1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
42 #include <asm/uaccess.h>
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
45 #define MEM_CGROUP_RECLAIM_RETRIES 5
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49 int do_swap_account __read_mostly
;
50 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
52 #define do_swap_account (0)
55 static DEFINE_MUTEX(memcg_tasklist
); /* can be hold under cgroup_mutex */
58 * Statistics for memory cgroup.
60 enum mem_cgroup_stat_index
{
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
64 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
65 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
66 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
67 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
69 MEM_CGROUP_STAT_NSTATS
,
72 struct mem_cgroup_stat_cpu
{
73 s64 count
[MEM_CGROUP_STAT_NSTATS
];
74 } ____cacheline_aligned_in_smp
;
76 struct mem_cgroup_stat
{
77 struct mem_cgroup_stat_cpu cpustat
[0];
81 * For accounting under irq disable, no need for increment preempt count.
83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu
*stat
,
84 enum mem_cgroup_stat_index idx
, int val
)
86 stat
->count
[idx
] += val
;
89 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
90 enum mem_cgroup_stat_index idx
)
94 for_each_possible_cpu(cpu
)
95 ret
+= stat
->cpustat
[cpu
].count
[idx
];
99 static s64
mem_cgroup_local_usage(struct mem_cgroup_stat
*stat
)
103 ret
= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_CACHE
);
104 ret
+= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_RSS
);
109 * per-zone information in memory controller.
111 struct mem_cgroup_per_zone
{
113 * spin_lock to protect the per cgroup LRU
115 struct list_head lists
[NR_LRU_LISTS
];
116 unsigned long count
[NR_LRU_LISTS
];
118 struct zone_reclaim_stat reclaim_stat
;
120 /* Macro for accessing counter */
121 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
123 struct mem_cgroup_per_node
{
124 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
127 struct mem_cgroup_lru_info
{
128 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
132 * The memory controller data structure. The memory controller controls both
133 * page cache and RSS per cgroup. We would eventually like to provide
134 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135 * to help the administrator determine what knobs to tune.
137 * TODO: Add a water mark for the memory controller. Reclaim will begin when
138 * we hit the water mark. May be even add a low water mark, such that
139 * no reclaim occurs from a cgroup at it's low water mark, this is
140 * a feature that will be implemented much later in the future.
143 struct cgroup_subsys_state css
;
145 * the counter to account for memory usage
147 struct res_counter res
;
149 * the counter to account for mem+swap usage.
151 struct res_counter memsw
;
153 * Per cgroup active and inactive list, similar to the
154 * per zone LRU lists.
156 struct mem_cgroup_lru_info info
;
159 protect against reclaim related member.
161 spinlock_t reclaim_param_lock
;
163 int prev_priority
; /* for recording reclaim priority */
166 * While reclaiming in a hiearchy, we cache the last child we
169 int last_scanned_child
;
171 * Should the accounting and control be hierarchical, per subtree?
174 unsigned long last_oom_jiffies
;
177 unsigned int swappiness
;
180 * statistics. This must be placed at the end of memcg.
182 struct mem_cgroup_stat stat
;
186 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
187 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
188 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
189 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
194 /* only for here (for easy reading.) */
195 #define PCGF_CACHE (1UL << PCG_CACHE)
196 #define PCGF_USED (1UL << PCG_USED)
197 #define PCGF_LOCK (1UL << PCG_LOCK)
198 static const unsigned long
199 pcg_default_flags
[NR_CHARGE_TYPE
] = {
200 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* File Cache */
201 PCGF_USED
| PCGF_LOCK
, /* Anon */
202 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* Shmem */
206 /* for encoding cft->private value on file */
209 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
210 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
211 #define MEMFILE_ATTR(val) ((val) & 0xffff)
213 static void mem_cgroup_get(struct mem_cgroup
*mem
);
214 static void mem_cgroup_put(struct mem_cgroup
*mem
);
215 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
217 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
218 struct page_cgroup
*pc
,
221 int val
= (charge
)? 1 : -1;
222 struct mem_cgroup_stat
*stat
= &mem
->stat
;
223 struct mem_cgroup_stat_cpu
*cpustat
;
226 cpustat
= &stat
->cpustat
[cpu
];
227 if (PageCgroupCache(pc
))
228 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_CACHE
, val
);
230 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_RSS
, val
);
233 __mem_cgroup_stat_add_safe(cpustat
,
234 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
236 __mem_cgroup_stat_add_safe(cpustat
,
237 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
241 static struct mem_cgroup_per_zone
*
242 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
244 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
247 static struct mem_cgroup_per_zone
*
248 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
250 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
251 int nid
= page_cgroup_nid(pc
);
252 int zid
= page_cgroup_zid(pc
);
257 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
264 struct mem_cgroup_per_zone
*mz
;
267 for_each_online_node(nid
)
268 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
269 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
270 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
275 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
277 return container_of(cgroup_subsys_state(cont
,
278 mem_cgroup_subsys_id
), struct mem_cgroup
,
282 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
285 * mm_update_next_owner() may clear mm->owner to NULL
286 * if it races with swapoff, page migration, etc.
287 * So this can be called with p == NULL.
292 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
293 struct mem_cgroup
, css
);
296 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
298 struct mem_cgroup
*mem
= NULL
;
303 * Because we have no locks, mm->owner's may be being moved to other
304 * cgroup. We use css_tryget() here even if this looks
305 * pessimistic (rather than adding locks here).
309 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
312 } while (!css_tryget(&mem
->css
));
317 static bool mem_cgroup_is_obsolete(struct mem_cgroup
*mem
)
321 return css_is_removed(&mem
->css
);
326 * Call callback function against all cgroup under hierarchy tree.
328 static int mem_cgroup_walk_tree(struct mem_cgroup
*root
, void *data
,
329 int (*func
)(struct mem_cgroup
*, void *))
331 int found
, ret
, nextid
;
332 struct cgroup_subsys_state
*css
;
333 struct mem_cgroup
*mem
;
335 if (!root
->use_hierarchy
)
336 return (*func
)(root
, data
);
344 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root
->css
,
346 if (css
&& css_tryget(css
))
347 mem
= container_of(css
, struct mem_cgroup
, css
);
351 ret
= (*func
)(mem
, data
);
355 } while (!ret
&& css
);
361 * Following LRU functions are allowed to be used without PCG_LOCK.
362 * Operations are called by routine of global LRU independently from memcg.
363 * What we have to take care of here is validness of pc->mem_cgroup.
365 * Changes to pc->mem_cgroup happens when
368 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
369 * It is added to LRU before charge.
370 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
371 * When moving account, the page is not on LRU. It's isolated.
374 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
376 struct page_cgroup
*pc
;
377 struct mem_cgroup
*mem
;
378 struct mem_cgroup_per_zone
*mz
;
380 if (mem_cgroup_disabled())
382 pc
= lookup_page_cgroup(page
);
383 /* can happen while we handle swapcache. */
384 if (list_empty(&pc
->lru
) || !pc
->mem_cgroup
)
387 * We don't check PCG_USED bit. It's cleared when the "page" is finally
388 * removed from global LRU.
390 mz
= page_cgroup_zoneinfo(pc
);
391 mem
= pc
->mem_cgroup
;
392 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
393 list_del_init(&pc
->lru
);
397 void mem_cgroup_del_lru(struct page
*page
)
399 mem_cgroup_del_lru_list(page
, page_lru(page
));
402 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
404 struct mem_cgroup_per_zone
*mz
;
405 struct page_cgroup
*pc
;
407 if (mem_cgroup_disabled())
410 pc
= lookup_page_cgroup(page
);
412 * Used bit is set without atomic ops but after smp_wmb().
413 * For making pc->mem_cgroup visible, insert smp_rmb() here.
416 /* unused page is not rotated. */
417 if (!PageCgroupUsed(pc
))
419 mz
= page_cgroup_zoneinfo(pc
);
420 list_move(&pc
->lru
, &mz
->lists
[lru
]);
423 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
425 struct page_cgroup
*pc
;
426 struct mem_cgroup_per_zone
*mz
;
428 if (mem_cgroup_disabled())
430 pc
= lookup_page_cgroup(page
);
432 * Used bit is set without atomic ops but after smp_wmb().
433 * For making pc->mem_cgroup visible, insert smp_rmb() here.
436 if (!PageCgroupUsed(pc
))
439 mz
= page_cgroup_zoneinfo(pc
);
440 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
441 list_add(&pc
->lru
, &mz
->lists
[lru
]);
445 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
446 * lru because the page may.be reused after it's fully uncharged (because of
447 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
448 * it again. This function is only used to charge SwapCache. It's done under
449 * lock_page and expected that zone->lru_lock is never held.
451 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
454 struct zone
*zone
= page_zone(page
);
455 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
457 spin_lock_irqsave(&zone
->lru_lock
, flags
);
459 * Forget old LRU when this page_cgroup is *not* used. This Used bit
460 * is guarded by lock_page() because the page is SwapCache.
462 if (!PageCgroupUsed(pc
))
463 mem_cgroup_del_lru_list(page
, page_lru(page
));
464 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
467 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
470 struct zone
*zone
= page_zone(page
);
471 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
473 spin_lock_irqsave(&zone
->lru_lock
, flags
);
474 /* link when the page is linked to LRU but page_cgroup isn't */
475 if (PageLRU(page
) && list_empty(&pc
->lru
))
476 mem_cgroup_add_lru_list(page
, page_lru(page
));
477 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
481 void mem_cgroup_move_lists(struct page
*page
,
482 enum lru_list from
, enum lru_list to
)
484 if (mem_cgroup_disabled())
486 mem_cgroup_del_lru_list(page
, from
);
487 mem_cgroup_add_lru_list(page
, to
);
490 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
493 struct mem_cgroup
*curr
= NULL
;
497 curr
= try_get_mem_cgroup_from_mm(task
->mm
);
502 if (curr
->use_hierarchy
)
503 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
511 * prev_priority control...this will be used in memory reclaim path.
513 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
517 spin_lock(&mem
->reclaim_param_lock
);
518 prev_priority
= mem
->prev_priority
;
519 spin_unlock(&mem
->reclaim_param_lock
);
521 return prev_priority
;
524 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
526 spin_lock(&mem
->reclaim_param_lock
);
527 if (priority
< mem
->prev_priority
)
528 mem
->prev_priority
= priority
;
529 spin_unlock(&mem
->reclaim_param_lock
);
532 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
534 spin_lock(&mem
->reclaim_param_lock
);
535 mem
->prev_priority
= priority
;
536 spin_unlock(&mem
->reclaim_param_lock
);
539 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
541 unsigned long active
;
542 unsigned long inactive
;
544 unsigned long inactive_ratio
;
546 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
547 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
549 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
551 inactive_ratio
= int_sqrt(10 * gb
);
556 present_pages
[0] = inactive
;
557 present_pages
[1] = active
;
560 return inactive_ratio
;
563 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
565 unsigned long active
;
566 unsigned long inactive
;
567 unsigned long present_pages
[2];
568 unsigned long inactive_ratio
;
570 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
572 inactive
= present_pages
[0];
573 active
= present_pages
[1];
575 if (inactive
* inactive_ratio
< active
)
581 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
585 int nid
= zone
->zone_pgdat
->node_id
;
586 int zid
= zone_idx(zone
);
587 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
589 return MEM_CGROUP_ZSTAT(mz
, lru
);
592 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
595 int nid
= zone
->zone_pgdat
->node_id
;
596 int zid
= zone_idx(zone
);
597 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
599 return &mz
->reclaim_stat
;
602 struct zone_reclaim_stat
*
603 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
605 struct page_cgroup
*pc
;
606 struct mem_cgroup_per_zone
*mz
;
608 if (mem_cgroup_disabled())
611 pc
= lookup_page_cgroup(page
);
613 * Used bit is set without atomic ops but after smp_wmb().
614 * For making pc->mem_cgroup visible, insert smp_rmb() here.
617 if (!PageCgroupUsed(pc
))
620 mz
= page_cgroup_zoneinfo(pc
);
624 return &mz
->reclaim_stat
;
627 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
628 struct list_head
*dst
,
629 unsigned long *scanned
, int order
,
630 int mode
, struct zone
*z
,
631 struct mem_cgroup
*mem_cont
,
632 int active
, int file
)
634 unsigned long nr_taken
= 0;
638 struct list_head
*src
;
639 struct page_cgroup
*pc
, *tmp
;
640 int nid
= z
->zone_pgdat
->node_id
;
641 int zid
= zone_idx(z
);
642 struct mem_cgroup_per_zone
*mz
;
643 int lru
= LRU_FILE
* !!file
+ !!active
;
646 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
647 src
= &mz
->lists
[lru
];
650 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
651 if (scan
>= nr_to_scan
)
655 if (unlikely(!PageCgroupUsed(pc
)))
657 if (unlikely(!PageLRU(page
)))
661 if (__isolate_lru_page(page
, mode
, file
) == 0) {
662 list_move(&page
->lru
, dst
);
671 #define mem_cgroup_from_res_counter(counter, member) \
672 container_of(counter, struct mem_cgroup, member)
674 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
676 if (do_swap_account
) {
677 if (res_counter_check_under_limit(&mem
->res
) &&
678 res_counter_check_under_limit(&mem
->memsw
))
681 if (res_counter_check_under_limit(&mem
->res
))
686 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
688 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
689 unsigned int swappiness
;
692 if (cgrp
->parent
== NULL
)
693 return vm_swappiness
;
695 spin_lock(&memcg
->reclaim_param_lock
);
696 swappiness
= memcg
->swappiness
;
697 spin_unlock(&memcg
->reclaim_param_lock
);
702 static int mem_cgroup_count_children_cb(struct mem_cgroup
*mem
, void *data
)
710 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
711 * @memcg: The memory cgroup that went over limit
712 * @p: Task that is going to be killed
714 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
717 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
719 struct cgroup
*task_cgrp
;
720 struct cgroup
*mem_cgrp
;
722 * Need a buffer in BSS, can't rely on allocations. The code relies
723 * on the assumption that OOM is serialized for memory controller.
724 * If this assumption is broken, revisit this code.
726 static char memcg_name
[PATH_MAX
];
735 mem_cgrp
= memcg
->css
.cgroup
;
736 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
738 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
741 * Unfortunately, we are unable to convert to a useful name
742 * But we'll still print out the usage information
749 printk(KERN_INFO
"Task in %s killed", memcg_name
);
752 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
760 * Continues from above, so we don't need an KERN_ level
762 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
765 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
766 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
767 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
768 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
769 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
771 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
772 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
773 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
777 * This function returns the number of memcg under hierarchy tree. Returns
778 * 1(self count) if no children.
780 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
783 mem_cgroup_walk_tree(mem
, &num
, mem_cgroup_count_children_cb
);
788 * Visit the first child (need not be the first child as per the ordering
789 * of the cgroup list, since we track last_scanned_child) of @mem and use
790 * that to reclaim free pages from.
792 static struct mem_cgroup
*
793 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
795 struct mem_cgroup
*ret
= NULL
;
796 struct cgroup_subsys_state
*css
;
799 if (!root_mem
->use_hierarchy
) {
800 css_get(&root_mem
->css
);
806 nextid
= root_mem
->last_scanned_child
+ 1;
807 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
809 if (css
&& css_tryget(css
))
810 ret
= container_of(css
, struct mem_cgroup
, css
);
813 /* Updates scanning parameter */
814 spin_lock(&root_mem
->reclaim_param_lock
);
816 /* this means start scan from ID:1 */
817 root_mem
->last_scanned_child
= 0;
819 root_mem
->last_scanned_child
= found
;
820 spin_unlock(&root_mem
->reclaim_param_lock
);
827 * Scan the hierarchy if needed to reclaim memory. We remember the last child
828 * we reclaimed from, so that we don't end up penalizing one child extensively
829 * based on its position in the children list.
831 * root_mem is the original ancestor that we've been reclaim from.
833 * We give up and return to the caller when we visit root_mem twice.
834 * (other groups can be removed while we're walking....)
836 * If shrink==true, for avoiding to free too much, this returns immedieately.
838 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
839 gfp_t gfp_mask
, bool noswap
, bool shrink
)
841 struct mem_cgroup
*victim
;
846 victim
= mem_cgroup_select_victim(root_mem
);
847 if (victim
== root_mem
)
849 if (!mem_cgroup_local_usage(&victim
->stat
)) {
850 /* this cgroup's local usage == 0 */
851 css_put(&victim
->css
);
854 /* we use swappiness of local cgroup */
855 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
, noswap
,
856 get_swappiness(victim
));
857 css_put(&victim
->css
);
859 * At shrinking usage, we can't check we should stop here or
860 * reclaim more. It's depends on callers. last_scanned_child
861 * will work enough for keeping fairness under tree.
866 if (mem_cgroup_check_under_limit(root_mem
))
872 bool mem_cgroup_oom_called(struct task_struct
*task
)
875 struct mem_cgroup
*mem
;
876 struct mm_struct
*mm
;
882 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
883 if (mem
&& time_before(jiffies
, mem
->last_oom_jiffies
+ HZ
/10))
889 static int record_last_oom_cb(struct mem_cgroup
*mem
, void *data
)
891 mem
->last_oom_jiffies
= jiffies
;
895 static void record_last_oom(struct mem_cgroup
*mem
)
897 mem_cgroup_walk_tree(mem
, NULL
, record_last_oom_cb
);
902 * Unlike exported interface, "oom" parameter is added. if oom==true,
903 * oom-killer can be invoked.
905 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
906 gfp_t gfp_mask
, struct mem_cgroup
**memcg
,
909 struct mem_cgroup
*mem
, *mem_over_limit
;
910 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
911 struct res_counter
*fail_res
;
913 if (unlikely(test_thread_flag(TIF_MEMDIE
))) {
914 /* Don't account this! */
920 * We always charge the cgroup the mm_struct belongs to.
921 * The mm_struct's mem_cgroup changes on task migration if the
922 * thread group leader migrates. It's possible that mm is not
923 * set, if so charge the init_mm (happens for pagecache usage).
927 mem
= try_get_mem_cgroup_from_mm(mm
);
935 VM_BUG_ON(!mem
|| mem_cgroup_is_obsolete(mem
));
941 ret
= res_counter_charge(&mem
->res
, PAGE_SIZE
, &fail_res
);
943 if (!do_swap_account
)
945 ret
= res_counter_charge(&mem
->memsw
, PAGE_SIZE
,
949 /* mem+swap counter fails */
950 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
952 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
955 /* mem counter fails */
956 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
959 if (!(gfp_mask
& __GFP_WAIT
))
962 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, gfp_mask
,
968 * try_to_free_mem_cgroup_pages() might not give us a full
969 * picture of reclaim. Some pages are reclaimed and might be
970 * moved to swap cache or just unmapped from the cgroup.
971 * Check the limit again to see if the reclaim reduced the
972 * current usage of the cgroup before giving up
975 if (mem_cgroup_check_under_limit(mem_over_limit
))
980 mutex_lock(&memcg_tasklist
);
981 mem_cgroup_out_of_memory(mem_over_limit
, gfp_mask
);
982 mutex_unlock(&memcg_tasklist
);
983 record_last_oom(mem_over_limit
);
996 * A helper function to get mem_cgroup from ID. must be called under
997 * rcu_read_lock(). The caller must check css_is_removed() or some if
998 * it's concern. (dropping refcnt from swap can be called against removed
1001 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
1003 struct cgroup_subsys_state
*css
;
1005 /* ID 0 is unused ID */
1008 css
= css_lookup(&mem_cgroup_subsys
, id
);
1011 return container_of(css
, struct mem_cgroup
, css
);
1014 static struct mem_cgroup
*try_get_mem_cgroup_from_swapcache(struct page
*page
)
1016 struct mem_cgroup
*mem
;
1017 struct page_cgroup
*pc
;
1021 VM_BUG_ON(!PageLocked(page
));
1023 if (!PageSwapCache(page
))
1026 pc
= lookup_page_cgroup(page
);
1028 * Used bit of swapcache is solid under page lock.
1030 if (PageCgroupUsed(pc
)) {
1031 mem
= pc
->mem_cgroup
;
1032 if (mem
&& !css_tryget(&mem
->css
))
1035 ent
.val
= page_private(page
);
1036 id
= lookup_swap_cgroup(ent
);
1038 mem
= mem_cgroup_lookup(id
);
1039 if (mem
&& !css_tryget(&mem
->css
))
1047 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1048 * USED state. If already USED, uncharge and return.
1051 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
1052 struct page_cgroup
*pc
,
1053 enum charge_type ctype
)
1055 /* try_charge() can return NULL to *memcg, taking care of it. */
1059 lock_page_cgroup(pc
);
1060 if (unlikely(PageCgroupUsed(pc
))) {
1061 unlock_page_cgroup(pc
);
1062 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1063 if (do_swap_account
)
1064 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1068 pc
->mem_cgroup
= mem
;
1070 pc
->flags
= pcg_default_flags
[ctype
];
1072 mem_cgroup_charge_statistics(mem
, pc
, true);
1074 unlock_page_cgroup(pc
);
1078 * mem_cgroup_move_account - move account of the page
1079 * @pc: page_cgroup of the page.
1080 * @from: mem_cgroup which the page is moved from.
1081 * @to: mem_cgroup which the page is moved to. @from != @to.
1083 * The caller must confirm following.
1084 * - page is not on LRU (isolate_page() is useful.)
1086 * returns 0 at success,
1087 * returns -EBUSY when lock is busy or "pc" is unstable.
1089 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1090 * new cgroup. It should be done by a caller.
1093 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
1094 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
1096 struct mem_cgroup_per_zone
*from_mz
, *to_mz
;
1100 VM_BUG_ON(from
== to
);
1101 VM_BUG_ON(PageLRU(pc
->page
));
1103 nid
= page_cgroup_nid(pc
);
1104 zid
= page_cgroup_zid(pc
);
1105 from_mz
= mem_cgroup_zoneinfo(from
, nid
, zid
);
1106 to_mz
= mem_cgroup_zoneinfo(to
, nid
, zid
);
1108 if (!trylock_page_cgroup(pc
))
1111 if (!PageCgroupUsed(pc
))
1114 if (pc
->mem_cgroup
!= from
)
1117 res_counter_uncharge(&from
->res
, PAGE_SIZE
);
1118 mem_cgroup_charge_statistics(from
, pc
, false);
1119 if (do_swap_account
)
1120 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
1121 css_put(&from
->css
);
1124 pc
->mem_cgroup
= to
;
1125 mem_cgroup_charge_statistics(to
, pc
, true);
1128 unlock_page_cgroup(pc
);
1133 * move charges to its parent.
1136 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1137 struct mem_cgroup
*child
,
1140 struct page
*page
= pc
->page
;
1141 struct cgroup
*cg
= child
->css
.cgroup
;
1142 struct cgroup
*pcg
= cg
->parent
;
1143 struct mem_cgroup
*parent
;
1151 parent
= mem_cgroup_from_cont(pcg
);
1154 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
1158 if (!get_page_unless_zero(page
)) {
1163 ret
= isolate_lru_page(page
);
1168 ret
= mem_cgroup_move_account(pc
, child
, parent
);
1170 putback_lru_page(page
);
1173 /* drop extra refcnt by try_charge() */
1174 css_put(&parent
->css
);
1181 /* drop extra refcnt by try_charge() */
1182 css_put(&parent
->css
);
1183 /* uncharge if move fails */
1184 res_counter_uncharge(&parent
->res
, PAGE_SIZE
);
1185 if (do_swap_account
)
1186 res_counter_uncharge(&parent
->memsw
, PAGE_SIZE
);
1191 * Charge the memory controller for page usage.
1193 * 0 if the charge was successful
1194 * < 0 if the cgroup is over its limit
1196 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1197 gfp_t gfp_mask
, enum charge_type ctype
,
1198 struct mem_cgroup
*memcg
)
1200 struct mem_cgroup
*mem
;
1201 struct page_cgroup
*pc
;
1204 pc
= lookup_page_cgroup(page
);
1205 /* can happen at boot */
1211 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
1215 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1219 int mem_cgroup_newpage_charge(struct page
*page
,
1220 struct mm_struct
*mm
, gfp_t gfp_mask
)
1222 if (mem_cgroup_disabled())
1224 if (PageCompound(page
))
1227 * If already mapped, we don't have to account.
1228 * If page cache, page->mapping has address_space.
1229 * But page->mapping may have out-of-use anon_vma pointer,
1230 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1233 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
1237 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1238 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
1242 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1243 enum charge_type ctype
);
1245 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
1248 struct mem_cgroup
*mem
= NULL
;
1251 if (mem_cgroup_disabled())
1253 if (PageCompound(page
))
1256 * Corner case handling. This is called from add_to_page_cache()
1257 * in usual. But some FS (shmem) precharges this page before calling it
1258 * and call add_to_page_cache() with GFP_NOWAIT.
1260 * For GFP_NOWAIT case, the page may be pre-charged before calling
1261 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1262 * charge twice. (It works but has to pay a bit larger cost.)
1263 * And when the page is SwapCache, it should take swap information
1264 * into account. This is under lock_page() now.
1266 if (!(gfp_mask
& __GFP_WAIT
)) {
1267 struct page_cgroup
*pc
;
1270 pc
= lookup_page_cgroup(page
);
1273 lock_page_cgroup(pc
);
1274 if (PageCgroupUsed(pc
)) {
1275 unlock_page_cgroup(pc
);
1278 unlock_page_cgroup(pc
);
1281 if (unlikely(!mm
&& !mem
))
1284 if (page_is_file_cache(page
))
1285 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1286 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
1289 if (PageSwapCache(page
)) {
1290 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
1292 __mem_cgroup_commit_charge_swapin(page
, mem
,
1293 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
1295 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1296 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
1302 * While swap-in, try_charge -> commit or cancel, the page is locked.
1303 * And when try_charge() successfully returns, one refcnt to memcg without
1304 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1305 * "commit()" or removed by "cancel()"
1307 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
1309 gfp_t mask
, struct mem_cgroup
**ptr
)
1311 struct mem_cgroup
*mem
;
1314 if (mem_cgroup_disabled())
1317 if (!do_swap_account
)
1320 * A racing thread's fault, or swapoff, may have already updated
1321 * the pte, and even removed page from swap cache: return success
1322 * to go on to do_swap_page()'s pte_same() test, which should fail.
1324 if (!PageSwapCache(page
))
1326 mem
= try_get_mem_cgroup_from_swapcache(page
);
1330 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
1331 /* drop extra refcnt from tryget */
1337 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
1341 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1342 enum charge_type ctype
)
1344 struct page_cgroup
*pc
;
1346 if (mem_cgroup_disabled())
1350 pc
= lookup_page_cgroup(page
);
1351 mem_cgroup_lru_del_before_commit_swapcache(page
);
1352 __mem_cgroup_commit_charge(ptr
, pc
, ctype
);
1353 mem_cgroup_lru_add_after_commit_swapcache(page
);
1355 * Now swap is on-memory. This means this page may be
1356 * counted both as mem and swap....double count.
1357 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1358 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1359 * may call delete_from_swap_cache() before reach here.
1361 if (do_swap_account
&& PageSwapCache(page
)) {
1362 swp_entry_t ent
= {.val
= page_private(page
)};
1364 struct mem_cgroup
*memcg
;
1366 id
= swap_cgroup_record(ent
, 0);
1368 memcg
= mem_cgroup_lookup(id
);
1371 * This recorded memcg can be obsolete one. So, avoid
1372 * calling css_tryget
1374 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1375 mem_cgroup_put(memcg
);
1379 /* add this page(page_cgroup) to the LRU we want. */
1383 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
1385 __mem_cgroup_commit_charge_swapin(page
, ptr
,
1386 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1389 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
1391 if (mem_cgroup_disabled())
1395 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1396 if (do_swap_account
)
1397 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1403 * uncharge if !page_mapped(page)
1405 static struct mem_cgroup
*
1406 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
1408 struct page_cgroup
*pc
;
1409 struct mem_cgroup
*mem
= NULL
;
1410 struct mem_cgroup_per_zone
*mz
;
1412 if (mem_cgroup_disabled())
1415 if (PageSwapCache(page
))
1419 * Check if our page_cgroup is valid
1421 pc
= lookup_page_cgroup(page
);
1422 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
1425 lock_page_cgroup(pc
);
1427 mem
= pc
->mem_cgroup
;
1429 if (!PageCgroupUsed(pc
))
1433 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1434 if (page_mapped(page
))
1437 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
1438 if (!PageAnon(page
)) { /* Shared memory */
1439 if (page
->mapping
&& !page_is_file_cache(page
))
1441 } else if (page_mapped(page
)) /* Anon */
1448 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1449 if (do_swap_account
&& (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
))
1450 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1451 mem_cgroup_charge_statistics(mem
, pc
, false);
1453 ClearPageCgroupUsed(pc
);
1455 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1456 * freed from LRU. This is safe because uncharged page is expected not
1457 * to be reused (freed soon). Exception is SwapCache, it's handled by
1458 * special functions.
1461 mz
= page_cgroup_zoneinfo(pc
);
1462 unlock_page_cgroup(pc
);
1464 /* at swapout, this memcg will be accessed to record to swap */
1465 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
1471 unlock_page_cgroup(pc
);
1475 void mem_cgroup_uncharge_page(struct page
*page
)
1478 if (page_mapped(page
))
1480 if (page
->mapping
&& !PageAnon(page
))
1482 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1485 void mem_cgroup_uncharge_cache_page(struct page
*page
)
1487 VM_BUG_ON(page_mapped(page
));
1488 VM_BUG_ON(page
->mapping
);
1489 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
1493 * called from __delete_from_swap_cache() and drop "page" account.
1494 * memcg information is recorded to swap_cgroup of "ent"
1496 void mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
)
1498 struct mem_cgroup
*memcg
;
1500 memcg
= __mem_cgroup_uncharge_common(page
,
1501 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
);
1502 /* record memcg information */
1503 if (do_swap_account
&& memcg
) {
1504 swap_cgroup_record(ent
, css_id(&memcg
->css
));
1505 mem_cgroup_get(memcg
);
1508 css_put(&memcg
->css
);
1511 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1513 * called from swap_entry_free(). remove record in swap_cgroup and
1514 * uncharge "memsw" account.
1516 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
1518 struct mem_cgroup
*memcg
;
1521 if (!do_swap_account
)
1524 id
= swap_cgroup_record(ent
, 0);
1526 memcg
= mem_cgroup_lookup(id
);
1529 * We uncharge this because swap is freed.
1530 * This memcg can be obsolete one. We avoid calling css_tryget
1532 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1533 mem_cgroup_put(memcg
);
1540 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1543 int mem_cgroup_prepare_migration(struct page
*page
, struct mem_cgroup
**ptr
)
1545 struct page_cgroup
*pc
;
1546 struct mem_cgroup
*mem
= NULL
;
1549 if (mem_cgroup_disabled())
1552 pc
= lookup_page_cgroup(page
);
1553 lock_page_cgroup(pc
);
1554 if (PageCgroupUsed(pc
)) {
1555 mem
= pc
->mem_cgroup
;
1558 unlock_page_cgroup(pc
);
1561 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
1568 /* remove redundant charge if migration failed*/
1569 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
1570 struct page
*oldpage
, struct page
*newpage
)
1572 struct page
*target
, *unused
;
1573 struct page_cgroup
*pc
;
1574 enum charge_type ctype
;
1579 /* at migration success, oldpage->mapping is NULL. */
1580 if (oldpage
->mapping
) {
1588 if (PageAnon(target
))
1589 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
1590 else if (page_is_file_cache(target
))
1591 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
1593 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
1595 /* unused page is not on radix-tree now. */
1597 __mem_cgroup_uncharge_common(unused
, ctype
);
1599 pc
= lookup_page_cgroup(target
);
1601 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1602 * So, double-counting is effectively avoided.
1604 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1607 * Both of oldpage and newpage are still under lock_page().
1608 * Then, we don't have to care about race in radix-tree.
1609 * But we have to be careful that this page is unmapped or not.
1611 * There is a case for !page_mapped(). At the start of
1612 * migration, oldpage was mapped. But now, it's zapped.
1613 * But we know *target* page is not freed/reused under us.
1614 * mem_cgroup_uncharge_page() does all necessary checks.
1616 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
1617 mem_cgroup_uncharge_page(target
);
1621 * A call to try to shrink memory usage under specified resource controller.
1622 * This is typically used for page reclaiming for shmem for reducing side
1623 * effect of page allocation from shmem, which is used by some mem_cgroup.
1625 int mem_cgroup_shrink_usage(struct page
*page
,
1626 struct mm_struct
*mm
,
1629 struct mem_cgroup
*mem
= NULL
;
1631 int retry
= MEM_CGROUP_RECLAIM_RETRIES
;
1633 if (mem_cgroup_disabled())
1636 mem
= try_get_mem_cgroup_from_swapcache(page
);
1638 mem
= try_get_mem_cgroup_from_mm(mm
);
1643 progress
= mem_cgroup_hierarchical_reclaim(mem
,
1644 gfp_mask
, true, false);
1645 progress
+= mem_cgroup_check_under_limit(mem
);
1646 } while (!progress
&& --retry
);
1654 static DEFINE_MUTEX(set_limit_mutex
);
1656 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
1657 unsigned long long val
)
1663 int children
= mem_cgroup_count_children(memcg
);
1664 u64 curusage
, oldusage
;
1667 * For keeping hierarchical_reclaim simple, how long we should retry
1668 * is depends on callers. We set our retry-count to be function
1669 * of # of children which we should visit in this loop.
1671 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
1673 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
1675 while (retry_count
) {
1676 if (signal_pending(current
)) {
1681 * Rather than hide all in some function, I do this in
1682 * open coded manner. You see what this really does.
1683 * We have to guarantee mem->res.limit < mem->memsw.limit.
1685 mutex_lock(&set_limit_mutex
);
1686 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1687 if (memswlimit
< val
) {
1689 mutex_unlock(&set_limit_mutex
);
1692 ret
= res_counter_set_limit(&memcg
->res
, val
);
1693 mutex_unlock(&set_limit_mutex
);
1698 progress
= mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
,
1700 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
1701 /* Usage is reduced ? */
1702 if (curusage
>= oldusage
)
1705 oldusage
= curusage
;
1711 int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
1712 unsigned long long val
)
1715 u64 memlimit
, oldusage
, curusage
;
1716 int children
= mem_cgroup_count_children(memcg
);
1719 if (!do_swap_account
)
1721 /* see mem_cgroup_resize_res_limit */
1722 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
1723 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1724 while (retry_count
) {
1725 if (signal_pending(current
)) {
1730 * Rather than hide all in some function, I do this in
1731 * open coded manner. You see what this really does.
1732 * We have to guarantee mem->res.limit < mem->memsw.limit.
1734 mutex_lock(&set_limit_mutex
);
1735 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1736 if (memlimit
> val
) {
1738 mutex_unlock(&set_limit_mutex
);
1741 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
1742 mutex_unlock(&set_limit_mutex
);
1747 mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
, true, true);
1748 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1749 /* Usage is reduced ? */
1750 if (curusage
>= oldusage
)
1753 oldusage
= curusage
;
1759 * This routine traverse page_cgroup in given list and drop them all.
1760 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1762 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
1763 int node
, int zid
, enum lru_list lru
)
1766 struct mem_cgroup_per_zone
*mz
;
1767 struct page_cgroup
*pc
, *busy
;
1768 unsigned long flags
, loop
;
1769 struct list_head
*list
;
1772 zone
= &NODE_DATA(node
)->node_zones
[zid
];
1773 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
1774 list
= &mz
->lists
[lru
];
1776 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
1777 /* give some margin against EBUSY etc...*/
1782 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1783 if (list_empty(list
)) {
1784 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1787 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
1789 list_move(&pc
->lru
, list
);
1791 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1794 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1796 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
1800 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
1801 /* found lock contention or "pc" is obsolete. */
1808 if (!ret
&& !list_empty(list
))
1814 * make mem_cgroup's charge to be 0 if there is no task.
1815 * This enables deleting this mem_cgroup.
1817 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
1820 int node
, zid
, shrink
;
1821 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1822 struct cgroup
*cgrp
= mem
->css
.cgroup
;
1827 /* should free all ? */
1831 while (mem
->res
.usage
> 0) {
1833 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
1836 if (signal_pending(current
))
1838 /* This is for making all *used* pages to be on LRU. */
1839 lru_add_drain_all();
1841 for_each_node_state(node
, N_HIGH_MEMORY
) {
1842 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
1845 ret
= mem_cgroup_force_empty_list(mem
,
1854 /* it seems parent cgroup doesn't have enough mem */
1865 /* returns EBUSY if there is a task or if we come here twice. */
1866 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
1870 /* we call try-to-free pages for make this cgroup empty */
1871 lru_add_drain_all();
1872 /* try to free all pages in this cgroup */
1874 while (nr_retries
&& mem
->res
.usage
> 0) {
1877 if (signal_pending(current
)) {
1881 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
1882 false, get_swappiness(mem
));
1885 /* maybe some writeback is necessary */
1886 congestion_wait(WRITE
, HZ
/10);
1891 /* try move_account...there may be some *locked* pages. */
1898 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
1900 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
1904 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
1906 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
1909 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
1913 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1914 struct cgroup
*parent
= cont
->parent
;
1915 struct mem_cgroup
*parent_mem
= NULL
;
1918 parent_mem
= mem_cgroup_from_cont(parent
);
1922 * If parent's use_hiearchy is set, we can't make any modifications
1923 * in the child subtrees. If it is unset, then the change can
1924 * occur, provided the current cgroup has no children.
1926 * For the root cgroup, parent_mem is NULL, we allow value to be
1927 * set if there are no children.
1929 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
1930 (val
== 1 || val
== 0)) {
1931 if (list_empty(&cont
->children
))
1932 mem
->use_hierarchy
= val
;
1942 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
1944 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1948 type
= MEMFILE_TYPE(cft
->private);
1949 name
= MEMFILE_ATTR(cft
->private);
1952 val
= res_counter_read_u64(&mem
->res
, name
);
1955 if (do_swap_account
)
1956 val
= res_counter_read_u64(&mem
->memsw
, name
);
1965 * The user of this function is...
1968 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
1971 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
1973 unsigned long long val
;
1976 type
= MEMFILE_TYPE(cft
->private);
1977 name
= MEMFILE_ATTR(cft
->private);
1980 /* This function does all necessary parse...reuse it */
1981 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
1985 ret
= mem_cgroup_resize_limit(memcg
, val
);
1987 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
1990 ret
= -EINVAL
; /* should be BUG() ? */
1996 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
1997 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
1999 struct cgroup
*cgroup
;
2000 unsigned long long min_limit
, min_memsw_limit
, tmp
;
2002 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2003 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2004 cgroup
= memcg
->css
.cgroup
;
2005 if (!memcg
->use_hierarchy
)
2008 while (cgroup
->parent
) {
2009 cgroup
= cgroup
->parent
;
2010 memcg
= mem_cgroup_from_cont(cgroup
);
2011 if (!memcg
->use_hierarchy
)
2013 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2014 min_limit
= min(min_limit
, tmp
);
2015 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2016 min_memsw_limit
= min(min_memsw_limit
, tmp
);
2019 *mem_limit
= min_limit
;
2020 *memsw_limit
= min_memsw_limit
;
2024 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
2026 struct mem_cgroup
*mem
;
2029 mem
= mem_cgroup_from_cont(cont
);
2030 type
= MEMFILE_TYPE(event
);
2031 name
= MEMFILE_ATTR(event
);
2035 res_counter_reset_max(&mem
->res
);
2037 res_counter_reset_max(&mem
->memsw
);
2041 res_counter_reset_failcnt(&mem
->res
);
2043 res_counter_reset_failcnt(&mem
->memsw
);
2050 /* For read statistics */
2064 struct mcs_total_stat
{
2065 s64 stat
[NR_MCS_STAT
];
2071 } memcg_stat_strings
[NR_MCS_STAT
] = {
2072 {"cache", "total_cache"},
2073 {"rss", "total_rss"},
2074 {"pgpgin", "total_pgpgin"},
2075 {"pgpgout", "total_pgpgout"},
2076 {"inactive_anon", "total_inactive_anon"},
2077 {"active_anon", "total_active_anon"},
2078 {"inactive_file", "total_inactive_file"},
2079 {"active_file", "total_active_file"},
2080 {"unevictable", "total_unevictable"}
2084 static int mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, void *data
)
2086 struct mcs_total_stat
*s
= data
;
2090 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_CACHE
);
2091 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
2092 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
2093 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
2094 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
2095 s
->stat
[MCS_PGPGIN
] += val
;
2096 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
2097 s
->stat
[MCS_PGPGOUT
] += val
;
2100 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
2101 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
2102 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
2103 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
2104 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
2105 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
2106 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
2107 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
2108 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
2109 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
2114 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
2116 mem_cgroup_walk_tree(mem
, s
, mem_cgroup_get_local_stat
);
2119 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
2120 struct cgroup_map_cb
*cb
)
2122 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
2123 struct mcs_total_stat mystat
;
2126 memset(&mystat
, 0, sizeof(mystat
));
2127 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
2129 for (i
= 0; i
< NR_MCS_STAT
; i
++)
2130 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
2132 /* Hierarchical information */
2134 unsigned long long limit
, memsw_limit
;
2135 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
2136 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
2137 if (do_swap_account
)
2138 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
2141 memset(&mystat
, 0, sizeof(mystat
));
2142 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
2143 for (i
= 0; i
< NR_MCS_STAT
; i
++)
2144 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
2147 #ifdef CONFIG_DEBUG_VM
2148 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
2152 struct mem_cgroup_per_zone
*mz
;
2153 unsigned long recent_rotated
[2] = {0, 0};
2154 unsigned long recent_scanned
[2] = {0, 0};
2156 for_each_online_node(nid
)
2157 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
2158 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
2160 recent_rotated
[0] +=
2161 mz
->reclaim_stat
.recent_rotated
[0];
2162 recent_rotated
[1] +=
2163 mz
->reclaim_stat
.recent_rotated
[1];
2164 recent_scanned
[0] +=
2165 mz
->reclaim_stat
.recent_scanned
[0];
2166 recent_scanned
[1] +=
2167 mz
->reclaim_stat
.recent_scanned
[1];
2169 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
2170 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
2171 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
2172 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
2179 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
2181 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
2183 return get_swappiness(memcg
);
2186 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
2189 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
2190 struct mem_cgroup
*parent
;
2195 if (cgrp
->parent
== NULL
)
2198 parent
= mem_cgroup_from_cont(cgrp
->parent
);
2202 /* If under hierarchy, only empty-root can set this value */
2203 if ((parent
->use_hierarchy
) ||
2204 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
2209 spin_lock(&memcg
->reclaim_param_lock
);
2210 memcg
->swappiness
= val
;
2211 spin_unlock(&memcg
->reclaim_param_lock
);
2219 static struct cftype mem_cgroup_files
[] = {
2221 .name
= "usage_in_bytes",
2222 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
2223 .read_u64
= mem_cgroup_read
,
2226 .name
= "max_usage_in_bytes",
2227 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
2228 .trigger
= mem_cgroup_reset
,
2229 .read_u64
= mem_cgroup_read
,
2232 .name
= "limit_in_bytes",
2233 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
2234 .write_string
= mem_cgroup_write
,
2235 .read_u64
= mem_cgroup_read
,
2239 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
2240 .trigger
= mem_cgroup_reset
,
2241 .read_u64
= mem_cgroup_read
,
2245 .read_map
= mem_control_stat_show
,
2248 .name
= "force_empty",
2249 .trigger
= mem_cgroup_force_empty_write
,
2252 .name
= "use_hierarchy",
2253 .write_u64
= mem_cgroup_hierarchy_write
,
2254 .read_u64
= mem_cgroup_hierarchy_read
,
2257 .name
= "swappiness",
2258 .read_u64
= mem_cgroup_swappiness_read
,
2259 .write_u64
= mem_cgroup_swappiness_write
,
2263 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2264 static struct cftype memsw_cgroup_files
[] = {
2266 .name
= "memsw.usage_in_bytes",
2267 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
2268 .read_u64
= mem_cgroup_read
,
2271 .name
= "memsw.max_usage_in_bytes",
2272 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
2273 .trigger
= mem_cgroup_reset
,
2274 .read_u64
= mem_cgroup_read
,
2277 .name
= "memsw.limit_in_bytes",
2278 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
2279 .write_string
= mem_cgroup_write
,
2280 .read_u64
= mem_cgroup_read
,
2283 .name
= "memsw.failcnt",
2284 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
2285 .trigger
= mem_cgroup_reset
,
2286 .read_u64
= mem_cgroup_read
,
2290 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2292 if (!do_swap_account
)
2294 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
2295 ARRAY_SIZE(memsw_cgroup_files
));
2298 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2304 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2306 struct mem_cgroup_per_node
*pn
;
2307 struct mem_cgroup_per_zone
*mz
;
2309 int zone
, tmp
= node
;
2311 * This routine is called against possible nodes.
2312 * But it's BUG to call kmalloc() against offline node.
2314 * TODO: this routine can waste much memory for nodes which will
2315 * never be onlined. It's better to use memory hotplug callback
2318 if (!node_state(node
, N_NORMAL_MEMORY
))
2320 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
2324 mem
->info
.nodeinfo
[node
] = pn
;
2325 memset(pn
, 0, sizeof(*pn
));
2327 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
2328 mz
= &pn
->zoneinfo
[zone
];
2330 INIT_LIST_HEAD(&mz
->lists
[l
]);
2335 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2337 kfree(mem
->info
.nodeinfo
[node
]);
2340 static int mem_cgroup_size(void)
2342 int cpustat_size
= nr_cpu_ids
* sizeof(struct mem_cgroup_stat_cpu
);
2343 return sizeof(struct mem_cgroup
) + cpustat_size
;
2346 static struct mem_cgroup
*mem_cgroup_alloc(void)
2348 struct mem_cgroup
*mem
;
2349 int size
= mem_cgroup_size();
2351 if (size
< PAGE_SIZE
)
2352 mem
= kmalloc(size
, GFP_KERNEL
);
2354 mem
= vmalloc(size
);
2357 memset(mem
, 0, size
);
2362 * At destroying mem_cgroup, references from swap_cgroup can remain.
2363 * (scanning all at force_empty is too costly...)
2365 * Instead of clearing all references at force_empty, we remember
2366 * the number of reference from swap_cgroup and free mem_cgroup when
2367 * it goes down to 0.
2369 * Removal of cgroup itself succeeds regardless of refs from swap.
2372 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
2376 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
2378 for_each_node_state(node
, N_POSSIBLE
)
2379 free_mem_cgroup_per_zone_info(mem
, node
);
2381 if (mem_cgroup_size() < PAGE_SIZE
)
2387 static void mem_cgroup_get(struct mem_cgroup
*mem
)
2389 atomic_inc(&mem
->refcnt
);
2392 static void mem_cgroup_put(struct mem_cgroup
*mem
)
2394 if (atomic_dec_and_test(&mem
->refcnt
)) {
2395 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
2396 __mem_cgroup_free(mem
);
2398 mem_cgroup_put(parent
);
2403 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2405 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
2407 if (!mem
->res
.parent
)
2409 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
2412 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2413 static void __init
enable_swap_cgroup(void)
2415 if (!mem_cgroup_disabled() && really_do_swap_account
)
2416 do_swap_account
= 1;
2419 static void __init
enable_swap_cgroup(void)
2424 static struct cgroup_subsys_state
* __ref
2425 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
2427 struct mem_cgroup
*mem
, *parent
;
2428 long error
= -ENOMEM
;
2431 mem
= mem_cgroup_alloc();
2433 return ERR_PTR(error
);
2435 for_each_node_state(node
, N_POSSIBLE
)
2436 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
2439 if (cont
->parent
== NULL
) {
2440 enable_swap_cgroup();
2443 parent
= mem_cgroup_from_cont(cont
->parent
);
2444 mem
->use_hierarchy
= parent
->use_hierarchy
;
2447 if (parent
&& parent
->use_hierarchy
) {
2448 res_counter_init(&mem
->res
, &parent
->res
);
2449 res_counter_init(&mem
->memsw
, &parent
->memsw
);
2451 * We increment refcnt of the parent to ensure that we can
2452 * safely access it on res_counter_charge/uncharge.
2453 * This refcnt will be decremented when freeing this
2454 * mem_cgroup(see mem_cgroup_put).
2456 mem_cgroup_get(parent
);
2458 res_counter_init(&mem
->res
, NULL
);
2459 res_counter_init(&mem
->memsw
, NULL
);
2461 mem
->last_scanned_child
= 0;
2462 spin_lock_init(&mem
->reclaim_param_lock
);
2465 mem
->swappiness
= get_swappiness(parent
);
2466 atomic_set(&mem
->refcnt
, 1);
2469 __mem_cgroup_free(mem
);
2470 return ERR_PTR(error
);
2473 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
2474 struct cgroup
*cont
)
2476 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2478 return mem_cgroup_force_empty(mem
, false);
2481 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
2482 struct cgroup
*cont
)
2484 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2486 mem_cgroup_put(mem
);
2489 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
2490 struct cgroup
*cont
)
2494 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
2495 ARRAY_SIZE(mem_cgroup_files
));
2498 ret
= register_memsw_files(cont
, ss
);
2502 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
2503 struct cgroup
*cont
,
2504 struct cgroup
*old_cont
,
2505 struct task_struct
*p
)
2507 mutex_lock(&memcg_tasklist
);
2509 * FIXME: It's better to move charges of this process from old
2510 * memcg to new memcg. But it's just on TODO-List now.
2512 mutex_unlock(&memcg_tasklist
);
2515 struct cgroup_subsys mem_cgroup_subsys
= {
2517 .subsys_id
= mem_cgroup_subsys_id
,
2518 .create
= mem_cgroup_create
,
2519 .pre_destroy
= mem_cgroup_pre_destroy
,
2520 .destroy
= mem_cgroup_destroy
,
2521 .populate
= mem_cgroup_populate
,
2522 .attach
= mem_cgroup_move_task
,
2527 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2529 static int __init
disable_swap_account(char *s
)
2531 really_do_swap_account
= 0;
2534 __setup("noswapaccount", disable_swap_account
);