4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr
;
72 EXPORT_SYMBOL(max_mapnr
);
73 EXPORT_SYMBOL(mem_map
);
76 unsigned long num_physpages
;
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
86 EXPORT_SYMBOL(num_physpages
);
87 EXPORT_SYMBOL(high_memory
);
90 * Randomize the address space (stacks, mmaps, brk, etc.).
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
95 int randomize_va_space __read_mostly
=
96 #ifdef CONFIG_COMPAT_BRK
102 static int __init
disable_randmaps(char *s
)
104 randomize_va_space
= 0;
107 __setup("norandmaps", disable_randmaps
);
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
116 void pgd_clear_bad(pgd_t
*pgd
)
122 void pud_clear_bad(pud_t
*pud
)
128 void pmd_clear_bad(pmd_t
*pmd
)
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
138 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
140 pgtable_t token
= pmd_pgtable(*pmd
);
142 pte_free_tlb(tlb
, token
);
146 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
147 unsigned long addr
, unsigned long end
,
148 unsigned long floor
, unsigned long ceiling
)
155 pmd
= pmd_offset(pud
, addr
);
157 next
= pmd_addr_end(addr
, end
);
158 if (pmd_none_or_clear_bad(pmd
))
160 free_pte_range(tlb
, pmd
);
161 } while (pmd
++, addr
= next
, addr
!= end
);
171 if (end
- 1 > ceiling
- 1)
174 pmd
= pmd_offset(pud
, start
);
176 pmd_free_tlb(tlb
, pmd
);
179 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
180 unsigned long addr
, unsigned long end
,
181 unsigned long floor
, unsigned long ceiling
)
188 pud
= pud_offset(pgd
, addr
);
190 next
= pud_addr_end(addr
, end
);
191 if (pud_none_or_clear_bad(pud
))
193 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
194 } while (pud
++, addr
= next
, addr
!= end
);
200 ceiling
&= PGDIR_MASK
;
204 if (end
- 1 > ceiling
- 1)
207 pud
= pud_offset(pgd
, start
);
209 pud_free_tlb(tlb
, pud
);
213 * This function frees user-level page tables of a process.
215 * Must be called with pagetable lock held.
217 void free_pgd_range(struct mmu_gather
*tlb
,
218 unsigned long addr
, unsigned long end
,
219 unsigned long floor
, unsigned long ceiling
)
226 * The next few lines have given us lots of grief...
228 * Why are we testing PMD* at this top level? Because often
229 * there will be no work to do at all, and we'd prefer not to
230 * go all the way down to the bottom just to discover that.
232 * Why all these "- 1"s? Because 0 represents both the bottom
233 * of the address space and the top of it (using -1 for the
234 * top wouldn't help much: the masks would do the wrong thing).
235 * The rule is that addr 0 and floor 0 refer to the bottom of
236 * the address space, but end 0 and ceiling 0 refer to the top
237 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 * that end 0 case should be mythical).
240 * Wherever addr is brought up or ceiling brought down, we must
241 * be careful to reject "the opposite 0" before it confuses the
242 * subsequent tests. But what about where end is brought down
243 * by PMD_SIZE below? no, end can't go down to 0 there.
245 * Whereas we round start (addr) and ceiling down, by different
246 * masks at different levels, in order to test whether a table
247 * now has no other vmas using it, so can be freed, we don't
248 * bother to round floor or end up - the tests don't need that.
262 if (end
- 1 > ceiling
- 1)
268 pgd
= pgd_offset(tlb
->mm
, addr
);
270 next
= pgd_addr_end(addr
, end
);
271 if (pgd_none_or_clear_bad(pgd
))
273 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
274 } while (pgd
++, addr
= next
, addr
!= end
);
277 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
278 unsigned long floor
, unsigned long ceiling
)
281 struct vm_area_struct
*next
= vma
->vm_next
;
282 unsigned long addr
= vma
->vm_start
;
285 * Hide vma from rmap and vmtruncate before freeing pgtables
287 anon_vma_unlink(vma
);
288 unlink_file_vma(vma
);
290 if (is_vm_hugetlb_page(vma
)) {
291 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
292 floor
, next
? next
->vm_start
: ceiling
);
295 * Optimization: gather nearby vmas into one call down
297 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
298 && !is_vm_hugetlb_page(next
)) {
301 anon_vma_unlink(vma
);
302 unlink_file_vma(vma
);
304 free_pgd_range(tlb
, addr
, vma
->vm_end
,
305 floor
, next
? next
->vm_start
: ceiling
);
311 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
313 pgtable_t
new = pte_alloc_one(mm
, address
);
318 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 * visible before the pte is made visible to other CPUs by being
320 * put into page tables.
322 * The other side of the story is the pointer chasing in the page
323 * table walking code (when walking the page table without locking;
324 * ie. most of the time). Fortunately, these data accesses consist
325 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 * being the notable exception) will already guarantee loads are
327 * seen in-order. See the alpha page table accessors for the
328 * smp_read_barrier_depends() barriers in page table walking code.
330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
332 spin_lock(&mm
->page_table_lock
);
333 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
335 pmd_populate(mm
, pmd
, new);
338 spin_unlock(&mm
->page_table_lock
);
344 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
346 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
350 smp_wmb(); /* See comment in __pte_alloc */
352 spin_lock(&init_mm
.page_table_lock
);
353 if (!pmd_present(*pmd
)) { /* Has another populated it ? */
354 pmd_populate_kernel(&init_mm
, pmd
, new);
357 spin_unlock(&init_mm
.page_table_lock
);
359 pte_free_kernel(&init_mm
, new);
363 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
366 add_mm_counter(mm
, file_rss
, file_rss
);
368 add_mm_counter(mm
, anon_rss
, anon_rss
);
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
376 * The calling function must still handle the error.
378 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
379 pte_t pte
, struct page
*page
)
381 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
382 pud_t
*pud
= pud_offset(pgd
, addr
);
383 pmd_t
*pmd
= pmd_offset(pud
, addr
);
384 struct address_space
*mapping
;
386 static unsigned long resume
;
387 static unsigned long nr_shown
;
388 static unsigned long nr_unshown
;
391 * Allow a burst of 60 reports, then keep quiet for that minute;
392 * or allow a steady drip of one report per second.
394 if (nr_shown
== 60) {
395 if (time_before(jiffies
, resume
)) {
401 "Bad page map: %lu messages suppressed\n",
408 resume
= jiffies
+ 60 * HZ
;
410 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
411 index
= linear_page_index(vma
, addr
);
413 printk(KERN_EMERG
"Bad page map in process %s pte:%08llx pmd:%08llx\n",
415 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
418 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
419 page
, (void *)page
->flags
, page_count(page
),
420 page_mapcount(page
), page
->mapping
, page
->index
);
423 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
424 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
426 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
429 print_symbol(KERN_EMERG
"vma->vm_ops->fault: %s\n",
430 (unsigned long)vma
->vm_ops
->fault
);
431 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
432 print_symbol(KERN_EMERG
"vma->vm_file->f_op->mmap: %s\n",
433 (unsigned long)vma
->vm_file
->f_op
->mmap
);
435 add_taint(TAINT_BAD_PAGE
);
438 static inline int is_cow_mapping(unsigned int flags
)
440 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
444 * vm_normal_page -- This function gets the "struct page" associated with a pte.
446 * "Special" mappings do not wish to be associated with a "struct page" (either
447 * it doesn't exist, or it exists but they don't want to touch it). In this
448 * case, NULL is returned here. "Normal" mappings do have a struct page.
450 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
451 * pte bit, in which case this function is trivial. Secondly, an architecture
452 * may not have a spare pte bit, which requires a more complicated scheme,
455 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
456 * special mapping (even if there are underlying and valid "struct pages").
457 * COWed pages of a VM_PFNMAP are always normal.
459 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
460 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
461 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
462 * mapping will always honor the rule
464 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
466 * And for normal mappings this is false.
468 * This restricts such mappings to be a linear translation from virtual address
469 * to pfn. To get around this restriction, we allow arbitrary mappings so long
470 * as the vma is not a COW mapping; in that case, we know that all ptes are
471 * special (because none can have been COWed).
474 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
476 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
477 * page" backing, however the difference is that _all_ pages with a struct
478 * page (that is, those where pfn_valid is true) are refcounted and considered
479 * normal pages by the VM. The disadvantage is that pages are refcounted
480 * (which can be slower and simply not an option for some PFNMAP users). The
481 * advantage is that we don't have to follow the strict linearity rule of
482 * PFNMAP mappings in order to support COWable mappings.
485 #ifdef __HAVE_ARCH_PTE_SPECIAL
486 # define HAVE_PTE_SPECIAL 1
488 # define HAVE_PTE_SPECIAL 0
490 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
493 unsigned long pfn
= pte_pfn(pte
);
495 if (HAVE_PTE_SPECIAL
) {
496 if (likely(!pte_special(pte
)))
498 if (!(vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
)))
499 print_bad_pte(vma
, addr
, pte
, NULL
);
503 /* !HAVE_PTE_SPECIAL case follows: */
505 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
506 if (vma
->vm_flags
& VM_MIXEDMAP
) {
512 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
513 if (pfn
== vma
->vm_pgoff
+ off
)
515 if (!is_cow_mapping(vma
->vm_flags
))
521 if (unlikely(pfn
> highest_memmap_pfn
)) {
522 print_bad_pte(vma
, addr
, pte
, NULL
);
527 * NOTE! We still have PageReserved() pages in the page tables.
528 * eg. VDSO mappings can cause them to exist.
531 return pfn_to_page(pfn
);
535 * copy one vm_area from one task to the other. Assumes the page tables
536 * already present in the new task to be cleared in the whole range
537 * covered by this vma.
541 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
542 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
543 unsigned long addr
, int *rss
)
545 unsigned long vm_flags
= vma
->vm_flags
;
546 pte_t pte
= *src_pte
;
549 /* pte contains position in swap or file, so copy. */
550 if (unlikely(!pte_present(pte
))) {
551 if (!pte_file(pte
)) {
552 swp_entry_t entry
= pte_to_swp_entry(pte
);
554 swap_duplicate(entry
);
555 /* make sure dst_mm is on swapoff's mmlist. */
556 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
557 spin_lock(&mmlist_lock
);
558 if (list_empty(&dst_mm
->mmlist
))
559 list_add(&dst_mm
->mmlist
,
561 spin_unlock(&mmlist_lock
);
563 if (is_write_migration_entry(entry
) &&
564 is_cow_mapping(vm_flags
)) {
566 * COW mappings require pages in both parent
567 * and child to be set to read.
569 make_migration_entry_read(&entry
);
570 pte
= swp_entry_to_pte(entry
);
571 set_pte_at(src_mm
, addr
, src_pte
, pte
);
578 * If it's a COW mapping, write protect it both
579 * in the parent and the child
581 if (is_cow_mapping(vm_flags
)) {
582 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
583 pte
= pte_wrprotect(pte
);
587 * If it's a shared mapping, mark it clean in
590 if (vm_flags
& VM_SHARED
)
591 pte
= pte_mkclean(pte
);
592 pte
= pte_mkold(pte
);
594 page
= vm_normal_page(vma
, addr
, pte
);
597 page_dup_rmap(page
, vma
, addr
);
598 rss
[!!PageAnon(page
)]++;
602 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
605 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
606 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
607 unsigned long addr
, unsigned long end
)
609 pte_t
*src_pte
, *dst_pte
;
610 spinlock_t
*src_ptl
, *dst_ptl
;
616 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
619 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
620 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
621 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
622 arch_enter_lazy_mmu_mode();
626 * We are holding two locks at this point - either of them
627 * could generate latencies in another task on another CPU.
629 if (progress
>= 32) {
631 if (need_resched() ||
632 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
635 if (pte_none(*src_pte
)) {
639 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
641 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
643 arch_leave_lazy_mmu_mode();
644 spin_unlock(src_ptl
);
645 pte_unmap_nested(src_pte
- 1);
646 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
647 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
654 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
655 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
656 unsigned long addr
, unsigned long end
)
658 pmd_t
*src_pmd
, *dst_pmd
;
661 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
664 src_pmd
= pmd_offset(src_pud
, addr
);
666 next
= pmd_addr_end(addr
, end
);
667 if (pmd_none_or_clear_bad(src_pmd
))
669 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
672 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
676 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
677 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
678 unsigned long addr
, unsigned long end
)
680 pud_t
*src_pud
, *dst_pud
;
683 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
686 src_pud
= pud_offset(src_pgd
, addr
);
688 next
= pud_addr_end(addr
, end
);
689 if (pud_none_or_clear_bad(src_pud
))
691 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
694 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
698 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
699 struct vm_area_struct
*vma
)
701 pgd_t
*src_pgd
, *dst_pgd
;
703 unsigned long addr
= vma
->vm_start
;
704 unsigned long end
= vma
->vm_end
;
708 * Don't copy ptes where a page fault will fill them correctly.
709 * Fork becomes much lighter when there are big shared or private
710 * readonly mappings. The tradeoff is that copy_page_range is more
711 * efficient than faulting.
713 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
718 if (is_vm_hugetlb_page(vma
))
719 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
721 if (unlikely(is_pfn_mapping(vma
))) {
723 * We do not free on error cases below as remove_vma
724 * gets called on error from higher level routine
726 ret
= track_pfn_vma_copy(vma
);
732 * We need to invalidate the secondary MMU mappings only when
733 * there could be a permission downgrade on the ptes of the
734 * parent mm. And a permission downgrade will only happen if
735 * is_cow_mapping() returns true.
737 if (is_cow_mapping(vma
->vm_flags
))
738 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
741 dst_pgd
= pgd_offset(dst_mm
, addr
);
742 src_pgd
= pgd_offset(src_mm
, addr
);
744 next
= pgd_addr_end(addr
, end
);
745 if (pgd_none_or_clear_bad(src_pgd
))
747 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
752 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
754 if (is_cow_mapping(vma
->vm_flags
))
755 mmu_notifier_invalidate_range_end(src_mm
,
760 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
761 struct vm_area_struct
*vma
, pmd_t
*pmd
,
762 unsigned long addr
, unsigned long end
,
763 long *zap_work
, struct zap_details
*details
)
765 struct mm_struct
*mm
= tlb
->mm
;
771 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
772 arch_enter_lazy_mmu_mode();
775 if (pte_none(ptent
)) {
780 (*zap_work
) -= PAGE_SIZE
;
782 if (pte_present(ptent
)) {
785 page
= vm_normal_page(vma
, addr
, ptent
);
786 if (unlikely(details
) && page
) {
788 * unmap_shared_mapping_pages() wants to
789 * invalidate cache without truncating:
790 * unmap shared but keep private pages.
792 if (details
->check_mapping
&&
793 details
->check_mapping
!= page
->mapping
)
796 * Each page->index must be checked when
797 * invalidating or truncating nonlinear.
799 if (details
->nonlinear_vma
&&
800 (page
->index
< details
->first_index
||
801 page
->index
> details
->last_index
))
804 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
806 tlb_remove_tlb_entry(tlb
, pte
, addr
);
809 if (unlikely(details
) && details
->nonlinear_vma
810 && linear_page_index(details
->nonlinear_vma
,
811 addr
) != page
->index
)
812 set_pte_at(mm
, addr
, pte
,
813 pgoff_to_pte(page
->index
));
817 if (pte_dirty(ptent
))
818 set_page_dirty(page
);
819 if (pte_young(ptent
) &&
820 likely(!VM_SequentialReadHint(vma
)))
821 mark_page_accessed(page
);
824 page_remove_rmap(page
);
825 if (unlikely(page_mapcount(page
) < 0))
826 print_bad_pte(vma
, addr
, ptent
, page
);
827 tlb_remove_page(tlb
, page
);
831 * If details->check_mapping, we leave swap entries;
832 * if details->nonlinear_vma, we leave file entries.
834 if (unlikely(details
))
836 if (pte_file(ptent
)) {
837 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
838 print_bad_pte(vma
, addr
, ptent
, NULL
);
840 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent
))))
841 print_bad_pte(vma
, addr
, ptent
, NULL
);
842 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
843 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
845 add_mm_rss(mm
, file_rss
, anon_rss
);
846 arch_leave_lazy_mmu_mode();
847 pte_unmap_unlock(pte
- 1, ptl
);
852 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
853 struct vm_area_struct
*vma
, pud_t
*pud
,
854 unsigned long addr
, unsigned long end
,
855 long *zap_work
, struct zap_details
*details
)
860 pmd
= pmd_offset(pud
, addr
);
862 next
= pmd_addr_end(addr
, end
);
863 if (pmd_none_or_clear_bad(pmd
)) {
867 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
869 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
874 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
875 struct vm_area_struct
*vma
, pgd_t
*pgd
,
876 unsigned long addr
, unsigned long end
,
877 long *zap_work
, struct zap_details
*details
)
882 pud
= pud_offset(pgd
, addr
);
884 next
= pud_addr_end(addr
, end
);
885 if (pud_none_or_clear_bad(pud
)) {
889 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
891 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
896 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
897 struct vm_area_struct
*vma
,
898 unsigned long addr
, unsigned long end
,
899 long *zap_work
, struct zap_details
*details
)
904 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
908 tlb_start_vma(tlb
, vma
);
909 pgd
= pgd_offset(vma
->vm_mm
, addr
);
911 next
= pgd_addr_end(addr
, end
);
912 if (pgd_none_or_clear_bad(pgd
)) {
916 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
918 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
919 tlb_end_vma(tlb
, vma
);
924 #ifdef CONFIG_PREEMPT
925 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
927 /* No preempt: go for improved straight-line efficiency */
928 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
932 * unmap_vmas - unmap a range of memory covered by a list of vma's
933 * @tlbp: address of the caller's struct mmu_gather
934 * @vma: the starting vma
935 * @start_addr: virtual address at which to start unmapping
936 * @end_addr: virtual address at which to end unmapping
937 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
938 * @details: details of nonlinear truncation or shared cache invalidation
940 * Returns the end address of the unmapping (restart addr if interrupted).
942 * Unmap all pages in the vma list.
944 * We aim to not hold locks for too long (for scheduling latency reasons).
945 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
946 * return the ending mmu_gather to the caller.
948 * Only addresses between `start' and `end' will be unmapped.
950 * The VMA list must be sorted in ascending virtual address order.
952 * unmap_vmas() assumes that the caller will flush the whole unmapped address
953 * range after unmap_vmas() returns. So the only responsibility here is to
954 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
955 * drops the lock and schedules.
957 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
958 struct vm_area_struct
*vma
, unsigned long start_addr
,
959 unsigned long end_addr
, unsigned long *nr_accounted
,
960 struct zap_details
*details
)
962 long zap_work
= ZAP_BLOCK_SIZE
;
963 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
964 int tlb_start_valid
= 0;
965 unsigned long start
= start_addr
;
966 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
967 int fullmm
= (*tlbp
)->fullmm
;
968 struct mm_struct
*mm
= vma
->vm_mm
;
970 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
971 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
974 start
= max(vma
->vm_start
, start_addr
);
975 if (start
>= vma
->vm_end
)
977 end
= min(vma
->vm_end
, end_addr
);
978 if (end
<= vma
->vm_start
)
981 if (vma
->vm_flags
& VM_ACCOUNT
)
982 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
984 if (unlikely(is_pfn_mapping(vma
)))
985 untrack_pfn_vma(vma
, 0, 0);
987 while (start
!= end
) {
988 if (!tlb_start_valid
) {
993 if (unlikely(is_vm_hugetlb_page(vma
))) {
995 * It is undesirable to test vma->vm_file as it
996 * should be non-null for valid hugetlb area.
997 * However, vm_file will be NULL in the error
998 * cleanup path of do_mmap_pgoff. When
999 * hugetlbfs ->mmap method fails,
1000 * do_mmap_pgoff() nullifies vma->vm_file
1001 * before calling this function to clean up.
1002 * Since no pte has actually been setup, it is
1003 * safe to do nothing in this case.
1006 unmap_hugepage_range(vma
, start
, end
, NULL
);
1007 zap_work
-= (end
- start
) /
1008 pages_per_huge_page(hstate_vma(vma
));
1013 start
= unmap_page_range(*tlbp
, vma
,
1014 start
, end
, &zap_work
, details
);
1017 BUG_ON(start
!= end
);
1021 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
1023 if (need_resched() ||
1024 (i_mmap_lock
&& spin_needbreak(i_mmap_lock
))) {
1032 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
1033 tlb_start_valid
= 0;
1034 zap_work
= ZAP_BLOCK_SIZE
;
1038 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1039 return start
; /* which is now the end (or restart) address */
1043 * zap_page_range - remove user pages in a given range
1044 * @vma: vm_area_struct holding the applicable pages
1045 * @address: starting address of pages to zap
1046 * @size: number of bytes to zap
1047 * @details: details of nonlinear truncation or shared cache invalidation
1049 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1050 unsigned long size
, struct zap_details
*details
)
1052 struct mm_struct
*mm
= vma
->vm_mm
;
1053 struct mmu_gather
*tlb
;
1054 unsigned long end
= address
+ size
;
1055 unsigned long nr_accounted
= 0;
1058 tlb
= tlb_gather_mmu(mm
, 0);
1059 update_hiwater_rss(mm
);
1060 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1062 tlb_finish_mmu(tlb
, address
, end
);
1067 * zap_vma_ptes - remove ptes mapping the vma
1068 * @vma: vm_area_struct holding ptes to be zapped
1069 * @address: starting address of pages to zap
1070 * @size: number of bytes to zap
1072 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1074 * The entire address range must be fully contained within the vma.
1076 * Returns 0 if successful.
1078 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1081 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1082 !(vma
->vm_flags
& VM_PFNMAP
))
1084 zap_page_range(vma
, address
, size
, NULL
);
1087 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1090 * Do a quick page-table lookup for a single page.
1092 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1101 struct mm_struct
*mm
= vma
->vm_mm
;
1103 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1104 if (!IS_ERR(page
)) {
1105 BUG_ON(flags
& FOLL_GET
);
1110 pgd
= pgd_offset(mm
, address
);
1111 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1114 pud
= pud_offset(pgd
, address
);
1117 if (pud_huge(*pud
)) {
1118 BUG_ON(flags
& FOLL_GET
);
1119 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1122 if (unlikely(pud_bad(*pud
)))
1125 pmd
= pmd_offset(pud
, address
);
1128 if (pmd_huge(*pmd
)) {
1129 BUG_ON(flags
& FOLL_GET
);
1130 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1133 if (unlikely(pmd_bad(*pmd
)))
1136 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1139 if (!pte_present(pte
))
1141 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1143 page
= vm_normal_page(vma
, address
, pte
);
1144 if (unlikely(!page
))
1147 if (flags
& FOLL_GET
)
1149 if (flags
& FOLL_TOUCH
) {
1150 if ((flags
& FOLL_WRITE
) &&
1151 !pte_dirty(pte
) && !PageDirty(page
))
1152 set_page_dirty(page
);
1153 mark_page_accessed(page
);
1156 pte_unmap_unlock(ptep
, ptl
);
1161 pte_unmap_unlock(ptep
, ptl
);
1162 return ERR_PTR(-EFAULT
);
1165 pte_unmap_unlock(ptep
, ptl
);
1168 /* Fall through to ZERO_PAGE handling */
1171 * When core dumping an enormous anonymous area that nobody
1172 * has touched so far, we don't want to allocate page tables.
1174 if (flags
& FOLL_ANON
) {
1175 page
= ZERO_PAGE(0);
1176 if (flags
& FOLL_GET
)
1178 BUG_ON(flags
& FOLL_WRITE
);
1183 /* Can we do the FOLL_ANON optimization? */
1184 static inline int use_zero_page(struct vm_area_struct
*vma
)
1187 * We don't want to optimize FOLL_ANON for make_pages_present()
1188 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1189 * we want to get the page from the page tables to make sure
1190 * that we serialize and update with any other user of that
1193 if (vma
->vm_flags
& (VM_LOCKED
| VM_SHARED
))
1196 * And if we have a fault routine, it's not an anonymous region.
1198 return !vma
->vm_ops
|| !vma
->vm_ops
->fault
;
1203 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1204 unsigned long start
, int len
, int flags
,
1205 struct page
**pages
, struct vm_area_struct
**vmas
)
1208 unsigned int vm_flags
= 0;
1209 int write
= !!(flags
& GUP_FLAGS_WRITE
);
1210 int force
= !!(flags
& GUP_FLAGS_FORCE
);
1211 int ignore
= !!(flags
& GUP_FLAGS_IGNORE_VMA_PERMISSIONS
);
1216 * Require read or write permissions.
1217 * If 'force' is set, we only require the "MAY" flags.
1219 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1220 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1224 struct vm_area_struct
*vma
;
1225 unsigned int foll_flags
;
1227 vma
= find_extend_vma(mm
, start
);
1228 if (!vma
&& in_gate_area(tsk
, start
)) {
1229 unsigned long pg
= start
& PAGE_MASK
;
1230 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1236 /* user gate pages are read-only */
1237 if (!ignore
&& write
)
1238 return i
? : -EFAULT
;
1240 pgd
= pgd_offset_k(pg
);
1242 pgd
= pgd_offset_gate(mm
, pg
);
1243 BUG_ON(pgd_none(*pgd
));
1244 pud
= pud_offset(pgd
, pg
);
1245 BUG_ON(pud_none(*pud
));
1246 pmd
= pmd_offset(pud
, pg
);
1248 return i
? : -EFAULT
;
1249 pte
= pte_offset_map(pmd
, pg
);
1250 if (pte_none(*pte
)) {
1252 return i
? : -EFAULT
;
1255 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1270 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1271 (!ignore
&& !(vm_flags
& vma
->vm_flags
)))
1272 return i
? : -EFAULT
;
1274 if (is_vm_hugetlb_page(vma
)) {
1275 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1276 &start
, &len
, i
, write
);
1280 foll_flags
= FOLL_TOUCH
;
1282 foll_flags
|= FOLL_GET
;
1283 if (!write
&& use_zero_page(vma
))
1284 foll_flags
|= FOLL_ANON
;
1290 * If tsk is ooming, cut off its access to large memory
1291 * allocations. It has a pending SIGKILL, but it can't
1292 * be processed until returning to user space.
1294 if (unlikely(test_tsk_thread_flag(tsk
, TIF_MEMDIE
)))
1295 return i
? i
: -ENOMEM
;
1298 foll_flags
|= FOLL_WRITE
;
1301 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1303 ret
= handle_mm_fault(mm
, vma
, start
,
1304 foll_flags
& FOLL_WRITE
);
1305 if (ret
& VM_FAULT_ERROR
) {
1306 if (ret
& VM_FAULT_OOM
)
1307 return i
? i
: -ENOMEM
;
1308 else if (ret
& VM_FAULT_SIGBUS
)
1309 return i
? i
: -EFAULT
;
1312 if (ret
& VM_FAULT_MAJOR
)
1318 * The VM_FAULT_WRITE bit tells us that
1319 * do_wp_page has broken COW when necessary,
1320 * even if maybe_mkwrite decided not to set
1321 * pte_write. We can thus safely do subsequent
1322 * page lookups as if they were reads. But only
1323 * do so when looping for pte_write is futile:
1324 * in some cases userspace may also be wanting
1325 * to write to the gotten user page, which a
1326 * read fault here might prevent (a readonly
1327 * page might get reCOWed by userspace write).
1329 if ((ret
& VM_FAULT_WRITE
) &&
1330 !(vma
->vm_flags
& VM_WRITE
))
1331 foll_flags
&= ~FOLL_WRITE
;
1336 return i
? i
: PTR_ERR(page
);
1340 flush_anon_page(vma
, page
, start
);
1341 flush_dcache_page(page
);
1348 } while (len
&& start
< vma
->vm_end
);
1353 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1354 unsigned long start
, int len
, int write
, int force
,
1355 struct page
**pages
, struct vm_area_struct
**vmas
)
1360 flags
|= GUP_FLAGS_WRITE
;
1362 flags
|= GUP_FLAGS_FORCE
;
1364 return __get_user_pages(tsk
, mm
,
1369 EXPORT_SYMBOL(get_user_pages
);
1371 pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1374 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1375 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1377 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1379 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1385 * This is the old fallback for page remapping.
1387 * For historical reasons, it only allows reserved pages. Only
1388 * old drivers should use this, and they needed to mark their
1389 * pages reserved for the old functions anyway.
1391 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1392 struct page
*page
, pgprot_t prot
)
1394 struct mm_struct
*mm
= vma
->vm_mm
;
1403 flush_dcache_page(page
);
1404 pte
= get_locked_pte(mm
, addr
, &ptl
);
1408 if (!pte_none(*pte
))
1411 /* Ok, finally just insert the thing.. */
1413 inc_mm_counter(mm
, file_rss
);
1414 page_add_file_rmap(page
);
1415 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1418 pte_unmap_unlock(pte
, ptl
);
1421 pte_unmap_unlock(pte
, ptl
);
1427 * vm_insert_page - insert single page into user vma
1428 * @vma: user vma to map to
1429 * @addr: target user address of this page
1430 * @page: source kernel page
1432 * This allows drivers to insert individual pages they've allocated
1435 * The page has to be a nice clean _individual_ kernel allocation.
1436 * If you allocate a compound page, you need to have marked it as
1437 * such (__GFP_COMP), or manually just split the page up yourself
1438 * (see split_page()).
1440 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1441 * took an arbitrary page protection parameter. This doesn't allow
1442 * that. Your vma protection will have to be set up correctly, which
1443 * means that if you want a shared writable mapping, you'd better
1444 * ask for a shared writable mapping!
1446 * The page does not need to be reserved.
1448 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1451 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1453 if (!page_count(page
))
1455 vma
->vm_flags
|= VM_INSERTPAGE
;
1456 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1458 EXPORT_SYMBOL(vm_insert_page
);
1460 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1461 unsigned long pfn
, pgprot_t prot
)
1463 struct mm_struct
*mm
= vma
->vm_mm
;
1469 pte
= get_locked_pte(mm
, addr
, &ptl
);
1473 if (!pte_none(*pte
))
1476 /* Ok, finally just insert the thing.. */
1477 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
1478 set_pte_at(mm
, addr
, pte
, entry
);
1479 update_mmu_cache(vma
, addr
, entry
); /* XXX: why not for insert_page? */
1483 pte_unmap_unlock(pte
, ptl
);
1489 * vm_insert_pfn - insert single pfn into user vma
1490 * @vma: user vma to map to
1491 * @addr: target user address of this page
1492 * @pfn: source kernel pfn
1494 * Similar to vm_inert_page, this allows drivers to insert individual pages
1495 * they've allocated into a user vma. Same comments apply.
1497 * This function should only be called from a vm_ops->fault handler, and
1498 * in that case the handler should return NULL.
1500 * vma cannot be a COW mapping.
1502 * As this is called only for pages that do not currently exist, we
1503 * do not need to flush old virtual caches or the TLB.
1505 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1510 * Technically, architectures with pte_special can avoid all these
1511 * restrictions (same for remap_pfn_range). However we would like
1512 * consistency in testing and feature parity among all, so we should
1513 * try to keep these invariants in place for everybody.
1515 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1516 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1517 (VM_PFNMAP
|VM_MIXEDMAP
));
1518 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1519 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1521 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1523 if (track_pfn_vma_new(vma
, vma
->vm_page_prot
, pfn
, PAGE_SIZE
))
1526 ret
= insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1529 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
1533 EXPORT_SYMBOL(vm_insert_pfn
);
1535 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1538 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1540 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1544 * If we don't have pte special, then we have to use the pfn_valid()
1545 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1546 * refcount the page if pfn_valid is true (hence insert_page rather
1549 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
1552 page
= pfn_to_page(pfn
);
1553 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1555 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
1557 EXPORT_SYMBOL(vm_insert_mixed
);
1560 * maps a range of physical memory into the requested pages. the old
1561 * mappings are removed. any references to nonexistent pages results
1562 * in null mappings (currently treated as "copy-on-access")
1564 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1565 unsigned long addr
, unsigned long end
,
1566 unsigned long pfn
, pgprot_t prot
)
1571 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1574 arch_enter_lazy_mmu_mode();
1576 BUG_ON(!pte_none(*pte
));
1577 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1579 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1580 arch_leave_lazy_mmu_mode();
1581 pte_unmap_unlock(pte
- 1, ptl
);
1585 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1586 unsigned long addr
, unsigned long end
,
1587 unsigned long pfn
, pgprot_t prot
)
1592 pfn
-= addr
>> PAGE_SHIFT
;
1593 pmd
= pmd_alloc(mm
, pud
, addr
);
1597 next
= pmd_addr_end(addr
, end
);
1598 if (remap_pte_range(mm
, pmd
, addr
, next
,
1599 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1601 } while (pmd
++, addr
= next
, addr
!= end
);
1605 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1606 unsigned long addr
, unsigned long end
,
1607 unsigned long pfn
, pgprot_t prot
)
1612 pfn
-= addr
>> PAGE_SHIFT
;
1613 pud
= pud_alloc(mm
, pgd
, addr
);
1617 next
= pud_addr_end(addr
, end
);
1618 if (remap_pmd_range(mm
, pud
, addr
, next
,
1619 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1621 } while (pud
++, addr
= next
, addr
!= end
);
1626 * remap_pfn_range - remap kernel memory to userspace
1627 * @vma: user vma to map to
1628 * @addr: target user address to start at
1629 * @pfn: physical address of kernel memory
1630 * @size: size of map area
1631 * @prot: page protection flags for this mapping
1633 * Note: this is only safe if the mm semaphore is held when called.
1635 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1636 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1640 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1641 struct mm_struct
*mm
= vma
->vm_mm
;
1645 * Physically remapped pages are special. Tell the
1646 * rest of the world about it:
1647 * VM_IO tells people not to look at these pages
1648 * (accesses can have side effects).
1649 * VM_RESERVED is specified all over the place, because
1650 * in 2.4 it kept swapout's vma scan off this vma; but
1651 * in 2.6 the LRU scan won't even find its pages, so this
1652 * flag means no more than count its pages in reserved_vm,
1653 * and omit it from core dump, even when VM_IO turned off.
1654 * VM_PFNMAP tells the core MM that the base pages are just
1655 * raw PFN mappings, and do not have a "struct page" associated
1658 * There's a horrible special case to handle copy-on-write
1659 * behaviour that some programs depend on. We mark the "original"
1660 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1662 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
)
1663 vma
->vm_pgoff
= pfn
;
1664 else if (is_cow_mapping(vma
->vm_flags
))
1667 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1669 err
= track_pfn_vma_new(vma
, prot
, pfn
, PAGE_ALIGN(size
));
1673 BUG_ON(addr
>= end
);
1674 pfn
-= addr
>> PAGE_SHIFT
;
1675 pgd
= pgd_offset(mm
, addr
);
1676 flush_cache_range(vma
, addr
, end
);
1678 next
= pgd_addr_end(addr
, end
);
1679 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1680 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1683 } while (pgd
++, addr
= next
, addr
!= end
);
1686 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
1690 EXPORT_SYMBOL(remap_pfn_range
);
1692 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1693 unsigned long addr
, unsigned long end
,
1694 pte_fn_t fn
, void *data
)
1699 spinlock_t
*uninitialized_var(ptl
);
1701 pte
= (mm
== &init_mm
) ?
1702 pte_alloc_kernel(pmd
, addr
) :
1703 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1707 BUG_ON(pmd_huge(*pmd
));
1709 arch_enter_lazy_mmu_mode();
1711 token
= pmd_pgtable(*pmd
);
1714 err
= fn(pte
, token
, addr
, data
);
1717 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1719 arch_leave_lazy_mmu_mode();
1722 pte_unmap_unlock(pte
-1, ptl
);
1726 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1727 unsigned long addr
, unsigned long end
,
1728 pte_fn_t fn
, void *data
)
1734 BUG_ON(pud_huge(*pud
));
1736 pmd
= pmd_alloc(mm
, pud
, addr
);
1740 next
= pmd_addr_end(addr
, end
);
1741 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1744 } while (pmd
++, addr
= next
, addr
!= end
);
1748 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1749 unsigned long addr
, unsigned long end
,
1750 pte_fn_t fn
, void *data
)
1756 pud
= pud_alloc(mm
, pgd
, addr
);
1760 next
= pud_addr_end(addr
, end
);
1761 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1764 } while (pud
++, addr
= next
, addr
!= end
);
1769 * Scan a region of virtual memory, filling in page tables as necessary
1770 * and calling a provided function on each leaf page table.
1772 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1773 unsigned long size
, pte_fn_t fn
, void *data
)
1777 unsigned long start
= addr
, end
= addr
+ size
;
1780 BUG_ON(addr
>= end
);
1781 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1782 pgd
= pgd_offset(mm
, addr
);
1784 next
= pgd_addr_end(addr
, end
);
1785 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1788 } while (pgd
++, addr
= next
, addr
!= end
);
1789 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1792 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1795 * handle_pte_fault chooses page fault handler according to an entry
1796 * which was read non-atomically. Before making any commitment, on
1797 * those architectures or configurations (e.g. i386 with PAE) which
1798 * might give a mix of unmatched parts, do_swap_page and do_file_page
1799 * must check under lock before unmapping the pte and proceeding
1800 * (but do_wp_page is only called after already making such a check;
1801 * and do_anonymous_page and do_no_page can safely check later on).
1803 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1804 pte_t
*page_table
, pte_t orig_pte
)
1807 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1808 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1809 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1811 same
= pte_same(*page_table
, orig_pte
);
1815 pte_unmap(page_table
);
1820 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1821 * servicing faults for write access. In the normal case, do always want
1822 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1823 * that do not have writing enabled, when used by access_process_vm.
1825 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1827 if (likely(vma
->vm_flags
& VM_WRITE
))
1828 pte
= pte_mkwrite(pte
);
1832 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1835 * If the source page was a PFN mapping, we don't have
1836 * a "struct page" for it. We do a best-effort copy by
1837 * just copying from the original user address. If that
1838 * fails, we just zero-fill it. Live with it.
1840 if (unlikely(!src
)) {
1841 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1842 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1845 * This really shouldn't fail, because the page is there
1846 * in the page tables. But it might just be unreadable,
1847 * in which case we just give up and fill the result with
1850 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1851 memset(kaddr
, 0, PAGE_SIZE
);
1852 kunmap_atomic(kaddr
, KM_USER0
);
1853 flush_dcache_page(dst
);
1855 copy_user_highpage(dst
, src
, va
, vma
);
1859 * This routine handles present pages, when users try to write
1860 * to a shared page. It is done by copying the page to a new address
1861 * and decrementing the shared-page counter for the old page.
1863 * Note that this routine assumes that the protection checks have been
1864 * done by the caller (the low-level page fault routine in most cases).
1865 * Thus we can safely just mark it writable once we've done any necessary
1868 * We also mark the page dirty at this point even though the page will
1869 * change only once the write actually happens. This avoids a few races,
1870 * and potentially makes it more efficient.
1872 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1873 * but allow concurrent faults), with pte both mapped and locked.
1874 * We return with mmap_sem still held, but pte unmapped and unlocked.
1876 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1877 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1878 spinlock_t
*ptl
, pte_t orig_pte
)
1880 struct page
*old_page
, *new_page
;
1882 int reuse
= 0, ret
= 0;
1883 int page_mkwrite
= 0;
1884 struct page
*dirty_page
= NULL
;
1886 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1889 * VM_MIXEDMAP !pfn_valid() case
1891 * We should not cow pages in a shared writeable mapping.
1892 * Just mark the pages writable as we can't do any dirty
1893 * accounting on raw pfn maps.
1895 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1896 (VM_WRITE
|VM_SHARED
))
1902 * Take out anonymous pages first, anonymous shared vmas are
1903 * not dirty accountable.
1905 if (PageAnon(old_page
)) {
1906 if (!trylock_page(old_page
)) {
1907 page_cache_get(old_page
);
1908 pte_unmap_unlock(page_table
, ptl
);
1909 lock_page(old_page
);
1910 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1912 if (!pte_same(*page_table
, orig_pte
)) {
1913 unlock_page(old_page
);
1914 page_cache_release(old_page
);
1917 page_cache_release(old_page
);
1919 reuse
= reuse_swap_page(old_page
);
1920 unlock_page(old_page
);
1921 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1922 (VM_WRITE
|VM_SHARED
))) {
1924 * Only catch write-faults on shared writable pages,
1925 * read-only shared pages can get COWed by
1926 * get_user_pages(.write=1, .force=1).
1928 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
1930 * Notify the address space that the page is about to
1931 * become writable so that it can prohibit this or wait
1932 * for the page to get into an appropriate state.
1934 * We do this without the lock held, so that it can
1935 * sleep if it needs to.
1937 page_cache_get(old_page
);
1938 pte_unmap_unlock(page_table
, ptl
);
1940 if (vma
->vm_ops
->page_mkwrite(vma
, old_page
) < 0)
1941 goto unwritable_page
;
1944 * Since we dropped the lock we need to revalidate
1945 * the PTE as someone else may have changed it. If
1946 * they did, we just return, as we can count on the
1947 * MMU to tell us if they didn't also make it writable.
1949 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1951 page_cache_release(old_page
);
1952 if (!pte_same(*page_table
, orig_pte
))
1957 dirty_page
= old_page
;
1958 get_page(dirty_page
);
1964 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1965 entry
= pte_mkyoung(orig_pte
);
1966 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1967 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
1968 update_mmu_cache(vma
, address
, entry
);
1969 ret
|= VM_FAULT_WRITE
;
1974 * Ok, we need to copy. Oh, well..
1976 page_cache_get(old_page
);
1978 pte_unmap_unlock(page_table
, ptl
);
1980 if (unlikely(anon_vma_prepare(vma
)))
1982 VM_BUG_ON(old_page
== ZERO_PAGE(0));
1983 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1987 * Don't let another task, with possibly unlocked vma,
1988 * keep the mlocked page.
1990 if (vma
->vm_flags
& VM_LOCKED
) {
1991 lock_page(old_page
); /* for LRU manipulation */
1992 clear_page_mlock(old_page
);
1993 unlock_page(old_page
);
1995 cow_user_page(new_page
, old_page
, address
, vma
);
1996 __SetPageUptodate(new_page
);
1998 if (mem_cgroup_charge(new_page
, mm
, GFP_KERNEL
))
2002 * Re-check the pte - we dropped the lock
2004 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2005 if (likely(pte_same(*page_table
, orig_pte
))) {
2007 if (!PageAnon(old_page
)) {
2008 dec_mm_counter(mm
, file_rss
);
2009 inc_mm_counter(mm
, anon_rss
);
2012 inc_mm_counter(mm
, anon_rss
);
2013 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2014 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2015 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2017 * Clear the pte entry and flush it first, before updating the
2018 * pte with the new entry. This will avoid a race condition
2019 * seen in the presence of one thread doing SMC and another
2022 ptep_clear_flush_notify(vma
, address
, page_table
);
2023 page_add_new_anon_rmap(new_page
, vma
, address
);
2024 set_pte_at(mm
, address
, page_table
, entry
);
2025 update_mmu_cache(vma
, address
, entry
);
2028 * Only after switching the pte to the new page may
2029 * we remove the mapcount here. Otherwise another
2030 * process may come and find the rmap count decremented
2031 * before the pte is switched to the new page, and
2032 * "reuse" the old page writing into it while our pte
2033 * here still points into it and can be read by other
2036 * The critical issue is to order this
2037 * page_remove_rmap with the ptp_clear_flush above.
2038 * Those stores are ordered by (if nothing else,)
2039 * the barrier present in the atomic_add_negative
2040 * in page_remove_rmap.
2042 * Then the TLB flush in ptep_clear_flush ensures that
2043 * no process can access the old page before the
2044 * decremented mapcount is visible. And the old page
2045 * cannot be reused until after the decremented
2046 * mapcount is visible. So transitively, TLBs to
2047 * old page will be flushed before it can be reused.
2049 page_remove_rmap(old_page
);
2052 /* Free the old page.. */
2053 new_page
= old_page
;
2054 ret
|= VM_FAULT_WRITE
;
2056 mem_cgroup_uncharge_page(new_page
);
2059 page_cache_release(new_page
);
2061 page_cache_release(old_page
);
2063 pte_unmap_unlock(page_table
, ptl
);
2066 file_update_time(vma
->vm_file
);
2069 * Yes, Virginia, this is actually required to prevent a race
2070 * with clear_page_dirty_for_io() from clearing the page dirty
2071 * bit after it clear all dirty ptes, but before a racing
2072 * do_wp_page installs a dirty pte.
2074 * do_no_page is protected similarly.
2076 wait_on_page_locked(dirty_page
);
2077 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2078 put_page(dirty_page
);
2082 page_cache_release(new_page
);
2085 page_cache_release(old_page
);
2086 return VM_FAULT_OOM
;
2089 page_cache_release(old_page
);
2090 return VM_FAULT_SIGBUS
;
2094 * Helper functions for unmap_mapping_range().
2096 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2098 * We have to restart searching the prio_tree whenever we drop the lock,
2099 * since the iterator is only valid while the lock is held, and anyway
2100 * a later vma might be split and reinserted earlier while lock dropped.
2102 * The list of nonlinear vmas could be handled more efficiently, using
2103 * a placeholder, but handle it in the same way until a need is shown.
2104 * It is important to search the prio_tree before nonlinear list: a vma
2105 * may become nonlinear and be shifted from prio_tree to nonlinear list
2106 * while the lock is dropped; but never shifted from list to prio_tree.
2108 * In order to make forward progress despite restarting the search,
2109 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2110 * quickly skip it next time around. Since the prio_tree search only
2111 * shows us those vmas affected by unmapping the range in question, we
2112 * can't efficiently keep all vmas in step with mapping->truncate_count:
2113 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2114 * mapping->truncate_count and vma->vm_truncate_count are protected by
2117 * In order to make forward progress despite repeatedly restarting some
2118 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2119 * and restart from that address when we reach that vma again. It might
2120 * have been split or merged, shrunk or extended, but never shifted: so
2121 * restart_addr remains valid so long as it remains in the vma's range.
2122 * unmap_mapping_range forces truncate_count to leap over page-aligned
2123 * values so we can save vma's restart_addr in its truncate_count field.
2125 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2127 static void reset_vma_truncate_counts(struct address_space
*mapping
)
2129 struct vm_area_struct
*vma
;
2130 struct prio_tree_iter iter
;
2132 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
2133 vma
->vm_truncate_count
= 0;
2134 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
2135 vma
->vm_truncate_count
= 0;
2138 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2139 unsigned long start_addr
, unsigned long end_addr
,
2140 struct zap_details
*details
)
2142 unsigned long restart_addr
;
2146 * files that support invalidating or truncating portions of the
2147 * file from under mmaped areas must have their ->fault function
2148 * return a locked page (and set VM_FAULT_LOCKED in the return).
2149 * This provides synchronisation against concurrent unmapping here.
2153 restart_addr
= vma
->vm_truncate_count
;
2154 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
2155 start_addr
= restart_addr
;
2156 if (start_addr
>= end_addr
) {
2157 /* Top of vma has been split off since last time */
2158 vma
->vm_truncate_count
= details
->truncate_count
;
2163 restart_addr
= zap_page_range(vma
, start_addr
,
2164 end_addr
- start_addr
, details
);
2165 need_break
= need_resched() || spin_needbreak(details
->i_mmap_lock
);
2167 if (restart_addr
>= end_addr
) {
2168 /* We have now completed this vma: mark it so */
2169 vma
->vm_truncate_count
= details
->truncate_count
;
2173 /* Note restart_addr in vma's truncate_count field */
2174 vma
->vm_truncate_count
= restart_addr
;
2179 spin_unlock(details
->i_mmap_lock
);
2181 spin_lock(details
->i_mmap_lock
);
2185 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2186 struct zap_details
*details
)
2188 struct vm_area_struct
*vma
;
2189 struct prio_tree_iter iter
;
2190 pgoff_t vba
, vea
, zba
, zea
;
2193 vma_prio_tree_foreach(vma
, &iter
, root
,
2194 details
->first_index
, details
->last_index
) {
2195 /* Skip quickly over those we have already dealt with */
2196 if (vma
->vm_truncate_count
== details
->truncate_count
)
2199 vba
= vma
->vm_pgoff
;
2200 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2201 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2202 zba
= details
->first_index
;
2205 zea
= details
->last_index
;
2209 if (unmap_mapping_range_vma(vma
,
2210 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2211 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2217 static inline void unmap_mapping_range_list(struct list_head
*head
,
2218 struct zap_details
*details
)
2220 struct vm_area_struct
*vma
;
2223 * In nonlinear VMAs there is no correspondence between virtual address
2224 * offset and file offset. So we must perform an exhaustive search
2225 * across *all* the pages in each nonlinear VMA, not just the pages
2226 * whose virtual address lies outside the file truncation point.
2229 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2230 /* Skip quickly over those we have already dealt with */
2231 if (vma
->vm_truncate_count
== details
->truncate_count
)
2233 details
->nonlinear_vma
= vma
;
2234 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
2235 vma
->vm_end
, details
) < 0)
2241 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2242 * @mapping: the address space containing mmaps to be unmapped.
2243 * @holebegin: byte in first page to unmap, relative to the start of
2244 * the underlying file. This will be rounded down to a PAGE_SIZE
2245 * boundary. Note that this is different from vmtruncate(), which
2246 * must keep the partial page. In contrast, we must get rid of
2248 * @holelen: size of prospective hole in bytes. This will be rounded
2249 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2251 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2252 * but 0 when invalidating pagecache, don't throw away private data.
2254 void unmap_mapping_range(struct address_space
*mapping
,
2255 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2257 struct zap_details details
;
2258 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2259 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2261 /* Check for overflow. */
2262 if (sizeof(holelen
) > sizeof(hlen
)) {
2264 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2265 if (holeend
& ~(long long)ULONG_MAX
)
2266 hlen
= ULONG_MAX
- hba
+ 1;
2269 details
.check_mapping
= even_cows
? NULL
: mapping
;
2270 details
.nonlinear_vma
= NULL
;
2271 details
.first_index
= hba
;
2272 details
.last_index
= hba
+ hlen
- 1;
2273 if (details
.last_index
< details
.first_index
)
2274 details
.last_index
= ULONG_MAX
;
2275 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
2277 spin_lock(&mapping
->i_mmap_lock
);
2279 /* Protect against endless unmapping loops */
2280 mapping
->truncate_count
++;
2281 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
2282 if (mapping
->truncate_count
== 0)
2283 reset_vma_truncate_counts(mapping
);
2284 mapping
->truncate_count
++;
2286 details
.truncate_count
= mapping
->truncate_count
;
2288 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2289 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2290 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2291 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2292 spin_unlock(&mapping
->i_mmap_lock
);
2294 EXPORT_SYMBOL(unmap_mapping_range
);
2297 * vmtruncate - unmap mappings "freed" by truncate() syscall
2298 * @inode: inode of the file used
2299 * @offset: file offset to start truncating
2301 * NOTE! We have to be ready to update the memory sharing
2302 * between the file and the memory map for a potential last
2303 * incomplete page. Ugly, but necessary.
2305 int vmtruncate(struct inode
* inode
, loff_t offset
)
2307 if (inode
->i_size
< offset
) {
2308 unsigned long limit
;
2310 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2311 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
2313 if (offset
> inode
->i_sb
->s_maxbytes
)
2315 i_size_write(inode
, offset
);
2317 struct address_space
*mapping
= inode
->i_mapping
;
2320 * truncation of in-use swapfiles is disallowed - it would
2321 * cause subsequent swapout to scribble on the now-freed
2324 if (IS_SWAPFILE(inode
))
2326 i_size_write(inode
, offset
);
2329 * unmap_mapping_range is called twice, first simply for
2330 * efficiency so that truncate_inode_pages does fewer
2331 * single-page unmaps. However after this first call, and
2332 * before truncate_inode_pages finishes, it is possible for
2333 * private pages to be COWed, which remain after
2334 * truncate_inode_pages finishes, hence the second
2335 * unmap_mapping_range call must be made for correctness.
2337 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2338 truncate_inode_pages(mapping
, offset
);
2339 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
2342 if (inode
->i_op
->truncate
)
2343 inode
->i_op
->truncate(inode
);
2347 send_sig(SIGXFSZ
, current
, 0);
2351 EXPORT_SYMBOL(vmtruncate
);
2353 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
2355 struct address_space
*mapping
= inode
->i_mapping
;
2358 * If the underlying filesystem is not going to provide
2359 * a way to truncate a range of blocks (punch a hole) -
2360 * we should return failure right now.
2362 if (!inode
->i_op
->truncate_range
)
2365 mutex_lock(&inode
->i_mutex
);
2366 down_write(&inode
->i_alloc_sem
);
2367 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2368 truncate_inode_pages_range(mapping
, offset
, end
);
2369 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
2370 inode
->i_op
->truncate_range(inode
, offset
, end
);
2371 up_write(&inode
->i_alloc_sem
);
2372 mutex_unlock(&inode
->i_mutex
);
2378 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2379 * but allow concurrent faults), and pte mapped but not yet locked.
2380 * We return with mmap_sem still held, but pte unmapped and unlocked.
2382 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2383 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2384 int write_access
, pte_t orig_pte
)
2392 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2395 entry
= pte_to_swp_entry(orig_pte
);
2396 if (is_migration_entry(entry
)) {
2397 migration_entry_wait(mm
, pmd
, address
);
2400 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2401 page
= lookup_swap_cache(entry
);
2403 grab_swap_token(); /* Contend for token _before_ read-in */
2404 page
= swapin_readahead(entry
,
2405 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2408 * Back out if somebody else faulted in this pte
2409 * while we released the pte lock.
2411 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2412 if (likely(pte_same(*page_table
, orig_pte
)))
2414 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2418 /* Had to read the page from swap area: Major fault */
2419 ret
= VM_FAULT_MAJOR
;
2420 count_vm_event(PGMAJFAULT
);
2423 mark_page_accessed(page
);
2426 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2428 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
)) {
2435 * Back out if somebody else already faulted in this pte.
2437 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2438 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2441 if (unlikely(!PageUptodate(page
))) {
2442 ret
= VM_FAULT_SIGBUS
;
2446 /* The page isn't present yet, go ahead with the fault. */
2448 inc_mm_counter(mm
, anon_rss
);
2449 pte
= mk_pte(page
, vma
->vm_page_prot
);
2450 if (write_access
&& reuse_swap_page(page
)) {
2451 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2455 flush_icache_page(vma
, page
);
2456 set_pte_at(mm
, address
, page_table
, pte
);
2457 page_add_anon_rmap(page
, vma
, address
);
2460 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2461 try_to_free_swap(page
);
2465 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
2466 if (ret
& VM_FAULT_ERROR
)
2467 ret
&= VM_FAULT_ERROR
;
2471 /* No need to invalidate - it was non-present before */
2472 update_mmu_cache(vma
, address
, pte
);
2474 pte_unmap_unlock(page_table
, ptl
);
2478 mem_cgroup_uncharge_page(page
);
2479 pte_unmap_unlock(page_table
, ptl
);
2481 page_cache_release(page
);
2486 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2487 * but allow concurrent faults), and pte mapped but not yet locked.
2488 * We return with mmap_sem still held, but pte unmapped and unlocked.
2490 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2491 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2498 /* Allocate our own private page. */
2499 pte_unmap(page_table
);
2501 if (unlikely(anon_vma_prepare(vma
)))
2503 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2506 __SetPageUptodate(page
);
2508 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
))
2511 entry
= mk_pte(page
, vma
->vm_page_prot
);
2512 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2514 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2515 if (!pte_none(*page_table
))
2517 inc_mm_counter(mm
, anon_rss
);
2518 page_add_new_anon_rmap(page
, vma
, address
);
2519 set_pte_at(mm
, address
, page_table
, entry
);
2521 /* No need to invalidate - it was non-present before */
2522 update_mmu_cache(vma
, address
, entry
);
2524 pte_unmap_unlock(page_table
, ptl
);
2527 mem_cgroup_uncharge_page(page
);
2528 page_cache_release(page
);
2531 page_cache_release(page
);
2533 return VM_FAULT_OOM
;
2537 * __do_fault() tries to create a new page mapping. It aggressively
2538 * tries to share with existing pages, but makes a separate copy if
2539 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2540 * the next page fault.
2542 * As this is called only for pages that do not currently exist, we
2543 * do not need to flush old virtual caches or the TLB.
2545 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2546 * but allow concurrent faults), and pte neither mapped nor locked.
2547 * We return with mmap_sem still held, but pte unmapped and unlocked.
2549 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2550 unsigned long address
, pmd_t
*pmd
,
2551 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2559 struct page
*dirty_page
= NULL
;
2560 struct vm_fault vmf
;
2562 int page_mkwrite
= 0;
2564 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2569 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2570 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2574 * For consistency in subsequent calls, make the faulted page always
2577 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2578 lock_page(vmf
.page
);
2580 VM_BUG_ON(!PageLocked(vmf
.page
));
2583 * Should we do an early C-O-W break?
2586 if (flags
& FAULT_FLAG_WRITE
) {
2587 if (!(vma
->vm_flags
& VM_SHARED
)) {
2589 if (unlikely(anon_vma_prepare(vma
))) {
2593 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2599 if (mem_cgroup_charge(page
, mm
, GFP_KERNEL
)) {
2601 page_cache_release(page
);
2606 * Don't let another task, with possibly unlocked vma,
2607 * keep the mlocked page.
2609 if (vma
->vm_flags
& VM_LOCKED
)
2610 clear_page_mlock(vmf
.page
);
2611 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2612 __SetPageUptodate(page
);
2615 * If the page will be shareable, see if the backing
2616 * address space wants to know that the page is about
2617 * to become writable
2619 if (vma
->vm_ops
->page_mkwrite
) {
2621 if (vma
->vm_ops
->page_mkwrite(vma
, page
) < 0) {
2622 ret
= VM_FAULT_SIGBUS
;
2623 anon
= 1; /* no anon but release vmf.page */
2628 * XXX: this is not quite right (racy vs
2629 * invalidate) to unlock and relock the page
2630 * like this, however a better fix requires
2631 * reworking page_mkwrite locking API, which
2632 * is better done later.
2634 if (!page
->mapping
) {
2636 anon
= 1; /* no anon but release vmf.page */
2645 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2648 * This silly early PAGE_DIRTY setting removes a race
2649 * due to the bad i386 page protection. But it's valid
2650 * for other architectures too.
2652 * Note that if write_access is true, we either now have
2653 * an exclusive copy of the page, or this is a shared mapping,
2654 * so we can make it writable and dirty to avoid having to
2655 * handle that later.
2657 /* Only go through if we didn't race with anybody else... */
2658 if (likely(pte_same(*page_table
, orig_pte
))) {
2659 flush_icache_page(vma
, page
);
2660 entry
= mk_pte(page
, vma
->vm_page_prot
);
2661 if (flags
& FAULT_FLAG_WRITE
)
2662 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2664 inc_mm_counter(mm
, anon_rss
);
2665 page_add_new_anon_rmap(page
, vma
, address
);
2667 inc_mm_counter(mm
, file_rss
);
2668 page_add_file_rmap(page
);
2669 if (flags
& FAULT_FLAG_WRITE
) {
2671 get_page(dirty_page
);
2674 set_pte_at(mm
, address
, page_table
, entry
);
2676 /* no need to invalidate: a not-present page won't be cached */
2677 update_mmu_cache(vma
, address
, entry
);
2680 mem_cgroup_uncharge_page(page
);
2682 page_cache_release(page
);
2684 anon
= 1; /* no anon but release faulted_page */
2687 pte_unmap_unlock(page_table
, ptl
);
2690 unlock_page(vmf
.page
);
2693 page_cache_release(vmf
.page
);
2694 else if (dirty_page
) {
2696 file_update_time(vma
->vm_file
);
2698 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2699 put_page(dirty_page
);
2705 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2706 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2707 int write_access
, pte_t orig_pte
)
2709 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2710 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2711 unsigned int flags
= (write_access
? FAULT_FLAG_WRITE
: 0);
2713 pte_unmap(page_table
);
2714 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2718 * Fault of a previously existing named mapping. Repopulate the pte
2719 * from the encoded file_pte if possible. This enables swappable
2722 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2723 * but allow concurrent faults), and pte mapped but not yet locked.
2724 * We return with mmap_sem still held, but pte unmapped and unlocked.
2726 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2727 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2728 int write_access
, pte_t orig_pte
)
2730 unsigned int flags
= FAULT_FLAG_NONLINEAR
|
2731 (write_access
? FAULT_FLAG_WRITE
: 0);
2734 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2737 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
2739 * Page table corrupted: show pte and kill process.
2741 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2742 return VM_FAULT_OOM
;
2745 pgoff
= pte_to_pgoff(orig_pte
);
2746 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2750 * These routines also need to handle stuff like marking pages dirty
2751 * and/or accessed for architectures that don't do it in hardware (most
2752 * RISC architectures). The early dirtying is also good on the i386.
2754 * There is also a hook called "update_mmu_cache()" that architectures
2755 * with external mmu caches can use to update those (ie the Sparc or
2756 * PowerPC hashed page tables that act as extended TLBs).
2758 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759 * but allow concurrent faults), and pte mapped but not yet locked.
2760 * We return with mmap_sem still held, but pte unmapped and unlocked.
2762 static inline int handle_pte_fault(struct mm_struct
*mm
,
2763 struct vm_area_struct
*vma
, unsigned long address
,
2764 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2770 if (!pte_present(entry
)) {
2771 if (pte_none(entry
)) {
2773 if (likely(vma
->vm_ops
->fault
))
2774 return do_linear_fault(mm
, vma
, address
,
2775 pte
, pmd
, write_access
, entry
);
2777 return do_anonymous_page(mm
, vma
, address
,
2778 pte
, pmd
, write_access
);
2780 if (pte_file(entry
))
2781 return do_nonlinear_fault(mm
, vma
, address
,
2782 pte
, pmd
, write_access
, entry
);
2783 return do_swap_page(mm
, vma
, address
,
2784 pte
, pmd
, write_access
, entry
);
2787 ptl
= pte_lockptr(mm
, pmd
);
2789 if (unlikely(!pte_same(*pte
, entry
)))
2792 if (!pte_write(entry
))
2793 return do_wp_page(mm
, vma
, address
,
2794 pte
, pmd
, ptl
, entry
);
2795 entry
= pte_mkdirty(entry
);
2797 entry
= pte_mkyoung(entry
);
2798 if (ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
)) {
2799 update_mmu_cache(vma
, address
, entry
);
2802 * This is needed only for protection faults but the arch code
2803 * is not yet telling us if this is a protection fault or not.
2804 * This still avoids useless tlb flushes for .text page faults
2808 flush_tlb_page(vma
, address
);
2811 pte_unmap_unlock(pte
, ptl
);
2816 * By the time we get here, we already hold the mm semaphore
2818 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2819 unsigned long address
, int write_access
)
2826 __set_current_state(TASK_RUNNING
);
2828 count_vm_event(PGFAULT
);
2830 if (unlikely(is_vm_hugetlb_page(vma
)))
2831 return hugetlb_fault(mm
, vma
, address
, write_access
);
2833 pgd
= pgd_offset(mm
, address
);
2834 pud
= pud_alloc(mm
, pgd
, address
);
2836 return VM_FAULT_OOM
;
2837 pmd
= pmd_alloc(mm
, pud
, address
);
2839 return VM_FAULT_OOM
;
2840 pte
= pte_alloc_map(mm
, pmd
, address
);
2842 return VM_FAULT_OOM
;
2844 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2847 #ifndef __PAGETABLE_PUD_FOLDED
2849 * Allocate page upper directory.
2850 * We've already handled the fast-path in-line.
2852 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2854 pud_t
*new = pud_alloc_one(mm
, address
);
2858 smp_wmb(); /* See comment in __pte_alloc */
2860 spin_lock(&mm
->page_table_lock
);
2861 if (pgd_present(*pgd
)) /* Another has populated it */
2864 pgd_populate(mm
, pgd
, new);
2865 spin_unlock(&mm
->page_table_lock
);
2868 #endif /* __PAGETABLE_PUD_FOLDED */
2870 #ifndef __PAGETABLE_PMD_FOLDED
2872 * Allocate page middle directory.
2873 * We've already handled the fast-path in-line.
2875 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2877 pmd_t
*new = pmd_alloc_one(mm
, address
);
2881 smp_wmb(); /* See comment in __pte_alloc */
2883 spin_lock(&mm
->page_table_lock
);
2884 #ifndef __ARCH_HAS_4LEVEL_HACK
2885 if (pud_present(*pud
)) /* Another has populated it */
2888 pud_populate(mm
, pud
, new);
2890 if (pgd_present(*pud
)) /* Another has populated it */
2893 pgd_populate(mm
, pud
, new);
2894 #endif /* __ARCH_HAS_4LEVEL_HACK */
2895 spin_unlock(&mm
->page_table_lock
);
2898 #endif /* __PAGETABLE_PMD_FOLDED */
2900 int make_pages_present(unsigned long addr
, unsigned long end
)
2902 int ret
, len
, write
;
2903 struct vm_area_struct
* vma
;
2905 vma
= find_vma(current
->mm
, addr
);
2908 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
2909 BUG_ON(addr
>= end
);
2910 BUG_ON(end
> vma
->vm_end
);
2911 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
2912 ret
= get_user_pages(current
, current
->mm
, addr
,
2913 len
, write
, 0, NULL
, NULL
);
2916 return ret
== len
? 0 : -EFAULT
;
2919 #if !defined(__HAVE_ARCH_GATE_AREA)
2921 #if defined(AT_SYSINFO_EHDR)
2922 static struct vm_area_struct gate_vma
;
2924 static int __init
gate_vma_init(void)
2926 gate_vma
.vm_mm
= NULL
;
2927 gate_vma
.vm_start
= FIXADDR_USER_START
;
2928 gate_vma
.vm_end
= FIXADDR_USER_END
;
2929 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
2930 gate_vma
.vm_page_prot
= __P101
;
2932 * Make sure the vDSO gets into every core dump.
2933 * Dumping its contents makes post-mortem fully interpretable later
2934 * without matching up the same kernel and hardware config to see
2935 * what PC values meant.
2937 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
2940 __initcall(gate_vma_init
);
2943 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
2945 #ifdef AT_SYSINFO_EHDR
2952 int in_gate_area_no_task(unsigned long addr
)
2954 #ifdef AT_SYSINFO_EHDR
2955 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
2961 #endif /* __HAVE_ARCH_GATE_AREA */
2963 #ifdef CONFIG_HAVE_IOREMAP_PROT
2964 int follow_phys(struct vm_area_struct
*vma
,
2965 unsigned long address
, unsigned int flags
,
2966 unsigned long *prot
, resource_size_t
*phys
)
2973 resource_size_t phys_addr
= 0;
2974 struct mm_struct
*mm
= vma
->vm_mm
;
2977 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
2980 pgd
= pgd_offset(mm
, address
);
2981 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
2984 pud
= pud_offset(pgd
, address
);
2985 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
2988 pmd
= pmd_offset(pud
, address
);
2989 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
2992 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2996 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3001 if (!pte_present(pte
))
3003 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3005 phys_addr
= pte_pfn(pte
);
3006 phys_addr
<<= PAGE_SHIFT
; /* Shift here to avoid overflow on PAE */
3008 *prot
= pgprot_val(pte_pgprot(pte
));
3013 pte_unmap_unlock(ptep
, ptl
);
3018 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3019 void *buf
, int len
, int write
)
3021 resource_size_t phys_addr
;
3022 unsigned long prot
= 0;
3023 void __iomem
*maddr
;
3024 int offset
= addr
& (PAGE_SIZE
-1);
3026 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3029 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3031 memcpy_toio(maddr
+ offset
, buf
, len
);
3033 memcpy_fromio(buf
, maddr
+ offset
, len
);
3041 * Access another process' address space.
3042 * Source/target buffer must be kernel space,
3043 * Do not walk the page table directly, use get_user_pages
3045 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
3047 struct mm_struct
*mm
;
3048 struct vm_area_struct
*vma
;
3049 void *old_buf
= buf
;
3051 mm
= get_task_mm(tsk
);
3055 down_read(&mm
->mmap_sem
);
3056 /* ignore errors, just check how much was successfully transferred */
3058 int bytes
, ret
, offset
;
3060 struct page
*page
= NULL
;
3062 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3063 write
, 1, &page
, &vma
);
3066 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3067 * we can access using slightly different code.
3069 #ifdef CONFIG_HAVE_IOREMAP_PROT
3070 vma
= find_vma(mm
, addr
);
3073 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3074 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3082 offset
= addr
& (PAGE_SIZE
-1);
3083 if (bytes
> PAGE_SIZE
-offset
)
3084 bytes
= PAGE_SIZE
-offset
;
3088 copy_to_user_page(vma
, page
, addr
,
3089 maddr
+ offset
, buf
, bytes
);
3090 set_page_dirty_lock(page
);
3092 copy_from_user_page(vma
, page
, addr
,
3093 buf
, maddr
+ offset
, bytes
);
3096 page_cache_release(page
);
3102 up_read(&mm
->mmap_sem
);
3105 return buf
- old_buf
;
3109 * Print the name of a VMA.
3111 void print_vma_addr(char *prefix
, unsigned long ip
)
3113 struct mm_struct
*mm
= current
->mm
;
3114 struct vm_area_struct
*vma
;
3117 * Do not print if we are in atomic
3118 * contexts (in exception stacks, etc.):
3120 if (preempt_count())
3123 down_read(&mm
->mmap_sem
);
3124 vma
= find_vma(mm
, ip
);
3125 if (vma
&& vma
->vm_file
) {
3126 struct file
*f
= vma
->vm_file
;
3127 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3131 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3134 s
= strrchr(p
, '/');
3137 printk("%s%s[%lx+%lx]", prefix
, p
,
3139 vma
->vm_end
- vma
->vm_start
);
3140 free_page((unsigned long)buf
);
3143 up_read(¤t
->mm
->mmap_sem
);
3146 #ifdef CONFIG_PROVE_LOCKING
3147 void might_fault(void)
3151 * it would be nicer only to annotate paths which are not under
3152 * pagefault_disable, however that requires a larger audit and
3153 * providing helpers like get_user_atomic.
3155 if (!in_atomic() && current
->mm
)
3156 might_lock_read(¤t
->mm
->mmap_sem
);
3158 EXPORT_SYMBOL(might_fault
);