6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
35 #include <asm/mmu_context.h>
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags) (0)
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len) (addr)
47 static void unmap_region(struct mm_struct
*mm
,
48 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
49 unsigned long start
, unsigned long end
);
52 * WARNING: the debugging will use recursive algorithms so never enable this
53 * unless you know what you are doing.
57 /* description of effects of mapping type and prot in current implementation.
58 * this is due to the limited x86 page protection hardware. The expected
59 * behavior is in parens:
62 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
63 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
64 * w: (no) no w: (no) no w: (yes) yes w: (no) no
65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
67 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
68 * w: (no) no w: (no) no w: (copy) copy w: (no) no
69 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 pgprot_t protection_map
[16] = {
73 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
74 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
77 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
79 return __pgprot(pgprot_val(protection_map
[vm_flags
&
80 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
81 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
83 EXPORT_SYMBOL(vm_get_page_prot
);
85 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
86 int sysctl_overcommit_ratio
= 50; /* default is 50% */
87 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
88 atomic_long_t vm_committed_space
= ATOMIC_LONG_INIT(0);
91 * Check that a process has enough memory to allocate a new virtual
92 * mapping. 0 means there is enough memory for the allocation to
93 * succeed and -ENOMEM implies there is not.
95 * We currently support three overcommit policies, which are set via the
96 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99 * Additional code 2002 Jul 20 by Robert Love.
101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103 * Note this is a helper function intended to be used by LSMs which
104 * wish to use this logic.
106 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
108 unsigned long free
, allowed
;
110 vm_acct_memory(pages
);
113 * Sometimes we want to use more memory than we have
115 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
118 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
121 free
= global_page_state(NR_FILE_PAGES
);
122 free
+= nr_swap_pages
;
125 * Any slabs which are created with the
126 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 * which are reclaimable, under pressure. The dentry
128 * cache and most inode caches should fall into this
130 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
133 * Leave the last 3% for root
142 * nr_free_pages() is very expensive on large systems,
143 * only call if we're about to fail.
148 * Leave reserved pages. The pages are not for anonymous pages.
150 if (n
<= totalreserve_pages
)
153 n
-= totalreserve_pages
;
156 * Leave the last 3% for root
168 allowed
= (totalram_pages
- hugetlb_total_pages())
169 * sysctl_overcommit_ratio
/ 100;
171 * Leave the last 3% for root
174 allowed
-= allowed
/ 32;
175 allowed
+= total_swap_pages
;
177 /* Don't let a single process grow too big:
178 leave 3% of the size of this process for other processes */
180 allowed
-= mm
->total_vm
/ 32;
183 * cast `allowed' as a signed long because vm_committed_space
184 * sometimes has a negative value
186 if (atomic_long_read(&vm_committed_space
) < (long)allowed
)
189 vm_unacct_memory(pages
);
195 * Requires inode->i_mapping->i_mmap_lock
197 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
198 struct file
*file
, struct address_space
*mapping
)
200 if (vma
->vm_flags
& VM_DENYWRITE
)
201 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
202 if (vma
->vm_flags
& VM_SHARED
)
203 mapping
->i_mmap_writable
--;
205 flush_dcache_mmap_lock(mapping
);
206 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
207 list_del_init(&vma
->shared
.vm_set
.list
);
209 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
210 flush_dcache_mmap_unlock(mapping
);
214 * Unlink a file-based vm structure from its prio_tree, to hide
215 * vma from rmap and vmtruncate before freeing its page tables.
217 void unlink_file_vma(struct vm_area_struct
*vma
)
219 struct file
*file
= vma
->vm_file
;
222 struct address_space
*mapping
= file
->f_mapping
;
223 spin_lock(&mapping
->i_mmap_lock
);
224 __remove_shared_vm_struct(vma
, file
, mapping
);
225 spin_unlock(&mapping
->i_mmap_lock
);
230 * Close a vm structure and free it, returning the next.
232 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
234 struct vm_area_struct
*next
= vma
->vm_next
;
237 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
238 vma
->vm_ops
->close(vma
);
241 if (vma
->vm_flags
& VM_EXECUTABLE
)
242 removed_exe_file_vma(vma
->vm_mm
);
244 mpol_put(vma_policy(vma
));
245 kmem_cache_free(vm_area_cachep
, vma
);
249 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
251 unsigned long rlim
, retval
;
252 unsigned long newbrk
, oldbrk
;
253 struct mm_struct
*mm
= current
->mm
;
254 unsigned long min_brk
;
256 down_write(&mm
->mmap_sem
);
258 #ifdef CONFIG_COMPAT_BRK
259 min_brk
= mm
->end_code
;
261 min_brk
= mm
->start_brk
;
267 * Check against rlimit here. If this check is done later after the test
268 * of oldbrk with newbrk then it can escape the test and let the data
269 * segment grow beyond its set limit the in case where the limit is
270 * not page aligned -Ram Gupta
272 rlim
= current
->signal
->rlim
[RLIMIT_DATA
].rlim_cur
;
273 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
274 (mm
->end_data
- mm
->start_data
) > rlim
)
277 newbrk
= PAGE_ALIGN(brk
);
278 oldbrk
= PAGE_ALIGN(mm
->brk
);
279 if (oldbrk
== newbrk
)
282 /* Always allow shrinking brk. */
283 if (brk
<= mm
->brk
) {
284 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
289 /* Check against existing mmap mappings. */
290 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
293 /* Ok, looks good - let it rip. */
294 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
300 up_write(&mm
->mmap_sem
);
305 static int browse_rb(struct rb_root
*root
)
308 struct rb_node
*nd
, *pn
= NULL
;
309 unsigned long prev
= 0, pend
= 0;
311 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
312 struct vm_area_struct
*vma
;
313 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
314 if (vma
->vm_start
< prev
)
315 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
316 if (vma
->vm_start
< pend
)
317 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
318 if (vma
->vm_start
> vma
->vm_end
)
319 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
322 prev
= vma
->vm_start
;
326 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
330 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
334 void validate_mm(struct mm_struct
*mm
)
338 struct vm_area_struct
*tmp
= mm
->mmap
;
343 if (i
!= mm
->map_count
)
344 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
345 i
= browse_rb(&mm
->mm_rb
);
346 if (i
!= mm
->map_count
)
347 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
351 #define validate_mm(mm) do { } while (0)
354 static struct vm_area_struct
*
355 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
356 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
357 struct rb_node
** rb_parent
)
359 struct vm_area_struct
* vma
;
360 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
362 __rb_link
= &mm
->mm_rb
.rb_node
;
363 rb_prev
= __rb_parent
= NULL
;
367 struct vm_area_struct
*vma_tmp
;
369 __rb_parent
= *__rb_link
;
370 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
372 if (vma_tmp
->vm_end
> addr
) {
374 if (vma_tmp
->vm_start
<= addr
)
376 __rb_link
= &__rb_parent
->rb_left
;
378 rb_prev
= __rb_parent
;
379 __rb_link
= &__rb_parent
->rb_right
;
385 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
386 *rb_link
= __rb_link
;
387 *rb_parent
= __rb_parent
;
392 __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
393 struct vm_area_struct
*prev
, struct rb_node
*rb_parent
)
396 vma
->vm_next
= prev
->vm_next
;
401 vma
->vm_next
= rb_entry(rb_parent
,
402 struct vm_area_struct
, vm_rb
);
408 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
409 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
411 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
412 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
415 static void __vma_link_file(struct vm_area_struct
*vma
)
421 struct address_space
*mapping
= file
->f_mapping
;
423 if (vma
->vm_flags
& VM_DENYWRITE
)
424 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
425 if (vma
->vm_flags
& VM_SHARED
)
426 mapping
->i_mmap_writable
++;
428 flush_dcache_mmap_lock(mapping
);
429 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
430 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
432 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
433 flush_dcache_mmap_unlock(mapping
);
438 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
439 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
440 struct rb_node
*rb_parent
)
442 __vma_link_list(mm
, vma
, prev
, rb_parent
);
443 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
444 __anon_vma_link(vma
);
447 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
448 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
449 struct rb_node
*rb_parent
)
451 struct address_space
*mapping
= NULL
;
454 mapping
= vma
->vm_file
->f_mapping
;
457 spin_lock(&mapping
->i_mmap_lock
);
458 vma
->vm_truncate_count
= mapping
->truncate_count
;
462 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
463 __vma_link_file(vma
);
465 anon_vma_unlock(vma
);
467 spin_unlock(&mapping
->i_mmap_lock
);
474 * Helper for vma_adjust in the split_vma insert case:
475 * insert vm structure into list and rbtree and anon_vma,
476 * but it has already been inserted into prio_tree earlier.
478 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
480 struct vm_area_struct
*__vma
, *prev
;
481 struct rb_node
**rb_link
, *rb_parent
;
483 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
484 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
485 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
490 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
491 struct vm_area_struct
*prev
)
493 prev
->vm_next
= vma
->vm_next
;
494 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
495 if (mm
->mmap_cache
== vma
)
496 mm
->mmap_cache
= prev
;
500 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
501 * is already present in an i_mmap tree without adjusting the tree.
502 * The following helper function should be used when such adjustments
503 * are necessary. The "insert" vma (if any) is to be inserted
504 * before we drop the necessary locks.
506 void vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
507 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
509 struct mm_struct
*mm
= vma
->vm_mm
;
510 struct vm_area_struct
*next
= vma
->vm_next
;
511 struct vm_area_struct
*importer
= NULL
;
512 struct address_space
*mapping
= NULL
;
513 struct prio_tree_root
*root
= NULL
;
514 struct file
*file
= vma
->vm_file
;
515 struct anon_vma
*anon_vma
= NULL
;
516 long adjust_next
= 0;
519 if (next
&& !insert
) {
520 if (end
>= next
->vm_end
) {
522 * vma expands, overlapping all the next, and
523 * perhaps the one after too (mprotect case 6).
525 again
: remove_next
= 1 + (end
> next
->vm_end
);
527 anon_vma
= next
->anon_vma
;
529 } else if (end
> next
->vm_start
) {
531 * vma expands, overlapping part of the next:
532 * mprotect case 5 shifting the boundary up.
534 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
535 anon_vma
= next
->anon_vma
;
537 } else if (end
< vma
->vm_end
) {
539 * vma shrinks, and !insert tells it's not
540 * split_vma inserting another: so it must be
541 * mprotect case 4 shifting the boundary down.
543 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
544 anon_vma
= next
->anon_vma
;
550 mapping
= file
->f_mapping
;
551 if (!(vma
->vm_flags
& VM_NONLINEAR
))
552 root
= &mapping
->i_mmap
;
553 spin_lock(&mapping
->i_mmap_lock
);
555 vma
->vm_truncate_count
!= next
->vm_truncate_count
) {
557 * unmap_mapping_range might be in progress:
558 * ensure that the expanding vma is rescanned.
560 importer
->vm_truncate_count
= 0;
563 insert
->vm_truncate_count
= vma
->vm_truncate_count
;
565 * Put into prio_tree now, so instantiated pages
566 * are visible to arm/parisc __flush_dcache_page
567 * throughout; but we cannot insert into address
568 * space until vma start or end is updated.
570 __vma_link_file(insert
);
575 * When changing only vma->vm_end, we don't really need
576 * anon_vma lock: but is that case worth optimizing out?
579 anon_vma
= vma
->anon_vma
;
581 spin_lock(&anon_vma
->lock
);
583 * Easily overlooked: when mprotect shifts the boundary,
584 * make sure the expanding vma has anon_vma set if the
585 * shrinking vma had, to cover any anon pages imported.
587 if (importer
&& !importer
->anon_vma
) {
588 importer
->anon_vma
= anon_vma
;
589 __anon_vma_link(importer
);
594 flush_dcache_mmap_lock(mapping
);
595 vma_prio_tree_remove(vma
, root
);
597 vma_prio_tree_remove(next
, root
);
600 vma
->vm_start
= start
;
602 vma
->vm_pgoff
= pgoff
;
604 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
605 next
->vm_pgoff
+= adjust_next
;
610 vma_prio_tree_insert(next
, root
);
611 vma_prio_tree_insert(vma
, root
);
612 flush_dcache_mmap_unlock(mapping
);
617 * vma_merge has merged next into vma, and needs
618 * us to remove next before dropping the locks.
620 __vma_unlink(mm
, next
, vma
);
622 __remove_shared_vm_struct(next
, file
, mapping
);
624 __anon_vma_merge(vma
, next
);
627 * split_vma has split insert from vma, and needs
628 * us to insert it before dropping the locks
629 * (it may either follow vma or precede it).
631 __insert_vm_struct(mm
, insert
);
635 spin_unlock(&anon_vma
->lock
);
637 spin_unlock(&mapping
->i_mmap_lock
);
642 if (next
->vm_flags
& VM_EXECUTABLE
)
643 removed_exe_file_vma(mm
);
646 mpol_put(vma_policy(next
));
647 kmem_cache_free(vm_area_cachep
, next
);
649 * In mprotect's case 6 (see comments on vma_merge),
650 * we must remove another next too. It would clutter
651 * up the code too much to do both in one go.
653 if (remove_next
== 2) {
662 /* Flags that can be inherited from an existing mapping when merging */
663 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
666 * If the vma has a ->close operation then the driver probably needs to release
667 * per-vma resources, so we don't attempt to merge those.
669 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
670 struct file
*file
, unsigned long vm_flags
)
672 if ((vma
->vm_flags
^ vm_flags
) & ~VM_MERGEABLE_FLAGS
)
674 if (vma
->vm_file
!= file
)
676 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
681 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
682 struct anon_vma
*anon_vma2
)
684 return !anon_vma1
|| !anon_vma2
|| (anon_vma1
== anon_vma2
);
688 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
689 * in front of (at a lower virtual address and file offset than) the vma.
691 * We cannot merge two vmas if they have differently assigned (non-NULL)
692 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
694 * We don't check here for the merged mmap wrapping around the end of pagecache
695 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
696 * wrap, nor mmaps which cover the final page at index -1UL.
699 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
700 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
702 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
703 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
704 if (vma
->vm_pgoff
== vm_pgoff
)
711 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
712 * beyond (at a higher virtual address and file offset than) the vma.
714 * We cannot merge two vmas if they have differently assigned (non-NULL)
715 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
718 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
719 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
721 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
722 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
724 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
725 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
732 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
733 * whether that can be merged with its predecessor or its successor.
734 * Or both (it neatly fills a hole).
736 * In most cases - when called for mmap, brk or mremap - [addr,end) is
737 * certain not to be mapped by the time vma_merge is called; but when
738 * called for mprotect, it is certain to be already mapped (either at
739 * an offset within prev, or at the start of next), and the flags of
740 * this area are about to be changed to vm_flags - and the no-change
741 * case has already been eliminated.
743 * The following mprotect cases have to be considered, where AAAA is
744 * the area passed down from mprotect_fixup, never extending beyond one
745 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
747 * AAAA AAAA AAAA AAAA
748 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
749 * cannot merge might become might become might become
750 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
751 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
752 * mremap move: PPPPNNNNNNNN 8
754 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
755 * might become case 1 below case 2 below case 3 below
757 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
758 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
760 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
761 struct vm_area_struct
*prev
, unsigned long addr
,
762 unsigned long end
, unsigned long vm_flags
,
763 struct anon_vma
*anon_vma
, struct file
*file
,
764 pgoff_t pgoff
, struct mempolicy
*policy
)
766 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
767 struct vm_area_struct
*area
, *next
;
770 * We later require that vma->vm_flags == vm_flags,
771 * so this tests vma->vm_flags & VM_SPECIAL, too.
773 if (vm_flags
& VM_SPECIAL
)
777 next
= prev
->vm_next
;
781 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
782 next
= next
->vm_next
;
785 * Can it merge with the predecessor?
787 if (prev
&& prev
->vm_end
== addr
&&
788 mpol_equal(vma_policy(prev
), policy
) &&
789 can_vma_merge_after(prev
, vm_flags
,
790 anon_vma
, file
, pgoff
)) {
792 * OK, it can. Can we now merge in the successor as well?
794 if (next
&& end
== next
->vm_start
&&
795 mpol_equal(policy
, vma_policy(next
)) &&
796 can_vma_merge_before(next
, vm_flags
,
797 anon_vma
, file
, pgoff
+pglen
) &&
798 is_mergeable_anon_vma(prev
->anon_vma
,
801 vma_adjust(prev
, prev
->vm_start
,
802 next
->vm_end
, prev
->vm_pgoff
, NULL
);
803 } else /* cases 2, 5, 7 */
804 vma_adjust(prev
, prev
->vm_start
,
805 end
, prev
->vm_pgoff
, NULL
);
810 * Can this new request be merged in front of next?
812 if (next
&& end
== next
->vm_start
&&
813 mpol_equal(policy
, vma_policy(next
)) &&
814 can_vma_merge_before(next
, vm_flags
,
815 anon_vma
, file
, pgoff
+pglen
)) {
816 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
817 vma_adjust(prev
, prev
->vm_start
,
818 addr
, prev
->vm_pgoff
, NULL
);
819 else /* cases 3, 8 */
820 vma_adjust(area
, addr
, next
->vm_end
,
821 next
->vm_pgoff
- pglen
, NULL
);
829 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
830 * neighbouring vmas for a suitable anon_vma, before it goes off
831 * to allocate a new anon_vma. It checks because a repetitive
832 * sequence of mprotects and faults may otherwise lead to distinct
833 * anon_vmas being allocated, preventing vma merge in subsequent
836 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
838 struct vm_area_struct
*near
;
839 unsigned long vm_flags
;
846 * Since only mprotect tries to remerge vmas, match flags
847 * which might be mprotected into each other later on.
848 * Neither mlock nor madvise tries to remerge at present,
849 * so leave their flags as obstructing a merge.
851 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
852 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
854 if (near
->anon_vma
&& vma
->vm_end
== near
->vm_start
&&
855 mpol_equal(vma_policy(vma
), vma_policy(near
)) &&
856 can_vma_merge_before(near
, vm_flags
,
857 NULL
, vma
->vm_file
, vma
->vm_pgoff
+
858 ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
)))
859 return near
->anon_vma
;
862 * It is potentially slow to have to call find_vma_prev here.
863 * But it's only on the first write fault on the vma, not
864 * every time, and we could devise a way to avoid it later
865 * (e.g. stash info in next's anon_vma_node when assigning
866 * an anon_vma, or when trying vma_merge). Another time.
868 BUG_ON(find_vma_prev(vma
->vm_mm
, vma
->vm_start
, &near
) != vma
);
872 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
873 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
875 if (near
->anon_vma
&& near
->vm_end
== vma
->vm_start
&&
876 mpol_equal(vma_policy(near
), vma_policy(vma
)) &&
877 can_vma_merge_after(near
, vm_flags
,
878 NULL
, vma
->vm_file
, vma
->vm_pgoff
))
879 return near
->anon_vma
;
882 * There's no absolute need to look only at touching neighbours:
883 * we could search further afield for "compatible" anon_vmas.
884 * But it would probably just be a waste of time searching,
885 * or lead to too many vmas hanging off the same anon_vma.
886 * We're trying to allow mprotect remerging later on,
887 * not trying to minimize memory used for anon_vmas.
892 #ifdef CONFIG_PROC_FS
893 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
894 struct file
*file
, long pages
)
896 const unsigned long stack_flags
897 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
900 mm
->shared_vm
+= pages
;
901 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
902 mm
->exec_vm
+= pages
;
903 } else if (flags
& stack_flags
)
904 mm
->stack_vm
+= pages
;
905 if (flags
& (VM_RESERVED
|VM_IO
))
906 mm
->reserved_vm
+= pages
;
908 #endif /* CONFIG_PROC_FS */
911 * The caller must hold down_write(current->mm->mmap_sem).
914 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
915 unsigned long len
, unsigned long prot
,
916 unsigned long flags
, unsigned long pgoff
)
918 struct mm_struct
* mm
= current
->mm
;
920 unsigned int vm_flags
;
922 unsigned long reqprot
= prot
;
925 * Does the application expect PROT_READ to imply PROT_EXEC?
927 * (the exception is when the underlying filesystem is noexec
928 * mounted, in which case we dont add PROT_EXEC.)
930 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
931 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
937 if (!(flags
& MAP_FIXED
))
938 addr
= round_hint_to_min(addr
);
940 error
= arch_mmap_check(addr
, len
, flags
);
944 /* Careful about overflows.. */
945 len
= PAGE_ALIGN(len
);
946 if (!len
|| len
> TASK_SIZE
)
949 /* offset overflow? */
950 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
953 /* Too many mappings? */
954 if (mm
->map_count
> sysctl_max_map_count
)
957 /* Obtain the address to map to. we verify (or select) it and ensure
958 * that it represents a valid section of the address space.
960 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
961 if (addr
& ~PAGE_MASK
)
964 /* Do simple checking here so the lower-level routines won't have
965 * to. we assume access permissions have been handled by the open
966 * of the memory object, so we don't do any here.
968 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
969 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
971 if (flags
& MAP_LOCKED
) {
974 vm_flags
|= VM_LOCKED
;
977 /* mlock MCL_FUTURE? */
978 if (vm_flags
& VM_LOCKED
) {
979 unsigned long locked
, lock_limit
;
980 locked
= len
>> PAGE_SHIFT
;
981 locked
+= mm
->locked_vm
;
982 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
983 lock_limit
>>= PAGE_SHIFT
;
984 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
988 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
991 switch (flags
& MAP_TYPE
) {
993 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
997 * Make sure we don't allow writing to an append-only
1000 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1004 * Make sure there are no mandatory locks on the file.
1006 if (locks_verify_locked(inode
))
1009 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1010 if (!(file
->f_mode
& FMODE_WRITE
))
1011 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1015 if (!(file
->f_mode
& FMODE_READ
))
1017 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1018 if (vm_flags
& VM_EXEC
)
1020 vm_flags
&= ~VM_MAYEXEC
;
1023 if (!file
->f_op
|| !file
->f_op
->mmap
)
1031 switch (flags
& MAP_TYPE
) {
1037 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1041 * Set pgoff according to addr for anon_vma.
1043 pgoff
= addr
>> PAGE_SHIFT
;
1050 error
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1053 error
= ima_file_mmap(file
, prot
);
1057 return mmap_region(file
, addr
, len
, flags
, vm_flags
, pgoff
);
1059 EXPORT_SYMBOL(do_mmap_pgoff
);
1062 * Some shared mappigns will want the pages marked read-only
1063 * to track write events. If so, we'll downgrade vm_page_prot
1064 * to the private version (using protection_map[] without the
1067 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1069 unsigned int vm_flags
= vma
->vm_flags
;
1071 /* If it was private or non-writable, the write bit is already clear */
1072 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1075 /* The backer wishes to know when pages are first written to? */
1076 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1079 /* The open routine did something to the protections already? */
1080 if (pgprot_val(vma
->vm_page_prot
) !=
1081 pgprot_val(vm_get_page_prot(vm_flags
)))
1084 /* Specialty mapping? */
1085 if (vm_flags
& (VM_PFNMAP
|VM_INSERTPAGE
))
1088 /* Can the mapping track the dirty pages? */
1089 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1090 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1094 * We account for memory if it's a private writeable mapping,
1095 * not hugepages and VM_NORESERVE wasn't set.
1097 static inline int accountable_mapping(struct file
*file
, unsigned int vm_flags
)
1100 * hugetlb has its own accounting separate from the core VM
1101 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1103 if (file
&& is_file_hugepages(file
))
1106 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1109 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1110 unsigned long len
, unsigned long flags
,
1111 unsigned int vm_flags
, unsigned long pgoff
)
1113 struct mm_struct
*mm
= current
->mm
;
1114 struct vm_area_struct
*vma
, *prev
;
1115 int correct_wcount
= 0;
1117 struct rb_node
**rb_link
, *rb_parent
;
1118 unsigned long charged
= 0;
1119 struct inode
*inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1121 /* Clear old maps */
1124 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1125 if (vma
&& vma
->vm_start
< addr
+ len
) {
1126 if (do_munmap(mm
, addr
, len
))
1131 /* Check against address space limit. */
1132 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1136 * Set 'VM_NORESERVE' if we should not account for the
1137 * memory use of this mapping.
1139 if ((flags
& MAP_NORESERVE
)) {
1140 /* We honor MAP_NORESERVE if allowed to overcommit */
1141 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1142 vm_flags
|= VM_NORESERVE
;
1144 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1145 if (file
&& is_file_hugepages(file
))
1146 vm_flags
|= VM_NORESERVE
;
1150 * Private writable mapping: check memory availability
1152 if (accountable_mapping(file
, vm_flags
)) {
1153 charged
= len
>> PAGE_SHIFT
;
1154 if (security_vm_enough_memory(charged
))
1156 vm_flags
|= VM_ACCOUNT
;
1160 * Can we just expand an old mapping?
1162 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1167 * Determine the object being mapped and call the appropriate
1168 * specific mapper. the address has already been validated, but
1169 * not unmapped, but the maps are removed from the list.
1171 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1178 vma
->vm_start
= addr
;
1179 vma
->vm_end
= addr
+ len
;
1180 vma
->vm_flags
= vm_flags
;
1181 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1182 vma
->vm_pgoff
= pgoff
;
1186 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1188 if (vm_flags
& VM_DENYWRITE
) {
1189 error
= deny_write_access(file
);
1194 vma
->vm_file
= file
;
1196 error
= file
->f_op
->mmap(file
, vma
);
1198 goto unmap_and_free_vma
;
1199 if (vm_flags
& VM_EXECUTABLE
)
1200 added_exe_file_vma(mm
);
1201 } else if (vm_flags
& VM_SHARED
) {
1202 error
= shmem_zero_setup(vma
);
1207 /* Can addr have changed??
1209 * Answer: Yes, several device drivers can do it in their
1210 * f_op->mmap method. -DaveM
1212 addr
= vma
->vm_start
;
1213 pgoff
= vma
->vm_pgoff
;
1214 vm_flags
= vma
->vm_flags
;
1216 if (vma_wants_writenotify(vma
))
1217 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1219 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1220 file
= vma
->vm_file
;
1222 /* Once vma denies write, undo our temporary denial count */
1224 atomic_inc(&inode
->i_writecount
);
1226 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1227 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1228 if (vm_flags
& VM_LOCKED
) {
1230 * makes pages present; downgrades, drops, reacquires mmap_sem
1232 long nr_pages
= mlock_vma_pages_range(vma
, addr
, addr
+ len
);
1234 return nr_pages
; /* vma gone! */
1235 mm
->locked_vm
+= (len
>> PAGE_SHIFT
) - nr_pages
;
1236 } else if ((flags
& MAP_POPULATE
) && !(flags
& MAP_NONBLOCK
))
1237 make_pages_present(addr
, addr
+ len
);
1242 atomic_inc(&inode
->i_writecount
);
1243 vma
->vm_file
= NULL
;
1246 /* Undo any partial mapping done by a device driver. */
1247 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1250 kmem_cache_free(vm_area_cachep
, vma
);
1253 vm_unacct_memory(charged
);
1257 /* Get an address range which is currently unmapped.
1258 * For shmat() with addr=0.
1260 * Ugly calling convention alert:
1261 * Return value with the low bits set means error value,
1263 * if (ret & ~PAGE_MASK)
1266 * This function "knows" that -ENOMEM has the bits set.
1268 #ifndef HAVE_ARCH_UNMAPPED_AREA
1270 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1271 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1273 struct mm_struct
*mm
= current
->mm
;
1274 struct vm_area_struct
*vma
;
1275 unsigned long start_addr
;
1277 if (len
> TASK_SIZE
)
1280 if (flags
& MAP_FIXED
)
1284 addr
= PAGE_ALIGN(addr
);
1285 vma
= find_vma(mm
, addr
);
1286 if (TASK_SIZE
- len
>= addr
&&
1287 (!vma
|| addr
+ len
<= vma
->vm_start
))
1290 if (len
> mm
->cached_hole_size
) {
1291 start_addr
= addr
= mm
->free_area_cache
;
1293 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1294 mm
->cached_hole_size
= 0;
1298 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1299 /* At this point: (!vma || addr < vma->vm_end). */
1300 if (TASK_SIZE
- len
< addr
) {
1302 * Start a new search - just in case we missed
1305 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1306 addr
= TASK_UNMAPPED_BASE
;
1308 mm
->cached_hole_size
= 0;
1313 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1315 * Remember the place where we stopped the search:
1317 mm
->free_area_cache
= addr
+ len
;
1320 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1321 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1327 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1330 * Is this a new hole at the lowest possible address?
1332 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
) {
1333 mm
->free_area_cache
= addr
;
1334 mm
->cached_hole_size
= ~0UL;
1339 * This mmap-allocator allocates new areas top-down from below the
1340 * stack's low limit (the base):
1342 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1344 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1345 const unsigned long len
, const unsigned long pgoff
,
1346 const unsigned long flags
)
1348 struct vm_area_struct
*vma
;
1349 struct mm_struct
*mm
= current
->mm
;
1350 unsigned long addr
= addr0
;
1352 /* requested length too big for entire address space */
1353 if (len
> TASK_SIZE
)
1356 if (flags
& MAP_FIXED
)
1359 /* requesting a specific address */
1361 addr
= PAGE_ALIGN(addr
);
1362 vma
= find_vma(mm
, addr
);
1363 if (TASK_SIZE
- len
>= addr
&&
1364 (!vma
|| addr
+ len
<= vma
->vm_start
))
1368 /* check if free_area_cache is useful for us */
1369 if (len
<= mm
->cached_hole_size
) {
1370 mm
->cached_hole_size
= 0;
1371 mm
->free_area_cache
= mm
->mmap_base
;
1374 /* either no address requested or can't fit in requested address hole */
1375 addr
= mm
->free_area_cache
;
1377 /* make sure it can fit in the remaining address space */
1379 vma
= find_vma(mm
, addr
-len
);
1380 if (!vma
|| addr
<= vma
->vm_start
)
1381 /* remember the address as a hint for next time */
1382 return (mm
->free_area_cache
= addr
-len
);
1385 if (mm
->mmap_base
< len
)
1388 addr
= mm
->mmap_base
-len
;
1392 * Lookup failure means no vma is above this address,
1393 * else if new region fits below vma->vm_start,
1394 * return with success:
1396 vma
= find_vma(mm
, addr
);
1397 if (!vma
|| addr
+len
<= vma
->vm_start
)
1398 /* remember the address as a hint for next time */
1399 return (mm
->free_area_cache
= addr
);
1401 /* remember the largest hole we saw so far */
1402 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1403 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1405 /* try just below the current vma->vm_start */
1406 addr
= vma
->vm_start
-len
;
1407 } while (len
< vma
->vm_start
);
1411 * A failed mmap() very likely causes application failure,
1412 * so fall back to the bottom-up function here. This scenario
1413 * can happen with large stack limits and large mmap()
1416 mm
->cached_hole_size
= ~0UL;
1417 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1418 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1420 * Restore the topdown base:
1422 mm
->free_area_cache
= mm
->mmap_base
;
1423 mm
->cached_hole_size
= ~0UL;
1429 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1432 * Is this a new hole at the highest possible address?
1434 if (addr
> mm
->free_area_cache
)
1435 mm
->free_area_cache
= addr
;
1437 /* dont allow allocations above current base */
1438 if (mm
->free_area_cache
> mm
->mmap_base
)
1439 mm
->free_area_cache
= mm
->mmap_base
;
1443 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1444 unsigned long pgoff
, unsigned long flags
)
1446 unsigned long (*get_area
)(struct file
*, unsigned long,
1447 unsigned long, unsigned long, unsigned long);
1449 get_area
= current
->mm
->get_unmapped_area
;
1450 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1451 get_area
= file
->f_op
->get_unmapped_area
;
1452 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1453 if (IS_ERR_VALUE(addr
))
1456 if (addr
> TASK_SIZE
- len
)
1458 if (addr
& ~PAGE_MASK
)
1461 return arch_rebalance_pgtables(addr
, len
);
1464 EXPORT_SYMBOL(get_unmapped_area
);
1466 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1467 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1469 struct vm_area_struct
*vma
= NULL
;
1472 /* Check the cache first. */
1473 /* (Cache hit rate is typically around 35%.) */
1474 vma
= mm
->mmap_cache
;
1475 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1476 struct rb_node
* rb_node
;
1478 rb_node
= mm
->mm_rb
.rb_node
;
1482 struct vm_area_struct
* vma_tmp
;
1484 vma_tmp
= rb_entry(rb_node
,
1485 struct vm_area_struct
, vm_rb
);
1487 if (vma_tmp
->vm_end
> addr
) {
1489 if (vma_tmp
->vm_start
<= addr
)
1491 rb_node
= rb_node
->rb_left
;
1493 rb_node
= rb_node
->rb_right
;
1496 mm
->mmap_cache
= vma
;
1502 EXPORT_SYMBOL(find_vma
);
1504 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1505 struct vm_area_struct
*
1506 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1507 struct vm_area_struct
**pprev
)
1509 struct vm_area_struct
*vma
= NULL
, *prev
= NULL
;
1510 struct rb_node
*rb_node
;
1514 /* Guard against addr being lower than the first VMA */
1517 /* Go through the RB tree quickly. */
1518 rb_node
= mm
->mm_rb
.rb_node
;
1521 struct vm_area_struct
*vma_tmp
;
1522 vma_tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1524 if (addr
< vma_tmp
->vm_end
) {
1525 rb_node
= rb_node
->rb_left
;
1528 if (!prev
->vm_next
|| (addr
< prev
->vm_next
->vm_end
))
1530 rb_node
= rb_node
->rb_right
;
1536 return prev
? prev
->vm_next
: vma
;
1540 * Verify that the stack growth is acceptable and
1541 * update accounting. This is shared with both the
1542 * grow-up and grow-down cases.
1544 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1546 struct mm_struct
*mm
= vma
->vm_mm
;
1547 struct rlimit
*rlim
= current
->signal
->rlim
;
1548 unsigned long new_start
;
1550 /* address space limit tests */
1551 if (!may_expand_vm(mm
, grow
))
1554 /* Stack limit test */
1555 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
)
1558 /* mlock limit tests */
1559 if (vma
->vm_flags
& VM_LOCKED
) {
1560 unsigned long locked
;
1561 unsigned long limit
;
1562 locked
= mm
->locked_vm
+ grow
;
1563 limit
= rlim
[RLIMIT_MEMLOCK
].rlim_cur
>> PAGE_SHIFT
;
1564 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1568 /* Check to ensure the stack will not grow into a hugetlb-only region */
1569 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1571 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1575 * Overcommit.. This must be the final test, as it will
1576 * update security statistics.
1578 if (security_vm_enough_memory_mm(mm
, grow
))
1581 /* Ok, everything looks good - let it rip */
1582 mm
->total_vm
+= grow
;
1583 if (vma
->vm_flags
& VM_LOCKED
)
1584 mm
->locked_vm
+= grow
;
1585 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1589 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1591 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1592 * vma is the last one with address > vma->vm_end. Have to extend vma.
1597 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1601 if (!(vma
->vm_flags
& VM_GROWSUP
))
1605 * We must make sure the anon_vma is allocated
1606 * so that the anon_vma locking is not a noop.
1608 if (unlikely(anon_vma_prepare(vma
)))
1613 * vma->vm_start/vm_end cannot change under us because the caller
1614 * is required to hold the mmap_sem in read mode. We need the
1615 * anon_vma lock to serialize against concurrent expand_stacks.
1616 * Also guard against wrapping around to address 0.
1618 if (address
< PAGE_ALIGN(address
+4))
1619 address
= PAGE_ALIGN(address
+4);
1621 anon_vma_unlock(vma
);
1626 /* Somebody else might have raced and expanded it already */
1627 if (address
> vma
->vm_end
) {
1628 unsigned long size
, grow
;
1630 size
= address
- vma
->vm_start
;
1631 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1633 error
= acct_stack_growth(vma
, size
, grow
);
1635 vma
->vm_end
= address
;
1637 anon_vma_unlock(vma
);
1640 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1643 * vma is the first one with address < vma->vm_start. Have to extend vma.
1645 static int expand_downwards(struct vm_area_struct
*vma
,
1646 unsigned long address
)
1651 * We must make sure the anon_vma is allocated
1652 * so that the anon_vma locking is not a noop.
1654 if (unlikely(anon_vma_prepare(vma
)))
1657 address
&= PAGE_MASK
;
1658 error
= security_file_mmap(NULL
, 0, 0, 0, address
, 1);
1665 * vma->vm_start/vm_end cannot change under us because the caller
1666 * is required to hold the mmap_sem in read mode. We need the
1667 * anon_vma lock to serialize against concurrent expand_stacks.
1670 /* Somebody else might have raced and expanded it already */
1671 if (address
< vma
->vm_start
) {
1672 unsigned long size
, grow
;
1674 size
= vma
->vm_end
- address
;
1675 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1677 error
= acct_stack_growth(vma
, size
, grow
);
1679 vma
->vm_start
= address
;
1680 vma
->vm_pgoff
-= grow
;
1683 anon_vma_unlock(vma
);
1687 int expand_stack_downwards(struct vm_area_struct
*vma
, unsigned long address
)
1689 return expand_downwards(vma
, address
);
1692 #ifdef CONFIG_STACK_GROWSUP
1693 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1695 return expand_upwards(vma
, address
);
1698 struct vm_area_struct
*
1699 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1701 struct vm_area_struct
*vma
, *prev
;
1704 vma
= find_vma_prev(mm
, addr
, &prev
);
1705 if (vma
&& (vma
->vm_start
<= addr
))
1707 if (!prev
|| expand_stack(prev
, addr
))
1709 if (prev
->vm_flags
& VM_LOCKED
) {
1710 if (mlock_vma_pages_range(prev
, addr
, prev
->vm_end
) < 0)
1711 return NULL
; /* vma gone! */
1716 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1718 return expand_downwards(vma
, address
);
1721 struct vm_area_struct
*
1722 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1724 struct vm_area_struct
* vma
;
1725 unsigned long start
;
1728 vma
= find_vma(mm
,addr
);
1731 if (vma
->vm_start
<= addr
)
1733 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1735 start
= vma
->vm_start
;
1736 if (expand_stack(vma
, addr
))
1738 if (vma
->vm_flags
& VM_LOCKED
) {
1739 if (mlock_vma_pages_range(vma
, addr
, start
) < 0)
1740 return NULL
; /* vma gone! */
1747 * Ok - we have the memory areas we should free on the vma list,
1748 * so release them, and do the vma updates.
1750 * Called with the mm semaphore held.
1752 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1754 /* Update high watermark before we lower total_vm */
1755 update_hiwater_vm(mm
);
1757 long nrpages
= vma_pages(vma
);
1759 mm
->total_vm
-= nrpages
;
1760 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1761 vma
= remove_vma(vma
);
1767 * Get rid of page table information in the indicated region.
1769 * Called with the mm semaphore held.
1771 static void unmap_region(struct mm_struct
*mm
,
1772 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1773 unsigned long start
, unsigned long end
)
1775 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1776 struct mmu_gather
*tlb
;
1777 unsigned long nr_accounted
= 0;
1780 tlb
= tlb_gather_mmu(mm
, 0);
1781 update_hiwater_rss(mm
);
1782 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1783 vm_unacct_memory(nr_accounted
);
1784 free_pgtables(tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1785 next
? next
->vm_start
: 0);
1786 tlb_finish_mmu(tlb
, start
, end
);
1790 * Create a list of vma's touched by the unmap, removing them from the mm's
1791 * vma list as we go..
1794 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1795 struct vm_area_struct
*prev
, unsigned long end
)
1797 struct vm_area_struct
**insertion_point
;
1798 struct vm_area_struct
*tail_vma
= NULL
;
1801 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1803 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1807 } while (vma
&& vma
->vm_start
< end
);
1808 *insertion_point
= vma
;
1809 tail_vma
->vm_next
= NULL
;
1810 if (mm
->unmap_area
== arch_unmap_area
)
1811 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1813 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1814 mm
->unmap_area(mm
, addr
);
1815 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1819 * Split a vma into two pieces at address 'addr', a new vma is allocated
1820 * either for the first part or the tail.
1822 int split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1823 unsigned long addr
, int new_below
)
1825 struct mempolicy
*pol
;
1826 struct vm_area_struct
*new;
1828 if (is_vm_hugetlb_page(vma
) && (addr
&
1829 ~(huge_page_mask(hstate_vma(vma
)))))
1832 if (mm
->map_count
>= sysctl_max_map_count
)
1835 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1839 /* most fields are the same, copy all, and then fixup */
1845 new->vm_start
= addr
;
1846 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1849 pol
= mpol_dup(vma_policy(vma
));
1851 kmem_cache_free(vm_area_cachep
, new);
1852 return PTR_ERR(pol
);
1854 vma_set_policy(new, pol
);
1857 get_file(new->vm_file
);
1858 if (vma
->vm_flags
& VM_EXECUTABLE
)
1859 added_exe_file_vma(mm
);
1862 if (new->vm_ops
&& new->vm_ops
->open
)
1863 new->vm_ops
->open(new);
1866 vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
1867 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
1869 vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
1874 /* Munmap is split into 2 main parts -- this part which finds
1875 * what needs doing, and the areas themselves, which do the
1876 * work. This now handles partial unmappings.
1877 * Jeremy Fitzhardinge <jeremy@goop.org>
1879 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1882 struct vm_area_struct
*vma
, *prev
, *last
;
1884 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
1887 if ((len
= PAGE_ALIGN(len
)) == 0)
1890 /* Find the first overlapping VMA */
1891 vma
= find_vma_prev(mm
, start
, &prev
);
1894 /* we have start < vma->vm_end */
1896 /* if it doesn't overlap, we have nothing.. */
1898 if (vma
->vm_start
>= end
)
1902 * If we need to split any vma, do it now to save pain later.
1904 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1905 * unmapped vm_area_struct will remain in use: so lower split_vma
1906 * places tmp vma above, and higher split_vma places tmp vma below.
1908 if (start
> vma
->vm_start
) {
1909 int error
= split_vma(mm
, vma
, start
, 0);
1915 /* Does it split the last one? */
1916 last
= find_vma(mm
, end
);
1917 if (last
&& end
> last
->vm_start
) {
1918 int error
= split_vma(mm
, last
, end
, 1);
1922 vma
= prev
? prev
->vm_next
: mm
->mmap
;
1925 * unlock any mlock()ed ranges before detaching vmas
1927 if (mm
->locked_vm
) {
1928 struct vm_area_struct
*tmp
= vma
;
1929 while (tmp
&& tmp
->vm_start
< end
) {
1930 if (tmp
->vm_flags
& VM_LOCKED
) {
1931 mm
->locked_vm
-= vma_pages(tmp
);
1932 munlock_vma_pages_all(tmp
);
1939 * Remove the vma's, and unmap the actual pages
1941 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
1942 unmap_region(mm
, vma
, prev
, start
, end
);
1944 /* Fix up all other VM information */
1945 remove_vma_list(mm
, vma
);
1950 EXPORT_SYMBOL(do_munmap
);
1952 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1955 struct mm_struct
*mm
= current
->mm
;
1957 profile_munmap(addr
);
1959 down_write(&mm
->mmap_sem
);
1960 ret
= do_munmap(mm
, addr
, len
);
1961 up_write(&mm
->mmap_sem
);
1965 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
1967 #ifdef CONFIG_DEBUG_VM
1968 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
1970 up_read(&mm
->mmap_sem
);
1976 * this is really a simplified "do_mmap". it only handles
1977 * anonymous maps. eventually we may be able to do some
1978 * brk-specific accounting here.
1980 unsigned long do_brk(unsigned long addr
, unsigned long len
)
1982 struct mm_struct
* mm
= current
->mm
;
1983 struct vm_area_struct
* vma
, * prev
;
1984 unsigned long flags
;
1985 struct rb_node
** rb_link
, * rb_parent
;
1986 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
1989 len
= PAGE_ALIGN(len
);
1993 if ((addr
+ len
) > TASK_SIZE
|| (addr
+ len
) < addr
)
1996 if (is_hugepage_only_range(mm
, addr
, len
))
1999 error
= security_file_mmap(NULL
, 0, 0, 0, addr
, 1);
2003 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2005 error
= arch_mmap_check(addr
, len
, flags
);
2012 if (mm
->def_flags
& VM_LOCKED
) {
2013 unsigned long locked
, lock_limit
;
2014 locked
= len
>> PAGE_SHIFT
;
2015 locked
+= mm
->locked_vm
;
2016 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2017 lock_limit
>>= PAGE_SHIFT
;
2018 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2023 * mm->mmap_sem is required to protect against another thread
2024 * changing the mappings in case we sleep.
2026 verify_mm_writelocked(mm
);
2029 * Clear old maps. this also does some error checking for us
2032 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2033 if (vma
&& vma
->vm_start
< addr
+ len
) {
2034 if (do_munmap(mm
, addr
, len
))
2039 /* Check against address space limits *after* clearing old maps... */
2040 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2043 if (mm
->map_count
> sysctl_max_map_count
)
2046 if (security_vm_enough_memory(len
>> PAGE_SHIFT
))
2049 /* Can we just expand an old private anonymous mapping? */
2050 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2051 NULL
, NULL
, pgoff
, NULL
);
2056 * create a vma struct for an anonymous mapping
2058 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2060 vm_unacct_memory(len
>> PAGE_SHIFT
);
2065 vma
->vm_start
= addr
;
2066 vma
->vm_end
= addr
+ len
;
2067 vma
->vm_pgoff
= pgoff
;
2068 vma
->vm_flags
= flags
;
2069 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2070 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2072 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2073 if (flags
& VM_LOCKED
) {
2074 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
2075 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2080 EXPORT_SYMBOL(do_brk
);
2082 /* Release all mmaps. */
2083 void exit_mmap(struct mm_struct
*mm
)
2085 struct mmu_gather
*tlb
;
2086 struct vm_area_struct
*vma
;
2087 unsigned long nr_accounted
= 0;
2090 /* mm's last user has gone, and its about to be pulled down */
2091 mmu_notifier_release(mm
);
2093 if (mm
->locked_vm
) {
2096 if (vma
->vm_flags
& VM_LOCKED
)
2097 munlock_vma_pages_all(vma
);
2105 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2110 tlb
= tlb_gather_mmu(mm
, 1);
2111 /* update_hiwater_rss(mm) here? but nobody should be looking */
2112 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2113 end
= unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
2114 vm_unacct_memory(nr_accounted
);
2115 free_pgtables(tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2116 tlb_finish_mmu(tlb
, 0, end
);
2119 * Walk the list again, actually closing and freeing it,
2120 * with preemption enabled, without holding any MM locks.
2123 vma
= remove_vma(vma
);
2125 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2128 /* Insert vm structure into process list sorted by address
2129 * and into the inode's i_mmap tree. If vm_file is non-NULL
2130 * then i_mmap_lock is taken here.
2132 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2134 struct vm_area_struct
* __vma
, * prev
;
2135 struct rb_node
** rb_link
, * rb_parent
;
2138 * The vm_pgoff of a purely anonymous vma should be irrelevant
2139 * until its first write fault, when page's anon_vma and index
2140 * are set. But now set the vm_pgoff it will almost certainly
2141 * end up with (unless mremap moves it elsewhere before that
2142 * first wfault), so /proc/pid/maps tells a consistent story.
2144 * By setting it to reflect the virtual start address of the
2145 * vma, merges and splits can happen in a seamless way, just
2146 * using the existing file pgoff checks and manipulations.
2147 * Similarly in do_mmap_pgoff and in do_brk.
2149 if (!vma
->vm_file
) {
2150 BUG_ON(vma
->anon_vma
);
2151 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2153 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2154 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2156 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2157 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2159 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2164 * Copy the vma structure to a new location in the same mm,
2165 * prior to moving page table entries, to effect an mremap move.
2167 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2168 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2170 struct vm_area_struct
*vma
= *vmap
;
2171 unsigned long vma_start
= vma
->vm_start
;
2172 struct mm_struct
*mm
= vma
->vm_mm
;
2173 struct vm_area_struct
*new_vma
, *prev
;
2174 struct rb_node
**rb_link
, *rb_parent
;
2175 struct mempolicy
*pol
;
2178 * If anonymous vma has not yet been faulted, update new pgoff
2179 * to match new location, to increase its chance of merging.
2181 if (!vma
->vm_file
&& !vma
->anon_vma
)
2182 pgoff
= addr
>> PAGE_SHIFT
;
2184 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2185 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2186 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2189 * Source vma may have been merged into new_vma
2191 if (vma_start
>= new_vma
->vm_start
&&
2192 vma_start
< new_vma
->vm_end
)
2195 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2198 pol
= mpol_dup(vma_policy(vma
));
2200 kmem_cache_free(vm_area_cachep
, new_vma
);
2203 vma_set_policy(new_vma
, pol
);
2204 new_vma
->vm_start
= addr
;
2205 new_vma
->vm_end
= addr
+ len
;
2206 new_vma
->vm_pgoff
= pgoff
;
2207 if (new_vma
->vm_file
) {
2208 get_file(new_vma
->vm_file
);
2209 if (vma
->vm_flags
& VM_EXECUTABLE
)
2210 added_exe_file_vma(mm
);
2212 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2213 new_vma
->vm_ops
->open(new_vma
);
2214 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2221 * Return true if the calling process may expand its vm space by the passed
2224 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2226 unsigned long cur
= mm
->total_vm
; /* pages */
2229 lim
= current
->signal
->rlim
[RLIMIT_AS
].rlim_cur
>> PAGE_SHIFT
;
2231 if (cur
+ npages
> lim
)
2237 static int special_mapping_fault(struct vm_area_struct
*vma
,
2238 struct vm_fault
*vmf
)
2241 struct page
**pages
;
2244 * special mappings have no vm_file, and in that case, the mm
2245 * uses vm_pgoff internally. So we have to subtract it from here.
2246 * We are allowed to do this because we are the mm; do not copy
2247 * this code into drivers!
2249 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2251 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2255 struct page
*page
= *pages
;
2261 return VM_FAULT_SIGBUS
;
2265 * Having a close hook prevents vma merging regardless of flags.
2267 static void special_mapping_close(struct vm_area_struct
*vma
)
2271 static struct vm_operations_struct special_mapping_vmops
= {
2272 .close
= special_mapping_close
,
2273 .fault
= special_mapping_fault
,
2277 * Called with mm->mmap_sem held for writing.
2278 * Insert a new vma covering the given region, with the given flags.
2279 * Its pages are supplied by the given array of struct page *.
2280 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2281 * The region past the last page supplied will always produce SIGBUS.
2282 * The array pointer and the pages it points to are assumed to stay alive
2283 * for as long as this mapping might exist.
2285 int install_special_mapping(struct mm_struct
*mm
,
2286 unsigned long addr
, unsigned long len
,
2287 unsigned long vm_flags
, struct page
**pages
)
2289 struct vm_area_struct
*vma
;
2291 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2292 if (unlikely(vma
== NULL
))
2296 vma
->vm_start
= addr
;
2297 vma
->vm_end
= addr
+ len
;
2299 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2300 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2302 vma
->vm_ops
= &special_mapping_vmops
;
2303 vma
->vm_private_data
= pages
;
2305 if (unlikely(insert_vm_struct(mm
, vma
))) {
2306 kmem_cache_free(vm_area_cachep
, vma
);
2310 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2315 static DEFINE_MUTEX(mm_all_locks_mutex
);
2317 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2319 if (!test_bit(0, (unsigned long *) &anon_vma
->head
.next
)) {
2321 * The LSB of head.next can't change from under us
2322 * because we hold the mm_all_locks_mutex.
2324 spin_lock_nest_lock(&anon_vma
->lock
, &mm
->mmap_sem
);
2326 * We can safely modify head.next after taking the
2327 * anon_vma->lock. If some other vma in this mm shares
2328 * the same anon_vma we won't take it again.
2330 * No need of atomic instructions here, head.next
2331 * can't change from under us thanks to the
2334 if (__test_and_set_bit(0, (unsigned long *)
2335 &anon_vma
->head
.next
))
2340 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2342 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2344 * AS_MM_ALL_LOCKS can't change from under us because
2345 * we hold the mm_all_locks_mutex.
2347 * Operations on ->flags have to be atomic because
2348 * even if AS_MM_ALL_LOCKS is stable thanks to the
2349 * mm_all_locks_mutex, there may be other cpus
2350 * changing other bitflags in parallel to us.
2352 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2354 spin_lock_nest_lock(&mapping
->i_mmap_lock
, &mm
->mmap_sem
);
2359 * This operation locks against the VM for all pte/vma/mm related
2360 * operations that could ever happen on a certain mm. This includes
2361 * vmtruncate, try_to_unmap, and all page faults.
2363 * The caller must take the mmap_sem in write mode before calling
2364 * mm_take_all_locks(). The caller isn't allowed to release the
2365 * mmap_sem until mm_drop_all_locks() returns.
2367 * mmap_sem in write mode is required in order to block all operations
2368 * that could modify pagetables and free pages without need of
2369 * altering the vma layout (for example populate_range() with
2370 * nonlinear vmas). It's also needed in write mode to avoid new
2371 * anon_vmas to be associated with existing vmas.
2373 * A single task can't take more than one mm_take_all_locks() in a row
2374 * or it would deadlock.
2376 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2377 * mapping->flags avoid to take the same lock twice, if more than one
2378 * vma in this mm is backed by the same anon_vma or address_space.
2380 * We can take all the locks in random order because the VM code
2381 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2382 * takes more than one of them in a row. Secondly we're protected
2383 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2385 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2386 * that may have to take thousand of locks.
2388 * mm_take_all_locks() can fail if it's interrupted by signals.
2390 int mm_take_all_locks(struct mm_struct
*mm
)
2392 struct vm_area_struct
*vma
;
2395 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2397 mutex_lock(&mm_all_locks_mutex
);
2399 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2400 if (signal_pending(current
))
2402 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2403 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
2406 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2407 if (signal_pending(current
))
2410 vm_lock_anon_vma(mm
, vma
->anon_vma
);
2417 mm_drop_all_locks(mm
);
2422 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
2424 if (test_bit(0, (unsigned long *) &anon_vma
->head
.next
)) {
2426 * The LSB of head.next can't change to 0 from under
2427 * us because we hold the mm_all_locks_mutex.
2429 * We must however clear the bitflag before unlocking
2430 * the vma so the users using the anon_vma->head will
2431 * never see our bitflag.
2433 * No need of atomic instructions here, head.next
2434 * can't change from under us until we release the
2437 if (!__test_and_clear_bit(0, (unsigned long *)
2438 &anon_vma
->head
.next
))
2440 spin_unlock(&anon_vma
->lock
);
2444 static void vm_unlock_mapping(struct address_space
*mapping
)
2446 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2448 * AS_MM_ALL_LOCKS can't change to 0 from under us
2449 * because we hold the mm_all_locks_mutex.
2451 spin_unlock(&mapping
->i_mmap_lock
);
2452 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
2459 * The mmap_sem cannot be released by the caller until
2460 * mm_drop_all_locks() returns.
2462 void mm_drop_all_locks(struct mm_struct
*mm
)
2464 struct vm_area_struct
*vma
;
2466 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2467 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
2469 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2471 vm_unlock_anon_vma(vma
->anon_vma
);
2472 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2473 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
2476 mutex_unlock(&mm_all_locks_mutex
);
2480 * initialise the VMA slab
2482 void __init
mmap_init(void)