badpage: ratelimit print_bad_pte and bad_page
[linux-2.6/mini2440.git] / mm / memory.c
blobb12888c1b4e3d8c9247cf013988a68c596454610
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/tlb.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
65 #include "internal.h"
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
76 unsigned long num_physpages;
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
84 void * high_memory;
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
90 * Randomize the address space (stacks, mmaps, brk, etc.).
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
98 #else
100 #endif
102 static int __init disable_randmaps(char *s)
104 randomize_va_space = 0;
105 return 1;
107 __setup("norandmaps", disable_randmaps);
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
116 void pgd_clear_bad(pgd_t *pgd)
118 pgd_ERROR(*pgd);
119 pgd_clear(pgd);
122 void pud_clear_bad(pud_t *pud)
124 pud_ERROR(*pud);
125 pud_clear(pud);
128 void pmd_clear_bad(pmd_t *pmd)
130 pmd_ERROR(*pmd);
131 pmd_clear(pmd);
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
140 pgtable_t token = pmd_pgtable(*pmd);
141 pmd_clear(pmd);
142 pte_free_tlb(tlb, token);
143 tlb->mm->nr_ptes--;
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 unsigned long addr, unsigned long end,
148 unsigned long floor, unsigned long ceiling)
150 pmd_t *pmd;
151 unsigned long next;
152 unsigned long start;
154 start = addr;
155 pmd = pmd_offset(pud, addr);
156 do {
157 next = pmd_addr_end(addr, end);
158 if (pmd_none_or_clear_bad(pmd))
159 continue;
160 free_pte_range(tlb, pmd);
161 } while (pmd++, addr = next, addr != end);
163 start &= PUD_MASK;
164 if (start < floor)
165 return;
166 if (ceiling) {
167 ceiling &= PUD_MASK;
168 if (!ceiling)
169 return;
171 if (end - 1 > ceiling - 1)
172 return;
174 pmd = pmd_offset(pud, start);
175 pud_clear(pud);
176 pmd_free_tlb(tlb, pmd);
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 unsigned long addr, unsigned long end,
181 unsigned long floor, unsigned long ceiling)
183 pud_t *pud;
184 unsigned long next;
185 unsigned long start;
187 start = addr;
188 pud = pud_offset(pgd, addr);
189 do {
190 next = pud_addr_end(addr, end);
191 if (pud_none_or_clear_bad(pud))
192 continue;
193 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 } while (pud++, addr = next, addr != end);
196 start &= PGDIR_MASK;
197 if (start < floor)
198 return;
199 if (ceiling) {
200 ceiling &= PGDIR_MASK;
201 if (!ceiling)
202 return;
204 if (end - 1 > ceiling - 1)
205 return;
207 pud = pud_offset(pgd, start);
208 pgd_clear(pgd);
209 pud_free_tlb(tlb, pud);
213 * This function frees user-level page tables of a process.
215 * Must be called with pagetable lock held.
217 void free_pgd_range(struct mmu_gather *tlb,
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
221 pgd_t *pgd;
222 unsigned long next;
223 unsigned long start;
226 * The next few lines have given us lots of grief...
228 * Why are we testing PMD* at this top level? Because often
229 * there will be no work to do at all, and we'd prefer not to
230 * go all the way down to the bottom just to discover that.
232 * Why all these "- 1"s? Because 0 represents both the bottom
233 * of the address space and the top of it (using -1 for the
234 * top wouldn't help much: the masks would do the wrong thing).
235 * The rule is that addr 0 and floor 0 refer to the bottom of
236 * the address space, but end 0 and ceiling 0 refer to the top
237 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 * that end 0 case should be mythical).
240 * Wherever addr is brought up or ceiling brought down, we must
241 * be careful to reject "the opposite 0" before it confuses the
242 * subsequent tests. But what about where end is brought down
243 * by PMD_SIZE below? no, end can't go down to 0 there.
245 * Whereas we round start (addr) and ceiling down, by different
246 * masks at different levels, in order to test whether a table
247 * now has no other vmas using it, so can be freed, we don't
248 * bother to round floor or end up - the tests don't need that.
251 addr &= PMD_MASK;
252 if (addr < floor) {
253 addr += PMD_SIZE;
254 if (!addr)
255 return;
257 if (ceiling) {
258 ceiling &= PMD_MASK;
259 if (!ceiling)
260 return;
262 if (end - 1 > ceiling - 1)
263 end -= PMD_SIZE;
264 if (addr > end - 1)
265 return;
267 start = addr;
268 pgd = pgd_offset(tlb->mm, addr);
269 do {
270 next = pgd_addr_end(addr, end);
271 if (pgd_none_or_clear_bad(pgd))
272 continue;
273 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 } while (pgd++, addr = next, addr != end);
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 unsigned long floor, unsigned long ceiling)
280 while (vma) {
281 struct vm_area_struct *next = vma->vm_next;
282 unsigned long addr = vma->vm_start;
285 * Hide vma from rmap and vmtruncate before freeing pgtables
287 anon_vma_unlink(vma);
288 unlink_file_vma(vma);
290 if (is_vm_hugetlb_page(vma)) {
291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 floor, next? next->vm_start: ceiling);
293 } else {
295 * Optimization: gather nearby vmas into one call down
297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 && !is_vm_hugetlb_page(next)) {
299 vma = next;
300 next = vma->vm_next;
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
304 free_pgd_range(tlb, addr, vma->vm_end,
305 floor, next? next->vm_start: ceiling);
307 vma = next;
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
313 pgtable_t new = pte_alloc_one(mm, address);
314 if (!new)
315 return -ENOMEM;
318 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 * visible before the pte is made visible to other CPUs by being
320 * put into page tables.
322 * The other side of the story is the pointer chasing in the page
323 * table walking code (when walking the page table without locking;
324 * ie. most of the time). Fortunately, these data accesses consist
325 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 * being the notable exception) will already guarantee loads are
327 * seen in-order. See the alpha page table accessors for the
328 * smp_read_barrier_depends() barriers in page table walking code.
330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
332 spin_lock(&mm->page_table_lock);
333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
334 mm->nr_ptes++;
335 pmd_populate(mm, pmd, new);
336 new = NULL;
338 spin_unlock(&mm->page_table_lock);
339 if (new)
340 pte_free(mm, new);
341 return 0;
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
346 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 if (!new)
348 return -ENOMEM;
350 smp_wmb(); /* See comment in __pte_alloc */
352 spin_lock(&init_mm.page_table_lock);
353 if (!pmd_present(*pmd)) { /* Has another populated it ? */
354 pmd_populate_kernel(&init_mm, pmd, new);
355 new = NULL;
357 spin_unlock(&init_mm.page_table_lock);
358 if (new)
359 pte_free_kernel(&init_mm, new);
360 return 0;
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
365 if (file_rss)
366 add_mm_counter(mm, file_rss, file_rss);
367 if (anon_rss)
368 add_mm_counter(mm, anon_rss, anon_rss);
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
376 * The calling function must still handle the error.
378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379 pte_t pte, struct page *page)
381 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382 pud_t *pud = pud_offset(pgd, addr);
383 pmd_t *pmd = pmd_offset(pud, addr);
384 struct address_space *mapping;
385 pgoff_t index;
386 static unsigned long resume;
387 static unsigned long nr_shown;
388 static unsigned long nr_unshown;
391 * Allow a burst of 60 reports, then keep quiet for that minute;
392 * or allow a steady drip of one report per second.
394 if (nr_shown == 60) {
395 if (time_before(jiffies, resume)) {
396 nr_unshown++;
397 return;
399 if (nr_unshown) {
400 printk(KERN_EMERG
401 "Bad page map: %lu messages suppressed\n",
402 nr_unshown);
403 nr_unshown = 0;
405 nr_shown = 0;
407 if (nr_shown++ == 0)
408 resume = jiffies + 60 * HZ;
410 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
411 index = linear_page_index(vma, addr);
413 printk(KERN_EMERG "Bad page map in process %s pte:%08llx pmd:%08llx\n",
414 current->comm,
415 (long long)pte_val(pte), (long long)pmd_val(*pmd));
416 if (page) {
417 printk(KERN_EMERG
418 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
419 page, (void *)page->flags, page_count(page),
420 page_mapcount(page), page->mapping, page->index);
422 printk(KERN_EMERG
423 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
424 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
426 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
428 if (vma->vm_ops)
429 print_symbol(KERN_EMERG "vma->vm_ops->fault: %s\n",
430 (unsigned long)vma->vm_ops->fault);
431 if (vma->vm_file && vma->vm_file->f_op)
432 print_symbol(KERN_EMERG "vma->vm_file->f_op->mmap: %s\n",
433 (unsigned long)vma->vm_file->f_op->mmap);
434 dump_stack();
435 add_taint(TAINT_BAD_PAGE);
438 static inline int is_cow_mapping(unsigned int flags)
440 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
444 * vm_normal_page -- This function gets the "struct page" associated with a pte.
446 * "Special" mappings do not wish to be associated with a "struct page" (either
447 * it doesn't exist, or it exists but they don't want to touch it). In this
448 * case, NULL is returned here. "Normal" mappings do have a struct page.
450 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
451 * pte bit, in which case this function is trivial. Secondly, an architecture
452 * may not have a spare pte bit, which requires a more complicated scheme,
453 * described below.
455 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
456 * special mapping (even if there are underlying and valid "struct pages").
457 * COWed pages of a VM_PFNMAP are always normal.
459 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
460 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
461 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
462 * mapping will always honor the rule
464 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
466 * And for normal mappings this is false.
468 * This restricts such mappings to be a linear translation from virtual address
469 * to pfn. To get around this restriction, we allow arbitrary mappings so long
470 * as the vma is not a COW mapping; in that case, we know that all ptes are
471 * special (because none can have been COWed).
474 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
476 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
477 * page" backing, however the difference is that _all_ pages with a struct
478 * page (that is, those where pfn_valid is true) are refcounted and considered
479 * normal pages by the VM. The disadvantage is that pages are refcounted
480 * (which can be slower and simply not an option for some PFNMAP users). The
481 * advantage is that we don't have to follow the strict linearity rule of
482 * PFNMAP mappings in order to support COWable mappings.
485 #ifdef __HAVE_ARCH_PTE_SPECIAL
486 # define HAVE_PTE_SPECIAL 1
487 #else
488 # define HAVE_PTE_SPECIAL 0
489 #endif
490 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
491 pte_t pte)
493 unsigned long pfn = pte_pfn(pte);
495 if (HAVE_PTE_SPECIAL) {
496 if (likely(!pte_special(pte)))
497 goto check_pfn;
498 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
499 print_bad_pte(vma, addr, pte, NULL);
500 return NULL;
503 /* !HAVE_PTE_SPECIAL case follows: */
505 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
506 if (vma->vm_flags & VM_MIXEDMAP) {
507 if (!pfn_valid(pfn))
508 return NULL;
509 goto out;
510 } else {
511 unsigned long off;
512 off = (addr - vma->vm_start) >> PAGE_SHIFT;
513 if (pfn == vma->vm_pgoff + off)
514 return NULL;
515 if (!is_cow_mapping(vma->vm_flags))
516 return NULL;
520 check_pfn:
521 if (unlikely(pfn > highest_memmap_pfn)) {
522 print_bad_pte(vma, addr, pte, NULL);
523 return NULL;
527 * NOTE! We still have PageReserved() pages in the page tables.
528 * eg. VDSO mappings can cause them to exist.
530 out:
531 return pfn_to_page(pfn);
535 * copy one vm_area from one task to the other. Assumes the page tables
536 * already present in the new task to be cleared in the whole range
537 * covered by this vma.
540 static inline void
541 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
542 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
543 unsigned long addr, int *rss)
545 unsigned long vm_flags = vma->vm_flags;
546 pte_t pte = *src_pte;
547 struct page *page;
549 /* pte contains position in swap or file, so copy. */
550 if (unlikely(!pte_present(pte))) {
551 if (!pte_file(pte)) {
552 swp_entry_t entry = pte_to_swp_entry(pte);
554 swap_duplicate(entry);
555 /* make sure dst_mm is on swapoff's mmlist. */
556 if (unlikely(list_empty(&dst_mm->mmlist))) {
557 spin_lock(&mmlist_lock);
558 if (list_empty(&dst_mm->mmlist))
559 list_add(&dst_mm->mmlist,
560 &src_mm->mmlist);
561 spin_unlock(&mmlist_lock);
563 if (is_write_migration_entry(entry) &&
564 is_cow_mapping(vm_flags)) {
566 * COW mappings require pages in both parent
567 * and child to be set to read.
569 make_migration_entry_read(&entry);
570 pte = swp_entry_to_pte(entry);
571 set_pte_at(src_mm, addr, src_pte, pte);
574 goto out_set_pte;
578 * If it's a COW mapping, write protect it both
579 * in the parent and the child
581 if (is_cow_mapping(vm_flags)) {
582 ptep_set_wrprotect(src_mm, addr, src_pte);
583 pte = pte_wrprotect(pte);
587 * If it's a shared mapping, mark it clean in
588 * the child
590 if (vm_flags & VM_SHARED)
591 pte = pte_mkclean(pte);
592 pte = pte_mkold(pte);
594 page = vm_normal_page(vma, addr, pte);
595 if (page) {
596 get_page(page);
597 page_dup_rmap(page, vma, addr);
598 rss[!!PageAnon(page)]++;
601 out_set_pte:
602 set_pte_at(dst_mm, addr, dst_pte, pte);
605 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
607 unsigned long addr, unsigned long end)
609 pte_t *src_pte, *dst_pte;
610 spinlock_t *src_ptl, *dst_ptl;
611 int progress = 0;
612 int rss[2];
614 again:
615 rss[1] = rss[0] = 0;
616 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
617 if (!dst_pte)
618 return -ENOMEM;
619 src_pte = pte_offset_map_nested(src_pmd, addr);
620 src_ptl = pte_lockptr(src_mm, src_pmd);
621 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
622 arch_enter_lazy_mmu_mode();
624 do {
626 * We are holding two locks at this point - either of them
627 * could generate latencies in another task on another CPU.
629 if (progress >= 32) {
630 progress = 0;
631 if (need_resched() ||
632 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
633 break;
635 if (pte_none(*src_pte)) {
636 progress++;
637 continue;
639 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
640 progress += 8;
641 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
643 arch_leave_lazy_mmu_mode();
644 spin_unlock(src_ptl);
645 pte_unmap_nested(src_pte - 1);
646 add_mm_rss(dst_mm, rss[0], rss[1]);
647 pte_unmap_unlock(dst_pte - 1, dst_ptl);
648 cond_resched();
649 if (addr != end)
650 goto again;
651 return 0;
654 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
655 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
656 unsigned long addr, unsigned long end)
658 pmd_t *src_pmd, *dst_pmd;
659 unsigned long next;
661 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
662 if (!dst_pmd)
663 return -ENOMEM;
664 src_pmd = pmd_offset(src_pud, addr);
665 do {
666 next = pmd_addr_end(addr, end);
667 if (pmd_none_or_clear_bad(src_pmd))
668 continue;
669 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
670 vma, addr, next))
671 return -ENOMEM;
672 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
673 return 0;
676 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
677 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
678 unsigned long addr, unsigned long end)
680 pud_t *src_pud, *dst_pud;
681 unsigned long next;
683 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
684 if (!dst_pud)
685 return -ENOMEM;
686 src_pud = pud_offset(src_pgd, addr);
687 do {
688 next = pud_addr_end(addr, end);
689 if (pud_none_or_clear_bad(src_pud))
690 continue;
691 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
692 vma, addr, next))
693 return -ENOMEM;
694 } while (dst_pud++, src_pud++, addr = next, addr != end);
695 return 0;
698 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699 struct vm_area_struct *vma)
701 pgd_t *src_pgd, *dst_pgd;
702 unsigned long next;
703 unsigned long addr = vma->vm_start;
704 unsigned long end = vma->vm_end;
705 int ret;
708 * Don't copy ptes where a page fault will fill them correctly.
709 * Fork becomes much lighter when there are big shared or private
710 * readonly mappings. The tradeoff is that copy_page_range is more
711 * efficient than faulting.
713 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
714 if (!vma->anon_vma)
715 return 0;
718 if (is_vm_hugetlb_page(vma))
719 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
721 if (unlikely(is_pfn_mapping(vma))) {
723 * We do not free on error cases below as remove_vma
724 * gets called on error from higher level routine
726 ret = track_pfn_vma_copy(vma);
727 if (ret)
728 return ret;
732 * We need to invalidate the secondary MMU mappings only when
733 * there could be a permission downgrade on the ptes of the
734 * parent mm. And a permission downgrade will only happen if
735 * is_cow_mapping() returns true.
737 if (is_cow_mapping(vma->vm_flags))
738 mmu_notifier_invalidate_range_start(src_mm, addr, end);
740 ret = 0;
741 dst_pgd = pgd_offset(dst_mm, addr);
742 src_pgd = pgd_offset(src_mm, addr);
743 do {
744 next = pgd_addr_end(addr, end);
745 if (pgd_none_or_clear_bad(src_pgd))
746 continue;
747 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
748 vma, addr, next))) {
749 ret = -ENOMEM;
750 break;
752 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
754 if (is_cow_mapping(vma->vm_flags))
755 mmu_notifier_invalidate_range_end(src_mm,
756 vma->vm_start, end);
757 return ret;
760 static unsigned long zap_pte_range(struct mmu_gather *tlb,
761 struct vm_area_struct *vma, pmd_t *pmd,
762 unsigned long addr, unsigned long end,
763 long *zap_work, struct zap_details *details)
765 struct mm_struct *mm = tlb->mm;
766 pte_t *pte;
767 spinlock_t *ptl;
768 int file_rss = 0;
769 int anon_rss = 0;
771 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
772 arch_enter_lazy_mmu_mode();
773 do {
774 pte_t ptent = *pte;
775 if (pte_none(ptent)) {
776 (*zap_work)--;
777 continue;
780 (*zap_work) -= PAGE_SIZE;
782 if (pte_present(ptent)) {
783 struct page *page;
785 page = vm_normal_page(vma, addr, ptent);
786 if (unlikely(details) && page) {
788 * unmap_shared_mapping_pages() wants to
789 * invalidate cache without truncating:
790 * unmap shared but keep private pages.
792 if (details->check_mapping &&
793 details->check_mapping != page->mapping)
794 continue;
796 * Each page->index must be checked when
797 * invalidating or truncating nonlinear.
799 if (details->nonlinear_vma &&
800 (page->index < details->first_index ||
801 page->index > details->last_index))
802 continue;
804 ptent = ptep_get_and_clear_full(mm, addr, pte,
805 tlb->fullmm);
806 tlb_remove_tlb_entry(tlb, pte, addr);
807 if (unlikely(!page))
808 continue;
809 if (unlikely(details) && details->nonlinear_vma
810 && linear_page_index(details->nonlinear_vma,
811 addr) != page->index)
812 set_pte_at(mm, addr, pte,
813 pgoff_to_pte(page->index));
814 if (PageAnon(page))
815 anon_rss--;
816 else {
817 if (pte_dirty(ptent))
818 set_page_dirty(page);
819 if (pte_young(ptent) &&
820 likely(!VM_SequentialReadHint(vma)))
821 mark_page_accessed(page);
822 file_rss--;
824 page_remove_rmap(page);
825 if (unlikely(page_mapcount(page) < 0))
826 print_bad_pte(vma, addr, ptent, page);
827 tlb_remove_page(tlb, page);
828 continue;
831 * If details->check_mapping, we leave swap entries;
832 * if details->nonlinear_vma, we leave file entries.
834 if (unlikely(details))
835 continue;
836 if (pte_file(ptent)) {
837 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
838 print_bad_pte(vma, addr, ptent, NULL);
839 } else if
840 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
841 print_bad_pte(vma, addr, ptent, NULL);
842 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
843 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
845 add_mm_rss(mm, file_rss, anon_rss);
846 arch_leave_lazy_mmu_mode();
847 pte_unmap_unlock(pte - 1, ptl);
849 return addr;
852 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
853 struct vm_area_struct *vma, pud_t *pud,
854 unsigned long addr, unsigned long end,
855 long *zap_work, struct zap_details *details)
857 pmd_t *pmd;
858 unsigned long next;
860 pmd = pmd_offset(pud, addr);
861 do {
862 next = pmd_addr_end(addr, end);
863 if (pmd_none_or_clear_bad(pmd)) {
864 (*zap_work)--;
865 continue;
867 next = zap_pte_range(tlb, vma, pmd, addr, next,
868 zap_work, details);
869 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
871 return addr;
874 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
875 struct vm_area_struct *vma, pgd_t *pgd,
876 unsigned long addr, unsigned long end,
877 long *zap_work, struct zap_details *details)
879 pud_t *pud;
880 unsigned long next;
882 pud = pud_offset(pgd, addr);
883 do {
884 next = pud_addr_end(addr, end);
885 if (pud_none_or_clear_bad(pud)) {
886 (*zap_work)--;
887 continue;
889 next = zap_pmd_range(tlb, vma, pud, addr, next,
890 zap_work, details);
891 } while (pud++, addr = next, (addr != end && *zap_work > 0));
893 return addr;
896 static unsigned long unmap_page_range(struct mmu_gather *tlb,
897 struct vm_area_struct *vma,
898 unsigned long addr, unsigned long end,
899 long *zap_work, struct zap_details *details)
901 pgd_t *pgd;
902 unsigned long next;
904 if (details && !details->check_mapping && !details->nonlinear_vma)
905 details = NULL;
907 BUG_ON(addr >= end);
908 tlb_start_vma(tlb, vma);
909 pgd = pgd_offset(vma->vm_mm, addr);
910 do {
911 next = pgd_addr_end(addr, end);
912 if (pgd_none_or_clear_bad(pgd)) {
913 (*zap_work)--;
914 continue;
916 next = zap_pud_range(tlb, vma, pgd, addr, next,
917 zap_work, details);
918 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
919 tlb_end_vma(tlb, vma);
921 return addr;
924 #ifdef CONFIG_PREEMPT
925 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
926 #else
927 /* No preempt: go for improved straight-line efficiency */
928 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
929 #endif
932 * unmap_vmas - unmap a range of memory covered by a list of vma's
933 * @tlbp: address of the caller's struct mmu_gather
934 * @vma: the starting vma
935 * @start_addr: virtual address at which to start unmapping
936 * @end_addr: virtual address at which to end unmapping
937 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
938 * @details: details of nonlinear truncation or shared cache invalidation
940 * Returns the end address of the unmapping (restart addr if interrupted).
942 * Unmap all pages in the vma list.
944 * We aim to not hold locks for too long (for scheduling latency reasons).
945 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
946 * return the ending mmu_gather to the caller.
948 * Only addresses between `start' and `end' will be unmapped.
950 * The VMA list must be sorted in ascending virtual address order.
952 * unmap_vmas() assumes that the caller will flush the whole unmapped address
953 * range after unmap_vmas() returns. So the only responsibility here is to
954 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
955 * drops the lock and schedules.
957 unsigned long unmap_vmas(struct mmu_gather **tlbp,
958 struct vm_area_struct *vma, unsigned long start_addr,
959 unsigned long end_addr, unsigned long *nr_accounted,
960 struct zap_details *details)
962 long zap_work = ZAP_BLOCK_SIZE;
963 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
964 int tlb_start_valid = 0;
965 unsigned long start = start_addr;
966 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
967 int fullmm = (*tlbp)->fullmm;
968 struct mm_struct *mm = vma->vm_mm;
970 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
971 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
972 unsigned long end;
974 start = max(vma->vm_start, start_addr);
975 if (start >= vma->vm_end)
976 continue;
977 end = min(vma->vm_end, end_addr);
978 if (end <= vma->vm_start)
979 continue;
981 if (vma->vm_flags & VM_ACCOUNT)
982 *nr_accounted += (end - start) >> PAGE_SHIFT;
984 if (unlikely(is_pfn_mapping(vma)))
985 untrack_pfn_vma(vma, 0, 0);
987 while (start != end) {
988 if (!tlb_start_valid) {
989 tlb_start = start;
990 tlb_start_valid = 1;
993 if (unlikely(is_vm_hugetlb_page(vma))) {
995 * It is undesirable to test vma->vm_file as it
996 * should be non-null for valid hugetlb area.
997 * However, vm_file will be NULL in the error
998 * cleanup path of do_mmap_pgoff. When
999 * hugetlbfs ->mmap method fails,
1000 * do_mmap_pgoff() nullifies vma->vm_file
1001 * before calling this function to clean up.
1002 * Since no pte has actually been setup, it is
1003 * safe to do nothing in this case.
1005 if (vma->vm_file) {
1006 unmap_hugepage_range(vma, start, end, NULL);
1007 zap_work -= (end - start) /
1008 pages_per_huge_page(hstate_vma(vma));
1011 start = end;
1012 } else
1013 start = unmap_page_range(*tlbp, vma,
1014 start, end, &zap_work, details);
1016 if (zap_work > 0) {
1017 BUG_ON(start != end);
1018 break;
1021 tlb_finish_mmu(*tlbp, tlb_start, start);
1023 if (need_resched() ||
1024 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1025 if (i_mmap_lock) {
1026 *tlbp = NULL;
1027 goto out;
1029 cond_resched();
1032 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1033 tlb_start_valid = 0;
1034 zap_work = ZAP_BLOCK_SIZE;
1037 out:
1038 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1039 return start; /* which is now the end (or restart) address */
1043 * zap_page_range - remove user pages in a given range
1044 * @vma: vm_area_struct holding the applicable pages
1045 * @address: starting address of pages to zap
1046 * @size: number of bytes to zap
1047 * @details: details of nonlinear truncation or shared cache invalidation
1049 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1050 unsigned long size, struct zap_details *details)
1052 struct mm_struct *mm = vma->vm_mm;
1053 struct mmu_gather *tlb;
1054 unsigned long end = address + size;
1055 unsigned long nr_accounted = 0;
1057 lru_add_drain();
1058 tlb = tlb_gather_mmu(mm, 0);
1059 update_hiwater_rss(mm);
1060 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1061 if (tlb)
1062 tlb_finish_mmu(tlb, address, end);
1063 return end;
1067 * zap_vma_ptes - remove ptes mapping the vma
1068 * @vma: vm_area_struct holding ptes to be zapped
1069 * @address: starting address of pages to zap
1070 * @size: number of bytes to zap
1072 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1074 * The entire address range must be fully contained within the vma.
1076 * Returns 0 if successful.
1078 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1079 unsigned long size)
1081 if (address < vma->vm_start || address + size > vma->vm_end ||
1082 !(vma->vm_flags & VM_PFNMAP))
1083 return -1;
1084 zap_page_range(vma, address, size, NULL);
1085 return 0;
1087 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1090 * Do a quick page-table lookup for a single page.
1092 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1093 unsigned int flags)
1095 pgd_t *pgd;
1096 pud_t *pud;
1097 pmd_t *pmd;
1098 pte_t *ptep, pte;
1099 spinlock_t *ptl;
1100 struct page *page;
1101 struct mm_struct *mm = vma->vm_mm;
1103 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1104 if (!IS_ERR(page)) {
1105 BUG_ON(flags & FOLL_GET);
1106 goto out;
1109 page = NULL;
1110 pgd = pgd_offset(mm, address);
1111 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1112 goto no_page_table;
1114 pud = pud_offset(pgd, address);
1115 if (pud_none(*pud))
1116 goto no_page_table;
1117 if (pud_huge(*pud)) {
1118 BUG_ON(flags & FOLL_GET);
1119 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1120 goto out;
1122 if (unlikely(pud_bad(*pud)))
1123 goto no_page_table;
1125 pmd = pmd_offset(pud, address);
1126 if (pmd_none(*pmd))
1127 goto no_page_table;
1128 if (pmd_huge(*pmd)) {
1129 BUG_ON(flags & FOLL_GET);
1130 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1131 goto out;
1133 if (unlikely(pmd_bad(*pmd)))
1134 goto no_page_table;
1136 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1138 pte = *ptep;
1139 if (!pte_present(pte))
1140 goto no_page;
1141 if ((flags & FOLL_WRITE) && !pte_write(pte))
1142 goto unlock;
1143 page = vm_normal_page(vma, address, pte);
1144 if (unlikely(!page))
1145 goto bad_page;
1147 if (flags & FOLL_GET)
1148 get_page(page);
1149 if (flags & FOLL_TOUCH) {
1150 if ((flags & FOLL_WRITE) &&
1151 !pte_dirty(pte) && !PageDirty(page))
1152 set_page_dirty(page);
1153 mark_page_accessed(page);
1155 unlock:
1156 pte_unmap_unlock(ptep, ptl);
1157 out:
1158 return page;
1160 bad_page:
1161 pte_unmap_unlock(ptep, ptl);
1162 return ERR_PTR(-EFAULT);
1164 no_page:
1165 pte_unmap_unlock(ptep, ptl);
1166 if (!pte_none(pte))
1167 return page;
1168 /* Fall through to ZERO_PAGE handling */
1169 no_page_table:
1171 * When core dumping an enormous anonymous area that nobody
1172 * has touched so far, we don't want to allocate page tables.
1174 if (flags & FOLL_ANON) {
1175 page = ZERO_PAGE(0);
1176 if (flags & FOLL_GET)
1177 get_page(page);
1178 BUG_ON(flags & FOLL_WRITE);
1180 return page;
1183 /* Can we do the FOLL_ANON optimization? */
1184 static inline int use_zero_page(struct vm_area_struct *vma)
1187 * We don't want to optimize FOLL_ANON for make_pages_present()
1188 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1189 * we want to get the page from the page tables to make sure
1190 * that we serialize and update with any other user of that
1191 * mapping.
1193 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1194 return 0;
1196 * And if we have a fault routine, it's not an anonymous region.
1198 return !vma->vm_ops || !vma->vm_ops->fault;
1203 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1204 unsigned long start, int len, int flags,
1205 struct page **pages, struct vm_area_struct **vmas)
1207 int i;
1208 unsigned int vm_flags = 0;
1209 int write = !!(flags & GUP_FLAGS_WRITE);
1210 int force = !!(flags & GUP_FLAGS_FORCE);
1211 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1213 if (len <= 0)
1214 return 0;
1216 * Require read or write permissions.
1217 * If 'force' is set, we only require the "MAY" flags.
1219 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1220 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1221 i = 0;
1223 do {
1224 struct vm_area_struct *vma;
1225 unsigned int foll_flags;
1227 vma = find_extend_vma(mm, start);
1228 if (!vma && in_gate_area(tsk, start)) {
1229 unsigned long pg = start & PAGE_MASK;
1230 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1231 pgd_t *pgd;
1232 pud_t *pud;
1233 pmd_t *pmd;
1234 pte_t *pte;
1236 /* user gate pages are read-only */
1237 if (!ignore && write)
1238 return i ? : -EFAULT;
1239 if (pg > TASK_SIZE)
1240 pgd = pgd_offset_k(pg);
1241 else
1242 pgd = pgd_offset_gate(mm, pg);
1243 BUG_ON(pgd_none(*pgd));
1244 pud = pud_offset(pgd, pg);
1245 BUG_ON(pud_none(*pud));
1246 pmd = pmd_offset(pud, pg);
1247 if (pmd_none(*pmd))
1248 return i ? : -EFAULT;
1249 pte = pte_offset_map(pmd, pg);
1250 if (pte_none(*pte)) {
1251 pte_unmap(pte);
1252 return i ? : -EFAULT;
1254 if (pages) {
1255 struct page *page = vm_normal_page(gate_vma, start, *pte);
1256 pages[i] = page;
1257 if (page)
1258 get_page(page);
1260 pte_unmap(pte);
1261 if (vmas)
1262 vmas[i] = gate_vma;
1263 i++;
1264 start += PAGE_SIZE;
1265 len--;
1266 continue;
1269 if (!vma ||
1270 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1271 (!ignore && !(vm_flags & vma->vm_flags)))
1272 return i ? : -EFAULT;
1274 if (is_vm_hugetlb_page(vma)) {
1275 i = follow_hugetlb_page(mm, vma, pages, vmas,
1276 &start, &len, i, write);
1277 continue;
1280 foll_flags = FOLL_TOUCH;
1281 if (pages)
1282 foll_flags |= FOLL_GET;
1283 if (!write && use_zero_page(vma))
1284 foll_flags |= FOLL_ANON;
1286 do {
1287 struct page *page;
1290 * If tsk is ooming, cut off its access to large memory
1291 * allocations. It has a pending SIGKILL, but it can't
1292 * be processed until returning to user space.
1294 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1295 return i ? i : -ENOMEM;
1297 if (write)
1298 foll_flags |= FOLL_WRITE;
1300 cond_resched();
1301 while (!(page = follow_page(vma, start, foll_flags))) {
1302 int ret;
1303 ret = handle_mm_fault(mm, vma, start,
1304 foll_flags & FOLL_WRITE);
1305 if (ret & VM_FAULT_ERROR) {
1306 if (ret & VM_FAULT_OOM)
1307 return i ? i : -ENOMEM;
1308 else if (ret & VM_FAULT_SIGBUS)
1309 return i ? i : -EFAULT;
1310 BUG();
1312 if (ret & VM_FAULT_MAJOR)
1313 tsk->maj_flt++;
1314 else
1315 tsk->min_flt++;
1318 * The VM_FAULT_WRITE bit tells us that
1319 * do_wp_page has broken COW when necessary,
1320 * even if maybe_mkwrite decided not to set
1321 * pte_write. We can thus safely do subsequent
1322 * page lookups as if they were reads. But only
1323 * do so when looping for pte_write is futile:
1324 * in some cases userspace may also be wanting
1325 * to write to the gotten user page, which a
1326 * read fault here might prevent (a readonly
1327 * page might get reCOWed by userspace write).
1329 if ((ret & VM_FAULT_WRITE) &&
1330 !(vma->vm_flags & VM_WRITE))
1331 foll_flags &= ~FOLL_WRITE;
1333 cond_resched();
1335 if (IS_ERR(page))
1336 return i ? i : PTR_ERR(page);
1337 if (pages) {
1338 pages[i] = page;
1340 flush_anon_page(vma, page, start);
1341 flush_dcache_page(page);
1343 if (vmas)
1344 vmas[i] = vma;
1345 i++;
1346 start += PAGE_SIZE;
1347 len--;
1348 } while (len && start < vma->vm_end);
1349 } while (len);
1350 return i;
1353 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1354 unsigned long start, int len, int write, int force,
1355 struct page **pages, struct vm_area_struct **vmas)
1357 int flags = 0;
1359 if (write)
1360 flags |= GUP_FLAGS_WRITE;
1361 if (force)
1362 flags |= GUP_FLAGS_FORCE;
1364 return __get_user_pages(tsk, mm,
1365 start, len, flags,
1366 pages, vmas);
1369 EXPORT_SYMBOL(get_user_pages);
1371 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1372 spinlock_t **ptl)
1374 pgd_t * pgd = pgd_offset(mm, addr);
1375 pud_t * pud = pud_alloc(mm, pgd, addr);
1376 if (pud) {
1377 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1378 if (pmd)
1379 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1381 return NULL;
1385 * This is the old fallback for page remapping.
1387 * For historical reasons, it only allows reserved pages. Only
1388 * old drivers should use this, and they needed to mark their
1389 * pages reserved for the old functions anyway.
1391 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1392 struct page *page, pgprot_t prot)
1394 struct mm_struct *mm = vma->vm_mm;
1395 int retval;
1396 pte_t *pte;
1397 spinlock_t *ptl;
1399 retval = -EINVAL;
1400 if (PageAnon(page))
1401 goto out;
1402 retval = -ENOMEM;
1403 flush_dcache_page(page);
1404 pte = get_locked_pte(mm, addr, &ptl);
1405 if (!pte)
1406 goto out;
1407 retval = -EBUSY;
1408 if (!pte_none(*pte))
1409 goto out_unlock;
1411 /* Ok, finally just insert the thing.. */
1412 get_page(page);
1413 inc_mm_counter(mm, file_rss);
1414 page_add_file_rmap(page);
1415 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1417 retval = 0;
1418 pte_unmap_unlock(pte, ptl);
1419 return retval;
1420 out_unlock:
1421 pte_unmap_unlock(pte, ptl);
1422 out:
1423 return retval;
1427 * vm_insert_page - insert single page into user vma
1428 * @vma: user vma to map to
1429 * @addr: target user address of this page
1430 * @page: source kernel page
1432 * This allows drivers to insert individual pages they've allocated
1433 * into a user vma.
1435 * The page has to be a nice clean _individual_ kernel allocation.
1436 * If you allocate a compound page, you need to have marked it as
1437 * such (__GFP_COMP), or manually just split the page up yourself
1438 * (see split_page()).
1440 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1441 * took an arbitrary page protection parameter. This doesn't allow
1442 * that. Your vma protection will have to be set up correctly, which
1443 * means that if you want a shared writable mapping, you'd better
1444 * ask for a shared writable mapping!
1446 * The page does not need to be reserved.
1448 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1449 struct page *page)
1451 if (addr < vma->vm_start || addr >= vma->vm_end)
1452 return -EFAULT;
1453 if (!page_count(page))
1454 return -EINVAL;
1455 vma->vm_flags |= VM_INSERTPAGE;
1456 return insert_page(vma, addr, page, vma->vm_page_prot);
1458 EXPORT_SYMBOL(vm_insert_page);
1460 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1461 unsigned long pfn, pgprot_t prot)
1463 struct mm_struct *mm = vma->vm_mm;
1464 int retval;
1465 pte_t *pte, entry;
1466 spinlock_t *ptl;
1468 retval = -ENOMEM;
1469 pte = get_locked_pte(mm, addr, &ptl);
1470 if (!pte)
1471 goto out;
1472 retval = -EBUSY;
1473 if (!pte_none(*pte))
1474 goto out_unlock;
1476 /* Ok, finally just insert the thing.. */
1477 entry = pte_mkspecial(pfn_pte(pfn, prot));
1478 set_pte_at(mm, addr, pte, entry);
1479 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1481 retval = 0;
1482 out_unlock:
1483 pte_unmap_unlock(pte, ptl);
1484 out:
1485 return retval;
1489 * vm_insert_pfn - insert single pfn into user vma
1490 * @vma: user vma to map to
1491 * @addr: target user address of this page
1492 * @pfn: source kernel pfn
1494 * Similar to vm_inert_page, this allows drivers to insert individual pages
1495 * they've allocated into a user vma. Same comments apply.
1497 * This function should only be called from a vm_ops->fault handler, and
1498 * in that case the handler should return NULL.
1500 * vma cannot be a COW mapping.
1502 * As this is called only for pages that do not currently exist, we
1503 * do not need to flush old virtual caches or the TLB.
1505 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1506 unsigned long pfn)
1508 int ret;
1510 * Technically, architectures with pte_special can avoid all these
1511 * restrictions (same for remap_pfn_range). However we would like
1512 * consistency in testing and feature parity among all, so we should
1513 * try to keep these invariants in place for everybody.
1515 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1516 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1517 (VM_PFNMAP|VM_MIXEDMAP));
1518 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1519 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1521 if (addr < vma->vm_start || addr >= vma->vm_end)
1522 return -EFAULT;
1523 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1524 return -EINVAL;
1526 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1528 if (ret)
1529 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1531 return ret;
1533 EXPORT_SYMBOL(vm_insert_pfn);
1535 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1536 unsigned long pfn)
1538 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1540 if (addr < vma->vm_start || addr >= vma->vm_end)
1541 return -EFAULT;
1544 * If we don't have pte special, then we have to use the pfn_valid()
1545 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1546 * refcount the page if pfn_valid is true (hence insert_page rather
1547 * than insert_pfn).
1549 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1550 struct page *page;
1552 page = pfn_to_page(pfn);
1553 return insert_page(vma, addr, page, vma->vm_page_prot);
1555 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1557 EXPORT_SYMBOL(vm_insert_mixed);
1560 * maps a range of physical memory into the requested pages. the old
1561 * mappings are removed. any references to nonexistent pages results
1562 * in null mappings (currently treated as "copy-on-access")
1564 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1565 unsigned long addr, unsigned long end,
1566 unsigned long pfn, pgprot_t prot)
1568 pte_t *pte;
1569 spinlock_t *ptl;
1571 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1572 if (!pte)
1573 return -ENOMEM;
1574 arch_enter_lazy_mmu_mode();
1575 do {
1576 BUG_ON(!pte_none(*pte));
1577 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1578 pfn++;
1579 } while (pte++, addr += PAGE_SIZE, addr != end);
1580 arch_leave_lazy_mmu_mode();
1581 pte_unmap_unlock(pte - 1, ptl);
1582 return 0;
1585 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1586 unsigned long addr, unsigned long end,
1587 unsigned long pfn, pgprot_t prot)
1589 pmd_t *pmd;
1590 unsigned long next;
1592 pfn -= addr >> PAGE_SHIFT;
1593 pmd = pmd_alloc(mm, pud, addr);
1594 if (!pmd)
1595 return -ENOMEM;
1596 do {
1597 next = pmd_addr_end(addr, end);
1598 if (remap_pte_range(mm, pmd, addr, next,
1599 pfn + (addr >> PAGE_SHIFT), prot))
1600 return -ENOMEM;
1601 } while (pmd++, addr = next, addr != end);
1602 return 0;
1605 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1606 unsigned long addr, unsigned long end,
1607 unsigned long pfn, pgprot_t prot)
1609 pud_t *pud;
1610 unsigned long next;
1612 pfn -= addr >> PAGE_SHIFT;
1613 pud = pud_alloc(mm, pgd, addr);
1614 if (!pud)
1615 return -ENOMEM;
1616 do {
1617 next = pud_addr_end(addr, end);
1618 if (remap_pmd_range(mm, pud, addr, next,
1619 pfn + (addr >> PAGE_SHIFT), prot))
1620 return -ENOMEM;
1621 } while (pud++, addr = next, addr != end);
1622 return 0;
1626 * remap_pfn_range - remap kernel memory to userspace
1627 * @vma: user vma to map to
1628 * @addr: target user address to start at
1629 * @pfn: physical address of kernel memory
1630 * @size: size of map area
1631 * @prot: page protection flags for this mapping
1633 * Note: this is only safe if the mm semaphore is held when called.
1635 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1636 unsigned long pfn, unsigned long size, pgprot_t prot)
1638 pgd_t *pgd;
1639 unsigned long next;
1640 unsigned long end = addr + PAGE_ALIGN(size);
1641 struct mm_struct *mm = vma->vm_mm;
1642 int err;
1645 * Physically remapped pages are special. Tell the
1646 * rest of the world about it:
1647 * VM_IO tells people not to look at these pages
1648 * (accesses can have side effects).
1649 * VM_RESERVED is specified all over the place, because
1650 * in 2.4 it kept swapout's vma scan off this vma; but
1651 * in 2.6 the LRU scan won't even find its pages, so this
1652 * flag means no more than count its pages in reserved_vm,
1653 * and omit it from core dump, even when VM_IO turned off.
1654 * VM_PFNMAP tells the core MM that the base pages are just
1655 * raw PFN mappings, and do not have a "struct page" associated
1656 * with them.
1658 * There's a horrible special case to handle copy-on-write
1659 * behaviour that some programs depend on. We mark the "original"
1660 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1662 if (addr == vma->vm_start && end == vma->vm_end)
1663 vma->vm_pgoff = pfn;
1664 else if (is_cow_mapping(vma->vm_flags))
1665 return -EINVAL;
1667 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1669 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1670 if (err)
1671 return -EINVAL;
1673 BUG_ON(addr >= end);
1674 pfn -= addr >> PAGE_SHIFT;
1675 pgd = pgd_offset(mm, addr);
1676 flush_cache_range(vma, addr, end);
1677 do {
1678 next = pgd_addr_end(addr, end);
1679 err = remap_pud_range(mm, pgd, addr, next,
1680 pfn + (addr >> PAGE_SHIFT), prot);
1681 if (err)
1682 break;
1683 } while (pgd++, addr = next, addr != end);
1685 if (err)
1686 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1688 return err;
1690 EXPORT_SYMBOL(remap_pfn_range);
1692 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1693 unsigned long addr, unsigned long end,
1694 pte_fn_t fn, void *data)
1696 pte_t *pte;
1697 int err;
1698 pgtable_t token;
1699 spinlock_t *uninitialized_var(ptl);
1701 pte = (mm == &init_mm) ?
1702 pte_alloc_kernel(pmd, addr) :
1703 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1704 if (!pte)
1705 return -ENOMEM;
1707 BUG_ON(pmd_huge(*pmd));
1709 arch_enter_lazy_mmu_mode();
1711 token = pmd_pgtable(*pmd);
1713 do {
1714 err = fn(pte, token, addr, data);
1715 if (err)
1716 break;
1717 } while (pte++, addr += PAGE_SIZE, addr != end);
1719 arch_leave_lazy_mmu_mode();
1721 if (mm != &init_mm)
1722 pte_unmap_unlock(pte-1, ptl);
1723 return err;
1726 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1727 unsigned long addr, unsigned long end,
1728 pte_fn_t fn, void *data)
1730 pmd_t *pmd;
1731 unsigned long next;
1732 int err;
1734 BUG_ON(pud_huge(*pud));
1736 pmd = pmd_alloc(mm, pud, addr);
1737 if (!pmd)
1738 return -ENOMEM;
1739 do {
1740 next = pmd_addr_end(addr, end);
1741 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1742 if (err)
1743 break;
1744 } while (pmd++, addr = next, addr != end);
1745 return err;
1748 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1749 unsigned long addr, unsigned long end,
1750 pte_fn_t fn, void *data)
1752 pud_t *pud;
1753 unsigned long next;
1754 int err;
1756 pud = pud_alloc(mm, pgd, addr);
1757 if (!pud)
1758 return -ENOMEM;
1759 do {
1760 next = pud_addr_end(addr, end);
1761 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1762 if (err)
1763 break;
1764 } while (pud++, addr = next, addr != end);
1765 return err;
1769 * Scan a region of virtual memory, filling in page tables as necessary
1770 * and calling a provided function on each leaf page table.
1772 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1773 unsigned long size, pte_fn_t fn, void *data)
1775 pgd_t *pgd;
1776 unsigned long next;
1777 unsigned long start = addr, end = addr + size;
1778 int err;
1780 BUG_ON(addr >= end);
1781 mmu_notifier_invalidate_range_start(mm, start, end);
1782 pgd = pgd_offset(mm, addr);
1783 do {
1784 next = pgd_addr_end(addr, end);
1785 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1786 if (err)
1787 break;
1788 } while (pgd++, addr = next, addr != end);
1789 mmu_notifier_invalidate_range_end(mm, start, end);
1790 return err;
1792 EXPORT_SYMBOL_GPL(apply_to_page_range);
1795 * handle_pte_fault chooses page fault handler according to an entry
1796 * which was read non-atomically. Before making any commitment, on
1797 * those architectures or configurations (e.g. i386 with PAE) which
1798 * might give a mix of unmatched parts, do_swap_page and do_file_page
1799 * must check under lock before unmapping the pte and proceeding
1800 * (but do_wp_page is only called after already making such a check;
1801 * and do_anonymous_page and do_no_page can safely check later on).
1803 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1804 pte_t *page_table, pte_t orig_pte)
1806 int same = 1;
1807 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1808 if (sizeof(pte_t) > sizeof(unsigned long)) {
1809 spinlock_t *ptl = pte_lockptr(mm, pmd);
1810 spin_lock(ptl);
1811 same = pte_same(*page_table, orig_pte);
1812 spin_unlock(ptl);
1814 #endif
1815 pte_unmap(page_table);
1816 return same;
1820 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1821 * servicing faults for write access. In the normal case, do always want
1822 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1823 * that do not have writing enabled, when used by access_process_vm.
1825 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1827 if (likely(vma->vm_flags & VM_WRITE))
1828 pte = pte_mkwrite(pte);
1829 return pte;
1832 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1835 * If the source page was a PFN mapping, we don't have
1836 * a "struct page" for it. We do a best-effort copy by
1837 * just copying from the original user address. If that
1838 * fails, we just zero-fill it. Live with it.
1840 if (unlikely(!src)) {
1841 void *kaddr = kmap_atomic(dst, KM_USER0);
1842 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1845 * This really shouldn't fail, because the page is there
1846 * in the page tables. But it might just be unreadable,
1847 * in which case we just give up and fill the result with
1848 * zeroes.
1850 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1851 memset(kaddr, 0, PAGE_SIZE);
1852 kunmap_atomic(kaddr, KM_USER0);
1853 flush_dcache_page(dst);
1854 } else
1855 copy_user_highpage(dst, src, va, vma);
1859 * This routine handles present pages, when users try to write
1860 * to a shared page. It is done by copying the page to a new address
1861 * and decrementing the shared-page counter for the old page.
1863 * Note that this routine assumes that the protection checks have been
1864 * done by the caller (the low-level page fault routine in most cases).
1865 * Thus we can safely just mark it writable once we've done any necessary
1866 * COW.
1868 * We also mark the page dirty at this point even though the page will
1869 * change only once the write actually happens. This avoids a few races,
1870 * and potentially makes it more efficient.
1872 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1873 * but allow concurrent faults), with pte both mapped and locked.
1874 * We return with mmap_sem still held, but pte unmapped and unlocked.
1876 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1877 unsigned long address, pte_t *page_table, pmd_t *pmd,
1878 spinlock_t *ptl, pte_t orig_pte)
1880 struct page *old_page, *new_page;
1881 pte_t entry;
1882 int reuse = 0, ret = 0;
1883 int page_mkwrite = 0;
1884 struct page *dirty_page = NULL;
1886 old_page = vm_normal_page(vma, address, orig_pte);
1887 if (!old_page) {
1889 * VM_MIXEDMAP !pfn_valid() case
1891 * We should not cow pages in a shared writeable mapping.
1892 * Just mark the pages writable as we can't do any dirty
1893 * accounting on raw pfn maps.
1895 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1896 (VM_WRITE|VM_SHARED))
1897 goto reuse;
1898 goto gotten;
1902 * Take out anonymous pages first, anonymous shared vmas are
1903 * not dirty accountable.
1905 if (PageAnon(old_page)) {
1906 if (!trylock_page(old_page)) {
1907 page_cache_get(old_page);
1908 pte_unmap_unlock(page_table, ptl);
1909 lock_page(old_page);
1910 page_table = pte_offset_map_lock(mm, pmd, address,
1911 &ptl);
1912 if (!pte_same(*page_table, orig_pte)) {
1913 unlock_page(old_page);
1914 page_cache_release(old_page);
1915 goto unlock;
1917 page_cache_release(old_page);
1919 reuse = reuse_swap_page(old_page);
1920 unlock_page(old_page);
1921 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1922 (VM_WRITE|VM_SHARED))) {
1924 * Only catch write-faults on shared writable pages,
1925 * read-only shared pages can get COWed by
1926 * get_user_pages(.write=1, .force=1).
1928 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1930 * Notify the address space that the page is about to
1931 * become writable so that it can prohibit this or wait
1932 * for the page to get into an appropriate state.
1934 * We do this without the lock held, so that it can
1935 * sleep if it needs to.
1937 page_cache_get(old_page);
1938 pte_unmap_unlock(page_table, ptl);
1940 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1941 goto unwritable_page;
1944 * Since we dropped the lock we need to revalidate
1945 * the PTE as someone else may have changed it. If
1946 * they did, we just return, as we can count on the
1947 * MMU to tell us if they didn't also make it writable.
1949 page_table = pte_offset_map_lock(mm, pmd, address,
1950 &ptl);
1951 page_cache_release(old_page);
1952 if (!pte_same(*page_table, orig_pte))
1953 goto unlock;
1955 page_mkwrite = 1;
1957 dirty_page = old_page;
1958 get_page(dirty_page);
1959 reuse = 1;
1962 if (reuse) {
1963 reuse:
1964 flush_cache_page(vma, address, pte_pfn(orig_pte));
1965 entry = pte_mkyoung(orig_pte);
1966 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1967 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1968 update_mmu_cache(vma, address, entry);
1969 ret |= VM_FAULT_WRITE;
1970 goto unlock;
1974 * Ok, we need to copy. Oh, well..
1976 page_cache_get(old_page);
1977 gotten:
1978 pte_unmap_unlock(page_table, ptl);
1980 if (unlikely(anon_vma_prepare(vma)))
1981 goto oom;
1982 VM_BUG_ON(old_page == ZERO_PAGE(0));
1983 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1984 if (!new_page)
1985 goto oom;
1987 * Don't let another task, with possibly unlocked vma,
1988 * keep the mlocked page.
1990 if (vma->vm_flags & VM_LOCKED) {
1991 lock_page(old_page); /* for LRU manipulation */
1992 clear_page_mlock(old_page);
1993 unlock_page(old_page);
1995 cow_user_page(new_page, old_page, address, vma);
1996 __SetPageUptodate(new_page);
1998 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1999 goto oom_free_new;
2002 * Re-check the pte - we dropped the lock
2004 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2005 if (likely(pte_same(*page_table, orig_pte))) {
2006 if (old_page) {
2007 if (!PageAnon(old_page)) {
2008 dec_mm_counter(mm, file_rss);
2009 inc_mm_counter(mm, anon_rss);
2011 } else
2012 inc_mm_counter(mm, anon_rss);
2013 flush_cache_page(vma, address, pte_pfn(orig_pte));
2014 entry = mk_pte(new_page, vma->vm_page_prot);
2015 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2017 * Clear the pte entry and flush it first, before updating the
2018 * pte with the new entry. This will avoid a race condition
2019 * seen in the presence of one thread doing SMC and another
2020 * thread doing COW.
2022 ptep_clear_flush_notify(vma, address, page_table);
2023 page_add_new_anon_rmap(new_page, vma, address);
2024 set_pte_at(mm, address, page_table, entry);
2025 update_mmu_cache(vma, address, entry);
2026 if (old_page) {
2028 * Only after switching the pte to the new page may
2029 * we remove the mapcount here. Otherwise another
2030 * process may come and find the rmap count decremented
2031 * before the pte is switched to the new page, and
2032 * "reuse" the old page writing into it while our pte
2033 * here still points into it and can be read by other
2034 * threads.
2036 * The critical issue is to order this
2037 * page_remove_rmap with the ptp_clear_flush above.
2038 * Those stores are ordered by (if nothing else,)
2039 * the barrier present in the atomic_add_negative
2040 * in page_remove_rmap.
2042 * Then the TLB flush in ptep_clear_flush ensures that
2043 * no process can access the old page before the
2044 * decremented mapcount is visible. And the old page
2045 * cannot be reused until after the decremented
2046 * mapcount is visible. So transitively, TLBs to
2047 * old page will be flushed before it can be reused.
2049 page_remove_rmap(old_page);
2052 /* Free the old page.. */
2053 new_page = old_page;
2054 ret |= VM_FAULT_WRITE;
2055 } else
2056 mem_cgroup_uncharge_page(new_page);
2058 if (new_page)
2059 page_cache_release(new_page);
2060 if (old_page)
2061 page_cache_release(old_page);
2062 unlock:
2063 pte_unmap_unlock(page_table, ptl);
2064 if (dirty_page) {
2065 if (vma->vm_file)
2066 file_update_time(vma->vm_file);
2069 * Yes, Virginia, this is actually required to prevent a race
2070 * with clear_page_dirty_for_io() from clearing the page dirty
2071 * bit after it clear all dirty ptes, but before a racing
2072 * do_wp_page installs a dirty pte.
2074 * do_no_page is protected similarly.
2076 wait_on_page_locked(dirty_page);
2077 set_page_dirty_balance(dirty_page, page_mkwrite);
2078 put_page(dirty_page);
2080 return ret;
2081 oom_free_new:
2082 page_cache_release(new_page);
2083 oom:
2084 if (old_page)
2085 page_cache_release(old_page);
2086 return VM_FAULT_OOM;
2088 unwritable_page:
2089 page_cache_release(old_page);
2090 return VM_FAULT_SIGBUS;
2094 * Helper functions for unmap_mapping_range().
2096 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2098 * We have to restart searching the prio_tree whenever we drop the lock,
2099 * since the iterator is only valid while the lock is held, and anyway
2100 * a later vma might be split and reinserted earlier while lock dropped.
2102 * The list of nonlinear vmas could be handled more efficiently, using
2103 * a placeholder, but handle it in the same way until a need is shown.
2104 * It is important to search the prio_tree before nonlinear list: a vma
2105 * may become nonlinear and be shifted from prio_tree to nonlinear list
2106 * while the lock is dropped; but never shifted from list to prio_tree.
2108 * In order to make forward progress despite restarting the search,
2109 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2110 * quickly skip it next time around. Since the prio_tree search only
2111 * shows us those vmas affected by unmapping the range in question, we
2112 * can't efficiently keep all vmas in step with mapping->truncate_count:
2113 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2114 * mapping->truncate_count and vma->vm_truncate_count are protected by
2115 * i_mmap_lock.
2117 * In order to make forward progress despite repeatedly restarting some
2118 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2119 * and restart from that address when we reach that vma again. It might
2120 * have been split or merged, shrunk or extended, but never shifted: so
2121 * restart_addr remains valid so long as it remains in the vma's range.
2122 * unmap_mapping_range forces truncate_count to leap over page-aligned
2123 * values so we can save vma's restart_addr in its truncate_count field.
2125 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2127 static void reset_vma_truncate_counts(struct address_space *mapping)
2129 struct vm_area_struct *vma;
2130 struct prio_tree_iter iter;
2132 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2133 vma->vm_truncate_count = 0;
2134 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2135 vma->vm_truncate_count = 0;
2138 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2139 unsigned long start_addr, unsigned long end_addr,
2140 struct zap_details *details)
2142 unsigned long restart_addr;
2143 int need_break;
2146 * files that support invalidating or truncating portions of the
2147 * file from under mmaped areas must have their ->fault function
2148 * return a locked page (and set VM_FAULT_LOCKED in the return).
2149 * This provides synchronisation against concurrent unmapping here.
2152 again:
2153 restart_addr = vma->vm_truncate_count;
2154 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2155 start_addr = restart_addr;
2156 if (start_addr >= end_addr) {
2157 /* Top of vma has been split off since last time */
2158 vma->vm_truncate_count = details->truncate_count;
2159 return 0;
2163 restart_addr = zap_page_range(vma, start_addr,
2164 end_addr - start_addr, details);
2165 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2167 if (restart_addr >= end_addr) {
2168 /* We have now completed this vma: mark it so */
2169 vma->vm_truncate_count = details->truncate_count;
2170 if (!need_break)
2171 return 0;
2172 } else {
2173 /* Note restart_addr in vma's truncate_count field */
2174 vma->vm_truncate_count = restart_addr;
2175 if (!need_break)
2176 goto again;
2179 spin_unlock(details->i_mmap_lock);
2180 cond_resched();
2181 spin_lock(details->i_mmap_lock);
2182 return -EINTR;
2185 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2186 struct zap_details *details)
2188 struct vm_area_struct *vma;
2189 struct prio_tree_iter iter;
2190 pgoff_t vba, vea, zba, zea;
2192 restart:
2193 vma_prio_tree_foreach(vma, &iter, root,
2194 details->first_index, details->last_index) {
2195 /* Skip quickly over those we have already dealt with */
2196 if (vma->vm_truncate_count == details->truncate_count)
2197 continue;
2199 vba = vma->vm_pgoff;
2200 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2201 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2202 zba = details->first_index;
2203 if (zba < vba)
2204 zba = vba;
2205 zea = details->last_index;
2206 if (zea > vea)
2207 zea = vea;
2209 if (unmap_mapping_range_vma(vma,
2210 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2211 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2212 details) < 0)
2213 goto restart;
2217 static inline void unmap_mapping_range_list(struct list_head *head,
2218 struct zap_details *details)
2220 struct vm_area_struct *vma;
2223 * In nonlinear VMAs there is no correspondence between virtual address
2224 * offset and file offset. So we must perform an exhaustive search
2225 * across *all* the pages in each nonlinear VMA, not just the pages
2226 * whose virtual address lies outside the file truncation point.
2228 restart:
2229 list_for_each_entry(vma, head, shared.vm_set.list) {
2230 /* Skip quickly over those we have already dealt with */
2231 if (vma->vm_truncate_count == details->truncate_count)
2232 continue;
2233 details->nonlinear_vma = vma;
2234 if (unmap_mapping_range_vma(vma, vma->vm_start,
2235 vma->vm_end, details) < 0)
2236 goto restart;
2241 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2242 * @mapping: the address space containing mmaps to be unmapped.
2243 * @holebegin: byte in first page to unmap, relative to the start of
2244 * the underlying file. This will be rounded down to a PAGE_SIZE
2245 * boundary. Note that this is different from vmtruncate(), which
2246 * must keep the partial page. In contrast, we must get rid of
2247 * partial pages.
2248 * @holelen: size of prospective hole in bytes. This will be rounded
2249 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2250 * end of the file.
2251 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2252 * but 0 when invalidating pagecache, don't throw away private data.
2254 void unmap_mapping_range(struct address_space *mapping,
2255 loff_t const holebegin, loff_t const holelen, int even_cows)
2257 struct zap_details details;
2258 pgoff_t hba = holebegin >> PAGE_SHIFT;
2259 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2261 /* Check for overflow. */
2262 if (sizeof(holelen) > sizeof(hlen)) {
2263 long long holeend =
2264 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2265 if (holeend & ~(long long)ULONG_MAX)
2266 hlen = ULONG_MAX - hba + 1;
2269 details.check_mapping = even_cows? NULL: mapping;
2270 details.nonlinear_vma = NULL;
2271 details.first_index = hba;
2272 details.last_index = hba + hlen - 1;
2273 if (details.last_index < details.first_index)
2274 details.last_index = ULONG_MAX;
2275 details.i_mmap_lock = &mapping->i_mmap_lock;
2277 spin_lock(&mapping->i_mmap_lock);
2279 /* Protect against endless unmapping loops */
2280 mapping->truncate_count++;
2281 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2282 if (mapping->truncate_count == 0)
2283 reset_vma_truncate_counts(mapping);
2284 mapping->truncate_count++;
2286 details.truncate_count = mapping->truncate_count;
2288 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2289 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2290 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2291 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2292 spin_unlock(&mapping->i_mmap_lock);
2294 EXPORT_SYMBOL(unmap_mapping_range);
2297 * vmtruncate - unmap mappings "freed" by truncate() syscall
2298 * @inode: inode of the file used
2299 * @offset: file offset to start truncating
2301 * NOTE! We have to be ready to update the memory sharing
2302 * between the file and the memory map for a potential last
2303 * incomplete page. Ugly, but necessary.
2305 int vmtruncate(struct inode * inode, loff_t offset)
2307 if (inode->i_size < offset) {
2308 unsigned long limit;
2310 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2311 if (limit != RLIM_INFINITY && offset > limit)
2312 goto out_sig;
2313 if (offset > inode->i_sb->s_maxbytes)
2314 goto out_big;
2315 i_size_write(inode, offset);
2316 } else {
2317 struct address_space *mapping = inode->i_mapping;
2320 * truncation of in-use swapfiles is disallowed - it would
2321 * cause subsequent swapout to scribble on the now-freed
2322 * blocks.
2324 if (IS_SWAPFILE(inode))
2325 return -ETXTBSY;
2326 i_size_write(inode, offset);
2329 * unmap_mapping_range is called twice, first simply for
2330 * efficiency so that truncate_inode_pages does fewer
2331 * single-page unmaps. However after this first call, and
2332 * before truncate_inode_pages finishes, it is possible for
2333 * private pages to be COWed, which remain after
2334 * truncate_inode_pages finishes, hence the second
2335 * unmap_mapping_range call must be made for correctness.
2337 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2338 truncate_inode_pages(mapping, offset);
2339 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2342 if (inode->i_op->truncate)
2343 inode->i_op->truncate(inode);
2344 return 0;
2346 out_sig:
2347 send_sig(SIGXFSZ, current, 0);
2348 out_big:
2349 return -EFBIG;
2351 EXPORT_SYMBOL(vmtruncate);
2353 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2355 struct address_space *mapping = inode->i_mapping;
2358 * If the underlying filesystem is not going to provide
2359 * a way to truncate a range of blocks (punch a hole) -
2360 * we should return failure right now.
2362 if (!inode->i_op->truncate_range)
2363 return -ENOSYS;
2365 mutex_lock(&inode->i_mutex);
2366 down_write(&inode->i_alloc_sem);
2367 unmap_mapping_range(mapping, offset, (end - offset), 1);
2368 truncate_inode_pages_range(mapping, offset, end);
2369 unmap_mapping_range(mapping, offset, (end - offset), 1);
2370 inode->i_op->truncate_range(inode, offset, end);
2371 up_write(&inode->i_alloc_sem);
2372 mutex_unlock(&inode->i_mutex);
2374 return 0;
2378 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2379 * but allow concurrent faults), and pte mapped but not yet locked.
2380 * We return with mmap_sem still held, but pte unmapped and unlocked.
2382 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2383 unsigned long address, pte_t *page_table, pmd_t *pmd,
2384 int write_access, pte_t orig_pte)
2386 spinlock_t *ptl;
2387 struct page *page;
2388 swp_entry_t entry;
2389 pte_t pte;
2390 int ret = 0;
2392 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2393 goto out;
2395 entry = pte_to_swp_entry(orig_pte);
2396 if (is_migration_entry(entry)) {
2397 migration_entry_wait(mm, pmd, address);
2398 goto out;
2400 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2401 page = lookup_swap_cache(entry);
2402 if (!page) {
2403 grab_swap_token(); /* Contend for token _before_ read-in */
2404 page = swapin_readahead(entry,
2405 GFP_HIGHUSER_MOVABLE, vma, address);
2406 if (!page) {
2408 * Back out if somebody else faulted in this pte
2409 * while we released the pte lock.
2411 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2412 if (likely(pte_same(*page_table, orig_pte)))
2413 ret = VM_FAULT_OOM;
2414 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2415 goto unlock;
2418 /* Had to read the page from swap area: Major fault */
2419 ret = VM_FAULT_MAJOR;
2420 count_vm_event(PGMAJFAULT);
2423 mark_page_accessed(page);
2425 lock_page(page);
2426 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2428 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2429 ret = VM_FAULT_OOM;
2430 unlock_page(page);
2431 goto out;
2435 * Back out if somebody else already faulted in this pte.
2437 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2438 if (unlikely(!pte_same(*page_table, orig_pte)))
2439 goto out_nomap;
2441 if (unlikely(!PageUptodate(page))) {
2442 ret = VM_FAULT_SIGBUS;
2443 goto out_nomap;
2446 /* The page isn't present yet, go ahead with the fault. */
2448 inc_mm_counter(mm, anon_rss);
2449 pte = mk_pte(page, vma->vm_page_prot);
2450 if (write_access && reuse_swap_page(page)) {
2451 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2452 write_access = 0;
2455 flush_icache_page(vma, page);
2456 set_pte_at(mm, address, page_table, pte);
2457 page_add_anon_rmap(page, vma, address);
2459 swap_free(entry);
2460 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2461 try_to_free_swap(page);
2462 unlock_page(page);
2464 if (write_access) {
2465 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2466 if (ret & VM_FAULT_ERROR)
2467 ret &= VM_FAULT_ERROR;
2468 goto out;
2471 /* No need to invalidate - it was non-present before */
2472 update_mmu_cache(vma, address, pte);
2473 unlock:
2474 pte_unmap_unlock(page_table, ptl);
2475 out:
2476 return ret;
2477 out_nomap:
2478 mem_cgroup_uncharge_page(page);
2479 pte_unmap_unlock(page_table, ptl);
2480 unlock_page(page);
2481 page_cache_release(page);
2482 return ret;
2486 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2487 * but allow concurrent faults), and pte mapped but not yet locked.
2488 * We return with mmap_sem still held, but pte unmapped and unlocked.
2490 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2491 unsigned long address, pte_t *page_table, pmd_t *pmd,
2492 int write_access)
2494 struct page *page;
2495 spinlock_t *ptl;
2496 pte_t entry;
2498 /* Allocate our own private page. */
2499 pte_unmap(page_table);
2501 if (unlikely(anon_vma_prepare(vma)))
2502 goto oom;
2503 page = alloc_zeroed_user_highpage_movable(vma, address);
2504 if (!page)
2505 goto oom;
2506 __SetPageUptodate(page);
2508 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2509 goto oom_free_page;
2511 entry = mk_pte(page, vma->vm_page_prot);
2512 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2514 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2515 if (!pte_none(*page_table))
2516 goto release;
2517 inc_mm_counter(mm, anon_rss);
2518 page_add_new_anon_rmap(page, vma, address);
2519 set_pte_at(mm, address, page_table, entry);
2521 /* No need to invalidate - it was non-present before */
2522 update_mmu_cache(vma, address, entry);
2523 unlock:
2524 pte_unmap_unlock(page_table, ptl);
2525 return 0;
2526 release:
2527 mem_cgroup_uncharge_page(page);
2528 page_cache_release(page);
2529 goto unlock;
2530 oom_free_page:
2531 page_cache_release(page);
2532 oom:
2533 return VM_FAULT_OOM;
2537 * __do_fault() tries to create a new page mapping. It aggressively
2538 * tries to share with existing pages, but makes a separate copy if
2539 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2540 * the next page fault.
2542 * As this is called only for pages that do not currently exist, we
2543 * do not need to flush old virtual caches or the TLB.
2545 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2546 * but allow concurrent faults), and pte neither mapped nor locked.
2547 * We return with mmap_sem still held, but pte unmapped and unlocked.
2549 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2550 unsigned long address, pmd_t *pmd,
2551 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2553 pte_t *page_table;
2554 spinlock_t *ptl;
2555 struct page *page;
2556 pte_t entry;
2557 int anon = 0;
2558 int charged = 0;
2559 struct page *dirty_page = NULL;
2560 struct vm_fault vmf;
2561 int ret;
2562 int page_mkwrite = 0;
2564 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2565 vmf.pgoff = pgoff;
2566 vmf.flags = flags;
2567 vmf.page = NULL;
2569 ret = vma->vm_ops->fault(vma, &vmf);
2570 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2571 return ret;
2574 * For consistency in subsequent calls, make the faulted page always
2575 * locked.
2577 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2578 lock_page(vmf.page);
2579 else
2580 VM_BUG_ON(!PageLocked(vmf.page));
2583 * Should we do an early C-O-W break?
2585 page = vmf.page;
2586 if (flags & FAULT_FLAG_WRITE) {
2587 if (!(vma->vm_flags & VM_SHARED)) {
2588 anon = 1;
2589 if (unlikely(anon_vma_prepare(vma))) {
2590 ret = VM_FAULT_OOM;
2591 goto out;
2593 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2594 vma, address);
2595 if (!page) {
2596 ret = VM_FAULT_OOM;
2597 goto out;
2599 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2600 ret = VM_FAULT_OOM;
2601 page_cache_release(page);
2602 goto out;
2604 charged = 1;
2606 * Don't let another task, with possibly unlocked vma,
2607 * keep the mlocked page.
2609 if (vma->vm_flags & VM_LOCKED)
2610 clear_page_mlock(vmf.page);
2611 copy_user_highpage(page, vmf.page, address, vma);
2612 __SetPageUptodate(page);
2613 } else {
2615 * If the page will be shareable, see if the backing
2616 * address space wants to know that the page is about
2617 * to become writable
2619 if (vma->vm_ops->page_mkwrite) {
2620 unlock_page(page);
2621 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2622 ret = VM_FAULT_SIGBUS;
2623 anon = 1; /* no anon but release vmf.page */
2624 goto out_unlocked;
2626 lock_page(page);
2628 * XXX: this is not quite right (racy vs
2629 * invalidate) to unlock and relock the page
2630 * like this, however a better fix requires
2631 * reworking page_mkwrite locking API, which
2632 * is better done later.
2634 if (!page->mapping) {
2635 ret = 0;
2636 anon = 1; /* no anon but release vmf.page */
2637 goto out;
2639 page_mkwrite = 1;
2645 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2648 * This silly early PAGE_DIRTY setting removes a race
2649 * due to the bad i386 page protection. But it's valid
2650 * for other architectures too.
2652 * Note that if write_access is true, we either now have
2653 * an exclusive copy of the page, or this is a shared mapping,
2654 * so we can make it writable and dirty to avoid having to
2655 * handle that later.
2657 /* Only go through if we didn't race with anybody else... */
2658 if (likely(pte_same(*page_table, orig_pte))) {
2659 flush_icache_page(vma, page);
2660 entry = mk_pte(page, vma->vm_page_prot);
2661 if (flags & FAULT_FLAG_WRITE)
2662 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2663 if (anon) {
2664 inc_mm_counter(mm, anon_rss);
2665 page_add_new_anon_rmap(page, vma, address);
2666 } else {
2667 inc_mm_counter(mm, file_rss);
2668 page_add_file_rmap(page);
2669 if (flags & FAULT_FLAG_WRITE) {
2670 dirty_page = page;
2671 get_page(dirty_page);
2674 set_pte_at(mm, address, page_table, entry);
2676 /* no need to invalidate: a not-present page won't be cached */
2677 update_mmu_cache(vma, address, entry);
2678 } else {
2679 if (charged)
2680 mem_cgroup_uncharge_page(page);
2681 if (anon)
2682 page_cache_release(page);
2683 else
2684 anon = 1; /* no anon but release faulted_page */
2687 pte_unmap_unlock(page_table, ptl);
2689 out:
2690 unlock_page(vmf.page);
2691 out_unlocked:
2692 if (anon)
2693 page_cache_release(vmf.page);
2694 else if (dirty_page) {
2695 if (vma->vm_file)
2696 file_update_time(vma->vm_file);
2698 set_page_dirty_balance(dirty_page, page_mkwrite);
2699 put_page(dirty_page);
2702 return ret;
2705 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2706 unsigned long address, pte_t *page_table, pmd_t *pmd,
2707 int write_access, pte_t orig_pte)
2709 pgoff_t pgoff = (((address & PAGE_MASK)
2710 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2711 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2713 pte_unmap(page_table);
2714 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2718 * Fault of a previously existing named mapping. Repopulate the pte
2719 * from the encoded file_pte if possible. This enables swappable
2720 * nonlinear vmas.
2722 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2723 * but allow concurrent faults), and pte mapped but not yet locked.
2724 * We return with mmap_sem still held, but pte unmapped and unlocked.
2726 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2727 unsigned long address, pte_t *page_table, pmd_t *pmd,
2728 int write_access, pte_t orig_pte)
2730 unsigned int flags = FAULT_FLAG_NONLINEAR |
2731 (write_access ? FAULT_FLAG_WRITE : 0);
2732 pgoff_t pgoff;
2734 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2735 return 0;
2737 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2739 * Page table corrupted: show pte and kill process.
2741 print_bad_pte(vma, address, orig_pte, NULL);
2742 return VM_FAULT_OOM;
2745 pgoff = pte_to_pgoff(orig_pte);
2746 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2750 * These routines also need to handle stuff like marking pages dirty
2751 * and/or accessed for architectures that don't do it in hardware (most
2752 * RISC architectures). The early dirtying is also good on the i386.
2754 * There is also a hook called "update_mmu_cache()" that architectures
2755 * with external mmu caches can use to update those (ie the Sparc or
2756 * PowerPC hashed page tables that act as extended TLBs).
2758 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759 * but allow concurrent faults), and pte mapped but not yet locked.
2760 * We return with mmap_sem still held, but pte unmapped and unlocked.
2762 static inline int handle_pte_fault(struct mm_struct *mm,
2763 struct vm_area_struct *vma, unsigned long address,
2764 pte_t *pte, pmd_t *pmd, int write_access)
2766 pte_t entry;
2767 spinlock_t *ptl;
2769 entry = *pte;
2770 if (!pte_present(entry)) {
2771 if (pte_none(entry)) {
2772 if (vma->vm_ops) {
2773 if (likely(vma->vm_ops->fault))
2774 return do_linear_fault(mm, vma, address,
2775 pte, pmd, write_access, entry);
2777 return do_anonymous_page(mm, vma, address,
2778 pte, pmd, write_access);
2780 if (pte_file(entry))
2781 return do_nonlinear_fault(mm, vma, address,
2782 pte, pmd, write_access, entry);
2783 return do_swap_page(mm, vma, address,
2784 pte, pmd, write_access, entry);
2787 ptl = pte_lockptr(mm, pmd);
2788 spin_lock(ptl);
2789 if (unlikely(!pte_same(*pte, entry)))
2790 goto unlock;
2791 if (write_access) {
2792 if (!pte_write(entry))
2793 return do_wp_page(mm, vma, address,
2794 pte, pmd, ptl, entry);
2795 entry = pte_mkdirty(entry);
2797 entry = pte_mkyoung(entry);
2798 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2799 update_mmu_cache(vma, address, entry);
2800 } else {
2802 * This is needed only for protection faults but the arch code
2803 * is not yet telling us if this is a protection fault or not.
2804 * This still avoids useless tlb flushes for .text page faults
2805 * with threads.
2807 if (write_access)
2808 flush_tlb_page(vma, address);
2810 unlock:
2811 pte_unmap_unlock(pte, ptl);
2812 return 0;
2816 * By the time we get here, we already hold the mm semaphore
2818 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2819 unsigned long address, int write_access)
2821 pgd_t *pgd;
2822 pud_t *pud;
2823 pmd_t *pmd;
2824 pte_t *pte;
2826 __set_current_state(TASK_RUNNING);
2828 count_vm_event(PGFAULT);
2830 if (unlikely(is_vm_hugetlb_page(vma)))
2831 return hugetlb_fault(mm, vma, address, write_access);
2833 pgd = pgd_offset(mm, address);
2834 pud = pud_alloc(mm, pgd, address);
2835 if (!pud)
2836 return VM_FAULT_OOM;
2837 pmd = pmd_alloc(mm, pud, address);
2838 if (!pmd)
2839 return VM_FAULT_OOM;
2840 pte = pte_alloc_map(mm, pmd, address);
2841 if (!pte)
2842 return VM_FAULT_OOM;
2844 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2847 #ifndef __PAGETABLE_PUD_FOLDED
2849 * Allocate page upper directory.
2850 * We've already handled the fast-path in-line.
2852 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2854 pud_t *new = pud_alloc_one(mm, address);
2855 if (!new)
2856 return -ENOMEM;
2858 smp_wmb(); /* See comment in __pte_alloc */
2860 spin_lock(&mm->page_table_lock);
2861 if (pgd_present(*pgd)) /* Another has populated it */
2862 pud_free(mm, new);
2863 else
2864 pgd_populate(mm, pgd, new);
2865 spin_unlock(&mm->page_table_lock);
2866 return 0;
2868 #endif /* __PAGETABLE_PUD_FOLDED */
2870 #ifndef __PAGETABLE_PMD_FOLDED
2872 * Allocate page middle directory.
2873 * We've already handled the fast-path in-line.
2875 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2877 pmd_t *new = pmd_alloc_one(mm, address);
2878 if (!new)
2879 return -ENOMEM;
2881 smp_wmb(); /* See comment in __pte_alloc */
2883 spin_lock(&mm->page_table_lock);
2884 #ifndef __ARCH_HAS_4LEVEL_HACK
2885 if (pud_present(*pud)) /* Another has populated it */
2886 pmd_free(mm, new);
2887 else
2888 pud_populate(mm, pud, new);
2889 #else
2890 if (pgd_present(*pud)) /* Another has populated it */
2891 pmd_free(mm, new);
2892 else
2893 pgd_populate(mm, pud, new);
2894 #endif /* __ARCH_HAS_4LEVEL_HACK */
2895 spin_unlock(&mm->page_table_lock);
2896 return 0;
2898 #endif /* __PAGETABLE_PMD_FOLDED */
2900 int make_pages_present(unsigned long addr, unsigned long end)
2902 int ret, len, write;
2903 struct vm_area_struct * vma;
2905 vma = find_vma(current->mm, addr);
2906 if (!vma)
2907 return -ENOMEM;
2908 write = (vma->vm_flags & VM_WRITE) != 0;
2909 BUG_ON(addr >= end);
2910 BUG_ON(end > vma->vm_end);
2911 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2912 ret = get_user_pages(current, current->mm, addr,
2913 len, write, 0, NULL, NULL);
2914 if (ret < 0)
2915 return ret;
2916 return ret == len ? 0 : -EFAULT;
2919 #if !defined(__HAVE_ARCH_GATE_AREA)
2921 #if defined(AT_SYSINFO_EHDR)
2922 static struct vm_area_struct gate_vma;
2924 static int __init gate_vma_init(void)
2926 gate_vma.vm_mm = NULL;
2927 gate_vma.vm_start = FIXADDR_USER_START;
2928 gate_vma.vm_end = FIXADDR_USER_END;
2929 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2930 gate_vma.vm_page_prot = __P101;
2932 * Make sure the vDSO gets into every core dump.
2933 * Dumping its contents makes post-mortem fully interpretable later
2934 * without matching up the same kernel and hardware config to see
2935 * what PC values meant.
2937 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2938 return 0;
2940 __initcall(gate_vma_init);
2941 #endif
2943 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2945 #ifdef AT_SYSINFO_EHDR
2946 return &gate_vma;
2947 #else
2948 return NULL;
2949 #endif
2952 int in_gate_area_no_task(unsigned long addr)
2954 #ifdef AT_SYSINFO_EHDR
2955 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2956 return 1;
2957 #endif
2958 return 0;
2961 #endif /* __HAVE_ARCH_GATE_AREA */
2963 #ifdef CONFIG_HAVE_IOREMAP_PROT
2964 int follow_phys(struct vm_area_struct *vma,
2965 unsigned long address, unsigned int flags,
2966 unsigned long *prot, resource_size_t *phys)
2968 pgd_t *pgd;
2969 pud_t *pud;
2970 pmd_t *pmd;
2971 pte_t *ptep, pte;
2972 spinlock_t *ptl;
2973 resource_size_t phys_addr = 0;
2974 struct mm_struct *mm = vma->vm_mm;
2975 int ret = -EINVAL;
2977 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2978 goto out;
2980 pgd = pgd_offset(mm, address);
2981 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2982 goto out;
2984 pud = pud_offset(pgd, address);
2985 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2986 goto out;
2988 pmd = pmd_offset(pud, address);
2989 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2990 goto out;
2992 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2993 if (pmd_huge(*pmd))
2994 goto out;
2996 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2997 if (!ptep)
2998 goto out;
3000 pte = *ptep;
3001 if (!pte_present(pte))
3002 goto unlock;
3003 if ((flags & FOLL_WRITE) && !pte_write(pte))
3004 goto unlock;
3005 phys_addr = pte_pfn(pte);
3006 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3008 *prot = pgprot_val(pte_pgprot(pte));
3009 *phys = phys_addr;
3010 ret = 0;
3012 unlock:
3013 pte_unmap_unlock(ptep, ptl);
3014 out:
3015 return ret;
3018 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3019 void *buf, int len, int write)
3021 resource_size_t phys_addr;
3022 unsigned long prot = 0;
3023 void __iomem *maddr;
3024 int offset = addr & (PAGE_SIZE-1);
3026 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3027 return -EINVAL;
3029 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3030 if (write)
3031 memcpy_toio(maddr + offset, buf, len);
3032 else
3033 memcpy_fromio(buf, maddr + offset, len);
3034 iounmap(maddr);
3036 return len;
3038 #endif
3041 * Access another process' address space.
3042 * Source/target buffer must be kernel space,
3043 * Do not walk the page table directly, use get_user_pages
3045 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3047 struct mm_struct *mm;
3048 struct vm_area_struct *vma;
3049 void *old_buf = buf;
3051 mm = get_task_mm(tsk);
3052 if (!mm)
3053 return 0;
3055 down_read(&mm->mmap_sem);
3056 /* ignore errors, just check how much was successfully transferred */
3057 while (len) {
3058 int bytes, ret, offset;
3059 void *maddr;
3060 struct page *page = NULL;
3062 ret = get_user_pages(tsk, mm, addr, 1,
3063 write, 1, &page, &vma);
3064 if (ret <= 0) {
3066 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3067 * we can access using slightly different code.
3069 #ifdef CONFIG_HAVE_IOREMAP_PROT
3070 vma = find_vma(mm, addr);
3071 if (!vma)
3072 break;
3073 if (vma->vm_ops && vma->vm_ops->access)
3074 ret = vma->vm_ops->access(vma, addr, buf,
3075 len, write);
3076 if (ret <= 0)
3077 #endif
3078 break;
3079 bytes = ret;
3080 } else {
3081 bytes = len;
3082 offset = addr & (PAGE_SIZE-1);
3083 if (bytes > PAGE_SIZE-offset)
3084 bytes = PAGE_SIZE-offset;
3086 maddr = kmap(page);
3087 if (write) {
3088 copy_to_user_page(vma, page, addr,
3089 maddr + offset, buf, bytes);
3090 set_page_dirty_lock(page);
3091 } else {
3092 copy_from_user_page(vma, page, addr,
3093 buf, maddr + offset, bytes);
3095 kunmap(page);
3096 page_cache_release(page);
3098 len -= bytes;
3099 buf += bytes;
3100 addr += bytes;
3102 up_read(&mm->mmap_sem);
3103 mmput(mm);
3105 return buf - old_buf;
3109 * Print the name of a VMA.
3111 void print_vma_addr(char *prefix, unsigned long ip)
3113 struct mm_struct *mm = current->mm;
3114 struct vm_area_struct *vma;
3117 * Do not print if we are in atomic
3118 * contexts (in exception stacks, etc.):
3120 if (preempt_count())
3121 return;
3123 down_read(&mm->mmap_sem);
3124 vma = find_vma(mm, ip);
3125 if (vma && vma->vm_file) {
3126 struct file *f = vma->vm_file;
3127 char *buf = (char *)__get_free_page(GFP_KERNEL);
3128 if (buf) {
3129 char *p, *s;
3131 p = d_path(&f->f_path, buf, PAGE_SIZE);
3132 if (IS_ERR(p))
3133 p = "?";
3134 s = strrchr(p, '/');
3135 if (s)
3136 p = s+1;
3137 printk("%s%s[%lx+%lx]", prefix, p,
3138 vma->vm_start,
3139 vma->vm_end - vma->vm_start);
3140 free_page((unsigned long)buf);
3143 up_read(&current->mm->mmap_sem);
3146 #ifdef CONFIG_PROVE_LOCKING
3147 void might_fault(void)
3149 might_sleep();
3151 * it would be nicer only to annotate paths which are not under
3152 * pagefault_disable, however that requires a larger audit and
3153 * providing helpers like get_user_atomic.
3155 if (!in_atomic() && current->mm)
3156 might_lock_read(&current->mm->mmap_sem);
3158 EXPORT_SYMBOL(might_fault);
3159 #endif