2 * sata_mv.c - Marvell SATA support
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/sched.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_cmnd.h>
36 #include <linux/libata.h>
39 #define DRV_NAME "sata_mv"
40 #define DRV_VERSION "0.6"
43 /* BAR's are enumerated in terms of pci_resource_start() terms */
44 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
45 MV_IO_BAR
= 2, /* offset 0x18: IO space */
46 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
48 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
49 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
52 MV_IRQ_COAL_REG_BASE
= 0x18000, /* 6xxx part only */
53 MV_SATAHC0_REG_BASE
= 0x20000,
54 MV_FLASH_CTL
= 0x1046c,
55 MV_GPIO_PORT_CTL
= 0x104f0,
56 MV_RESET_CFG
= 0x180d8,
58 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
59 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
60 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
61 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
63 MV_USE_Q_DEPTH
= ATA_DEF_QUEUE
,
66 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
68 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
69 * CRPB needs alignment on a 256B boundary. Size == 256B
70 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
71 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
73 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
74 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
76 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
77 MV_PORT_PRIV_DMA_SZ
= (MV_CRQB_Q_SZ
+ MV_CRPB_Q_SZ
+ MV_SG_TBL_SZ
),
80 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
82 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
86 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
87 MV_FLAG_IRQ_COALESCE
= (1 << 29), /* IRQ coalescing capability */
88 MV_COMMON_FLAGS
= (ATA_FLAG_SATA
| ATA_FLAG_NO_LEGACY
|
89 ATA_FLAG_SATA_RESET
| ATA_FLAG_MMIO
|
91 MV_6XXX_FLAGS
= MV_FLAG_IRQ_COALESCE
,
93 CRQB_FLAG_READ
= (1 << 0),
95 CRQB_CMD_ADDR_SHIFT
= 8,
96 CRQB_CMD_CS
= (0x2 << 11),
97 CRQB_CMD_LAST
= (1 << 15),
99 CRPB_FLAG_STATUS_SHIFT
= 8,
101 EPRD_FLAG_END_OF_TBL
= (1 << 31),
103 /* PCI interface registers */
105 PCI_COMMAND_OFS
= 0xc00,
107 PCI_MAIN_CMD_STS_OFS
= 0xd30,
108 STOP_PCI_MASTER
= (1 << 2),
109 PCI_MASTER_EMPTY
= (1 << 3),
110 GLOB_SFT_RST
= (1 << 4),
113 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
114 MV_PCI_DISC_TIMER
= 0xd04,
115 MV_PCI_MSI_TRIGGER
= 0xc38,
116 MV_PCI_SERR_MASK
= 0xc28,
117 MV_PCI_XBAR_TMOUT
= 0x1d04,
118 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
119 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
120 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
121 MV_PCI_ERR_COMMAND
= 0x1d50,
123 PCI_IRQ_CAUSE_OFS
= 0x1d58,
124 PCI_IRQ_MASK_OFS
= 0x1d5c,
125 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
127 HC_MAIN_IRQ_CAUSE_OFS
= 0x1d60,
128 HC_MAIN_IRQ_MASK_OFS
= 0x1d64,
129 PORT0_ERR
= (1 << 0), /* shift by port # */
130 PORT0_DONE
= (1 << 1), /* shift by port # */
131 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
132 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
134 TRAN_LO_DONE
= (1 << 19), /* 6xxx: IRQ coalescing */
135 TRAN_HI_DONE
= (1 << 20), /* 6xxx: IRQ coalescing */
136 PORTS_0_7_COAL_DONE
= (1 << 21), /* 6xxx: IRQ coalescing */
137 GPIO_INT
= (1 << 22),
138 SELF_INT
= (1 << 23),
139 TWSI_INT
= (1 << 24),
140 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
141 HC_MAIN_MASKED_IRQS
= (TRAN_LO_DONE
| TRAN_HI_DONE
|
142 PORTS_0_7_COAL_DONE
| GPIO_INT
| TWSI_INT
|
145 /* SATAHC registers */
148 HC_IRQ_CAUSE_OFS
= 0x14,
149 CRPB_DMA_DONE
= (1 << 0), /* shift by port # */
150 HC_IRQ_COAL
= (1 << 4), /* IRQ coalescing */
151 DEV_IRQ
= (1 << 8), /* shift by port # */
153 /* Shadow block registers */
155 SHD_CTL_AST_OFS
= 0x20, /* ofs from SHD_BLK_OFS */
158 SATA_STATUS_OFS
= 0x300, /* ctrl, err regs follow status */
159 SATA_ACTIVE_OFS
= 0x350,
166 SATA_INTERFACE_CTL
= 0x050,
168 MV_M2_PREAMP_MASK
= 0x7e0,
172 EDMA_CFG_Q_DEPTH
= 0, /* queueing disabled */
173 EDMA_CFG_NCQ
= (1 << 5),
174 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
175 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
176 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
178 EDMA_ERR_IRQ_CAUSE_OFS
= 0x8,
179 EDMA_ERR_IRQ_MASK_OFS
= 0xc,
180 EDMA_ERR_D_PAR
= (1 << 0),
181 EDMA_ERR_PRD_PAR
= (1 << 1),
182 EDMA_ERR_DEV
= (1 << 2),
183 EDMA_ERR_DEV_DCON
= (1 << 3),
184 EDMA_ERR_DEV_CON
= (1 << 4),
185 EDMA_ERR_SERR
= (1 << 5),
186 EDMA_ERR_SELF_DIS
= (1 << 7),
187 EDMA_ERR_BIST_ASYNC
= (1 << 8),
188 EDMA_ERR_CRBQ_PAR
= (1 << 9),
189 EDMA_ERR_CRPB_PAR
= (1 << 10),
190 EDMA_ERR_INTRL_PAR
= (1 << 11),
191 EDMA_ERR_IORDY
= (1 << 12),
192 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13),
193 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15),
194 EDMA_ERR_LNK_DATA_RX
= (0xf << 17),
195 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21),
196 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26),
197 EDMA_ERR_TRANS_PROTO
= (1 << 31),
198 EDMA_ERR_FATAL
= (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
199 EDMA_ERR_DEV_DCON
| EDMA_ERR_CRBQ_PAR
|
200 EDMA_ERR_CRPB_PAR
| EDMA_ERR_INTRL_PAR
|
201 EDMA_ERR_IORDY
| EDMA_ERR_LNK_CTRL_RX_2
|
202 EDMA_ERR_LNK_DATA_RX
|
203 EDMA_ERR_LNK_DATA_TX
|
204 EDMA_ERR_TRANS_PROTO
),
206 EDMA_REQ_Q_BASE_HI_OFS
= 0x10,
207 EDMA_REQ_Q_IN_PTR_OFS
= 0x14, /* also contains BASE_LO */
209 EDMA_REQ_Q_OUT_PTR_OFS
= 0x18,
210 EDMA_REQ_Q_PTR_SHIFT
= 5,
212 EDMA_RSP_Q_BASE_HI_OFS
= 0x1c,
213 EDMA_RSP_Q_IN_PTR_OFS
= 0x20,
214 EDMA_RSP_Q_OUT_PTR_OFS
= 0x24, /* also contains BASE_LO */
215 EDMA_RSP_Q_PTR_SHIFT
= 3,
222 EDMA_IORDY_TMOUT
= 0x34,
225 /* Host private flags (hp_flags) */
226 MV_HP_FLAG_MSI
= (1 << 0),
227 MV_HP_ERRATA_50XXB0
= (1 << 1),
228 MV_HP_ERRATA_50XXB2
= (1 << 2),
229 MV_HP_ERRATA_60X1B2
= (1 << 3),
230 MV_HP_ERRATA_60X1C0
= (1 << 4),
231 MV_HP_ERRATA_XX42A0
= (1 << 5),
232 MV_HP_50XX
= (1 << 6),
233 MV_HP_GEN_IIE
= (1 << 7),
235 /* Port private flags (pp_flags) */
236 MV_PP_FLAG_EDMA_EN
= (1 << 0),
237 MV_PP_FLAG_EDMA_DS_ACT
= (1 << 1),
240 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
241 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
242 #define IS_GEN_I(hpriv) IS_50XX(hpriv)
243 #define IS_GEN_II(hpriv) IS_60XX(hpriv)
244 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
247 /* Our DMA boundary is determined by an ePRD being unable to handle
248 * anything larger than 64KB
250 MV_DMA_BOUNDARY
= 0xffffU
,
252 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
254 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
267 /* Command ReQuest Block: 32B */
283 /* Command ResPonse Block: 8B */
290 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
298 struct mv_port_priv
{
299 struct mv_crqb
*crqb
;
301 struct mv_crpb
*crpb
;
303 struct mv_sg
*sg_tbl
;
304 dma_addr_t sg_tbl_dma
;
306 unsigned req_producer
; /* cp of req_in_ptr */
307 unsigned rsp_consumer
; /* cp of rsp_out_ptr */
311 struct mv_port_signal
{
318 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
320 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
321 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
323 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
325 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
326 void (*reset_bus
)(struct pci_dev
*pdev
, void __iomem
*mmio
);
329 struct mv_host_priv
{
331 struct mv_port_signal signal
[8];
332 const struct mv_hw_ops
*ops
;
335 static void mv_irq_clear(struct ata_port
*ap
);
336 static u32
mv_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
);
337 static void mv_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
);
338 static u32
mv5_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
);
339 static void mv5_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
);
340 static void mv_phy_reset(struct ata_port
*ap
);
341 static void __mv_phy_reset(struct ata_port
*ap
, int can_sleep
);
342 static void mv_host_stop(struct ata_host_set
*host_set
);
343 static int mv_port_start(struct ata_port
*ap
);
344 static void mv_port_stop(struct ata_port
*ap
);
345 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
346 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
347 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
348 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
,
349 struct pt_regs
*regs
);
350 static void mv_eng_timeout(struct ata_port
*ap
);
351 static int mv_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
353 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
355 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
356 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
358 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
360 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
361 static void mv5_reset_bus(struct pci_dev
*pdev
, void __iomem
*mmio
);
363 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
365 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
366 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
368 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
370 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
371 static void mv_reset_pci_bus(struct pci_dev
*pdev
, void __iomem
*mmio
);
372 static void mv_channel_reset(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
373 unsigned int port_no
);
374 static void mv_stop_and_reset(struct ata_port
*ap
);
376 static struct scsi_host_template mv_sht
= {
377 .module
= THIS_MODULE
,
379 .ioctl
= ata_scsi_ioctl
,
380 .queuecommand
= ata_scsi_queuecmd
,
381 .eh_strategy_handler
= ata_scsi_error
,
382 .can_queue
= MV_USE_Q_DEPTH
,
383 .this_id
= ATA_SHT_THIS_ID
,
384 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
385 .cmd_per_lun
= ATA_SHT_CMD_PER_LUN
,
386 .emulated
= ATA_SHT_EMULATED
,
387 .use_clustering
= ATA_SHT_USE_CLUSTERING
,
388 .proc_name
= DRV_NAME
,
389 .dma_boundary
= MV_DMA_BOUNDARY
,
390 .slave_configure
= ata_scsi_slave_config
,
391 .bios_param
= ata_std_bios_param
,
394 static const struct ata_port_operations mv5_ops
= {
395 .port_disable
= ata_port_disable
,
397 .tf_load
= ata_tf_load
,
398 .tf_read
= ata_tf_read
,
399 .check_status
= ata_check_status
,
400 .exec_command
= ata_exec_command
,
401 .dev_select
= ata_std_dev_select
,
403 .phy_reset
= mv_phy_reset
,
405 .qc_prep
= mv_qc_prep
,
406 .qc_issue
= mv_qc_issue
,
408 .eng_timeout
= mv_eng_timeout
,
410 .irq_handler
= mv_interrupt
,
411 .irq_clear
= mv_irq_clear
,
413 .scr_read
= mv5_scr_read
,
414 .scr_write
= mv5_scr_write
,
416 .port_start
= mv_port_start
,
417 .port_stop
= mv_port_stop
,
418 .host_stop
= mv_host_stop
,
421 static const struct ata_port_operations mv6_ops
= {
422 .port_disable
= ata_port_disable
,
424 .tf_load
= ata_tf_load
,
425 .tf_read
= ata_tf_read
,
426 .check_status
= ata_check_status
,
427 .exec_command
= ata_exec_command
,
428 .dev_select
= ata_std_dev_select
,
430 .phy_reset
= mv_phy_reset
,
432 .qc_prep
= mv_qc_prep
,
433 .qc_issue
= mv_qc_issue
,
435 .eng_timeout
= mv_eng_timeout
,
437 .irq_handler
= mv_interrupt
,
438 .irq_clear
= mv_irq_clear
,
440 .scr_read
= mv_scr_read
,
441 .scr_write
= mv_scr_write
,
443 .port_start
= mv_port_start
,
444 .port_stop
= mv_port_stop
,
445 .host_stop
= mv_host_stop
,
448 static const struct ata_port_operations mv_iie_ops
= {
449 .port_disable
= ata_port_disable
,
451 .tf_load
= ata_tf_load
,
452 .tf_read
= ata_tf_read
,
453 .check_status
= ata_check_status
,
454 .exec_command
= ata_exec_command
,
455 .dev_select
= ata_std_dev_select
,
457 .phy_reset
= mv_phy_reset
,
459 .qc_prep
= mv_qc_prep_iie
,
460 .qc_issue
= mv_qc_issue
,
462 .eng_timeout
= mv_eng_timeout
,
464 .irq_handler
= mv_interrupt
,
465 .irq_clear
= mv_irq_clear
,
467 .scr_read
= mv_scr_read
,
468 .scr_write
= mv_scr_write
,
470 .port_start
= mv_port_start
,
471 .port_stop
= mv_port_stop
,
472 .host_stop
= mv_host_stop
,
475 static const struct ata_port_info mv_port_info
[] = {
478 .host_flags
= MV_COMMON_FLAGS
,
479 .pio_mask
= 0x1f, /* pio0-4 */
480 .udma_mask
= 0x7f, /* udma0-6 */
481 .port_ops
= &mv5_ops
,
485 .host_flags
= (MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
),
486 .pio_mask
= 0x1f, /* pio0-4 */
487 .udma_mask
= 0x7f, /* udma0-6 */
488 .port_ops
= &mv5_ops
,
492 .host_flags
= (MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
),
493 .pio_mask
= 0x1f, /* pio0-4 */
494 .udma_mask
= 0x7f, /* udma0-6 */
495 .port_ops
= &mv5_ops
,
499 .host_flags
= (MV_COMMON_FLAGS
| MV_6XXX_FLAGS
),
500 .pio_mask
= 0x1f, /* pio0-4 */
501 .udma_mask
= 0x7f, /* udma0-6 */
502 .port_ops
= &mv6_ops
,
506 .host_flags
= (MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
508 .pio_mask
= 0x1f, /* pio0-4 */
509 .udma_mask
= 0x7f, /* udma0-6 */
510 .port_ops
= &mv6_ops
,
514 .host_flags
= (MV_COMMON_FLAGS
| MV_6XXX_FLAGS
),
515 .pio_mask
= 0x1f, /* pio0-4 */
516 .udma_mask
= 0x7f, /* udma0-6 */
517 .port_ops
= &mv_iie_ops
,
521 .host_flags
= (MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
523 .pio_mask
= 0x1f, /* pio0-4 */
524 .udma_mask
= 0x7f, /* udma0-6 */
525 .port_ops
= &mv_iie_ops
,
529 static const struct pci_device_id mv_pci_tbl
[] = {
530 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5040), 0, 0, chip_504x
},
531 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5041), 0, 0, chip_504x
},
532 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5080), 0, 0, chip_5080
},
533 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5081), 0, 0, chip_508x
},
535 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x6040), 0, 0, chip_604x
},
536 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x6041), 0, 0, chip_604x
},
537 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x6042), 0, 0, chip_6042
},
538 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x6080), 0, 0, chip_608x
},
539 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x6081), 0, 0, chip_608x
},
541 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2
, 0x0241), 0, 0, chip_604x
},
542 {} /* terminate list */
545 static struct pci_driver mv_pci_driver
= {
547 .id_table
= mv_pci_tbl
,
548 .probe
= mv_init_one
,
549 .remove
= ata_pci_remove_one
,
552 static const struct mv_hw_ops mv5xxx_ops
= {
553 .phy_errata
= mv5_phy_errata
,
554 .enable_leds
= mv5_enable_leds
,
555 .read_preamp
= mv5_read_preamp
,
556 .reset_hc
= mv5_reset_hc
,
557 .reset_flash
= mv5_reset_flash
,
558 .reset_bus
= mv5_reset_bus
,
561 static const struct mv_hw_ops mv6xxx_ops
= {
562 .phy_errata
= mv6_phy_errata
,
563 .enable_leds
= mv6_enable_leds
,
564 .read_preamp
= mv6_read_preamp
,
565 .reset_hc
= mv6_reset_hc
,
566 .reset_flash
= mv6_reset_flash
,
567 .reset_bus
= mv_reset_pci_bus
,
573 static int msi
; /* Use PCI msi; either zero (off, default) or non-zero */
580 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
583 (void) readl(addr
); /* flush to avoid PCI posted write */
586 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
588 return (base
+ MV_SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
591 static inline unsigned int mv_hc_from_port(unsigned int port
)
593 return port
>> MV_PORT_HC_SHIFT
;
596 static inline unsigned int mv_hardport_from_port(unsigned int port
)
598 return port
& MV_PORT_MASK
;
601 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
604 return mv_hc_base(base
, mv_hc_from_port(port
));
607 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
609 return mv_hc_base_from_port(base
, port
) +
610 MV_SATAHC_ARBTR_REG_SZ
+
611 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
614 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
616 return mv_port_base(ap
->host_set
->mmio_base
, ap
->port_no
);
619 static inline int mv_get_hc_count(unsigned long host_flags
)
621 return ((host_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
624 static void mv_irq_clear(struct ata_port
*ap
)
629 * mv_start_dma - Enable eDMA engine
630 * @base: port base address
631 * @pp: port private data
633 * Verify the local cache of the eDMA state is accurate with a
637 * Inherited from caller.
639 static void mv_start_dma(void __iomem
*base
, struct mv_port_priv
*pp
)
641 if (!(MV_PP_FLAG_EDMA_EN
& pp
->pp_flags
)) {
642 writelfl(EDMA_EN
, base
+ EDMA_CMD_OFS
);
643 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
645 WARN_ON(!(EDMA_EN
& readl(base
+ EDMA_CMD_OFS
)));
649 * mv_stop_dma - Disable eDMA engine
650 * @ap: ATA channel to manipulate
652 * Verify the local cache of the eDMA state is accurate with a
656 * Inherited from caller.
658 static void mv_stop_dma(struct ata_port
*ap
)
660 void __iomem
*port_mmio
= mv_ap_base(ap
);
661 struct mv_port_priv
*pp
= ap
->private_data
;
665 if (MV_PP_FLAG_EDMA_EN
& pp
->pp_flags
) {
666 /* Disable EDMA if active. The disable bit auto clears.
668 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD_OFS
);
669 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
671 WARN_ON(EDMA_EN
& readl(port_mmio
+ EDMA_CMD_OFS
));
674 /* now properly wait for the eDMA to stop */
675 for (i
= 1000; i
> 0; i
--) {
676 reg
= readl(port_mmio
+ EDMA_CMD_OFS
);
677 if (!(EDMA_EN
& reg
)) {
684 printk(KERN_ERR
"ata%u: Unable to stop eDMA\n", ap
->id
);
685 /* FIXME: Consider doing a reset here to recover */
690 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
693 for (b
= 0; b
< bytes
; ) {
694 DPRINTK("%p: ", start
+ b
);
695 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
696 printk("%08x ",readl(start
+ b
));
704 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
709 for (b
= 0; b
< bytes
; ) {
710 DPRINTK("%02x: ", b
);
711 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
712 (void) pci_read_config_dword(pdev
,b
,&dw
);
720 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
721 struct pci_dev
*pdev
)
724 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
725 port
>> MV_PORT_HC_SHIFT
);
726 void __iomem
*port_base
;
727 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
730 start_hc
= start_port
= 0;
731 num_ports
= 8; /* shld be benign for 4 port devs */
734 start_hc
= port
>> MV_PORT_HC_SHIFT
;
736 num_ports
= num_hcs
= 1;
738 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
739 num_ports
> 1 ? num_ports
- 1 : start_port
);
742 DPRINTK("PCI config space regs:\n");
743 mv_dump_pci_cfg(pdev
, 0x68);
745 DPRINTK("PCI regs:\n");
746 mv_dump_mem(mmio_base
+0xc00, 0x3c);
747 mv_dump_mem(mmio_base
+0xd00, 0x34);
748 mv_dump_mem(mmio_base
+0xf00, 0x4);
749 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
750 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
751 hc_base
= mv_hc_base(mmio_base
, port
>> MV_PORT_HC_SHIFT
);
752 DPRINTK("HC regs (HC %i):\n", hc
);
753 mv_dump_mem(hc_base
, 0x1c);
755 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
756 port_base
= mv_port_base(mmio_base
, p
);
757 DPRINTK("EDMA regs (port %i):\n",p
);
758 mv_dump_mem(port_base
, 0x54);
759 DPRINTK("SATA regs (port %i):\n",p
);
760 mv_dump_mem(port_base
+0x300, 0x60);
765 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
773 ofs
= SATA_STATUS_OFS
+ (sc_reg_in
* sizeof(u32
));
776 ofs
= SATA_ACTIVE_OFS
; /* active is not with the others */
785 static u32
mv_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
)
787 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
789 if (0xffffffffU
!= ofs
) {
790 return readl(mv_ap_base(ap
) + ofs
);
796 static void mv_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
)
798 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
800 if (0xffffffffU
!= ofs
) {
801 writelfl(val
, mv_ap_base(ap
) + ofs
);
806 * mv_host_stop - Host specific cleanup/stop routine.
807 * @host_set: host data structure
809 * Disable ints, cleanup host memory, call general purpose
813 * Inherited from caller.
815 static void mv_host_stop(struct ata_host_set
*host_set
)
817 struct mv_host_priv
*hpriv
= host_set
->private_data
;
818 struct pci_dev
*pdev
= to_pci_dev(host_set
->dev
);
820 if (hpriv
->hp_flags
& MV_HP_FLAG_MSI
) {
821 pci_disable_msi(pdev
);
826 ata_host_stop(host_set
);
829 static inline void mv_priv_free(struct mv_port_priv
*pp
, struct device
*dev
)
831 dma_free_coherent(dev
, MV_PORT_PRIV_DMA_SZ
, pp
->crpb
, pp
->crpb_dma
);
834 static void mv_edma_cfg(struct mv_host_priv
*hpriv
, void __iomem
*port_mmio
)
836 u32 cfg
= readl(port_mmio
+ EDMA_CFG_OFS
);
838 /* set up non-NCQ EDMA configuration */
839 cfg
&= ~0x1f; /* clear queue depth */
840 cfg
&= ~EDMA_CFG_NCQ
; /* clear NCQ mode */
841 cfg
&= ~(1 << 9); /* disable equeue */
844 cfg
|= (1 << 8); /* enab config burst size mask */
846 else if (IS_GEN_II(hpriv
))
847 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
849 else if (IS_GEN_IIE(hpriv
)) {
850 cfg
|= (1 << 23); /* dis RX PM port mask */
851 cfg
&= ~(1 << 16); /* dis FIS-based switching (for now) */
852 cfg
&= ~(1 << 19); /* dis 128-entry queue (for now?) */
853 cfg
|= (1 << 18); /* enab early completion */
854 cfg
|= (1 << 17); /* enab host q cache */
855 cfg
|= (1 << 22); /* enab cutthrough */
858 writelfl(cfg
, port_mmio
+ EDMA_CFG_OFS
);
862 * mv_port_start - Port specific init/start routine.
863 * @ap: ATA channel to manipulate
865 * Allocate and point to DMA memory, init port private memory,
869 * Inherited from caller.
871 static int mv_port_start(struct ata_port
*ap
)
873 struct device
*dev
= ap
->host_set
->dev
;
874 struct mv_host_priv
*hpriv
= ap
->host_set
->private_data
;
875 struct mv_port_priv
*pp
;
876 void __iomem
*port_mmio
= mv_ap_base(ap
);
881 pp
= kmalloc(sizeof(*pp
), GFP_KERNEL
);
884 memset(pp
, 0, sizeof(*pp
));
886 mem
= dma_alloc_coherent(dev
, MV_PORT_PRIV_DMA_SZ
, &mem_dma
,
890 memset(mem
, 0, MV_PORT_PRIV_DMA_SZ
);
892 rc
= ata_pad_alloc(ap
, dev
);
896 /* First item in chunk of DMA memory:
897 * 32-slot command request table (CRQB), 32 bytes each in size
900 pp
->crqb_dma
= mem_dma
;
902 mem_dma
+= MV_CRQB_Q_SZ
;
905 * 32-slot command response table (CRPB), 8 bytes each in size
908 pp
->crpb_dma
= mem_dma
;
910 mem_dma
+= MV_CRPB_Q_SZ
;
913 * Table of scatter-gather descriptors (ePRD), 16 bytes each
916 pp
->sg_tbl_dma
= mem_dma
;
918 mv_edma_cfg(hpriv
, port_mmio
);
920 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI_OFS
);
921 writelfl(pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
,
922 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
924 if (hpriv
->hp_flags
& MV_HP_ERRATA_XX42A0
)
925 writelfl(pp
->crqb_dma
& 0xffffffff,
926 port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
928 writelfl(0, port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
930 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI_OFS
);
932 if (hpriv
->hp_flags
& MV_HP_ERRATA_XX42A0
)
933 writelfl(pp
->crpb_dma
& 0xffffffff,
934 port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
936 writelfl(0, port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
938 writelfl(pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
,
939 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
941 pp
->req_producer
= pp
->rsp_consumer
= 0;
943 /* Don't turn on EDMA here...do it before DMA commands only. Else
944 * we'll be unable to send non-data, PIO, etc due to restricted access
947 ap
->private_data
= pp
;
951 mv_priv_free(pp
, dev
);
959 * mv_port_stop - Port specific cleanup/stop routine.
960 * @ap: ATA channel to manipulate
962 * Stop DMA, cleanup port memory.
965 * This routine uses the host_set lock to protect the DMA stop.
967 static void mv_port_stop(struct ata_port
*ap
)
969 struct device
*dev
= ap
->host_set
->dev
;
970 struct mv_port_priv
*pp
= ap
->private_data
;
973 spin_lock_irqsave(&ap
->host_set
->lock
, flags
);
975 spin_unlock_irqrestore(&ap
->host_set
->lock
, flags
);
977 ap
->private_data
= NULL
;
978 ata_pad_free(ap
, dev
);
979 mv_priv_free(pp
, dev
);
984 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
985 * @qc: queued command whose SG list to source from
987 * Populate the SG list and mark the last entry.
990 * Inherited from caller.
992 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
994 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
996 struct scatterlist
*sg
;
998 ata_for_each_sg(sg
, qc
) {
1000 u32 sg_len
, len
, offset
;
1002 addr
= sg_dma_address(sg
);
1003 sg_len
= sg_dma_len(sg
);
1006 offset
= addr
& MV_DMA_BOUNDARY
;
1008 if ((offset
+ sg_len
) > 0x10000)
1009 len
= 0x10000 - offset
;
1011 pp
->sg_tbl
[i
].addr
= cpu_to_le32(addr
& 0xffffffff);
1012 pp
->sg_tbl
[i
].addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
1013 pp
->sg_tbl
[i
].flags_size
= cpu_to_le32(len
);
1018 if (!sg_len
&& ata_sg_is_last(sg
, qc
))
1019 pp
->sg_tbl
[i
].flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
1026 static inline unsigned mv_inc_q_index(unsigned *index
)
1028 *index
= (*index
+ 1) & MV_MAX_Q_DEPTH_MASK
;
1032 static inline void mv_crqb_pack_cmd(u16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1034 *cmdw
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1035 (last
? CRQB_CMD_LAST
: 0);
1039 * mv_qc_prep - Host specific command preparation.
1040 * @qc: queued command to prepare
1042 * This routine simply redirects to the general purpose routine
1043 * if command is not DMA. Else, it handles prep of the CRQB
1044 * (command request block), does some sanity checking, and calls
1045 * the SG load routine.
1048 * Inherited from caller.
1050 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
1052 struct ata_port
*ap
= qc
->ap
;
1053 struct mv_port_priv
*pp
= ap
->private_data
;
1055 struct ata_taskfile
*tf
;
1058 if (ATA_PROT_DMA
!= qc
->tf
.protocol
)
1061 /* the req producer index should be the same as we remember it */
1062 WARN_ON(((readl(mv_ap_base(qc
->ap
) + EDMA_REQ_Q_IN_PTR_OFS
) >>
1063 EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
) !=
1066 /* Fill in command request block
1068 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1069 flags
|= CRQB_FLAG_READ
;
1070 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1071 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1073 pp
->crqb
[pp
->req_producer
].sg_addr
=
1074 cpu_to_le32(pp
->sg_tbl_dma
& 0xffffffff);
1075 pp
->crqb
[pp
->req_producer
].sg_addr_hi
=
1076 cpu_to_le32((pp
->sg_tbl_dma
>> 16) >> 16);
1077 pp
->crqb
[pp
->req_producer
].ctrl_flags
= cpu_to_le16(flags
);
1079 cw
= &pp
->crqb
[pp
->req_producer
].ata_cmd
[0];
1082 /* Sadly, the CRQB cannot accomodate all registers--there are
1083 * only 11 bytes...so we must pick and choose required
1084 * registers based on the command. So, we drop feature and
1085 * hob_feature for [RW] DMA commands, but they are needed for
1086 * NCQ. NCQ will drop hob_nsect.
1088 switch (tf
->command
) {
1090 case ATA_CMD_READ_EXT
:
1092 case ATA_CMD_WRITE_EXT
:
1093 case ATA_CMD_WRITE_FUA_EXT
:
1094 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
1096 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1097 case ATA_CMD_FPDMA_READ
:
1098 case ATA_CMD_FPDMA_WRITE
:
1099 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
1100 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
1102 #endif /* FIXME: remove this line when NCQ added */
1104 /* The only other commands EDMA supports in non-queued and
1105 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1106 * of which are defined/used by Linux. If we get here, this
1107 * driver needs work.
1109 * FIXME: modify libata to give qc_prep a return value and
1110 * return error here.
1112 BUG_ON(tf
->command
);
1115 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
1116 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
1117 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
1118 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
1119 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
1120 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
1121 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
1122 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
1123 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
1125 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1131 * mv_qc_prep_iie - Host specific command preparation.
1132 * @qc: queued command to prepare
1134 * This routine simply redirects to the general purpose routine
1135 * if command is not DMA. Else, it handles prep of the CRQB
1136 * (command request block), does some sanity checking, and calls
1137 * the SG load routine.
1140 * Inherited from caller.
1142 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
1144 struct ata_port
*ap
= qc
->ap
;
1145 struct mv_port_priv
*pp
= ap
->private_data
;
1146 struct mv_crqb_iie
*crqb
;
1147 struct ata_taskfile
*tf
;
1150 if (ATA_PROT_DMA
!= qc
->tf
.protocol
)
1153 /* the req producer index should be the same as we remember it */
1154 WARN_ON(((readl(mv_ap_base(qc
->ap
) + EDMA_REQ_Q_IN_PTR_OFS
) >>
1155 EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
) !=
1158 /* Fill in Gen IIE command request block
1160 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1161 flags
|= CRQB_FLAG_READ
;
1163 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1164 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1166 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[pp
->req_producer
];
1167 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
& 0xffffffff);
1168 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
>> 16) >> 16);
1169 crqb
->flags
= cpu_to_le32(flags
);
1172 crqb
->ata_cmd
[0] = cpu_to_le32(
1173 (tf
->command
<< 16) |
1176 crqb
->ata_cmd
[1] = cpu_to_le32(
1182 crqb
->ata_cmd
[2] = cpu_to_le32(
1183 (tf
->hob_lbal
<< 0) |
1184 (tf
->hob_lbam
<< 8) |
1185 (tf
->hob_lbah
<< 16) |
1186 (tf
->hob_feature
<< 24)
1188 crqb
->ata_cmd
[3] = cpu_to_le32(
1190 (tf
->hob_nsect
<< 8)
1193 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1199 * mv_qc_issue - Initiate a command to the host
1200 * @qc: queued command to start
1202 * This routine simply redirects to the general purpose routine
1203 * if command is not DMA. Else, it sanity checks our local
1204 * caches of the request producer/consumer indices then enables
1205 * DMA and bumps the request producer index.
1208 * Inherited from caller.
1210 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
1212 void __iomem
*port_mmio
= mv_ap_base(qc
->ap
);
1213 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1216 if (ATA_PROT_DMA
!= qc
->tf
.protocol
) {
1217 /* We're about to send a non-EDMA capable command to the
1218 * port. Turn off EDMA so there won't be problems accessing
1219 * shadow block, etc registers.
1221 mv_stop_dma(qc
->ap
);
1222 return ata_qc_issue_prot(qc
);
1225 in_ptr
= readl(port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
1227 /* the req producer index should be the same as we remember it */
1228 WARN_ON(((in_ptr
>> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
) !=
1230 /* until we do queuing, the queue should be empty at this point */
1231 WARN_ON(((in_ptr
>> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
) !=
1232 ((readl(port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
) >>
1233 EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
));
1235 mv_inc_q_index(&pp
->req_producer
); /* now incr producer index */
1237 mv_start_dma(port_mmio
, pp
);
1239 /* and write the request in pointer to kick the EDMA to life */
1240 in_ptr
&= EDMA_REQ_Q_BASE_LO_MASK
;
1241 in_ptr
|= pp
->req_producer
<< EDMA_REQ_Q_PTR_SHIFT
;
1242 writelfl(in_ptr
, port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
1248 * mv_get_crpb_status - get status from most recently completed cmd
1249 * @ap: ATA channel to manipulate
1251 * This routine is for use when the port is in DMA mode, when it
1252 * will be using the CRPB (command response block) method of
1253 * returning command completion information. We check indices
1254 * are good, grab status, and bump the response consumer index to
1255 * prove that we're up to date.
1258 * Inherited from caller.
1260 static u8
mv_get_crpb_status(struct ata_port
*ap
)
1262 void __iomem
*port_mmio
= mv_ap_base(ap
);
1263 struct mv_port_priv
*pp
= ap
->private_data
;
1267 out_ptr
= readl(port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
1269 /* the response consumer index should be the same as we remember it */
1270 WARN_ON(((out_ptr
>> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
) !=
1273 ata_status
= pp
->crpb
[pp
->rsp_consumer
].flags
>> CRPB_FLAG_STATUS_SHIFT
;
1275 /* increment our consumer index... */
1276 pp
->rsp_consumer
= mv_inc_q_index(&pp
->rsp_consumer
);
1278 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1279 WARN_ON(((readl(port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
) >>
1280 EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
) !=
1283 /* write out our inc'd consumer index so EDMA knows we're caught up */
1284 out_ptr
&= EDMA_RSP_Q_BASE_LO_MASK
;
1285 out_ptr
|= pp
->rsp_consumer
<< EDMA_RSP_Q_PTR_SHIFT
;
1286 writelfl(out_ptr
, port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
1288 /* Return ATA status register for completed CRPB */
1293 * mv_err_intr - Handle error interrupts on the port
1294 * @ap: ATA channel to manipulate
1296 * In most cases, just clear the interrupt and move on. However,
1297 * some cases require an eDMA reset, which is done right before
1298 * the COMRESET in mv_phy_reset(). The SERR case requires a
1299 * clear of pending errors in the SATA SERROR register. Finally,
1300 * if the port disabled DMA, update our cached copy to match.
1303 * Inherited from caller.
1305 static void mv_err_intr(struct ata_port
*ap
)
1307 void __iomem
*port_mmio
= mv_ap_base(ap
);
1308 u32 edma_err_cause
, serr
= 0;
1310 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1312 if (EDMA_ERR_SERR
& edma_err_cause
) {
1313 serr
= scr_read(ap
, SCR_ERROR
);
1314 scr_write_flush(ap
, SCR_ERROR
, serr
);
1316 if (EDMA_ERR_SELF_DIS
& edma_err_cause
) {
1317 struct mv_port_priv
*pp
= ap
->private_data
;
1318 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1320 DPRINTK(KERN_ERR
"ata%u: port error; EDMA err cause: 0x%08x "
1321 "SERR: 0x%08x\n", ap
->id
, edma_err_cause
, serr
);
1323 /* Clear EDMA now that SERR cleanup done */
1324 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1326 /* check for fatal here and recover if needed */
1327 if (EDMA_ERR_FATAL
& edma_err_cause
) {
1328 mv_stop_and_reset(ap
);
1333 * mv_host_intr - Handle all interrupts on the given host controller
1334 * @host_set: host specific structure
1335 * @relevant: port error bits relevant to this host controller
1336 * @hc: which host controller we're to look at
1338 * Read then write clear the HC interrupt status then walk each
1339 * port connected to the HC and see if it needs servicing. Port
1340 * success ints are reported in the HC interrupt status reg, the
1341 * port error ints are reported in the higher level main
1342 * interrupt status register and thus are passed in via the
1343 * 'relevant' argument.
1346 * Inherited from caller.
1348 static void mv_host_intr(struct ata_host_set
*host_set
, u32 relevant
,
1351 void __iomem
*mmio
= host_set
->mmio_base
;
1352 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
1353 struct ata_port
*ap
;
1354 struct ata_queued_cmd
*qc
;
1356 int shift
, port
, port0
, hard_port
, handled
;
1357 unsigned int err_mask
;
1362 port0
= MV_PORTS_PER_HC
;
1365 /* we'll need the HC success int register in most cases */
1366 hc_irq_cause
= readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
);
1368 writelfl(~hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
1371 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1372 hc
,relevant
,hc_irq_cause
);
1374 for (port
= port0
; port
< port0
+ MV_PORTS_PER_HC
; port
++) {
1376 ap
= host_set
->ports
[port
];
1377 hard_port
= port
& MV_PORT_MASK
; /* range 0-3 */
1378 handled
= 0; /* ensure ata_status is set if handled++ */
1380 if ((CRPB_DMA_DONE
<< hard_port
) & hc_irq_cause
) {
1381 /* new CRPB on the queue; just one at a time until NCQ
1383 ata_status
= mv_get_crpb_status(ap
);
1385 } else if ((DEV_IRQ
<< hard_port
) & hc_irq_cause
) {
1386 /* received ATA IRQ; read the status reg to clear INTRQ
1388 ata_status
= readb((void __iomem
*)
1389 ap
->ioaddr
.status_addr
);
1394 (ap
->flags
& (ATA_FLAG_PORT_DISABLED
| ATA_FLAG_NOINTR
)))
1397 err_mask
= ac_err_mask(ata_status
);
1399 shift
= port
<< 1; /* (port * 2) */
1400 if (port
>= MV_PORTS_PER_HC
) {
1401 shift
++; /* skip bit 8 in the HC Main IRQ reg */
1403 if ((PORT0_ERR
<< shift
) & relevant
) {
1405 err_mask
|= AC_ERR_OTHER
;
1409 if (handled
&& ap
) {
1410 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
1412 VPRINTK("port %u IRQ found for qc, "
1413 "ata_status 0x%x\n", port
,ata_status
);
1414 /* mark qc status appropriately */
1415 if (!(qc
->tf
.ctl
& ATA_NIEN
)) {
1416 qc
->err_mask
|= err_mask
;
1417 ata_qc_complete(qc
);
1428 * @dev_instance: private data; in this case the host structure
1431 * Read the read only register to determine if any host
1432 * controllers have pending interrupts. If so, call lower level
1433 * routine to handle. Also check for PCI errors which are only
1437 * This routine holds the host_set lock while processing pending
1440 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
,
1441 struct pt_regs
*regs
)
1443 struct ata_host_set
*host_set
= dev_instance
;
1444 unsigned int hc
, handled
= 0, n_hcs
;
1445 void __iomem
*mmio
= host_set
->mmio_base
;
1448 irq_stat
= readl(mmio
+ HC_MAIN_IRQ_CAUSE_OFS
);
1450 /* check the cases where we either have nothing pending or have read
1451 * a bogus register value which can indicate HW removal or PCI fault
1453 if (!irq_stat
|| (0xffffffffU
== irq_stat
)) {
1457 n_hcs
= mv_get_hc_count(host_set
->ports
[0]->flags
);
1458 spin_lock(&host_set
->lock
);
1460 for (hc
= 0; hc
< n_hcs
; hc
++) {
1461 u32 relevant
= irq_stat
& (HC0_IRQ_PEND
<< (hc
* HC_SHIFT
));
1463 mv_host_intr(host_set
, relevant
, hc
);
1467 if (PCI_ERR
& irq_stat
) {
1468 printk(KERN_ERR DRV_NAME
": PCI ERROR; PCI IRQ cause=0x%08x\n",
1469 readl(mmio
+ PCI_IRQ_CAUSE_OFS
));
1471 DPRINTK("All regs @ PCI error\n");
1472 mv_dump_all_regs(mmio
, -1, to_pci_dev(host_set
->dev
));
1474 writelfl(0, mmio
+ PCI_IRQ_CAUSE_OFS
);
1477 spin_unlock(&host_set
->lock
);
1479 return IRQ_RETVAL(handled
);
1482 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
1484 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
1485 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
1487 return hc_mmio
+ ofs
;
1490 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
1494 switch (sc_reg_in
) {
1498 ofs
= sc_reg_in
* sizeof(u32
);
1507 static u32
mv5_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
)
1509 void __iomem
*mmio
= mv5_phy_base(ap
->host_set
->mmio_base
, ap
->port_no
);
1510 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
1512 if (ofs
!= 0xffffffffU
)
1513 return readl(mmio
+ ofs
);
1518 static void mv5_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
)
1520 void __iomem
*mmio
= mv5_phy_base(ap
->host_set
->mmio_base
, ap
->port_no
);
1521 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
1523 if (ofs
!= 0xffffffffU
)
1524 writelfl(val
, mmio
+ ofs
);
1527 static void mv5_reset_bus(struct pci_dev
*pdev
, void __iomem
*mmio
)
1532 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &rev_id
);
1534 early_5080
= (pdev
->device
== 0x5080) && (rev_id
== 0);
1537 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1539 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1542 mv_reset_pci_bus(pdev
, mmio
);
1545 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1547 writel(0x0fcfffff, mmio
+ MV_FLASH_CTL
);
1550 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
1553 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
1556 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
1558 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
1559 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
1562 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1566 writel(0, mmio
+ MV_GPIO_PORT_CTL
);
1568 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1570 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1572 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1575 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1578 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
1579 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1581 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
1584 tmp
= readl(phy_mmio
+ MV5_LT_MODE
);
1586 writel(tmp
, phy_mmio
+ MV5_LT_MODE
);
1588 tmp
= readl(phy_mmio
+ MV5_PHY_CTL
);
1591 writel(tmp
, phy_mmio
+ MV5_PHY_CTL
);
1594 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
1596 tmp
|= hpriv
->signal
[port
].pre
;
1597 tmp
|= hpriv
->signal
[port
].amps
;
1598 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
1603 #define ZERO(reg) writel(0, port_mmio + (reg))
1604 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1607 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
1609 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD_OFS
);
1611 mv_channel_reset(hpriv
, mmio
, port
);
1613 ZERO(0x028); /* command */
1614 writel(0x11f, port_mmio
+ EDMA_CFG_OFS
);
1615 ZERO(0x004); /* timer */
1616 ZERO(0x008); /* irq err cause */
1617 ZERO(0x00c); /* irq err mask */
1618 ZERO(0x010); /* rq bah */
1619 ZERO(0x014); /* rq inp */
1620 ZERO(0x018); /* rq outp */
1621 ZERO(0x01c); /* respq bah */
1622 ZERO(0x024); /* respq outp */
1623 ZERO(0x020); /* respq inp */
1624 ZERO(0x02c); /* test control */
1625 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT
);
1629 #define ZERO(reg) writel(0, hc_mmio + (reg))
1630 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1633 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
1641 tmp
= readl(hc_mmio
+ 0x20);
1644 writel(tmp
, hc_mmio
+ 0x20);
1648 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1651 unsigned int hc
, port
;
1653 for (hc
= 0; hc
< n_hc
; hc
++) {
1654 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
1655 mv5_reset_hc_port(hpriv
, mmio
,
1656 (hc
* MV_PORTS_PER_HC
) + port
);
1658 mv5_reset_one_hc(hpriv
, mmio
, hc
);
1665 #define ZERO(reg) writel(0, mmio + (reg))
1666 static void mv_reset_pci_bus(struct pci_dev
*pdev
, void __iomem
*mmio
)
1670 tmp
= readl(mmio
+ MV_PCI_MODE
);
1672 writel(tmp
, mmio
+ MV_PCI_MODE
);
1674 ZERO(MV_PCI_DISC_TIMER
);
1675 ZERO(MV_PCI_MSI_TRIGGER
);
1676 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT
);
1677 ZERO(HC_MAIN_IRQ_MASK_OFS
);
1678 ZERO(MV_PCI_SERR_MASK
);
1679 ZERO(PCI_IRQ_CAUSE_OFS
);
1680 ZERO(PCI_IRQ_MASK_OFS
);
1681 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
1682 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
1683 ZERO(MV_PCI_ERR_ATTRIBUTE
);
1684 ZERO(MV_PCI_ERR_COMMAND
);
1688 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1692 mv5_reset_flash(hpriv
, mmio
);
1694 tmp
= readl(mmio
+ MV_GPIO_PORT_CTL
);
1696 tmp
|= (1 << 5) | (1 << 6);
1697 writel(tmp
, mmio
+ MV_GPIO_PORT_CTL
);
1701 * mv6_reset_hc - Perform the 6xxx global soft reset
1702 * @mmio: base address of the HBA
1704 * This routine only applies to 6xxx parts.
1707 * Inherited from caller.
1709 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1712 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS_OFS
;
1716 /* Following procedure defined in PCI "main command and status
1720 writel(t
| STOP_PCI_MASTER
, reg
);
1722 for (i
= 0; i
< 1000; i
++) {
1725 if (PCI_MASTER_EMPTY
& t
) {
1729 if (!(PCI_MASTER_EMPTY
& t
)) {
1730 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
1738 writel(t
| GLOB_SFT_RST
, reg
);
1741 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
1743 if (!(GLOB_SFT_RST
& t
)) {
1744 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
1749 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1752 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
1755 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
1757 if (GLOB_SFT_RST
& t
) {
1758 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
1765 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
1768 void __iomem
*port_mmio
;
1771 tmp
= readl(mmio
+ MV_RESET_CFG
);
1772 if ((tmp
& (1 << 0)) == 0) {
1773 hpriv
->signal
[idx
].amps
= 0x7 << 8;
1774 hpriv
->signal
[idx
].pre
= 0x1 << 5;
1778 port_mmio
= mv_port_base(mmio
, idx
);
1779 tmp
= readl(port_mmio
+ PHY_MODE2
);
1781 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
1782 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
1785 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1787 writel(0x00000060, mmio
+ MV_GPIO_PORT_CTL
);
1790 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1793 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
1795 u32 hp_flags
= hpriv
->hp_flags
;
1797 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
1799 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
1802 if (fix_phy_mode2
) {
1803 m2
= readl(port_mmio
+ PHY_MODE2
);
1806 writel(m2
, port_mmio
+ PHY_MODE2
);
1810 m2
= readl(port_mmio
+ PHY_MODE2
);
1811 m2
&= ~((1 << 16) | (1 << 31));
1812 writel(m2
, port_mmio
+ PHY_MODE2
);
1817 /* who knows what this magic does */
1818 tmp
= readl(port_mmio
+ PHY_MODE3
);
1821 writel(tmp
, port_mmio
+ PHY_MODE3
);
1823 if (fix_phy_mode4
) {
1826 m4
= readl(port_mmio
+ PHY_MODE4
);
1828 if (hp_flags
& MV_HP_ERRATA_60X1B2
)
1829 tmp
= readl(port_mmio
+ 0x310);
1831 m4
= (m4
& ~(1 << 1)) | (1 << 0);
1833 writel(m4
, port_mmio
+ PHY_MODE4
);
1835 if (hp_flags
& MV_HP_ERRATA_60X1B2
)
1836 writel(tmp
, port_mmio
+ 0x310);
1839 /* Revert values of pre-emphasis and signal amps to the saved ones */
1840 m2
= readl(port_mmio
+ PHY_MODE2
);
1842 m2
&= ~MV_M2_PREAMP_MASK
;
1843 m2
|= hpriv
->signal
[port
].amps
;
1844 m2
|= hpriv
->signal
[port
].pre
;
1847 /* according to mvSata 3.6.1, some IIE values are fixed */
1848 if (IS_GEN_IIE(hpriv
)) {
1853 writel(m2
, port_mmio
+ PHY_MODE2
);
1856 static void mv_channel_reset(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1857 unsigned int port_no
)
1859 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
1861 writelfl(ATA_RST
, port_mmio
+ EDMA_CMD_OFS
);
1863 if (IS_60XX(hpriv
)) {
1864 u32 ifctl
= readl(port_mmio
+ SATA_INTERFACE_CTL
);
1865 ifctl
|= (1 << 12) | (1 << 7);
1866 writelfl(ifctl
, port_mmio
+ SATA_INTERFACE_CTL
);
1869 udelay(25); /* allow reset propagation */
1871 /* Spec never mentions clearing the bit. Marvell's driver does
1872 * clear the bit, however.
1874 writelfl(0, port_mmio
+ EDMA_CMD_OFS
);
1876 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
1882 static void mv_stop_and_reset(struct ata_port
*ap
)
1884 struct mv_host_priv
*hpriv
= ap
->host_set
->private_data
;
1885 void __iomem
*mmio
= ap
->host_set
->mmio_base
;
1889 mv_channel_reset(hpriv
, mmio
, ap
->port_no
);
1891 __mv_phy_reset(ap
, 0);
1894 static inline void __msleep(unsigned int msec
, int can_sleep
)
1903 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1904 * @ap: ATA channel to manipulate
1906 * Part of this is taken from __sata_phy_reset and modified to
1907 * not sleep since this routine gets called from interrupt level.
1910 * Inherited from caller. This is coded to safe to call at
1911 * interrupt level, i.e. it does not sleep.
1913 static void __mv_phy_reset(struct ata_port
*ap
, int can_sleep
)
1915 struct mv_port_priv
*pp
= ap
->private_data
;
1916 struct mv_host_priv
*hpriv
= ap
->host_set
->private_data
;
1917 void __iomem
*port_mmio
= mv_ap_base(ap
);
1918 struct ata_taskfile tf
;
1919 struct ata_device
*dev
= &ap
->device
[0];
1920 unsigned long timeout
;
1924 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap
->port_no
, port_mmio
);
1926 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1927 "SCtrl 0x%08x\n", mv_scr_read(ap
, SCR_STATUS
),
1928 mv_scr_read(ap
, SCR_ERROR
), mv_scr_read(ap
, SCR_CONTROL
));
1930 /* Issue COMRESET via SControl */
1932 scr_write_flush(ap
, SCR_CONTROL
, 0x301);
1933 __msleep(1, can_sleep
);
1935 scr_write_flush(ap
, SCR_CONTROL
, 0x300);
1936 __msleep(20, can_sleep
);
1938 timeout
= jiffies
+ msecs_to_jiffies(200);
1940 sstatus
= scr_read(ap
, SCR_STATUS
) & 0x3;
1941 if ((sstatus
== 3) || (sstatus
== 0))
1944 __msleep(1, can_sleep
);
1945 } while (time_before(jiffies
, timeout
));
1947 /* work around errata */
1948 if (IS_60XX(hpriv
) &&
1949 (sstatus
!= 0x0) && (sstatus
!= 0x113) && (sstatus
!= 0x123) &&
1951 goto comreset_retry
;
1953 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1954 "SCtrl 0x%08x\n", mv_scr_read(ap
, SCR_STATUS
),
1955 mv_scr_read(ap
, SCR_ERROR
), mv_scr_read(ap
, SCR_CONTROL
));
1957 if (sata_dev_present(ap
)) {
1960 printk(KERN_INFO
"ata%u: no device found (phy stat %08x)\n",
1961 ap
->id
, scr_read(ap
, SCR_STATUS
));
1962 ata_port_disable(ap
);
1965 ap
->cbl
= ATA_CBL_SATA
;
1967 /* even after SStatus reflects that device is ready,
1968 * it seems to take a while for link to be fully
1969 * established (and thus Status no longer 0x80/0x7F),
1970 * so we poll a bit for that, here.
1974 u8 drv_stat
= ata_check_status(ap
);
1975 if ((drv_stat
!= 0x80) && (drv_stat
!= 0x7f))
1977 __msleep(500, can_sleep
);
1982 tf
.lbah
= readb((void __iomem
*) ap
->ioaddr
.lbah_addr
);
1983 tf
.lbam
= readb((void __iomem
*) ap
->ioaddr
.lbam_addr
);
1984 tf
.lbal
= readb((void __iomem
*) ap
->ioaddr
.lbal_addr
);
1985 tf
.nsect
= readb((void __iomem
*) ap
->ioaddr
.nsect_addr
);
1987 dev
->class = ata_dev_classify(&tf
);
1988 if (!ata_dev_present(dev
)) {
1989 VPRINTK("Port disabled post-sig: No device present.\n");
1990 ata_port_disable(ap
);
1993 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1995 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2000 static void mv_phy_reset(struct ata_port
*ap
)
2002 __mv_phy_reset(ap
, 1);
2006 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
2007 * @ap: ATA channel to manipulate
2009 * Intent is to clear all pending error conditions, reset the
2010 * chip/bus, fail the command, and move on.
2013 * This routine holds the host_set lock while failing the command.
2015 static void mv_eng_timeout(struct ata_port
*ap
)
2017 struct ata_queued_cmd
*qc
;
2019 printk(KERN_ERR
"ata%u: Entering mv_eng_timeout\n",ap
->id
);
2020 DPRINTK("All regs @ start of eng_timeout\n");
2021 mv_dump_all_regs(ap
->host_set
->mmio_base
, ap
->port_no
,
2022 to_pci_dev(ap
->host_set
->dev
));
2024 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
2025 printk(KERN_ERR
"mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2026 ap
->host_set
->mmio_base
, ap
, qc
, qc
->scsicmd
,
2027 &qc
->scsicmd
->cmnd
);
2030 mv_stop_and_reset(ap
);
2032 qc
->err_mask
|= AC_ERR_TIMEOUT
;
2033 ata_eh_qc_complete(qc
);
2037 * mv_port_init - Perform some early initialization on a single port.
2038 * @port: libata data structure storing shadow register addresses
2039 * @port_mmio: base address of the port
2041 * Initialize shadow register mmio addresses, clear outstanding
2042 * interrupts on the port, and unmask interrupts for the future
2043 * start of the port.
2046 * Inherited from caller.
2048 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
2050 unsigned long shd_base
= (unsigned long) port_mmio
+ SHD_BLK_OFS
;
2053 /* PIO related setup
2055 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
2057 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
2058 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
2059 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
2060 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
2061 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
2062 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
2064 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
2065 /* special case: control/altstatus doesn't have ATA_REG_ address */
2066 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST_OFS
;
2069 port
->cmd_addr
= port
->bmdma_addr
= port
->scr_addr
= 0;
2071 /* Clear any currently outstanding port interrupt conditions */
2072 serr_ofs
= mv_scr_offset(SCR_ERROR
);
2073 writelfl(readl(port_mmio
+ serr_ofs
), port_mmio
+ serr_ofs
);
2074 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2076 /* unmask all EDMA error interrupts */
2077 writelfl(~0, port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
);
2079 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2080 readl(port_mmio
+ EDMA_CFG_OFS
),
2081 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
),
2082 readl(port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
));
2085 static int mv_chip_id(struct pci_dev
*pdev
, struct mv_host_priv
*hpriv
,
2086 unsigned int board_idx
)
2089 u32 hp_flags
= hpriv
->hp_flags
;
2091 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &rev_id
);
2095 hpriv
->ops
= &mv5xxx_ops
;
2096 hp_flags
|= MV_HP_50XX
;
2100 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2103 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2106 dev_printk(KERN_WARNING
, &pdev
->dev
,
2107 "Applying 50XXB2 workarounds to unknown rev\n");
2108 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2115 hpriv
->ops
= &mv5xxx_ops
;
2116 hp_flags
|= MV_HP_50XX
;
2120 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2123 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2126 dev_printk(KERN_WARNING
, &pdev
->dev
,
2127 "Applying B2 workarounds to unknown rev\n");
2128 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2135 hpriv
->ops
= &mv6xxx_ops
;
2139 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2142 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2145 dev_printk(KERN_WARNING
, &pdev
->dev
,
2146 "Applying B2 workarounds to unknown rev\n");
2147 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2154 hpriv
->ops
= &mv6xxx_ops
;
2156 hp_flags
|= MV_HP_GEN_IIE
;
2160 hp_flags
|= MV_HP_ERRATA_XX42A0
;
2163 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2166 dev_printk(KERN_WARNING
, &pdev
->dev
,
2167 "Applying 60X1C0 workarounds to unknown rev\n");
2168 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2174 printk(KERN_ERR DRV_NAME
": BUG: invalid board index %u\n", board_idx
);
2178 hpriv
->hp_flags
= hp_flags
;
2184 * mv_init_host - Perform some early initialization of the host.
2185 * @pdev: host PCI device
2186 * @probe_ent: early data struct representing the host
2188 * If possible, do an early global reset of the host. Then do
2189 * our port init and clear/unmask all/relevant host interrupts.
2192 * Inherited from caller.
2194 static int mv_init_host(struct pci_dev
*pdev
, struct ata_probe_ent
*probe_ent
,
2195 unsigned int board_idx
)
2197 int rc
= 0, n_hc
, port
, hc
;
2198 void __iomem
*mmio
= probe_ent
->mmio_base
;
2199 struct mv_host_priv
*hpriv
= probe_ent
->private_data
;
2201 /* global interrupt mask */
2202 writel(0, mmio
+ HC_MAIN_IRQ_MASK_OFS
);
2204 rc
= mv_chip_id(pdev
, hpriv
, board_idx
);
2208 n_hc
= mv_get_hc_count(probe_ent
->host_flags
);
2209 probe_ent
->n_ports
= MV_PORTS_PER_HC
* n_hc
;
2211 for (port
= 0; port
< probe_ent
->n_ports
; port
++)
2212 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
2214 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
2218 hpriv
->ops
->reset_flash(hpriv
, mmio
);
2219 hpriv
->ops
->reset_bus(pdev
, mmio
);
2220 hpriv
->ops
->enable_leds(hpriv
, mmio
);
2222 for (port
= 0; port
< probe_ent
->n_ports
; port
++) {
2223 if (IS_60XX(hpriv
)) {
2224 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2226 u32 ifctl
= readl(port_mmio
+ SATA_INTERFACE_CTL
);
2228 writelfl(ifctl
, port_mmio
+ SATA_INTERFACE_CTL
);
2231 hpriv
->ops
->phy_errata(hpriv
, mmio
, port
);
2234 for (port
= 0; port
< probe_ent
->n_ports
; port
++) {
2235 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2236 mv_port_init(&probe_ent
->port
[port
], port_mmio
);
2239 for (hc
= 0; hc
< n_hc
; hc
++) {
2240 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
2242 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2243 "(before clear)=0x%08x\n", hc
,
2244 readl(hc_mmio
+ HC_CFG_OFS
),
2245 readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
));
2247 /* Clear any currently outstanding hc interrupt conditions */
2248 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2251 /* Clear any currently outstanding host interrupt conditions */
2252 writelfl(0, mmio
+ PCI_IRQ_CAUSE_OFS
);
2254 /* and unmask interrupt generation for host regs */
2255 writelfl(PCI_UNMASK_ALL_IRQS
, mmio
+ PCI_IRQ_MASK_OFS
);
2256 writelfl(~HC_MAIN_MASKED_IRQS
, mmio
+ HC_MAIN_IRQ_MASK_OFS
);
2258 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2259 "PCI int cause/mask=0x%08x/0x%08x\n",
2260 readl(mmio
+ HC_MAIN_IRQ_CAUSE_OFS
),
2261 readl(mmio
+ HC_MAIN_IRQ_MASK_OFS
),
2262 readl(mmio
+ PCI_IRQ_CAUSE_OFS
),
2263 readl(mmio
+ PCI_IRQ_MASK_OFS
));
2270 * mv_print_info - Dump key info to kernel log for perusal.
2271 * @probe_ent: early data struct representing the host
2273 * FIXME: complete this.
2276 * Inherited from caller.
2278 static void mv_print_info(struct ata_probe_ent
*probe_ent
)
2280 struct pci_dev
*pdev
= to_pci_dev(probe_ent
->dev
);
2281 struct mv_host_priv
*hpriv
= probe_ent
->private_data
;
2285 /* Use this to determine the HW stepping of the chip so we know
2286 * what errata to workaround
2288 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &rev_id
);
2290 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
2293 else if (scc
== 0x01)
2298 dev_printk(KERN_INFO
, &pdev
->dev
,
2299 "%u slots %u ports %s mode IRQ via %s\n",
2300 (unsigned)MV_MAX_Q_DEPTH
, probe_ent
->n_ports
,
2301 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
2305 * mv_init_one - handle a positive probe of a Marvell host
2306 * @pdev: PCI device found
2307 * @ent: PCI device ID entry for the matched host
2310 * Inherited from caller.
2312 static int mv_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2314 static int printed_version
= 0;
2315 struct ata_probe_ent
*probe_ent
= NULL
;
2316 struct mv_host_priv
*hpriv
;
2317 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
2318 void __iomem
*mmio_base
;
2319 int pci_dev_busy
= 0, rc
;
2321 if (!printed_version
++)
2322 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
2324 rc
= pci_enable_device(pdev
);
2329 rc
= pci_request_regions(pdev
, DRV_NAME
);
2335 probe_ent
= kmalloc(sizeof(*probe_ent
), GFP_KERNEL
);
2336 if (probe_ent
== NULL
) {
2338 goto err_out_regions
;
2341 memset(probe_ent
, 0, sizeof(*probe_ent
));
2342 probe_ent
->dev
= pci_dev_to_dev(pdev
);
2343 INIT_LIST_HEAD(&probe_ent
->node
);
2345 mmio_base
= pci_iomap(pdev
, MV_PRIMARY_BAR
, 0);
2346 if (mmio_base
== NULL
) {
2348 goto err_out_free_ent
;
2351 hpriv
= kmalloc(sizeof(*hpriv
), GFP_KERNEL
);
2354 goto err_out_iounmap
;
2356 memset(hpriv
, 0, sizeof(*hpriv
));
2358 probe_ent
->sht
= mv_port_info
[board_idx
].sht
;
2359 probe_ent
->host_flags
= mv_port_info
[board_idx
].host_flags
;
2360 probe_ent
->pio_mask
= mv_port_info
[board_idx
].pio_mask
;
2361 probe_ent
->udma_mask
= mv_port_info
[board_idx
].udma_mask
;
2362 probe_ent
->port_ops
= mv_port_info
[board_idx
].port_ops
;
2364 probe_ent
->irq
= pdev
->irq
;
2365 probe_ent
->irq_flags
= SA_SHIRQ
;
2366 probe_ent
->mmio_base
= mmio_base
;
2367 probe_ent
->private_data
= hpriv
;
2369 /* initialize adapter */
2370 rc
= mv_init_host(pdev
, probe_ent
, board_idx
);
2375 /* Enable interrupts */
2376 if (msi
&& pci_enable_msi(pdev
) == 0) {
2377 hpriv
->hp_flags
|= MV_HP_FLAG_MSI
;
2382 mv_dump_pci_cfg(pdev
, 0x68);
2383 mv_print_info(probe_ent
);
2385 if (ata_device_add(probe_ent
) == 0) {
2386 rc
= -ENODEV
; /* No devices discovered */
2387 goto err_out_dev_add
;
2394 if (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) {
2395 pci_disable_msi(pdev
);
2402 pci_iounmap(pdev
, mmio_base
);
2406 pci_release_regions(pdev
);
2408 if (!pci_dev_busy
) {
2409 pci_disable_device(pdev
);
2415 static int __init
mv_init(void)
2417 return pci_module_init(&mv_pci_driver
);
2420 static void __exit
mv_exit(void)
2422 pci_unregister_driver(&mv_pci_driver
);
2425 MODULE_AUTHOR("Brett Russ");
2426 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2427 MODULE_LICENSE("GPL");
2428 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
2429 MODULE_VERSION(DRV_VERSION
);
2431 module_param(msi
, int, 0444);
2432 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
2434 module_init(mv_init
);
2435 module_exit(mv_exit
);