au1000: convert to net_device_ops
[linux-2.6/mini2440.git] / kernel / irq / handle.c
blobd82142be8dd2c8fddc340058ff9cd73373f6a31b
1 /*
2 * linux/kernel/irq/handle.c
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
7 * This file contains the core interrupt handling code.
9 * Detailed information is available in Documentation/DocBook/genericirq
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
20 #include <trace/irq.h>
21 #include <linux/bootmem.h>
23 #include "internals.h"
26 * lockdep: we want to handle all irq_desc locks as a single lock-class:
28 struct lock_class_key irq_desc_lock_class;
30 /**
31 * handle_bad_irq - handle spurious and unhandled irqs
32 * @irq: the interrupt number
33 * @desc: description of the interrupt
35 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
37 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
39 print_irq_desc(irq, desc);
40 kstat_incr_irqs_this_cpu(irq, desc);
41 ack_bad_irq(irq);
44 #if defined(CONFIG_SMP) && defined(CONFIG_GENERIC_HARDIRQS)
45 static void __init init_irq_default_affinity(void)
47 alloc_bootmem_cpumask_var(&irq_default_affinity);
48 cpumask_setall(irq_default_affinity);
50 #else
51 static void __init init_irq_default_affinity(void)
54 #endif
57 * Linux has a controller-independent interrupt architecture.
58 * Every controller has a 'controller-template', that is used
59 * by the main code to do the right thing. Each driver-visible
60 * interrupt source is transparently wired to the appropriate
61 * controller. Thus drivers need not be aware of the
62 * interrupt-controller.
64 * The code is designed to be easily extended with new/different
65 * interrupt controllers, without having to do assembly magic or
66 * having to touch the generic code.
68 * Controller mappings for all interrupt sources:
70 int nr_irqs = NR_IRQS;
71 EXPORT_SYMBOL_GPL(nr_irqs);
73 #ifdef CONFIG_SPARSE_IRQ
75 static struct irq_desc irq_desc_init = {
76 .irq = -1,
77 .status = IRQ_DISABLED,
78 .chip = &no_irq_chip,
79 .handle_irq = handle_bad_irq,
80 .depth = 1,
81 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
84 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
86 int node;
87 void *ptr;
89 node = cpu_to_node(cpu);
90 ptr = kzalloc_node(nr * sizeof(*desc->kstat_irqs), GFP_ATOMIC, node);
93 * don't overwite if can not get new one
94 * init_copy_kstat_irqs() could still use old one
96 if (ptr) {
97 printk(KERN_DEBUG " alloc kstat_irqs on cpu %d node %d\n",
98 cpu, node);
99 desc->kstat_irqs = ptr;
103 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
105 memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
107 spin_lock_init(&desc->lock);
108 desc->irq = irq;
109 #ifdef CONFIG_SMP
110 desc->cpu = cpu;
111 #endif
112 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
113 init_kstat_irqs(desc, cpu, nr_cpu_ids);
114 if (!desc->kstat_irqs) {
115 printk(KERN_ERR "can not alloc kstat_irqs\n");
116 BUG_ON(1);
118 if (!init_alloc_desc_masks(desc, cpu, false)) {
119 printk(KERN_ERR "can not alloc irq_desc cpumasks\n");
120 BUG_ON(1);
122 arch_init_chip_data(desc, cpu);
126 * Protect the sparse_irqs:
128 DEFINE_SPINLOCK(sparse_irq_lock);
130 struct irq_desc **irq_desc_ptrs __read_mostly;
132 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
133 [0 ... NR_IRQS_LEGACY-1] = {
134 .irq = -1,
135 .status = IRQ_DISABLED,
136 .chip = &no_irq_chip,
137 .handle_irq = handle_bad_irq,
138 .depth = 1,
139 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
143 static unsigned int *kstat_irqs_legacy;
145 int __init early_irq_init(void)
147 struct irq_desc *desc;
148 int legacy_count;
149 int i;
151 init_irq_default_affinity();
153 /* initialize nr_irqs based on nr_cpu_ids */
154 arch_probe_nr_irqs();
155 printk(KERN_INFO "NR_IRQS:%d nr_irqs:%d\n", NR_IRQS, nr_irqs);
157 desc = irq_desc_legacy;
158 legacy_count = ARRAY_SIZE(irq_desc_legacy);
160 /* allocate irq_desc_ptrs array based on nr_irqs */
161 irq_desc_ptrs = alloc_bootmem(nr_irqs * sizeof(void *));
163 /* allocate based on nr_cpu_ids */
164 /* FIXME: invert kstat_irgs, and it'd be a per_cpu_alloc'd thing */
165 kstat_irqs_legacy = alloc_bootmem(NR_IRQS_LEGACY * nr_cpu_ids *
166 sizeof(int));
168 for (i = 0; i < legacy_count; i++) {
169 desc[i].irq = i;
170 desc[i].kstat_irqs = kstat_irqs_legacy + i * nr_cpu_ids;
171 lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
172 init_alloc_desc_masks(&desc[i], 0, true);
173 irq_desc_ptrs[i] = desc + i;
176 for (i = legacy_count; i < nr_irqs; i++)
177 irq_desc_ptrs[i] = NULL;
179 return arch_early_irq_init();
182 struct irq_desc *irq_to_desc(unsigned int irq)
184 if (irq_desc_ptrs && irq < nr_irqs)
185 return irq_desc_ptrs[irq];
187 return NULL;
190 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
192 struct irq_desc *desc;
193 unsigned long flags;
194 int node;
196 if (irq >= nr_irqs) {
197 WARN(1, "irq (%d) >= nr_irqs (%d) in irq_to_desc_alloc\n",
198 irq, nr_irqs);
199 return NULL;
202 desc = irq_desc_ptrs[irq];
203 if (desc)
204 return desc;
206 spin_lock_irqsave(&sparse_irq_lock, flags);
208 /* We have to check it to avoid races with another CPU */
209 desc = irq_desc_ptrs[irq];
210 if (desc)
211 goto out_unlock;
213 node = cpu_to_node(cpu);
214 desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
215 printk(KERN_DEBUG " alloc irq_desc for %d on cpu %d node %d\n",
216 irq, cpu, node);
217 if (!desc) {
218 printk(KERN_ERR "can not alloc irq_desc\n");
219 BUG_ON(1);
221 init_one_irq_desc(irq, desc, cpu);
223 irq_desc_ptrs[irq] = desc;
225 out_unlock:
226 spin_unlock_irqrestore(&sparse_irq_lock, flags);
228 return desc;
231 #else /* !CONFIG_SPARSE_IRQ */
233 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
234 [0 ... NR_IRQS-1] = {
235 .status = IRQ_DISABLED,
236 .chip = &no_irq_chip,
237 .handle_irq = handle_bad_irq,
238 .depth = 1,
239 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
243 static unsigned int kstat_irqs_all[NR_IRQS][NR_CPUS];
244 int __init early_irq_init(void)
246 struct irq_desc *desc;
247 int count;
248 int i;
250 init_irq_default_affinity();
252 printk(KERN_INFO "NR_IRQS:%d\n", NR_IRQS);
254 desc = irq_desc;
255 count = ARRAY_SIZE(irq_desc);
257 for (i = 0; i < count; i++) {
258 desc[i].irq = i;
259 init_alloc_desc_masks(&desc[i], 0, true);
260 desc[i].kstat_irqs = kstat_irqs_all[i];
262 return arch_early_irq_init();
265 struct irq_desc *irq_to_desc(unsigned int irq)
267 return (irq < NR_IRQS) ? irq_desc + irq : NULL;
270 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
272 return irq_to_desc(irq);
274 #endif /* !CONFIG_SPARSE_IRQ */
276 void clear_kstat_irqs(struct irq_desc *desc)
278 memset(desc->kstat_irqs, 0, nr_cpu_ids * sizeof(*(desc->kstat_irqs)));
282 * What should we do if we get a hw irq event on an illegal vector?
283 * Each architecture has to answer this themself.
285 static void ack_bad(unsigned int irq)
287 struct irq_desc *desc = irq_to_desc(irq);
289 print_irq_desc(irq, desc);
290 ack_bad_irq(irq);
294 * NOP functions
296 static void noop(unsigned int irq)
300 static unsigned int noop_ret(unsigned int irq)
302 return 0;
306 * Generic no controller implementation
308 struct irq_chip no_irq_chip = {
309 .name = "none",
310 .startup = noop_ret,
311 .shutdown = noop,
312 .enable = noop,
313 .disable = noop,
314 .ack = ack_bad,
315 .end = noop,
319 * Generic dummy implementation which can be used for
320 * real dumb interrupt sources
322 struct irq_chip dummy_irq_chip = {
323 .name = "dummy",
324 .startup = noop_ret,
325 .shutdown = noop,
326 .enable = noop,
327 .disable = noop,
328 .ack = noop,
329 .mask = noop,
330 .unmask = noop,
331 .end = noop,
335 * Special, empty irq handler:
337 irqreturn_t no_action(int cpl, void *dev_id)
339 return IRQ_NONE;
342 static void warn_no_thread(unsigned int irq, struct irqaction *action)
344 if (test_and_set_bit(IRQTF_WARNED, &action->thread_flags))
345 return;
347 printk(KERN_WARNING "IRQ %d device %s returned IRQ_WAKE_THREAD "
348 "but no thread function available.", irq, action->name);
351 DEFINE_TRACE(irq_handler_entry);
352 DEFINE_TRACE(irq_handler_exit);
355 * handle_IRQ_event - irq action chain handler
356 * @irq: the interrupt number
357 * @action: the interrupt action chain for this irq
359 * Handles the action chain of an irq event
361 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
363 irqreturn_t ret, retval = IRQ_NONE;
364 unsigned int status = 0;
366 WARN_ONCE(!in_irq(), "BUG: IRQ handler called from non-hardirq context!");
368 if (!(action->flags & IRQF_DISABLED))
369 local_irq_enable_in_hardirq();
371 do {
372 trace_irq_handler_entry(irq, action);
373 ret = action->handler(irq, action->dev_id);
374 trace_irq_handler_exit(irq, action, ret);
376 switch (ret) {
377 case IRQ_WAKE_THREAD:
379 * Set result to handled so the spurious check
380 * does not trigger.
382 ret = IRQ_HANDLED;
385 * Catch drivers which return WAKE_THREAD but
386 * did not set up a thread function
388 if (unlikely(!action->thread_fn)) {
389 warn_no_thread(irq, action);
390 break;
394 * Wake up the handler thread for this
395 * action. In case the thread crashed and was
396 * killed we just pretend that we handled the
397 * interrupt. The hardirq handler above has
398 * disabled the device interrupt, so no irq
399 * storm is lurking.
401 if (likely(!test_bit(IRQTF_DIED,
402 &action->thread_flags))) {
403 set_bit(IRQTF_RUNTHREAD, &action->thread_flags);
404 wake_up_process(action->thread);
407 /* Fall through to add to randomness */
408 case IRQ_HANDLED:
409 status |= action->flags;
410 break;
412 default:
413 break;
416 retval |= ret;
417 action = action->next;
418 } while (action);
420 if (status & IRQF_SAMPLE_RANDOM)
421 add_interrupt_randomness(irq);
422 local_irq_disable();
424 return retval;
427 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
429 #ifdef CONFIG_ENABLE_WARN_DEPRECATED
430 # warning __do_IRQ is deprecated. Please convert to proper flow handlers
431 #endif
434 * __do_IRQ - original all in one highlevel IRQ handler
435 * @irq: the interrupt number
437 * __do_IRQ handles all normal device IRQ's (the special
438 * SMP cross-CPU interrupts have their own specific
439 * handlers).
441 * This is the original x86 implementation which is used for every
442 * interrupt type.
444 unsigned int __do_IRQ(unsigned int irq)
446 struct irq_desc *desc = irq_to_desc(irq);
447 struct irqaction *action;
448 unsigned int status;
450 kstat_incr_irqs_this_cpu(irq, desc);
452 if (CHECK_IRQ_PER_CPU(desc->status)) {
453 irqreturn_t action_ret;
456 * No locking required for CPU-local interrupts:
458 if (desc->chip->ack) {
459 desc->chip->ack(irq);
460 /* get new one */
461 desc = irq_remap_to_desc(irq, desc);
463 if (likely(!(desc->status & IRQ_DISABLED))) {
464 action_ret = handle_IRQ_event(irq, desc->action);
465 if (!noirqdebug)
466 note_interrupt(irq, desc, action_ret);
468 desc->chip->end(irq);
469 return 1;
472 spin_lock(&desc->lock);
473 if (desc->chip->ack) {
474 desc->chip->ack(irq);
475 desc = irq_remap_to_desc(irq, desc);
478 * REPLAY is when Linux resends an IRQ that was dropped earlier
479 * WAITING is used by probe to mark irqs that are being tested
481 status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
482 status |= IRQ_PENDING; /* we _want_ to handle it */
485 * If the IRQ is disabled for whatever reason, we cannot
486 * use the action we have.
488 action = NULL;
489 if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
490 action = desc->action;
491 status &= ~IRQ_PENDING; /* we commit to handling */
492 status |= IRQ_INPROGRESS; /* we are handling it */
494 desc->status = status;
497 * If there is no IRQ handler or it was disabled, exit early.
498 * Since we set PENDING, if another processor is handling
499 * a different instance of this same irq, the other processor
500 * will take care of it.
502 if (unlikely(!action))
503 goto out;
506 * Edge triggered interrupts need to remember
507 * pending events.
508 * This applies to any hw interrupts that allow a second
509 * instance of the same irq to arrive while we are in do_IRQ
510 * or in the handler. But the code here only handles the _second_
511 * instance of the irq, not the third or fourth. So it is mostly
512 * useful for irq hardware that does not mask cleanly in an
513 * SMP environment.
515 for (;;) {
516 irqreturn_t action_ret;
518 spin_unlock(&desc->lock);
520 action_ret = handle_IRQ_event(irq, action);
521 if (!noirqdebug)
522 note_interrupt(irq, desc, action_ret);
524 spin_lock(&desc->lock);
525 if (likely(!(desc->status & IRQ_PENDING)))
526 break;
527 desc->status &= ~IRQ_PENDING;
529 desc->status &= ~IRQ_INPROGRESS;
531 out:
533 * The ->end() handler has to deal with interrupts which got
534 * disabled while the handler was running.
536 desc->chip->end(irq);
537 spin_unlock(&desc->lock);
539 return 1;
541 #endif
543 void early_init_irq_lock_class(void)
545 struct irq_desc *desc;
546 int i;
548 for_each_irq_desc(i, desc) {
549 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
553 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
555 struct irq_desc *desc = irq_to_desc(irq);
556 return desc ? desc->kstat_irqs[cpu] : 0;
558 EXPORT_SYMBOL(kstat_irqs_cpu);