tracehook: vfork-done
[linux-2.6/mini2440.git] / kernel / fork.c
blobabb3ed6298f6678150550a6a2af899cf823662c7
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/task_io_accounting_ops.h>
43 #include <linux/rcupdate.h>
44 #include <linux/ptrace.h>
45 #include <linux/mount.h>
46 #include <linux/audit.h>
47 #include <linux/memcontrol.h>
48 #include <linux/profile.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/freezer.h>
54 #include <linux/delayacct.h>
55 #include <linux/taskstats_kern.h>
56 #include <linux/random.h>
57 #include <linux/tty.h>
58 #include <linux/proc_fs.h>
59 #include <linux/blkdev.h>
61 #include <asm/pgtable.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/mmu_context.h>
65 #include <asm/cacheflush.h>
66 #include <asm/tlbflush.h>
69 * Protected counters by write_lock_irq(&tasklist_lock)
71 unsigned long total_forks; /* Handle normal Linux uptimes. */
72 int nr_threads; /* The idle threads do not count.. */
74 int max_threads; /* tunable limit on nr_threads */
76 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
78 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
80 int nr_processes(void)
82 int cpu;
83 int total = 0;
85 for_each_online_cpu(cpu)
86 total += per_cpu(process_counts, cpu);
88 return total;
91 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
92 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
93 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
94 static struct kmem_cache *task_struct_cachep;
95 #endif
97 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
98 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
100 #ifdef CONFIG_DEBUG_STACK_USAGE
101 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
102 #else
103 gfp_t mask = GFP_KERNEL;
104 #endif
105 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
108 static inline void free_thread_info(struct thread_info *ti)
110 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
112 #endif
114 /* SLAB cache for signal_struct structures (tsk->signal) */
115 static struct kmem_cache *signal_cachep;
117 /* SLAB cache for sighand_struct structures (tsk->sighand) */
118 struct kmem_cache *sighand_cachep;
120 /* SLAB cache for files_struct structures (tsk->files) */
121 struct kmem_cache *files_cachep;
123 /* SLAB cache for fs_struct structures (tsk->fs) */
124 struct kmem_cache *fs_cachep;
126 /* SLAB cache for vm_area_struct structures */
127 struct kmem_cache *vm_area_cachep;
129 /* SLAB cache for mm_struct structures (tsk->mm) */
130 static struct kmem_cache *mm_cachep;
132 void free_task(struct task_struct *tsk)
134 prop_local_destroy_single(&tsk->dirties);
135 free_thread_info(tsk->stack);
136 rt_mutex_debug_task_free(tsk);
137 free_task_struct(tsk);
139 EXPORT_SYMBOL(free_task);
141 void __put_task_struct(struct task_struct *tsk)
143 WARN_ON(!tsk->exit_state);
144 WARN_ON(atomic_read(&tsk->usage));
145 WARN_ON(tsk == current);
147 security_task_free(tsk);
148 free_uid(tsk->user);
149 put_group_info(tsk->group_info);
150 delayacct_tsk_free(tsk);
152 if (!profile_handoff_task(tsk))
153 free_task(tsk);
157 * macro override instead of weak attribute alias, to workaround
158 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
160 #ifndef arch_task_cache_init
161 #define arch_task_cache_init()
162 #endif
164 void __init fork_init(unsigned long mempages)
166 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
167 #ifndef ARCH_MIN_TASKALIGN
168 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
169 #endif
170 /* create a slab on which task_structs can be allocated */
171 task_struct_cachep =
172 kmem_cache_create("task_struct", sizeof(struct task_struct),
173 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
174 #endif
176 /* do the arch specific task caches init */
177 arch_task_cache_init();
180 * The default maximum number of threads is set to a safe
181 * value: the thread structures can take up at most half
182 * of memory.
184 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
187 * we need to allow at least 20 threads to boot a system
189 if(max_threads < 20)
190 max_threads = 20;
192 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
193 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
194 init_task.signal->rlim[RLIMIT_SIGPENDING] =
195 init_task.signal->rlim[RLIMIT_NPROC];
198 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
199 struct task_struct *src)
201 *dst = *src;
202 return 0;
205 static struct task_struct *dup_task_struct(struct task_struct *orig)
207 struct task_struct *tsk;
208 struct thread_info *ti;
209 int err;
211 prepare_to_copy(orig);
213 tsk = alloc_task_struct();
214 if (!tsk)
215 return NULL;
217 ti = alloc_thread_info(tsk);
218 if (!ti) {
219 free_task_struct(tsk);
220 return NULL;
223 err = arch_dup_task_struct(tsk, orig);
224 if (err)
225 goto out;
227 tsk->stack = ti;
229 err = prop_local_init_single(&tsk->dirties);
230 if (err)
231 goto out;
233 setup_thread_stack(tsk, orig);
235 #ifdef CONFIG_CC_STACKPROTECTOR
236 tsk->stack_canary = get_random_int();
237 #endif
239 /* One for us, one for whoever does the "release_task()" (usually parent) */
240 atomic_set(&tsk->usage,2);
241 atomic_set(&tsk->fs_excl, 0);
242 #ifdef CONFIG_BLK_DEV_IO_TRACE
243 tsk->btrace_seq = 0;
244 #endif
245 tsk->splice_pipe = NULL;
246 return tsk;
248 out:
249 free_thread_info(ti);
250 free_task_struct(tsk);
251 return NULL;
254 #ifdef CONFIG_MMU
255 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
257 struct vm_area_struct *mpnt, *tmp, **pprev;
258 struct rb_node **rb_link, *rb_parent;
259 int retval;
260 unsigned long charge;
261 struct mempolicy *pol;
263 down_write(&oldmm->mmap_sem);
264 flush_cache_dup_mm(oldmm);
266 * Not linked in yet - no deadlock potential:
268 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
270 mm->locked_vm = 0;
271 mm->mmap = NULL;
272 mm->mmap_cache = NULL;
273 mm->free_area_cache = oldmm->mmap_base;
274 mm->cached_hole_size = ~0UL;
275 mm->map_count = 0;
276 cpus_clear(mm->cpu_vm_mask);
277 mm->mm_rb = RB_ROOT;
278 rb_link = &mm->mm_rb.rb_node;
279 rb_parent = NULL;
280 pprev = &mm->mmap;
282 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
283 struct file *file;
285 if (mpnt->vm_flags & VM_DONTCOPY) {
286 long pages = vma_pages(mpnt);
287 mm->total_vm -= pages;
288 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
289 -pages);
290 continue;
292 charge = 0;
293 if (mpnt->vm_flags & VM_ACCOUNT) {
294 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
295 if (security_vm_enough_memory(len))
296 goto fail_nomem;
297 charge = len;
299 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
300 if (!tmp)
301 goto fail_nomem;
302 *tmp = *mpnt;
303 pol = mpol_dup(vma_policy(mpnt));
304 retval = PTR_ERR(pol);
305 if (IS_ERR(pol))
306 goto fail_nomem_policy;
307 vma_set_policy(tmp, pol);
308 tmp->vm_flags &= ~VM_LOCKED;
309 tmp->vm_mm = mm;
310 tmp->vm_next = NULL;
311 anon_vma_link(tmp);
312 file = tmp->vm_file;
313 if (file) {
314 struct inode *inode = file->f_path.dentry->d_inode;
315 get_file(file);
316 if (tmp->vm_flags & VM_DENYWRITE)
317 atomic_dec(&inode->i_writecount);
319 /* insert tmp into the share list, just after mpnt */
320 spin_lock(&file->f_mapping->i_mmap_lock);
321 tmp->vm_truncate_count = mpnt->vm_truncate_count;
322 flush_dcache_mmap_lock(file->f_mapping);
323 vma_prio_tree_add(tmp, mpnt);
324 flush_dcache_mmap_unlock(file->f_mapping);
325 spin_unlock(&file->f_mapping->i_mmap_lock);
329 * Clear hugetlb-related page reserves for children. This only
330 * affects MAP_PRIVATE mappings. Faults generated by the child
331 * are not guaranteed to succeed, even if read-only
333 if (is_vm_hugetlb_page(tmp))
334 reset_vma_resv_huge_pages(tmp);
337 * Link in the new vma and copy the page table entries.
339 *pprev = tmp;
340 pprev = &tmp->vm_next;
342 __vma_link_rb(mm, tmp, rb_link, rb_parent);
343 rb_link = &tmp->vm_rb.rb_right;
344 rb_parent = &tmp->vm_rb;
346 mm->map_count++;
347 retval = copy_page_range(mm, oldmm, mpnt);
349 if (tmp->vm_ops && tmp->vm_ops->open)
350 tmp->vm_ops->open(tmp);
352 if (retval)
353 goto out;
355 /* a new mm has just been created */
356 arch_dup_mmap(oldmm, mm);
357 retval = 0;
358 out:
359 up_write(&mm->mmap_sem);
360 flush_tlb_mm(oldmm);
361 up_write(&oldmm->mmap_sem);
362 return retval;
363 fail_nomem_policy:
364 kmem_cache_free(vm_area_cachep, tmp);
365 fail_nomem:
366 retval = -ENOMEM;
367 vm_unacct_memory(charge);
368 goto out;
371 static inline int mm_alloc_pgd(struct mm_struct * mm)
373 mm->pgd = pgd_alloc(mm);
374 if (unlikely(!mm->pgd))
375 return -ENOMEM;
376 return 0;
379 static inline void mm_free_pgd(struct mm_struct * mm)
381 pgd_free(mm, mm->pgd);
383 #else
384 #define dup_mmap(mm, oldmm) (0)
385 #define mm_alloc_pgd(mm) (0)
386 #define mm_free_pgd(mm)
387 #endif /* CONFIG_MMU */
389 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
391 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
392 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
394 #include <linux/init_task.h>
396 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
398 atomic_set(&mm->mm_users, 1);
399 atomic_set(&mm->mm_count, 1);
400 init_rwsem(&mm->mmap_sem);
401 INIT_LIST_HEAD(&mm->mmlist);
402 mm->flags = (current->mm) ? current->mm->flags
403 : MMF_DUMP_FILTER_DEFAULT;
404 mm->core_state = NULL;
405 mm->nr_ptes = 0;
406 set_mm_counter(mm, file_rss, 0);
407 set_mm_counter(mm, anon_rss, 0);
408 spin_lock_init(&mm->page_table_lock);
409 rwlock_init(&mm->ioctx_list_lock);
410 mm->ioctx_list = NULL;
411 mm->free_area_cache = TASK_UNMAPPED_BASE;
412 mm->cached_hole_size = ~0UL;
413 mm_init_owner(mm, p);
415 if (likely(!mm_alloc_pgd(mm))) {
416 mm->def_flags = 0;
417 return mm;
420 free_mm(mm);
421 return NULL;
425 * Allocate and initialize an mm_struct.
427 struct mm_struct * mm_alloc(void)
429 struct mm_struct * mm;
431 mm = allocate_mm();
432 if (mm) {
433 memset(mm, 0, sizeof(*mm));
434 mm = mm_init(mm, current);
436 return mm;
440 * Called when the last reference to the mm
441 * is dropped: either by a lazy thread or by
442 * mmput. Free the page directory and the mm.
444 void __mmdrop(struct mm_struct *mm)
446 BUG_ON(mm == &init_mm);
447 mm_free_pgd(mm);
448 destroy_context(mm);
449 free_mm(mm);
451 EXPORT_SYMBOL_GPL(__mmdrop);
454 * Decrement the use count and release all resources for an mm.
456 void mmput(struct mm_struct *mm)
458 might_sleep();
460 if (atomic_dec_and_test(&mm->mm_users)) {
461 exit_aio(mm);
462 exit_mmap(mm);
463 set_mm_exe_file(mm, NULL);
464 if (!list_empty(&mm->mmlist)) {
465 spin_lock(&mmlist_lock);
466 list_del(&mm->mmlist);
467 spin_unlock(&mmlist_lock);
469 put_swap_token(mm);
470 mmdrop(mm);
473 EXPORT_SYMBOL_GPL(mmput);
476 * get_task_mm - acquire a reference to the task's mm
478 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
479 * this kernel workthread has transiently adopted a user mm with use_mm,
480 * to do its AIO) is not set and if so returns a reference to it, after
481 * bumping up the use count. User must release the mm via mmput()
482 * after use. Typically used by /proc and ptrace.
484 struct mm_struct *get_task_mm(struct task_struct *task)
486 struct mm_struct *mm;
488 task_lock(task);
489 mm = task->mm;
490 if (mm) {
491 if (task->flags & PF_KTHREAD)
492 mm = NULL;
493 else
494 atomic_inc(&mm->mm_users);
496 task_unlock(task);
497 return mm;
499 EXPORT_SYMBOL_GPL(get_task_mm);
501 /* Please note the differences between mmput and mm_release.
502 * mmput is called whenever we stop holding onto a mm_struct,
503 * error success whatever.
505 * mm_release is called after a mm_struct has been removed
506 * from the current process.
508 * This difference is important for error handling, when we
509 * only half set up a mm_struct for a new process and need to restore
510 * the old one. Because we mmput the new mm_struct before
511 * restoring the old one. . .
512 * Eric Biederman 10 January 1998
514 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
516 struct completion *vfork_done = tsk->vfork_done;
518 /* Get rid of any cached register state */
519 deactivate_mm(tsk, mm);
521 /* notify parent sleeping on vfork() */
522 if (vfork_done) {
523 tsk->vfork_done = NULL;
524 complete(vfork_done);
528 * If we're exiting normally, clear a user-space tid field if
529 * requested. We leave this alone when dying by signal, to leave
530 * the value intact in a core dump, and to save the unnecessary
531 * trouble otherwise. Userland only wants this done for a sys_exit.
533 if (tsk->clear_child_tid
534 && !(tsk->flags & PF_SIGNALED)
535 && atomic_read(&mm->mm_users) > 1) {
536 u32 __user * tidptr = tsk->clear_child_tid;
537 tsk->clear_child_tid = NULL;
540 * We don't check the error code - if userspace has
541 * not set up a proper pointer then tough luck.
543 put_user(0, tidptr);
544 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
549 * Allocate a new mm structure and copy contents from the
550 * mm structure of the passed in task structure.
552 struct mm_struct *dup_mm(struct task_struct *tsk)
554 struct mm_struct *mm, *oldmm = current->mm;
555 int err;
557 if (!oldmm)
558 return NULL;
560 mm = allocate_mm();
561 if (!mm)
562 goto fail_nomem;
564 memcpy(mm, oldmm, sizeof(*mm));
566 /* Initializing for Swap token stuff */
567 mm->token_priority = 0;
568 mm->last_interval = 0;
570 if (!mm_init(mm, tsk))
571 goto fail_nomem;
573 if (init_new_context(tsk, mm))
574 goto fail_nocontext;
576 dup_mm_exe_file(oldmm, mm);
578 err = dup_mmap(mm, oldmm);
579 if (err)
580 goto free_pt;
582 mm->hiwater_rss = get_mm_rss(mm);
583 mm->hiwater_vm = mm->total_vm;
585 return mm;
587 free_pt:
588 mmput(mm);
590 fail_nomem:
591 return NULL;
593 fail_nocontext:
595 * If init_new_context() failed, we cannot use mmput() to free the mm
596 * because it calls destroy_context()
598 mm_free_pgd(mm);
599 free_mm(mm);
600 return NULL;
603 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
605 struct mm_struct * mm, *oldmm;
606 int retval;
608 tsk->min_flt = tsk->maj_flt = 0;
609 tsk->nvcsw = tsk->nivcsw = 0;
611 tsk->mm = NULL;
612 tsk->active_mm = NULL;
615 * Are we cloning a kernel thread?
617 * We need to steal a active VM for that..
619 oldmm = current->mm;
620 if (!oldmm)
621 return 0;
623 if (clone_flags & CLONE_VM) {
624 atomic_inc(&oldmm->mm_users);
625 mm = oldmm;
626 goto good_mm;
629 retval = -ENOMEM;
630 mm = dup_mm(tsk);
631 if (!mm)
632 goto fail_nomem;
634 good_mm:
635 /* Initializing for Swap token stuff */
636 mm->token_priority = 0;
637 mm->last_interval = 0;
639 tsk->mm = mm;
640 tsk->active_mm = mm;
641 return 0;
643 fail_nomem:
644 return retval;
647 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
649 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
650 /* We don't need to lock fs - think why ;-) */
651 if (fs) {
652 atomic_set(&fs->count, 1);
653 rwlock_init(&fs->lock);
654 fs->umask = old->umask;
655 read_lock(&old->lock);
656 fs->root = old->root;
657 path_get(&old->root);
658 fs->pwd = old->pwd;
659 path_get(&old->pwd);
660 if (old->altroot.dentry) {
661 fs->altroot = old->altroot;
662 path_get(&old->altroot);
663 } else {
664 fs->altroot.mnt = NULL;
665 fs->altroot.dentry = NULL;
667 read_unlock(&old->lock);
669 return fs;
672 struct fs_struct *copy_fs_struct(struct fs_struct *old)
674 return __copy_fs_struct(old);
677 EXPORT_SYMBOL_GPL(copy_fs_struct);
679 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
681 if (clone_flags & CLONE_FS) {
682 atomic_inc(&current->fs->count);
683 return 0;
685 tsk->fs = __copy_fs_struct(current->fs);
686 if (!tsk->fs)
687 return -ENOMEM;
688 return 0;
691 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
693 struct files_struct *oldf, *newf;
694 int error = 0;
697 * A background process may not have any files ...
699 oldf = current->files;
700 if (!oldf)
701 goto out;
703 if (clone_flags & CLONE_FILES) {
704 atomic_inc(&oldf->count);
705 goto out;
708 newf = dup_fd(oldf, &error);
709 if (!newf)
710 goto out;
712 tsk->files = newf;
713 error = 0;
714 out:
715 return error;
718 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
720 #ifdef CONFIG_BLOCK
721 struct io_context *ioc = current->io_context;
723 if (!ioc)
724 return 0;
726 * Share io context with parent, if CLONE_IO is set
728 if (clone_flags & CLONE_IO) {
729 tsk->io_context = ioc_task_link(ioc);
730 if (unlikely(!tsk->io_context))
731 return -ENOMEM;
732 } else if (ioprio_valid(ioc->ioprio)) {
733 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
734 if (unlikely(!tsk->io_context))
735 return -ENOMEM;
737 tsk->io_context->ioprio = ioc->ioprio;
739 #endif
740 return 0;
743 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
745 struct sighand_struct *sig;
747 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
748 atomic_inc(&current->sighand->count);
749 return 0;
751 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
752 rcu_assign_pointer(tsk->sighand, sig);
753 if (!sig)
754 return -ENOMEM;
755 atomic_set(&sig->count, 1);
756 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
757 return 0;
760 void __cleanup_sighand(struct sighand_struct *sighand)
762 if (atomic_dec_and_test(&sighand->count))
763 kmem_cache_free(sighand_cachep, sighand);
766 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
768 struct signal_struct *sig;
769 int ret;
771 if (clone_flags & CLONE_THREAD) {
772 atomic_inc(&current->signal->count);
773 atomic_inc(&current->signal->live);
774 return 0;
776 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
777 tsk->signal = sig;
778 if (!sig)
779 return -ENOMEM;
781 ret = copy_thread_group_keys(tsk);
782 if (ret < 0) {
783 kmem_cache_free(signal_cachep, sig);
784 return ret;
787 atomic_set(&sig->count, 1);
788 atomic_set(&sig->live, 1);
789 init_waitqueue_head(&sig->wait_chldexit);
790 sig->flags = 0;
791 sig->group_exit_code = 0;
792 sig->group_exit_task = NULL;
793 sig->group_stop_count = 0;
794 sig->curr_target = tsk;
795 init_sigpending(&sig->shared_pending);
796 INIT_LIST_HEAD(&sig->posix_timers);
798 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
799 sig->it_real_incr.tv64 = 0;
800 sig->real_timer.function = it_real_fn;
802 sig->it_virt_expires = cputime_zero;
803 sig->it_virt_incr = cputime_zero;
804 sig->it_prof_expires = cputime_zero;
805 sig->it_prof_incr = cputime_zero;
807 sig->leader = 0; /* session leadership doesn't inherit */
808 sig->tty_old_pgrp = NULL;
810 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
811 sig->gtime = cputime_zero;
812 sig->cgtime = cputime_zero;
813 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
814 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
815 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
816 #ifdef CONFIG_TASK_XACCT
817 sig->rchar = sig->wchar = sig->syscr = sig->syscw = 0;
818 #endif
819 #ifdef CONFIG_TASK_IO_ACCOUNTING
820 memset(&sig->ioac, 0, sizeof(sig->ioac));
821 #endif
822 sig->sum_sched_runtime = 0;
823 INIT_LIST_HEAD(&sig->cpu_timers[0]);
824 INIT_LIST_HEAD(&sig->cpu_timers[1]);
825 INIT_LIST_HEAD(&sig->cpu_timers[2]);
826 taskstats_tgid_init(sig);
828 task_lock(current->group_leader);
829 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
830 task_unlock(current->group_leader);
832 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
834 * New sole thread in the process gets an expiry time
835 * of the whole CPU time limit.
837 tsk->it_prof_expires =
838 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
840 acct_init_pacct(&sig->pacct);
842 tty_audit_fork(sig);
844 return 0;
847 void __cleanup_signal(struct signal_struct *sig)
849 exit_thread_group_keys(sig);
850 kmem_cache_free(signal_cachep, sig);
853 static void cleanup_signal(struct task_struct *tsk)
855 struct signal_struct *sig = tsk->signal;
857 atomic_dec(&sig->live);
859 if (atomic_dec_and_test(&sig->count))
860 __cleanup_signal(sig);
863 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
865 unsigned long new_flags = p->flags;
867 new_flags &= ~PF_SUPERPRIV;
868 new_flags |= PF_FORKNOEXEC;
869 new_flags |= PF_STARTING;
870 p->flags = new_flags;
871 clear_freeze_flag(p);
874 asmlinkage long sys_set_tid_address(int __user *tidptr)
876 current->clear_child_tid = tidptr;
878 return task_pid_vnr(current);
881 static void rt_mutex_init_task(struct task_struct *p)
883 spin_lock_init(&p->pi_lock);
884 #ifdef CONFIG_RT_MUTEXES
885 plist_head_init(&p->pi_waiters, &p->pi_lock);
886 p->pi_blocked_on = NULL;
887 #endif
890 #ifdef CONFIG_MM_OWNER
891 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
893 mm->owner = p;
895 #endif /* CONFIG_MM_OWNER */
898 * This creates a new process as a copy of the old one,
899 * but does not actually start it yet.
901 * It copies the registers, and all the appropriate
902 * parts of the process environment (as per the clone
903 * flags). The actual kick-off is left to the caller.
905 static struct task_struct *copy_process(unsigned long clone_flags,
906 unsigned long stack_start,
907 struct pt_regs *regs,
908 unsigned long stack_size,
909 int __user *child_tidptr,
910 struct pid *pid,
911 int trace)
913 int retval;
914 struct task_struct *p;
915 int cgroup_callbacks_done = 0;
917 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
918 return ERR_PTR(-EINVAL);
921 * Thread groups must share signals as well, and detached threads
922 * can only be started up within the thread group.
924 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
925 return ERR_PTR(-EINVAL);
928 * Shared signal handlers imply shared VM. By way of the above,
929 * thread groups also imply shared VM. Blocking this case allows
930 * for various simplifications in other code.
932 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
933 return ERR_PTR(-EINVAL);
935 retval = security_task_create(clone_flags);
936 if (retval)
937 goto fork_out;
939 retval = -ENOMEM;
940 p = dup_task_struct(current);
941 if (!p)
942 goto fork_out;
944 rt_mutex_init_task(p);
946 #ifdef CONFIG_PROVE_LOCKING
947 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
948 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
949 #endif
950 retval = -EAGAIN;
951 if (atomic_read(&p->user->processes) >=
952 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
953 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
954 p->user != current->nsproxy->user_ns->root_user)
955 goto bad_fork_free;
958 atomic_inc(&p->user->__count);
959 atomic_inc(&p->user->processes);
960 get_group_info(p->group_info);
963 * If multiple threads are within copy_process(), then this check
964 * triggers too late. This doesn't hurt, the check is only there
965 * to stop root fork bombs.
967 if (nr_threads >= max_threads)
968 goto bad_fork_cleanup_count;
970 if (!try_module_get(task_thread_info(p)->exec_domain->module))
971 goto bad_fork_cleanup_count;
973 if (p->binfmt && !try_module_get(p->binfmt->module))
974 goto bad_fork_cleanup_put_domain;
976 p->did_exec = 0;
977 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
978 copy_flags(clone_flags, p);
979 INIT_LIST_HEAD(&p->children);
980 INIT_LIST_HEAD(&p->sibling);
981 #ifdef CONFIG_PREEMPT_RCU
982 p->rcu_read_lock_nesting = 0;
983 p->rcu_flipctr_idx = 0;
984 #endif /* #ifdef CONFIG_PREEMPT_RCU */
985 p->vfork_done = NULL;
986 spin_lock_init(&p->alloc_lock);
988 clear_tsk_thread_flag(p, TIF_SIGPENDING);
989 init_sigpending(&p->pending);
991 p->utime = cputime_zero;
992 p->stime = cputime_zero;
993 p->gtime = cputime_zero;
994 p->utimescaled = cputime_zero;
995 p->stimescaled = cputime_zero;
996 p->prev_utime = cputime_zero;
997 p->prev_stime = cputime_zero;
999 #ifdef CONFIG_DETECT_SOFTLOCKUP
1000 p->last_switch_count = 0;
1001 p->last_switch_timestamp = 0;
1002 #endif
1004 #ifdef CONFIG_TASK_XACCT
1005 p->rchar = 0; /* I/O counter: bytes read */
1006 p->wchar = 0; /* I/O counter: bytes written */
1007 p->syscr = 0; /* I/O counter: read syscalls */
1008 p->syscw = 0; /* I/O counter: write syscalls */
1009 #endif
1010 task_io_accounting_init(p);
1011 acct_clear_integrals(p);
1013 p->it_virt_expires = cputime_zero;
1014 p->it_prof_expires = cputime_zero;
1015 p->it_sched_expires = 0;
1016 INIT_LIST_HEAD(&p->cpu_timers[0]);
1017 INIT_LIST_HEAD(&p->cpu_timers[1]);
1018 INIT_LIST_HEAD(&p->cpu_timers[2]);
1020 p->lock_depth = -1; /* -1 = no lock */
1021 do_posix_clock_monotonic_gettime(&p->start_time);
1022 p->real_start_time = p->start_time;
1023 monotonic_to_bootbased(&p->real_start_time);
1024 #ifdef CONFIG_SECURITY
1025 p->security = NULL;
1026 #endif
1027 p->cap_bset = current->cap_bset;
1028 p->io_context = NULL;
1029 p->audit_context = NULL;
1030 cgroup_fork(p);
1031 #ifdef CONFIG_NUMA
1032 p->mempolicy = mpol_dup(p->mempolicy);
1033 if (IS_ERR(p->mempolicy)) {
1034 retval = PTR_ERR(p->mempolicy);
1035 p->mempolicy = NULL;
1036 goto bad_fork_cleanup_cgroup;
1038 mpol_fix_fork_child_flag(p);
1039 #endif
1040 #ifdef CONFIG_TRACE_IRQFLAGS
1041 p->irq_events = 0;
1042 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1043 p->hardirqs_enabled = 1;
1044 #else
1045 p->hardirqs_enabled = 0;
1046 #endif
1047 p->hardirq_enable_ip = 0;
1048 p->hardirq_enable_event = 0;
1049 p->hardirq_disable_ip = _THIS_IP_;
1050 p->hardirq_disable_event = 0;
1051 p->softirqs_enabled = 1;
1052 p->softirq_enable_ip = _THIS_IP_;
1053 p->softirq_enable_event = 0;
1054 p->softirq_disable_ip = 0;
1055 p->softirq_disable_event = 0;
1056 p->hardirq_context = 0;
1057 p->softirq_context = 0;
1058 #endif
1059 #ifdef CONFIG_LOCKDEP
1060 p->lockdep_depth = 0; /* no locks held yet */
1061 p->curr_chain_key = 0;
1062 p->lockdep_recursion = 0;
1063 #endif
1065 #ifdef CONFIG_DEBUG_MUTEXES
1066 p->blocked_on = NULL; /* not blocked yet */
1067 #endif
1069 /* Perform scheduler related setup. Assign this task to a CPU. */
1070 sched_fork(p, clone_flags);
1072 if ((retval = security_task_alloc(p)))
1073 goto bad_fork_cleanup_policy;
1074 if ((retval = audit_alloc(p)))
1075 goto bad_fork_cleanup_security;
1076 /* copy all the process information */
1077 if ((retval = copy_semundo(clone_flags, p)))
1078 goto bad_fork_cleanup_audit;
1079 if ((retval = copy_files(clone_flags, p)))
1080 goto bad_fork_cleanup_semundo;
1081 if ((retval = copy_fs(clone_flags, p)))
1082 goto bad_fork_cleanup_files;
1083 if ((retval = copy_sighand(clone_flags, p)))
1084 goto bad_fork_cleanup_fs;
1085 if ((retval = copy_signal(clone_flags, p)))
1086 goto bad_fork_cleanup_sighand;
1087 if ((retval = copy_mm(clone_flags, p)))
1088 goto bad_fork_cleanup_signal;
1089 if ((retval = copy_keys(clone_flags, p)))
1090 goto bad_fork_cleanup_mm;
1091 if ((retval = copy_namespaces(clone_flags, p)))
1092 goto bad_fork_cleanup_keys;
1093 if ((retval = copy_io(clone_flags, p)))
1094 goto bad_fork_cleanup_namespaces;
1095 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1096 if (retval)
1097 goto bad_fork_cleanup_io;
1099 if (pid != &init_struct_pid) {
1100 retval = -ENOMEM;
1101 pid = alloc_pid(task_active_pid_ns(p));
1102 if (!pid)
1103 goto bad_fork_cleanup_io;
1105 if (clone_flags & CLONE_NEWPID) {
1106 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1107 if (retval < 0)
1108 goto bad_fork_free_pid;
1112 p->pid = pid_nr(pid);
1113 p->tgid = p->pid;
1114 if (clone_flags & CLONE_THREAD)
1115 p->tgid = current->tgid;
1117 if (current->nsproxy != p->nsproxy) {
1118 retval = ns_cgroup_clone(p, pid);
1119 if (retval)
1120 goto bad_fork_free_pid;
1123 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1125 * Clear TID on mm_release()?
1127 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1128 #ifdef CONFIG_FUTEX
1129 p->robust_list = NULL;
1130 #ifdef CONFIG_COMPAT
1131 p->compat_robust_list = NULL;
1132 #endif
1133 INIT_LIST_HEAD(&p->pi_state_list);
1134 p->pi_state_cache = NULL;
1135 #endif
1137 * sigaltstack should be cleared when sharing the same VM
1139 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1140 p->sas_ss_sp = p->sas_ss_size = 0;
1143 * Syscall tracing should be turned off in the child regardless
1144 * of CLONE_PTRACE.
1146 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1147 #ifdef TIF_SYSCALL_EMU
1148 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1149 #endif
1150 clear_all_latency_tracing(p);
1152 /* Our parent execution domain becomes current domain
1153 These must match for thread signalling to apply */
1154 p->parent_exec_id = p->self_exec_id;
1156 /* ok, now we should be set up.. */
1157 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1158 p->pdeath_signal = 0;
1159 p->exit_state = 0;
1162 * Ok, make it visible to the rest of the system.
1163 * We dont wake it up yet.
1165 p->group_leader = p;
1166 INIT_LIST_HEAD(&p->thread_group);
1168 /* Now that the task is set up, run cgroup callbacks if
1169 * necessary. We need to run them before the task is visible
1170 * on the tasklist. */
1171 cgroup_fork_callbacks(p);
1172 cgroup_callbacks_done = 1;
1174 /* Need tasklist lock for parent etc handling! */
1175 write_lock_irq(&tasklist_lock);
1178 * The task hasn't been attached yet, so its cpus_allowed mask will
1179 * not be changed, nor will its assigned CPU.
1181 * The cpus_allowed mask of the parent may have changed after it was
1182 * copied first time - so re-copy it here, then check the child's CPU
1183 * to ensure it is on a valid CPU (and if not, just force it back to
1184 * parent's CPU). This avoids alot of nasty races.
1186 p->cpus_allowed = current->cpus_allowed;
1187 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1188 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1189 !cpu_online(task_cpu(p))))
1190 set_task_cpu(p, smp_processor_id());
1192 /* CLONE_PARENT re-uses the old parent */
1193 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1194 p->real_parent = current->real_parent;
1195 else
1196 p->real_parent = current;
1198 spin_lock(&current->sighand->siglock);
1201 * Process group and session signals need to be delivered to just the
1202 * parent before the fork or both the parent and the child after the
1203 * fork. Restart if a signal comes in before we add the new process to
1204 * it's process group.
1205 * A fatal signal pending means that current will exit, so the new
1206 * thread can't slip out of an OOM kill (or normal SIGKILL).
1208 recalc_sigpending();
1209 if (signal_pending(current)) {
1210 spin_unlock(&current->sighand->siglock);
1211 write_unlock_irq(&tasklist_lock);
1212 retval = -ERESTARTNOINTR;
1213 goto bad_fork_free_pid;
1216 if (clone_flags & CLONE_THREAD) {
1217 p->group_leader = current->group_leader;
1218 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1220 if (!cputime_eq(current->signal->it_virt_expires,
1221 cputime_zero) ||
1222 !cputime_eq(current->signal->it_prof_expires,
1223 cputime_zero) ||
1224 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1225 !list_empty(&current->signal->cpu_timers[0]) ||
1226 !list_empty(&current->signal->cpu_timers[1]) ||
1227 !list_empty(&current->signal->cpu_timers[2])) {
1229 * Have child wake up on its first tick to check
1230 * for process CPU timers.
1232 p->it_prof_expires = jiffies_to_cputime(1);
1236 if (likely(p->pid)) {
1237 list_add_tail(&p->sibling, &p->real_parent->children);
1238 tracehook_finish_clone(p, clone_flags, trace);
1240 if (thread_group_leader(p)) {
1241 if (clone_flags & CLONE_NEWPID)
1242 p->nsproxy->pid_ns->child_reaper = p;
1244 p->signal->leader_pid = pid;
1245 p->signal->tty = current->signal->tty;
1246 set_task_pgrp(p, task_pgrp_nr(current));
1247 set_task_session(p, task_session_nr(current));
1248 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1249 attach_pid(p, PIDTYPE_SID, task_session(current));
1250 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1251 __get_cpu_var(process_counts)++;
1253 attach_pid(p, PIDTYPE_PID, pid);
1254 nr_threads++;
1257 total_forks++;
1258 spin_unlock(&current->sighand->siglock);
1259 write_unlock_irq(&tasklist_lock);
1260 proc_fork_connector(p);
1261 cgroup_post_fork(p);
1262 return p;
1264 bad_fork_free_pid:
1265 if (pid != &init_struct_pid)
1266 free_pid(pid);
1267 bad_fork_cleanup_io:
1268 put_io_context(p->io_context);
1269 bad_fork_cleanup_namespaces:
1270 exit_task_namespaces(p);
1271 bad_fork_cleanup_keys:
1272 exit_keys(p);
1273 bad_fork_cleanup_mm:
1274 if (p->mm)
1275 mmput(p->mm);
1276 bad_fork_cleanup_signal:
1277 cleanup_signal(p);
1278 bad_fork_cleanup_sighand:
1279 __cleanup_sighand(p->sighand);
1280 bad_fork_cleanup_fs:
1281 exit_fs(p); /* blocking */
1282 bad_fork_cleanup_files:
1283 exit_files(p); /* blocking */
1284 bad_fork_cleanup_semundo:
1285 exit_sem(p);
1286 bad_fork_cleanup_audit:
1287 audit_free(p);
1288 bad_fork_cleanup_security:
1289 security_task_free(p);
1290 bad_fork_cleanup_policy:
1291 #ifdef CONFIG_NUMA
1292 mpol_put(p->mempolicy);
1293 bad_fork_cleanup_cgroup:
1294 #endif
1295 cgroup_exit(p, cgroup_callbacks_done);
1296 delayacct_tsk_free(p);
1297 if (p->binfmt)
1298 module_put(p->binfmt->module);
1299 bad_fork_cleanup_put_domain:
1300 module_put(task_thread_info(p)->exec_domain->module);
1301 bad_fork_cleanup_count:
1302 put_group_info(p->group_info);
1303 atomic_dec(&p->user->processes);
1304 free_uid(p->user);
1305 bad_fork_free:
1306 free_task(p);
1307 fork_out:
1308 return ERR_PTR(retval);
1311 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1313 memset(regs, 0, sizeof(struct pt_regs));
1314 return regs;
1317 struct task_struct * __cpuinit fork_idle(int cpu)
1319 struct task_struct *task;
1320 struct pt_regs regs;
1322 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1323 &init_struct_pid, 0);
1324 if (!IS_ERR(task))
1325 init_idle(task, cpu);
1327 return task;
1331 * Ok, this is the main fork-routine.
1333 * It copies the process, and if successful kick-starts
1334 * it and waits for it to finish using the VM if required.
1336 long do_fork(unsigned long clone_flags,
1337 unsigned long stack_start,
1338 struct pt_regs *regs,
1339 unsigned long stack_size,
1340 int __user *parent_tidptr,
1341 int __user *child_tidptr)
1343 struct task_struct *p;
1344 int trace = 0;
1345 long nr;
1348 * We hope to recycle these flags after 2.6.26
1350 if (unlikely(clone_flags & CLONE_STOPPED)) {
1351 static int __read_mostly count = 100;
1353 if (count > 0 && printk_ratelimit()) {
1354 char comm[TASK_COMM_LEN];
1356 count--;
1357 printk(KERN_INFO "fork(): process `%s' used deprecated "
1358 "clone flags 0x%lx\n",
1359 get_task_comm(comm, current),
1360 clone_flags & CLONE_STOPPED);
1365 * When called from kernel_thread, don't do user tracing stuff.
1367 if (likely(user_mode(regs)))
1368 trace = tracehook_prepare_clone(clone_flags);
1370 p = copy_process(clone_flags, stack_start, regs, stack_size,
1371 child_tidptr, NULL, trace);
1373 * Do this prior waking up the new thread - the thread pointer
1374 * might get invalid after that point, if the thread exits quickly.
1376 if (!IS_ERR(p)) {
1377 struct completion vfork;
1379 nr = task_pid_vnr(p);
1381 if (clone_flags & CLONE_PARENT_SETTID)
1382 put_user(nr, parent_tidptr);
1384 if (clone_flags & CLONE_VFORK) {
1385 p->vfork_done = &vfork;
1386 init_completion(&vfork);
1389 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1392 * We set PF_STARTING at creation in case tracing wants to
1393 * use this to distinguish a fully live task from one that
1394 * hasn't gotten to tracehook_report_clone() yet. Now we
1395 * clear it and set the child going.
1397 p->flags &= ~PF_STARTING;
1399 if (unlikely(clone_flags & CLONE_STOPPED)) {
1401 * We'll start up with an immediate SIGSTOP.
1403 sigaddset(&p->pending.signal, SIGSTOP);
1404 set_tsk_thread_flag(p, TIF_SIGPENDING);
1405 __set_task_state(p, TASK_STOPPED);
1406 } else {
1407 wake_up_new_task(p, clone_flags);
1410 tracehook_report_clone_complete(trace, regs,
1411 clone_flags, nr, p);
1413 if (clone_flags & CLONE_VFORK) {
1414 freezer_do_not_count();
1415 wait_for_completion(&vfork);
1416 freezer_count();
1417 tracehook_report_vfork_done(p, nr);
1419 } else {
1420 nr = PTR_ERR(p);
1422 return nr;
1425 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1426 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1427 #endif
1429 static void sighand_ctor(void *data)
1431 struct sighand_struct *sighand = data;
1433 spin_lock_init(&sighand->siglock);
1434 init_waitqueue_head(&sighand->signalfd_wqh);
1437 void __init proc_caches_init(void)
1439 sighand_cachep = kmem_cache_create("sighand_cache",
1440 sizeof(struct sighand_struct), 0,
1441 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1442 sighand_ctor);
1443 signal_cachep = kmem_cache_create("signal_cache",
1444 sizeof(struct signal_struct), 0,
1445 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1446 files_cachep = kmem_cache_create("files_cache",
1447 sizeof(struct files_struct), 0,
1448 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1449 fs_cachep = kmem_cache_create("fs_cache",
1450 sizeof(struct fs_struct), 0,
1451 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1452 vm_area_cachep = kmem_cache_create("vm_area_struct",
1453 sizeof(struct vm_area_struct), 0,
1454 SLAB_PANIC, NULL);
1455 mm_cachep = kmem_cache_create("mm_struct",
1456 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1457 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1461 * Check constraints on flags passed to the unshare system call and
1462 * force unsharing of additional process context as appropriate.
1464 static void check_unshare_flags(unsigned long *flags_ptr)
1467 * If unsharing a thread from a thread group, must also
1468 * unshare vm.
1470 if (*flags_ptr & CLONE_THREAD)
1471 *flags_ptr |= CLONE_VM;
1474 * If unsharing vm, must also unshare signal handlers.
1476 if (*flags_ptr & CLONE_VM)
1477 *flags_ptr |= CLONE_SIGHAND;
1480 * If unsharing signal handlers and the task was created
1481 * using CLONE_THREAD, then must unshare the thread
1483 if ((*flags_ptr & CLONE_SIGHAND) &&
1484 (atomic_read(&current->signal->count) > 1))
1485 *flags_ptr |= CLONE_THREAD;
1488 * If unsharing namespace, must also unshare filesystem information.
1490 if (*flags_ptr & CLONE_NEWNS)
1491 *flags_ptr |= CLONE_FS;
1495 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1497 static int unshare_thread(unsigned long unshare_flags)
1499 if (unshare_flags & CLONE_THREAD)
1500 return -EINVAL;
1502 return 0;
1506 * Unshare the filesystem structure if it is being shared
1508 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1510 struct fs_struct *fs = current->fs;
1512 if ((unshare_flags & CLONE_FS) &&
1513 (fs && atomic_read(&fs->count) > 1)) {
1514 *new_fsp = __copy_fs_struct(current->fs);
1515 if (!*new_fsp)
1516 return -ENOMEM;
1519 return 0;
1523 * Unsharing of sighand is not supported yet
1525 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1527 struct sighand_struct *sigh = current->sighand;
1529 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1530 return -EINVAL;
1531 else
1532 return 0;
1536 * Unshare vm if it is being shared
1538 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1540 struct mm_struct *mm = current->mm;
1542 if ((unshare_flags & CLONE_VM) &&
1543 (mm && atomic_read(&mm->mm_users) > 1)) {
1544 return -EINVAL;
1547 return 0;
1551 * Unshare file descriptor table if it is being shared
1553 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1555 struct files_struct *fd = current->files;
1556 int error = 0;
1558 if ((unshare_flags & CLONE_FILES) &&
1559 (fd && atomic_read(&fd->count) > 1)) {
1560 *new_fdp = dup_fd(fd, &error);
1561 if (!*new_fdp)
1562 return error;
1565 return 0;
1569 * unshare allows a process to 'unshare' part of the process
1570 * context which was originally shared using clone. copy_*
1571 * functions used by do_fork() cannot be used here directly
1572 * because they modify an inactive task_struct that is being
1573 * constructed. Here we are modifying the current, active,
1574 * task_struct.
1576 asmlinkage long sys_unshare(unsigned long unshare_flags)
1578 int err = 0;
1579 struct fs_struct *fs, *new_fs = NULL;
1580 struct sighand_struct *new_sigh = NULL;
1581 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1582 struct files_struct *fd, *new_fd = NULL;
1583 struct nsproxy *new_nsproxy = NULL;
1584 int do_sysvsem = 0;
1586 check_unshare_flags(&unshare_flags);
1588 /* Return -EINVAL for all unsupported flags */
1589 err = -EINVAL;
1590 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1591 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1592 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1593 CLONE_NEWNET))
1594 goto bad_unshare_out;
1597 * CLONE_NEWIPC must also detach from the undolist: after switching
1598 * to a new ipc namespace, the semaphore arrays from the old
1599 * namespace are unreachable.
1601 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1602 do_sysvsem = 1;
1603 if ((err = unshare_thread(unshare_flags)))
1604 goto bad_unshare_out;
1605 if ((err = unshare_fs(unshare_flags, &new_fs)))
1606 goto bad_unshare_cleanup_thread;
1607 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1608 goto bad_unshare_cleanup_fs;
1609 if ((err = unshare_vm(unshare_flags, &new_mm)))
1610 goto bad_unshare_cleanup_sigh;
1611 if ((err = unshare_fd(unshare_flags, &new_fd)))
1612 goto bad_unshare_cleanup_vm;
1613 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1614 new_fs)))
1615 goto bad_unshare_cleanup_fd;
1617 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1618 if (do_sysvsem) {
1620 * CLONE_SYSVSEM is equivalent to sys_exit().
1622 exit_sem(current);
1625 if (new_nsproxy) {
1626 switch_task_namespaces(current, new_nsproxy);
1627 new_nsproxy = NULL;
1630 task_lock(current);
1632 if (new_fs) {
1633 fs = current->fs;
1634 current->fs = new_fs;
1635 new_fs = fs;
1638 if (new_mm) {
1639 mm = current->mm;
1640 active_mm = current->active_mm;
1641 current->mm = new_mm;
1642 current->active_mm = new_mm;
1643 activate_mm(active_mm, new_mm);
1644 new_mm = mm;
1647 if (new_fd) {
1648 fd = current->files;
1649 current->files = new_fd;
1650 new_fd = fd;
1653 task_unlock(current);
1656 if (new_nsproxy)
1657 put_nsproxy(new_nsproxy);
1659 bad_unshare_cleanup_fd:
1660 if (new_fd)
1661 put_files_struct(new_fd);
1663 bad_unshare_cleanup_vm:
1664 if (new_mm)
1665 mmput(new_mm);
1667 bad_unshare_cleanup_sigh:
1668 if (new_sigh)
1669 if (atomic_dec_and_test(&new_sigh->count))
1670 kmem_cache_free(sighand_cachep, new_sigh);
1672 bad_unshare_cleanup_fs:
1673 if (new_fs)
1674 put_fs_struct(new_fs);
1676 bad_unshare_cleanup_thread:
1677 bad_unshare_out:
1678 return err;
1682 * Helper to unshare the files of the current task.
1683 * We don't want to expose copy_files internals to
1684 * the exec layer of the kernel.
1687 int unshare_files(struct files_struct **displaced)
1689 struct task_struct *task = current;
1690 struct files_struct *copy = NULL;
1691 int error;
1693 error = unshare_fd(CLONE_FILES, &copy);
1694 if (error || !copy) {
1695 *displaced = NULL;
1696 return error;
1698 *displaced = task->files;
1699 task_lock(task);
1700 task->files = copy;
1701 task_unlock(task);
1702 return 0;