching(q
, ioc
);
841 spin_lock_irq(q
->queue_lock
);
843 finish_wait(&rl
->wait
[rw
], &wait
);
849 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
853 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
855 spin_lock_irq(q
->queue_lock
);
856 if (gfp_mask
& __GFP_WAIT
) {
857 rq
= get_request_wait(q
, rw
, NULL
);
859 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
861 spin_unlock_irq(q
->queue_lock
);
863 /* q->queue_lock is unlocked at this point */
867 EXPORT_SYMBOL(blk_get_request
);
870 * blk_start_queueing - initiate dispatch of requests to device
871 * @q: request queue to kick into gear
873 * This is basically a helper to remove the need to know whether a queue
874 * is plugged or not if someone just wants to initiate dispatch of requests
877 * The queue lock must be held with interrupts disabled.
879 void blk_start_queueing(struct request_queue
*q
)
881 if (!blk_queue_plugged(q
))
884 __generic_unplug_device(q
);
886 EXPORT_SYMBOL(blk_start_queueing
);
889 * blk_requeue_request - put a request back on queue
890 * @q: request queue where request should be inserted
891 * @rq: request to be inserted
894 * Drivers often keep queueing requests until the hardware cannot accept
895 * more, when that condition happens we need to put the request back
896 * on the queue. Must be called with queue lock held.
898 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
900 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
902 if (blk_rq_tagged(rq
))
903 blk_queue_end_tag(q
, rq
);
905 elv_requeue_request(q
, rq
);
907 EXPORT_SYMBOL(blk_requeue_request
);
910 * blk_insert_request - insert a special request in to a request queue
911 * @q: request queue where request should be inserted
912 * @rq: request to be inserted
913 * @at_head: insert request at head or tail of queue
914 * @data: private data
917 * Many block devices need to execute commands asynchronously, so they don't
918 * block the whole kernel from preemption during request execution. This is
919 * accomplished normally by inserting aritficial requests tagged as
920 * REQ_SPECIAL in to the corresponding request queue, and letting them be
921 * scheduled for actual execution by the request queue.
923 * We have the option of inserting the head or the tail of the queue.
924 * Typically we use the tail for new ioctls and so forth. We use the head
925 * of the queue for things like a QUEUE_FULL message from a device, or a
926 * host that is unable to accept a particular command.
928 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
929 int at_head
, void *data
)
931 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
935 * tell I/O scheduler that this isn't a regular read/write (ie it
936 * must not attempt merges on this) and that it acts as a soft
939 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
940 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
944 spin_lock_irqsave(q
->queue_lock
, flags
);
947 * If command is tagged, release the tag
949 if (blk_rq_tagged(rq
))
950 blk_queue_end_tag(q
, rq
);
952 drive_stat_acct(rq
, 1);
953 __elv_add_request(q
, rq
, where
, 0);
954 blk_start_queueing(q
);
955 spin_unlock_irqrestore(q
->queue_lock
, flags
);
957 EXPORT_SYMBOL(blk_insert_request
);
960 * add-request adds a request to the linked list.
961 * queue lock is held and interrupts disabled, as we muck with the
962 * request queue list.
964 static inline void add_request(struct request_queue
*q
, struct request
*req
)
966 drive_stat_acct(req
, 1);
969 * elevator indicated where it wants this request to be
970 * inserted at elevator_merge time
972 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
976 * disk_round_stats() - Round off the performance stats on a struct
979 * The average IO queue length and utilisation statistics are maintained
980 * by observing the current state of the queue length and the amount of
981 * time it has been in this state for.
983 * Normally, that accounting is done on IO completion, but that can result
984 * in more than a second's worth of IO being accounted for within any one
985 * second, leading to >100% utilisation. To deal with that, we call this
986 * function to do a round-off before returning the results when reading
987 * /proc/diskstats. This accounts immediately for all queue usage up to
988 * the current jiffies and restarts the counters again.
990 void disk_round_stats(struct gendisk
*disk
)
992 unsigned long now
= jiffies
;
994 if (now
== disk
->stamp
)
997 if (disk
->in_flight
) {
998 __disk_stat_add(disk
, time_in_queue
,
999 disk
->in_flight
* (now
- disk
->stamp
));
1000 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
1004 EXPORT_SYMBOL_GPL(disk_round_stats
);
1006 void part_round_stats(struct hd_struct
*part
)
1008 unsigned long now
= jiffies
;
1010 if (now
== part
->stamp
)
1013 if (part
->in_flight
) {
1014 __part_stat_add(part
, time_in_queue
,
1015 part
->in_flight
* (now
- part
->stamp
));
1016 __part_stat_add(part
, io_ticks
, (now
- part
->stamp
));
1022 * queue lock must be held
1024 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1028 if (unlikely(--req
->ref_count
))
1031 elv_completed_request(q
, req
);
1034 * Request may not have originated from ll_rw_blk. if not,
1035 * it didn't come out of our reserved rq pools
1037 if (req
->cmd_flags
& REQ_ALLOCED
) {
1038 int rw
= rq_data_dir(req
);
1039 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
1041 BUG_ON(!list_empty(&req
->queuelist
));
1042 BUG_ON(!hlist_unhashed(&req
->hash
));
1044 blk_free_request(q
, req
);
1045 freed_request(q
, rw
, priv
);
1048 EXPORT_SYMBOL_GPL(__blk_put_request
);
1050 void blk_put_request(struct request
*req
)
1052 unsigned long flags
;
1053 struct request_queue
*q
= req
->q
;
1056 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
1057 * following if (q) test.
1060 spin_lock_irqsave(q
->queue_lock
, flags
);
1061 __blk_put_request(q
, req
);
1062 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1065 EXPORT_SYMBOL(blk_put_request
);
1067 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1069 req
->cmd_type
= REQ_TYPE_FS
;
1072 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1074 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
1075 req
->cmd_flags
|= REQ_FAILFAST
;
1078 * REQ_BARRIER implies no merging, but lets make it explicit
1080 if (unlikely(bio_barrier(bio
)))
1081 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
1084 req
->cmd_flags
|= REQ_RW_SYNC
;
1085 if (bio_rw_meta(bio
))
1086 req
->cmd_flags
|= REQ_RW_META
;
1089 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
1090 req
->ioprio
= bio_prio(bio
);
1091 req
->start_time
= jiffies
;
1092 blk_rq_bio_prep(req
->q
, req
, bio
);
1095 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
1097 struct request
*req
;
1098 int el_ret
, nr_sectors
, barrier
, err
;
1099 const unsigned short prio
= bio_prio(bio
);
1100 const int sync
= bio_sync(bio
);
1103 nr_sectors
= bio_sectors(bio
);
1106 * low level driver can indicate that it wants pages above a
1107 * certain limit bounced to low memory (ie for highmem, or even
1108 * ISA dma in theory)
1110 blk_queue_bounce(q
, &bio
);
1112 barrier
= bio_barrier(bio
);
1113 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
1118 spin_lock_irq(q
->queue_lock
);
1120 if (unlikely(barrier
) || elv_queue_empty(q
))
1123 el_ret
= elv_merge(q
, &req
, bio
);
1125 case ELEVATOR_BACK_MERGE
:
1126 BUG_ON(!rq_mergeable(req
));
1128 if (!ll_back_merge_fn(q
, req
, bio
))
1131 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
1133 req
->biotail
->bi_next
= bio
;
1135 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
1136 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1137 drive_stat_acct(req
, 0);
1138 if (!attempt_back_merge(q
, req
))
1139 elv_merged_request(q
, req
, el_ret
);
1142 case ELEVATOR_FRONT_MERGE
:
1143 BUG_ON(!rq_mergeable(req
));
1145 if (!ll_front_merge_fn(q
, req
, bio
))
1148 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
1150 bio
->bi_next
= req
->bio
;
1154 * may not be valid. if the low level driver said
1155 * it didn't need a bounce buffer then it better
1156 * not touch req->buffer either...
1158 req
->buffer
= bio_data(bio
);
1159 req
->current_nr_sectors
= bio_cur_sectors(bio
);
1160 req
->hard_cur_sectors
= req
->current_nr_sectors
;
1161 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
1162 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
1163 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
1164 drive_stat_acct(req
, 0);
1165 if (!attempt_front_merge(q
, req
))
1166 elv_merged_request(q
, req
, el_ret
);
1169 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1176 * This sync check and mask will be re-done in init_request_from_bio(),
1177 * but we need to set it earlier to expose the sync flag to the
1178 * rq allocator and io schedulers.
1180 rw_flags
= bio_data_dir(bio
);
1182 rw_flags
|= REQ_RW_SYNC
;
1185 * Grab a free request. This is might sleep but can not fail.
1186 * Returns with the queue unlocked.
1188 req
= get_request_wait(q
, rw_flags
, bio
);
1191 * After dropping the lock and possibly sleeping here, our request
1192 * may now be mergeable after it had proven unmergeable (above).
1193 * We don't worry about that case for efficiency. It won't happen
1194 * often, and the elevators are able to handle it.
1196 init_request_from_bio(req
, bio
);
1198 spin_lock_irq(q
->queue_lock
);
1199 if (elv_queue_empty(q
))
1201 add_request(q
, req
);
1204 __generic_unplug_device(q
);
1206 spin_unlock_irq(q
->queue_lock
);
1210 bio_endio(bio
, err
);
1215 * If bio->bi_dev is a partition, remap the location
1217 static inline void blk_partition_remap(struct bio
*bio
)
1219 struct block_device
*bdev
= bio
->bi_bdev
;
1221 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1222 struct hd_struct
*p
= bdev
->bd_part
;
1224 bio
->bi_sector
+= p
->start_sect
;
1225 bio
->bi_bdev
= bdev
->bd_contains
;
1227 blk_add_trace_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1228 bdev
->bd_dev
, bio
->bi_sector
,
1229 bio
->bi_sector
- p
->start_sect
);
1233 static void handle_bad_sector(struct bio
*bio
)
1235 char b
[BDEVNAME_SIZE
];
1237 printk(KERN_INFO
"attempt to access beyond end of device\n");
1238 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1239 bdevname(bio
->bi_bdev
, b
),
1241 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1242 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
1244 set_bit(BIO_EOF
, &bio
->bi_flags
);
1247 #ifdef CONFIG_FAIL_MAKE_REQUEST
1249 static DECLARE_FAULT_ATTR(fail_make_request
);
1251 static int __init
setup_fail_make_request(char *str
)
1253 return setup_fault_attr(&fail_make_request
, str
);
1255 __setup("fail_make_request=", setup_fail_make_request
);
1257 static int should_fail_request(struct bio
*bio
)
1259 if ((bio
->bi_bdev
->bd_disk
->flags
& GENHD_FL_FAIL
) ||
1260 (bio
->bi_bdev
->bd_part
&& bio
->bi_bdev
->bd_part
->make_it_fail
))
1261 return should_fail(&fail_make_request
, bio
->bi_size
);
1266 static int __init
fail_make_request_debugfs(void)
1268 return init_fault_attr_dentries(&fail_make_request
,
1269 "fail_make_request");
1272 late_initcall(fail_make_request_debugfs
);
1274 #else /* CONFIG_FAIL_MAKE_REQUEST */
1276 static inline int should_fail_request(struct bio
*bio
)
1281 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1284 * Check whether this bio extends beyond the end of the device.
1286 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1293 /* Test device or partition size, when known. */
1294 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
1296 sector_t sector
= bio
->bi_sector
;
1298 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1300 * This may well happen - the kernel calls bread()
1301 * without checking the size of the device, e.g., when
1302 * mounting a device.
1304 handle_bad_sector(bio
);
1313 * generic_make_request: hand a buffer to its device driver for I/O
1314 * @bio: The bio describing the location in memory and on the device.
1316 * generic_make_request() is used to make I/O requests of block
1317 * devices. It is passed a &struct bio, which describes the I/O that needs
1320 * generic_make_request() does not return any status. The
1321 * success/failure status of the request, along with notification of
1322 * completion, is delivered asynchronously through the bio->bi_end_io
1323 * function described (one day) else where.
1325 * The caller of generic_make_request must make sure that bi_io_vec
1326 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1327 * set to describe the device address, and the
1328 * bi_end_io and optionally bi_private are set to describe how
1329 * completion notification should be signaled.
1331 * generic_make_request and the drivers it calls may use bi_next if this
1332 * bio happens to be merged with someone else, and may change bi_dev and
1333 * bi_sector for remaps as it sees fit. So the values of these fields
1334 * should NOT be depended on after the call to generic_make_request.
1336 static inline void __generic_make_request(struct bio
*bio
)
1338 struct request_queue
*q
;
1339 sector_t old_sector
;
1340 int ret
, nr_sectors
= bio_sectors(bio
);
1346 if (bio_check_eod(bio
, nr_sectors
))
1350 * Resolve the mapping until finished. (drivers are
1351 * still free to implement/resolve their own stacking
1352 * by explicitly returning 0)
1354 * NOTE: we don't repeat the blk_size check for each new device.
1355 * Stacking drivers are expected to know what they are doing.
1360 char b
[BDEVNAME_SIZE
];
1362 q
= bdev_get_queue(bio
->bi_bdev
);
1365 "generic_make_request: Trying to access "
1366 "nonexistent block-device %s (%Lu)\n",
1367 bdevname(bio
->bi_bdev
, b
),
1368 (long long) bio
->bi_sector
);
1370 bio_endio(bio
, err
);
1374 if (unlikely(nr_sectors
> q
->max_hw_sectors
)) {
1375 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1376 bdevname(bio
->bi_bdev
, b
),
1382 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
1385 if (should_fail_request(bio
))
1389 * If this device has partitions, remap block n
1390 * of partition p to block n+start(p) of the disk.
1392 blk_partition_remap(bio
);
1394 if (old_sector
!= -1)
1395 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
1398 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
1400 old_sector
= bio
->bi_sector
;
1401 old_dev
= bio
->bi_bdev
->bd_dev
;
1403 if (bio_check_eod(bio
, nr_sectors
))
1405 if (bio_empty_barrier(bio
) && !q
->prepare_flush_fn
) {
1410 ret
= q
->make_request_fn(q
, bio
);
1415 * We only want one ->make_request_fn to be active at a time,
1416 * else stack usage with stacked devices could be a problem.
1417 * So use current->bio_{list,tail} to keep a list of requests
1418 * submited by a make_request_fn function.
1419 * current->bio_tail is also used as a flag to say if
1420 * generic_make_request is currently active in this task or not.
1421 * If it is NULL, then no make_request is active. If it is non-NULL,
1422 * then a make_request is active, and new requests should be added
1425 void generic_make_request(struct bio
*bio
)
1427 if (current
->bio_tail
) {
1428 /* make_request is active */
1429 *(current
->bio_tail
) = bio
;
1430 bio
->bi_next
= NULL
;
1431 current
->bio_tail
= &bio
->bi_next
;
1434 /* following loop may be a bit non-obvious, and so deserves some
1436 * Before entering the loop, bio->bi_next is NULL (as all callers
1437 * ensure that) so we have a list with a single bio.
1438 * We pretend that we have just taken it off a longer list, so
1439 * we assign bio_list to the next (which is NULL) and bio_tail
1440 * to &bio_list, thus initialising the bio_list of new bios to be
1441 * added. __generic_make_request may indeed add some more bios
1442 * through a recursive call to generic_make_request. If it
1443 * did, we find a non-NULL value in bio_list and re-enter the loop
1444 * from the top. In this case we really did just take the bio
1445 * of the top of the list (no pretending) and so fixup bio_list and
1446 * bio_tail or bi_next, and call into __generic_make_request again.
1448 * The loop was structured like this to make only one call to
1449 * __generic_make_request (which is important as it is large and
1450 * inlined) and to keep the structure simple.
1452 BUG_ON(bio
->bi_next
);
1454 current
->bio_list
= bio
->bi_next
;
1455 if (bio
->bi_next
== NULL
)
1456 current
->bio_tail
= ¤t
->bio_list
;
1458 bio
->bi_next
= NULL
;
1459 __generic_make_request(bio
);
1460 bio
= current
->bio_list
;
1462 current
->bio_tail
= NULL
; /* deactivate */
1464 EXPORT_SYMBOL(generic_make_request
);
1467 * submit_bio: submit a bio to the block device layer for I/O
1468 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1469 * @bio: The &struct bio which describes the I/O
1471 * submit_bio() is very similar in purpose to generic_make_request(), and
1472 * uses that function to do most of the work. Both are fairly rough
1473 * interfaces, @bio must be presetup and ready for I/O.
1476 void submit_bio(int rw
, struct bio
*bio
)
1478 int count
= bio_sectors(bio
);
1483 * If it's a regular read/write or a barrier with data attached,
1484 * go through the normal accounting stuff before submission.
1486 if (!bio_empty_barrier(bio
)) {
1488 BIO_BUG_ON(!bio
->bi_size
);
1489 BIO_BUG_ON(!bio
->bi_io_vec
);
1492 count_vm_events(PGPGOUT
, count
);
1494 task_io_account_read(bio
->bi_size
);
1495 count_vm_events(PGPGIN
, count
);
1498 if (unlikely(block_dump
)) {
1499 char b
[BDEVNAME_SIZE
];
1500 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
1501 current
->comm
, task_pid_nr(current
),
1502 (rw
& WRITE
) ? "WRITE" : "READ",
1503 (unsigned long long)bio
->bi_sector
,
1504 bdevname(bio
->bi_bdev
, b
));
1508 generic_make_request(bio
);
1510 EXPORT_SYMBOL(submit_bio
);
1513 * __end_that_request_first - end I/O on a request
1514 * @req: the request being processed
1515 * @error: 0 for success, < 0 for error
1516 * @nr_bytes: number of bytes to complete
1519 * Ends I/O on a number of bytes attached to @req, and sets it up
1520 * for the next range of segments (if any) in the cluster.
1523 * 0 - we are done with this request, call end_that_request_last()
1524 * 1 - still buffers pending for this request
1526 static int __end_that_request_first(struct request
*req
, int error
,
1529 int total_bytes
, bio_nbytes
, next_idx
= 0;
1532 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
1535 * for a REQ_BLOCK_PC request, we want to carry any eventual
1536 * sense key with us all the way through
1538 if (!blk_pc_request(req
))
1541 if (error
&& (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))) {
1542 printk(KERN_ERR
"end_request: I/O error, dev %s, sector %llu\n",
1543 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
1544 (unsigned long long)req
->sector
);
1547 if (blk_fs_request(req
) && req
->rq_disk
) {
1548 const int rw
= rq_data_dir(req
);
1550 all_stat_add(req
->rq_disk
, sectors
[rw
],
1551 nr_bytes
>> 9, req
->sector
);
1554 total_bytes
= bio_nbytes
= 0;
1555 while ((bio
= req
->bio
) != NULL
) {
1559 * For an empty barrier request, the low level driver must
1560 * store a potential error location in ->sector. We pass
1561 * that back up in ->bi_sector.
1563 if (blk_empty_barrier(req
))
1564 bio
->bi_sector
= req
->sector
;
1566 if (nr_bytes
>= bio
->bi_size
) {
1567 req
->bio
= bio
->bi_next
;
1568 nbytes
= bio
->bi_size
;
1569 req_bio_endio(req
, bio
, nbytes
, error
);
1573 int idx
= bio
->bi_idx
+ next_idx
;
1575 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
1576 blk_dump_rq_flags(req
, "__end_that");
1577 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
1578 __FUNCTION__
, bio
->bi_idx
,
1583 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
1584 BIO_BUG_ON(nbytes
> bio
->bi_size
);
1587 * not a complete bvec done
1589 if (unlikely(nbytes
> nr_bytes
)) {
1590 bio_nbytes
+= nr_bytes
;
1591 total_bytes
+= nr_bytes
;
1596 * advance to the next vector
1599 bio_nbytes
+= nbytes
;
1602 total_bytes
+= nbytes
;
1608 * end more in this run, or just return 'not-done'
1610 if (unlikely(nr_bytes
<= 0))
1622 * if the request wasn't completed, update state
1625 req_bio_endio(req
, bio
, bio_nbytes
, error
);
1626 bio
->bi_idx
+= next_idx
;
1627 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
1628 bio_iovec(bio
)->bv_len
-= nr_bytes
;
1631 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
1632 blk_recalc_rq_segments(req
);
1637 * splice the completion data to a local structure and hand off to
1638 * process_completion_queue() to complete the requests
1640 static void blk_done_softirq(struct softirq_action
*h
)
1642 struct list_head
*cpu_list
, local_list
;
1644 local_irq_disable();
1645 cpu_list
= &__get_cpu_var(blk_cpu_done
);
1646 list_replace_init(cpu_list
, &local_list
);
1649 while (!list_empty(&local_list
)) {
1652 rq
= list_entry(local_list
.next
, struct request
, donelist
);
1653 list_del_init(&rq
->donelist
);
1654 rq
->q
->softirq_done_fn(rq
);
1658 static int __cpuinit
blk_cpu_notify(struct notifier_block
*self
,
1659 unsigned long action
, void *hcpu
)
1662 * If a CPU goes away, splice its entries to the current CPU
1663 * and trigger a run of the softirq
1665 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
1666 int cpu
= (unsigned long) hcpu
;
1668 local_irq_disable();
1669 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
1670 &__get_cpu_var(blk_cpu_done
));
1671 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1679 static struct notifier_block blk_cpu_notifier __cpuinitdata
= {
1680 .notifier_call
= blk_cpu_notify
,
1684 * blk_complete_request - end I/O on a request
1685 * @req: the request being processed
1688 * Ends all I/O on a request. It does not handle partial completions,
1689 * unless the driver actually implements this in its completion callback
1690 * through requeueing. The actual completion happens out-of-order,
1691 * through a softirq handler. The user must have registered a completion
1692 * callback through blk_queue_softirq_done().
1695 void blk_complete_request(struct request
*req
)
1697 struct list_head
*cpu_list
;
1698 unsigned long flags
;
1700 BUG_ON(!req
->q
->softirq_done_fn
);
1702 local_irq_save(flags
);
1704 cpu_list
= &__get_cpu_var(blk_cpu_done
);
1705 list_add_tail(&req
->donelist
, cpu_list
);
1706 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1708 local_irq_restore(flags
);
1710 EXPORT_SYMBOL(blk_complete_request
);
1713 * queue lock must be held
1715 static void end_that_request_last(struct request
*req
, int error
)
1717 struct gendisk
*disk
= req
->rq_disk
;
1719 if (blk_rq_tagged(req
))
1720 blk_queue_end_tag(req
->q
, req
);
1722 if (blk_queued_rq(req
))
1723 blkdev_dequeue_request(req
);
1725 if (unlikely(laptop_mode
) && blk_fs_request(req
))
1726 laptop_io_completion();
1729 * Account IO completion. bar_rq isn't accounted as a normal
1730 * IO on queueing nor completion. Accounting the containing
1731 * request is enough.
1733 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
1734 unsigned long duration
= jiffies
- req
->start_time
;
1735 const int rw
= rq_data_dir(req
);
1736 struct hd_struct
*part
= get_part(disk
, req
->sector
);
1738 __all_stat_inc(disk
, ios
[rw
], req
->sector
);
1739 __all_stat_add(disk
, ticks
[rw
], duration
, req
->sector
);
1740 disk_round_stats(disk
);
1743 part_round_stats(part
);
1749 req
->end_io(req
, error
);
1751 if (blk_bidi_rq(req
))
1752 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
1754 __blk_put_request(req
->q
, req
);
1758 static inline void __end_request(struct request
*rq
, int uptodate
,
1759 unsigned int nr_bytes
)
1764 error
= uptodate
? uptodate
: -EIO
;
1766 __blk_end_request(rq
, error
, nr_bytes
);
1770 * blk_rq_bytes - Returns bytes left to complete in the entire request
1772 unsigned int blk_rq_bytes(struct request
*rq
)
1774 if (blk_fs_request(rq
))
1775 return rq
->hard_nr_sectors
<< 9;
1777 return rq
->data_len
;
1779 EXPORT_SYMBOL_GPL(blk_rq_bytes
);
1782 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1784 unsigned int blk_rq_cur_bytes(struct request
*rq
)
1786 if (blk_fs_request(rq
))
1787 return rq
->current_nr_sectors
<< 9;
1790 return rq
->bio
->bi_size
;
1792 return rq
->data_len
;
1794 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes
);
1797 * end_queued_request - end all I/O on a queued request
1798 * @rq: the request being processed
1799 * @uptodate: error value or 0/1 uptodate flag
1802 * Ends all I/O on a request, and removes it from the block layer queues.
1803 * Not suitable for normal IO completion, unless the driver still has
1804 * the request attached to the block layer.
1807 void end_queued_request(struct request
*rq
, int uptodate
)
1809 __end_request(rq
, uptodate
, blk_rq_bytes(rq
));
1811 EXPORT_SYMBOL(end_queued_request
);
1814 * end_dequeued_request - end all I/O on a dequeued request
1815 * @rq: the request being processed
1816 * @uptodate: error value or 0/1 uptodate flag
1819 * Ends all I/O on a request. The request must already have been
1820 * dequeued using blkdev_dequeue_request(), as is normally the case
1824 void end_dequeued_request(struct request
*rq
, int uptodate
)
1826 __end_request(rq
, uptodate
, blk_rq_bytes(rq
));
1828 EXPORT_SYMBOL(end_dequeued_request
);
1832 * end_request - end I/O on the current segment of the request
1833 * @req: the request being processed
1834 * @uptodate: error value or 0/1 uptodate flag
1837 * Ends I/O on the current segment of a request. If that is the only
1838 * remaining segment, the request is also completed and freed.
1840 * This is a remnant of how older block drivers handled IO completions.
1841 * Modern drivers typically end IO on the full request in one go, unless
1842 * they have a residual value to account for. For that case this function
1843 * isn't really useful, unless the residual just happens to be the
1844 * full current segment. In other words, don't use this function in new
1845 * code. Either use end_request_completely(), or the
1846 * end_that_request_chunk() (along with end_that_request_last()) for
1847 * partial completions.
1850 void end_request(struct request
*req
, int uptodate
)
1852 __end_request(req
, uptodate
, req
->hard_cur_sectors
<< 9);
1854 EXPORT_SYMBOL(end_request
);
1857 * blk_end_io - Generic end_io function to complete a request.
1858 * @rq: the request being processed
1859 * @error: 0 for success, < 0 for error
1860 * @nr_bytes: number of bytes to complete @rq
1861 * @bidi_bytes: number of bytes to complete @rq->next_rq
1862 * @drv_callback: function called between completion of bios in the request
1863 * and completion of the request.
1864 * If the callback returns non 0, this helper returns without
1865 * completion of the request.
1868 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1869 * If @rq has leftover, sets it up for the next range of segments.
1872 * 0 - we are done with this request
1873 * 1 - this request is not freed yet, it still has pending buffers.
1875 static int blk_end_io(struct request
*rq
, int error
, unsigned int nr_bytes
,
1876 unsigned int bidi_bytes
,
1877 int (drv_callback
)(struct request
*))
1879 struct request_queue
*q
= rq
->q
;
1880 unsigned long flags
= 0UL;
1882 if (blk_fs_request(rq
) || blk_pc_request(rq
)) {
1883 if (__end_that_request_first(rq
, error
, nr_bytes
))
1886 /* Bidi request must be completed as a whole */
1887 if (blk_bidi_rq(rq
) &&
1888 __end_that_request_first(rq
->next_rq
, error
, bidi_bytes
))
1892 /* Special feature for tricky drivers */
1893 if (drv_callback
&& drv_callback(rq
))
1896 add_disk_randomness(rq
->rq_disk
);
1898 spin_lock_irqsave(q
->queue_lock
, flags
);
1899 end_that_request_last(rq
, error
);
1900 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1906 * blk_end_request - Helper function for drivers to complete the request.
1907 * @rq: the request being processed
1908 * @error: 0 for success, < 0 for error
1909 * @nr_bytes: number of bytes to complete
1912 * Ends I/O on a number of bytes attached to @rq.
1913 * If @rq has leftover, sets it up for the next range of segments.
1916 * 0 - we are done with this request
1917 * 1 - still buffers pending for this request
1919 int blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
1921 return blk_end_io(rq
, error
, nr_bytes
, 0, NULL
);
1923 EXPORT_SYMBOL_GPL(blk_end_request
);
1926 * __blk_end_request - Helper function for drivers to complete the request.
1927 * @rq: the request being processed
1928 * @error: 0 for success, < 0 for error
1929 * @nr_bytes: number of bytes to complete
1932 * Must be called with queue lock held unlike blk_end_request().
1935 * 0 - we are done with this request
1936 * 1 - still buffers pending for this request
1938 int __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
1940 if (blk_fs_request(rq
) || blk_pc_request(rq
)) {
1941 if (__end_that_request_first(rq
, error
, nr_bytes
))
1945 add_disk_randomness(rq
->rq_disk
);
1947 end_that_request_last(rq
, error
);
1951 EXPORT_SYMBOL_GPL(__blk_end_request
);
1954 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1955 * @rq: the bidi request being processed
1956 * @error: 0 for success, < 0 for error
1957 * @nr_bytes: number of bytes to complete @rq
1958 * @bidi_bytes: number of bytes to complete @rq->next_rq
1961 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1964 * 0 - we are done with this request
1965 * 1 - still buffers pending for this request
1967 int blk_end_bidi_request(struct request
*rq
, int error
, unsigned int nr_bytes
,
1968 unsigned int bidi_bytes
)
1970 return blk_end_io(rq
, error
, nr_bytes
, bidi_bytes
, NULL
);
1972 EXPORT_SYMBOL_GPL(blk_end_bidi_request
);
1975 * blk_end_request_callback - Special helper function for tricky drivers
1976 * @rq: the request being processed
1977 * @error: 0 for success, < 0 for error
1978 * @nr_bytes: number of bytes to complete
1979 * @drv_callback: function called between completion of bios in the request
1980 * and completion of the request.
1981 * If the callback returns non 0, this helper returns without
1982 * completion of the request.
1985 * Ends I/O on a number of bytes attached to @rq.
1986 * If @rq has leftover, sets it up for the next range of segments.
1988 * This special helper function is used only for existing tricky drivers.
1989 * (e.g. cdrom_newpc_intr() of ide-cd)
1990 * This interface will be removed when such drivers are rewritten.
1991 * Don't use this interface in other places anymore.
1994 * 0 - we are done with this request
1995 * 1 - this request is not freed yet.
1996 * this request still has pending buffers or
1997 * the driver doesn't want to finish this request yet.
1999 int blk_end_request_callback(struct request
*rq
, int error
,
2000 unsigned int nr_bytes
,
2001 int (drv_callback
)(struct request
*))
2003 return blk_end_io(rq
, error
, nr_bytes
, 0, drv_callback
);
2005 EXPORT_SYMBOL_GPL(blk_end_request_callback
);
2007 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2010 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2011 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
2013 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2014 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
2015 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
2016 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
2017 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
2018 rq
->buffer
= bio_data(bio
);
2019 rq
->raw_data_len
= bio
->bi_size
;
2020 rq
->data_len
= bio
->bi_size
;
2022 rq
->bio
= rq
->biotail
= bio
;
2025 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2028 int kblockd_schedule_work(struct work_struct
*work
)
2030 return queue_work(kblockd_workqueue
, work
);
2032 EXPORT_SYMBOL(kblockd_schedule_work
);
2034 void kblockd_flush_work(struct work_struct
*work
)
2036 cancel_work_sync(work
);
2038 EXPORT_SYMBOL(kblockd_flush_work
);
2040 int __init
blk_dev_init(void)
2044 kblockd_workqueue
= create_workqueue("kblockd");
2045 if (!kblockd_workqueue
)
2046 panic("Failed to create kblockd\n");
2048 request_cachep
= kmem_cache_create("blkdev_requests",
2049 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2051 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
2052 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
2054 for_each_possible_cpu(i
)
2055 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
2057 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
2058 register_hotcpu_notifier(&blk_cpu_notifier
);