4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
27 #include <asm/atomic.h>
28 #include <asm/uaccess.h>
29 #include <asm/tlbflush.h>
32 /*** Page table manipulation functions ***/
34 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
38 pte
= pte_offset_kernel(pmd
, addr
);
40 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
41 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
42 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
45 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
50 pmd
= pmd_offset(pud
, addr
);
52 next
= pmd_addr_end(addr
, end
);
53 if (pmd_none_or_clear_bad(pmd
))
55 vunmap_pte_range(pmd
, addr
, next
);
56 } while (pmd
++, addr
= next
, addr
!= end
);
59 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
64 pud
= pud_offset(pgd
, addr
);
66 next
= pud_addr_end(addr
, end
);
67 if (pud_none_or_clear_bad(pud
))
69 vunmap_pmd_range(pud
, addr
, next
);
70 } while (pud
++, addr
= next
, addr
!= end
);
73 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
79 pgd
= pgd_offset_k(addr
);
81 next
= pgd_addr_end(addr
, end
);
82 if (pgd_none_or_clear_bad(pgd
))
84 vunmap_pud_range(pgd
, addr
, next
);
85 } while (pgd
++, addr
= next
, addr
!= end
);
88 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
89 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
94 * nr is a running index into the array which helps higher level
95 * callers keep track of where we're up to.
98 pte
= pte_alloc_kernel(pmd
, addr
);
102 struct page
*page
= pages
[*nr
];
104 if (WARN_ON(!pte_none(*pte
)))
108 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
110 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
114 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
115 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
120 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
124 next
= pmd_addr_end(addr
, end
);
125 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
127 } while (pmd
++, addr
= next
, addr
!= end
);
131 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
132 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
137 pud
= pud_alloc(&init_mm
, pgd
, addr
);
141 next
= pud_addr_end(addr
, end
);
142 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
144 } while (pud
++, addr
= next
, addr
!= end
);
149 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
150 * will have pfns corresponding to the "pages" array.
152 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 static int vmap_page_range(unsigned long start
, unsigned long end
,
155 pgprot_t prot
, struct page
**pages
)
159 unsigned long addr
= start
;
164 pgd
= pgd_offset_k(addr
);
166 next
= pgd_addr_end(addr
, end
);
167 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
170 } while (pgd
++, addr
= next
, addr
!= end
);
171 flush_cache_vmap(start
, end
);
178 static inline int is_vmalloc_or_module_addr(const void *x
)
181 * ARM, x86-64 and sparc64 put modules in a special place,
182 * and fall back on vmalloc() if that fails. Others
183 * just put it in the vmalloc space.
185 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
186 unsigned long addr
= (unsigned long)x
;
187 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
190 return is_vmalloc_addr(x
);
194 * Walk a vmap address to the struct page it maps.
196 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
198 unsigned long addr
= (unsigned long) vmalloc_addr
;
199 struct page
*page
= NULL
;
200 pgd_t
*pgd
= pgd_offset_k(addr
);
203 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
204 * architectures that do not vmalloc module space
206 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
208 if (!pgd_none(*pgd
)) {
209 pud_t
*pud
= pud_offset(pgd
, addr
);
210 if (!pud_none(*pud
)) {
211 pmd_t
*pmd
= pmd_offset(pud
, addr
);
212 if (!pmd_none(*pmd
)) {
215 ptep
= pte_offset_map(pmd
, addr
);
217 if (pte_present(pte
))
218 page
= pte_page(pte
);
225 EXPORT_SYMBOL(vmalloc_to_page
);
228 * Map a vmalloc()-space virtual address to the physical page frame number.
230 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
232 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
234 EXPORT_SYMBOL(vmalloc_to_pfn
);
237 /*** Global kva allocator ***/
239 #define VM_LAZY_FREE 0x01
240 #define VM_LAZY_FREEING 0x02
241 #define VM_VM_AREA 0x04
244 unsigned long va_start
;
245 unsigned long va_end
;
247 struct rb_node rb_node
; /* address sorted rbtree */
248 struct list_head list
; /* address sorted list */
249 struct list_head purge_list
; /* "lazy purge" list */
251 struct rcu_head rcu_head
;
254 static DEFINE_SPINLOCK(vmap_area_lock
);
255 static struct rb_root vmap_area_root
= RB_ROOT
;
256 static LIST_HEAD(vmap_area_list
);
258 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
260 struct rb_node
*n
= vmap_area_root
.rb_node
;
263 struct vmap_area
*va
;
265 va
= rb_entry(n
, struct vmap_area
, rb_node
);
266 if (addr
< va
->va_start
)
268 else if (addr
> va
->va_start
)
277 static void __insert_vmap_area(struct vmap_area
*va
)
279 struct rb_node
**p
= &vmap_area_root
.rb_node
;
280 struct rb_node
*parent
= NULL
;
284 struct vmap_area
*tmp
;
287 tmp
= rb_entry(parent
, struct vmap_area
, rb_node
);
288 if (va
->va_start
< tmp
->va_end
)
290 else if (va
->va_end
> tmp
->va_start
)
296 rb_link_node(&va
->rb_node
, parent
, p
);
297 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
299 /* address-sort this list so it is usable like the vmlist */
300 tmp
= rb_prev(&va
->rb_node
);
302 struct vmap_area
*prev
;
303 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
304 list_add_rcu(&va
->list
, &prev
->list
);
306 list_add_rcu(&va
->list
, &vmap_area_list
);
309 static void purge_vmap_area_lazy(void);
312 * Allocate a region of KVA of the specified size and alignment, within the
315 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
317 unsigned long vstart
, unsigned long vend
,
318 int node
, gfp_t gfp_mask
)
320 struct vmap_area
*va
;
325 BUG_ON(size
& ~PAGE_MASK
);
327 va
= kmalloc_node(sizeof(struct vmap_area
),
328 gfp_mask
& GFP_RECLAIM_MASK
, node
);
330 return ERR_PTR(-ENOMEM
);
333 addr
= ALIGN(vstart
, align
);
335 spin_lock(&vmap_area_lock
);
336 /* XXX: could have a last_hole cache */
337 n
= vmap_area_root
.rb_node
;
339 struct vmap_area
*first
= NULL
;
342 struct vmap_area
*tmp
;
343 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
344 if (tmp
->va_end
>= addr
) {
345 if (!first
&& tmp
->va_start
< addr
+ size
)
357 if (first
->va_end
< addr
) {
358 n
= rb_next(&first
->rb_node
);
360 first
= rb_entry(n
, struct vmap_area
, rb_node
);
365 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
366 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
368 n
= rb_next(&first
->rb_node
);
370 first
= rb_entry(n
, struct vmap_area
, rb_node
);
376 if (addr
+ size
> vend
) {
377 spin_unlock(&vmap_area_lock
);
379 purge_vmap_area_lazy();
383 if (printk_ratelimit())
384 printk(KERN_WARNING
"vmap allocation failed: "
385 "use vmalloc=<size> to increase size.\n");
386 return ERR_PTR(-EBUSY
);
389 BUG_ON(addr
& (align
-1));
392 va
->va_end
= addr
+ size
;
394 __insert_vmap_area(va
);
395 spin_unlock(&vmap_area_lock
);
400 static void rcu_free_va(struct rcu_head
*head
)
402 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
407 static void __free_vmap_area(struct vmap_area
*va
)
409 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
410 rb_erase(&va
->rb_node
, &vmap_area_root
);
411 RB_CLEAR_NODE(&va
->rb_node
);
412 list_del_rcu(&va
->list
);
414 call_rcu(&va
->rcu_head
, rcu_free_va
);
418 * Free a region of KVA allocated by alloc_vmap_area
420 static void free_vmap_area(struct vmap_area
*va
)
422 spin_lock(&vmap_area_lock
);
423 __free_vmap_area(va
);
424 spin_unlock(&vmap_area_lock
);
428 * Clear the pagetable entries of a given vmap_area
430 static void unmap_vmap_area(struct vmap_area
*va
)
432 vunmap_page_range(va
->va_start
, va
->va_end
);
436 * lazy_max_pages is the maximum amount of virtual address space we gather up
437 * before attempting to purge with a TLB flush.
439 * There is a tradeoff here: a larger number will cover more kernel page tables
440 * and take slightly longer to purge, but it will linearly reduce the number of
441 * global TLB flushes that must be performed. It would seem natural to scale
442 * this number up linearly with the number of CPUs (because vmapping activity
443 * could also scale linearly with the number of CPUs), however it is likely
444 * that in practice, workloads might be constrained in other ways that mean
445 * vmap activity will not scale linearly with CPUs. Also, I want to be
446 * conservative and not introduce a big latency on huge systems, so go with
447 * a less aggressive log scale. It will still be an improvement over the old
448 * code, and it will be simple to change the scale factor if we find that it
449 * becomes a problem on bigger systems.
451 static unsigned long lazy_max_pages(void)
455 log
= fls(num_online_cpus());
457 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
460 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
463 * Purges all lazily-freed vmap areas.
465 * If sync is 0 then don't purge if there is already a purge in progress.
466 * If force_flush is 1, then flush kernel TLBs between *start and *end even
467 * if we found no lazy vmap areas to unmap (callers can use this to optimise
468 * their own TLB flushing).
469 * Returns with *start = min(*start, lowest purged address)
470 * *end = max(*end, highest purged address)
472 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
473 int sync
, int force_flush
)
475 static DEFINE_SPINLOCK(purge_lock
);
477 struct vmap_area
*va
;
481 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
482 * should not expect such behaviour. This just simplifies locking for
483 * the case that isn't actually used at the moment anyway.
485 if (!sync
&& !force_flush
) {
486 if (!spin_trylock(&purge_lock
))
489 spin_lock(&purge_lock
);
492 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
493 if (va
->flags
& VM_LAZY_FREE
) {
494 if (va
->va_start
< *start
)
495 *start
= va
->va_start
;
496 if (va
->va_end
> *end
)
498 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
500 list_add_tail(&va
->purge_list
, &valist
);
501 va
->flags
|= VM_LAZY_FREEING
;
502 va
->flags
&= ~VM_LAZY_FREE
;
508 BUG_ON(nr
> atomic_read(&vmap_lazy_nr
));
509 atomic_sub(nr
, &vmap_lazy_nr
);
512 if (nr
|| force_flush
)
513 flush_tlb_kernel_range(*start
, *end
);
516 spin_lock(&vmap_area_lock
);
517 list_for_each_entry(va
, &valist
, purge_list
)
518 __free_vmap_area(va
);
519 spin_unlock(&vmap_area_lock
);
521 spin_unlock(&purge_lock
);
525 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
526 * is already purging.
528 static void try_purge_vmap_area_lazy(void)
530 unsigned long start
= ULONG_MAX
, end
= 0;
532 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
536 * Kick off a purge of the outstanding lazy areas.
538 static void purge_vmap_area_lazy(void)
540 unsigned long start
= ULONG_MAX
, end
= 0;
542 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
546 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
547 * called for the correct range previously.
549 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
551 va
->flags
|= VM_LAZY_FREE
;
552 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
553 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
554 try_purge_vmap_area_lazy();
558 * Free and unmap a vmap area
560 static void free_unmap_vmap_area(struct vmap_area
*va
)
562 flush_cache_vunmap(va
->va_start
, va
->va_end
);
563 free_unmap_vmap_area_noflush(va
);
566 static struct vmap_area
*find_vmap_area(unsigned long addr
)
568 struct vmap_area
*va
;
570 spin_lock(&vmap_area_lock
);
571 va
= __find_vmap_area(addr
);
572 spin_unlock(&vmap_area_lock
);
577 static void free_unmap_vmap_area_addr(unsigned long addr
)
579 struct vmap_area
*va
;
581 va
= find_vmap_area(addr
);
583 free_unmap_vmap_area(va
);
587 /*** Per cpu kva allocator ***/
590 * vmap space is limited especially on 32 bit architectures. Ensure there is
591 * room for at least 16 percpu vmap blocks per CPU.
594 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
595 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
596 * instead (we just need a rough idea)
598 #if BITS_PER_LONG == 32
599 #define VMALLOC_SPACE (128UL*1024*1024)
601 #define VMALLOC_SPACE (128UL*1024*1024*1024)
604 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
605 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
606 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
607 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
608 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
609 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
610 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
611 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
612 VMALLOC_PAGES / NR_CPUS / 16))
614 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
616 static bool vmap_initialized __read_mostly
= false;
618 struct vmap_block_queue
{
620 struct list_head free
;
621 struct list_head dirty
;
622 unsigned int nr_dirty
;
627 struct vmap_area
*va
;
628 struct vmap_block_queue
*vbq
;
629 unsigned long free
, dirty
;
630 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
631 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
634 struct list_head free_list
;
635 struct list_head dirty_list
;
637 struct rcu_head rcu_head
;
641 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
642 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
645 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
646 * in the free path. Could get rid of this if we change the API to return a
647 * "cookie" from alloc, to be passed to free. But no big deal yet.
649 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
650 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
653 * We should probably have a fallback mechanism to allocate virtual memory
654 * out of partially filled vmap blocks. However vmap block sizing should be
655 * fairly reasonable according to the vmalloc size, so it shouldn't be a
659 static unsigned long addr_to_vb_idx(unsigned long addr
)
661 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
662 addr
/= VMAP_BLOCK_SIZE
;
666 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
668 struct vmap_block_queue
*vbq
;
669 struct vmap_block
*vb
;
670 struct vmap_area
*va
;
671 unsigned long vb_idx
;
674 node
= numa_node_id();
676 vb
= kmalloc_node(sizeof(struct vmap_block
),
677 gfp_mask
& GFP_RECLAIM_MASK
, node
);
679 return ERR_PTR(-ENOMEM
);
681 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
682 VMALLOC_START
, VMALLOC_END
,
684 if (unlikely(IS_ERR(va
))) {
686 return ERR_PTR(PTR_ERR(va
));
689 err
= radix_tree_preload(gfp_mask
);
696 spin_lock_init(&vb
->lock
);
698 vb
->free
= VMAP_BBMAP_BITS
;
700 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
701 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
702 INIT_LIST_HEAD(&vb
->free_list
);
703 INIT_LIST_HEAD(&vb
->dirty_list
);
705 vb_idx
= addr_to_vb_idx(va
->va_start
);
706 spin_lock(&vmap_block_tree_lock
);
707 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
708 spin_unlock(&vmap_block_tree_lock
);
710 radix_tree_preload_end();
712 vbq
= &get_cpu_var(vmap_block_queue
);
714 spin_lock(&vbq
->lock
);
715 list_add(&vb
->free_list
, &vbq
->free
);
716 spin_unlock(&vbq
->lock
);
717 put_cpu_var(vmap_cpu_blocks
);
722 static void rcu_free_vb(struct rcu_head
*head
)
724 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
729 static void free_vmap_block(struct vmap_block
*vb
)
731 struct vmap_block
*tmp
;
732 unsigned long vb_idx
;
734 spin_lock(&vb
->vbq
->lock
);
735 if (!list_empty(&vb
->free_list
))
736 list_del(&vb
->free_list
);
737 if (!list_empty(&vb
->dirty_list
))
738 list_del(&vb
->dirty_list
);
739 spin_unlock(&vb
->vbq
->lock
);
741 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
742 spin_lock(&vmap_block_tree_lock
);
743 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
744 spin_unlock(&vmap_block_tree_lock
);
747 free_unmap_vmap_area_noflush(vb
->va
);
748 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
751 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
753 struct vmap_block_queue
*vbq
;
754 struct vmap_block
*vb
;
755 unsigned long addr
= 0;
758 BUG_ON(size
& ~PAGE_MASK
);
759 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
760 order
= get_order(size
);
764 vbq
= &get_cpu_var(vmap_block_queue
);
765 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
768 spin_lock(&vb
->lock
);
769 i
= bitmap_find_free_region(vb
->alloc_map
,
770 VMAP_BBMAP_BITS
, order
);
773 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
774 BUG_ON(addr_to_vb_idx(addr
) !=
775 addr_to_vb_idx(vb
->va
->va_start
));
776 vb
->free
-= 1UL << order
;
778 spin_lock(&vbq
->lock
);
779 list_del_init(&vb
->free_list
);
780 spin_unlock(&vbq
->lock
);
782 spin_unlock(&vb
->lock
);
785 spin_unlock(&vb
->lock
);
787 put_cpu_var(vmap_cpu_blocks
);
791 vb
= new_vmap_block(gfp_mask
);
800 static void vb_free(const void *addr
, unsigned long size
)
802 unsigned long offset
;
803 unsigned long vb_idx
;
805 struct vmap_block
*vb
;
807 BUG_ON(size
& ~PAGE_MASK
);
808 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
810 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
812 order
= get_order(size
);
814 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
816 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
818 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
822 spin_lock(&vb
->lock
);
823 bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
);
825 spin_lock(&vb
->vbq
->lock
);
826 list_add(&vb
->dirty_list
, &vb
->vbq
->dirty
);
827 spin_unlock(&vb
->vbq
->lock
);
829 vb
->dirty
+= 1UL << order
;
830 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
831 BUG_ON(vb
->free
|| !list_empty(&vb
->free_list
));
832 spin_unlock(&vb
->lock
);
835 spin_unlock(&vb
->lock
);
839 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
841 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
842 * to amortize TLB flushing overheads. What this means is that any page you
843 * have now, may, in a former life, have been mapped into kernel virtual
844 * address by the vmap layer and so there might be some CPUs with TLB entries
845 * still referencing that page (additional to the regular 1:1 kernel mapping).
847 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
848 * be sure that none of the pages we have control over will have any aliases
849 * from the vmap layer.
851 void vm_unmap_aliases(void)
853 unsigned long start
= ULONG_MAX
, end
= 0;
857 if (unlikely(!vmap_initialized
))
860 for_each_possible_cpu(cpu
) {
861 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
862 struct vmap_block
*vb
;
865 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
868 spin_lock(&vb
->lock
);
869 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
870 while (i
< VMAP_BBMAP_BITS
) {
873 j
= find_next_zero_bit(vb
->dirty_map
,
876 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
877 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
878 vunmap_page_range(s
, e
);
887 i
= find_next_bit(vb
->dirty_map
,
890 spin_unlock(&vb
->lock
);
895 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
897 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
900 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
901 * @mem: the pointer returned by vm_map_ram
902 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
904 void vm_unmap_ram(const void *mem
, unsigned int count
)
906 unsigned long size
= count
<< PAGE_SHIFT
;
907 unsigned long addr
= (unsigned long)mem
;
910 BUG_ON(addr
< VMALLOC_START
);
911 BUG_ON(addr
> VMALLOC_END
);
912 BUG_ON(addr
& (PAGE_SIZE
-1));
914 debug_check_no_locks_freed(mem
, size
);
916 if (likely(count
<= VMAP_MAX_ALLOC
))
919 free_unmap_vmap_area_addr(addr
);
921 EXPORT_SYMBOL(vm_unmap_ram
);
924 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
925 * @pages: an array of pointers to the pages to be mapped
926 * @count: number of pages
927 * @node: prefer to allocate data structures on this node
928 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
930 * Returns: a pointer to the address that has been mapped, or %NULL on failure
932 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
934 unsigned long size
= count
<< PAGE_SHIFT
;
938 if (likely(count
<= VMAP_MAX_ALLOC
)) {
939 mem
= vb_alloc(size
, GFP_KERNEL
);
942 addr
= (unsigned long)mem
;
944 struct vmap_area
*va
;
945 va
= alloc_vmap_area(size
, PAGE_SIZE
,
946 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
953 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
954 vm_unmap_ram(mem
, count
);
959 EXPORT_SYMBOL(vm_map_ram
);
961 void __init
vmalloc_init(void)
965 for_each_possible_cpu(i
) {
966 struct vmap_block_queue
*vbq
;
968 vbq
= &per_cpu(vmap_block_queue
, i
);
969 spin_lock_init(&vbq
->lock
);
970 INIT_LIST_HEAD(&vbq
->free
);
971 INIT_LIST_HEAD(&vbq
->dirty
);
975 vmap_initialized
= true;
978 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
980 unsigned long end
= addr
+ size
;
981 vunmap_page_range(addr
, end
);
982 flush_tlb_kernel_range(addr
, end
);
985 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
987 unsigned long addr
= (unsigned long)area
->addr
;
988 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
991 err
= vmap_page_range(addr
, end
, prot
, *pages
);
999 EXPORT_SYMBOL_GPL(map_vm_area
);
1001 /*** Old vmalloc interfaces ***/
1002 DEFINE_RWLOCK(vmlist_lock
);
1003 struct vm_struct
*vmlist
;
1005 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1006 unsigned long flags
, unsigned long start
, unsigned long end
,
1007 int node
, gfp_t gfp_mask
, void *caller
)
1009 static struct vmap_area
*va
;
1010 struct vm_struct
*area
;
1011 struct vm_struct
*tmp
, **p
;
1012 unsigned long align
= 1;
1014 BUG_ON(in_interrupt());
1015 if (flags
& VM_IOREMAP
) {
1016 int bit
= fls(size
);
1018 if (bit
> IOREMAP_MAX_ORDER
)
1019 bit
= IOREMAP_MAX_ORDER
;
1020 else if (bit
< PAGE_SHIFT
)
1026 size
= PAGE_ALIGN(size
);
1027 if (unlikely(!size
))
1030 area
= kmalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1031 if (unlikely(!area
))
1035 * We always allocate a guard page.
1039 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1045 area
->flags
= flags
;
1046 area
->addr
= (void *)va
->va_start
;
1050 area
->phys_addr
= 0;
1051 area
->caller
= caller
;
1053 va
->flags
|= VM_VM_AREA
;
1055 write_lock(&vmlist_lock
);
1056 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1057 if (tmp
->addr
>= area
->addr
)
1062 write_unlock(&vmlist_lock
);
1067 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1068 unsigned long start
, unsigned long end
)
1070 return __get_vm_area_node(size
, flags
, start
, end
, -1, GFP_KERNEL
,
1071 __builtin_return_address(0));
1073 EXPORT_SYMBOL_GPL(__get_vm_area
);
1076 * get_vm_area - reserve a contiguous kernel virtual area
1077 * @size: size of the area
1078 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1080 * Search an area of @size in the kernel virtual mapping area,
1081 * and reserved it for out purposes. Returns the area descriptor
1082 * on success or %NULL on failure.
1084 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1086 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1087 -1, GFP_KERNEL
, __builtin_return_address(0));
1090 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1093 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1094 -1, GFP_KERNEL
, caller
);
1097 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1098 int node
, gfp_t gfp_mask
)
1100 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
, node
,
1101 gfp_mask
, __builtin_return_address(0));
1104 static struct vm_struct
*find_vm_area(const void *addr
)
1106 struct vmap_area
*va
;
1108 va
= find_vmap_area((unsigned long)addr
);
1109 if (va
&& va
->flags
& VM_VM_AREA
)
1116 * remove_vm_area - find and remove a continuous kernel virtual area
1117 * @addr: base address
1119 * Search for the kernel VM area starting at @addr, and remove it.
1120 * This function returns the found VM area, but using it is NOT safe
1121 * on SMP machines, except for its size or flags.
1123 struct vm_struct
*remove_vm_area(const void *addr
)
1125 struct vmap_area
*va
;
1127 va
= find_vmap_area((unsigned long)addr
);
1128 if (va
&& va
->flags
& VM_VM_AREA
) {
1129 struct vm_struct
*vm
= va
->private;
1130 struct vm_struct
*tmp
, **p
;
1131 free_unmap_vmap_area(va
);
1132 vm
->size
-= PAGE_SIZE
;
1134 write_lock(&vmlist_lock
);
1135 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1138 write_unlock(&vmlist_lock
);
1145 static void __vunmap(const void *addr
, int deallocate_pages
)
1147 struct vm_struct
*area
;
1152 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1153 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1157 area
= remove_vm_area(addr
);
1158 if (unlikely(!area
)) {
1159 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1164 debug_check_no_locks_freed(addr
, area
->size
);
1165 debug_check_no_obj_freed(addr
, area
->size
);
1167 if (deallocate_pages
) {
1170 for (i
= 0; i
< area
->nr_pages
; i
++) {
1171 struct page
*page
= area
->pages
[i
];
1177 if (area
->flags
& VM_VPAGES
)
1188 * vfree - release memory allocated by vmalloc()
1189 * @addr: memory base address
1191 * Free the virtually continuous memory area starting at @addr, as
1192 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1193 * NULL, no operation is performed.
1195 * Must not be called in interrupt context.
1197 void vfree(const void *addr
)
1199 BUG_ON(in_interrupt());
1202 EXPORT_SYMBOL(vfree
);
1205 * vunmap - release virtual mapping obtained by vmap()
1206 * @addr: memory base address
1208 * Free the virtually contiguous memory area starting at @addr,
1209 * which was created from the page array passed to vmap().
1211 * Must not be called in interrupt context.
1213 void vunmap(const void *addr
)
1215 BUG_ON(in_interrupt());
1218 EXPORT_SYMBOL(vunmap
);
1221 * vmap - map an array of pages into virtually contiguous space
1222 * @pages: array of page pointers
1223 * @count: number of pages to map
1224 * @flags: vm_area->flags
1225 * @prot: page protection for the mapping
1227 * Maps @count pages from @pages into contiguous kernel virtual
1230 void *vmap(struct page
**pages
, unsigned int count
,
1231 unsigned long flags
, pgprot_t prot
)
1233 struct vm_struct
*area
;
1235 if (count
> num_physpages
)
1238 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1239 __builtin_return_address(0));
1243 if (map_vm_area(area
, prot
, &pages
)) {
1250 EXPORT_SYMBOL(vmap
);
1252 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1253 int node
, void *caller
);
1254 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1255 pgprot_t prot
, int node
, void *caller
)
1257 struct page
**pages
;
1258 unsigned int nr_pages
, array_size
, i
;
1260 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1261 array_size
= (nr_pages
* sizeof(struct page
*));
1263 area
->nr_pages
= nr_pages
;
1264 /* Please note that the recursion is strictly bounded. */
1265 if (array_size
> PAGE_SIZE
) {
1266 pages
= __vmalloc_node(array_size
, gfp_mask
| __GFP_ZERO
,
1267 PAGE_KERNEL
, node
, caller
);
1268 area
->flags
|= VM_VPAGES
;
1270 pages
= kmalloc_node(array_size
,
1271 (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
,
1274 area
->pages
= pages
;
1275 area
->caller
= caller
;
1277 remove_vm_area(area
->addr
);
1282 for (i
= 0; i
< area
->nr_pages
; i
++) {
1286 page
= alloc_page(gfp_mask
);
1288 page
= alloc_pages_node(node
, gfp_mask
, 0);
1290 if (unlikely(!page
)) {
1291 /* Successfully allocated i pages, free them in __vunmap() */
1295 area
->pages
[i
] = page
;
1298 if (map_vm_area(area
, prot
, &pages
))
1307 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1309 return __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1310 __builtin_return_address(0));
1314 * __vmalloc_node - allocate virtually contiguous memory
1315 * @size: allocation size
1316 * @gfp_mask: flags for the page level allocator
1317 * @prot: protection mask for the allocated pages
1318 * @node: node to use for allocation or -1
1319 * @caller: caller's return address
1321 * Allocate enough pages to cover @size from the page level
1322 * allocator with @gfp_mask flags. Map them into contiguous
1323 * kernel virtual space, using a pagetable protection of @prot.
1325 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1326 int node
, void *caller
)
1328 struct vm_struct
*area
;
1330 size
= PAGE_ALIGN(size
);
1331 if (!size
|| (size
>> PAGE_SHIFT
) > num_physpages
)
1334 area
= __get_vm_area_node(size
, VM_ALLOC
, VMALLOC_START
, VMALLOC_END
,
1335 node
, gfp_mask
, caller
);
1340 return __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1343 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1345 return __vmalloc_node(size
, gfp_mask
, prot
, -1,
1346 __builtin_return_address(0));
1348 EXPORT_SYMBOL(__vmalloc
);
1351 * vmalloc - allocate virtually contiguous memory
1352 * @size: allocation size
1353 * Allocate enough pages to cover @size from the page level
1354 * allocator and map them into contiguous kernel virtual space.
1356 * For tight control over page level allocator and protection flags
1357 * use __vmalloc() instead.
1359 void *vmalloc(unsigned long size
)
1361 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1362 -1, __builtin_return_address(0));
1364 EXPORT_SYMBOL(vmalloc
);
1367 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1368 * @size: allocation size
1370 * The resulting memory area is zeroed so it can be mapped to userspace
1371 * without leaking data.
1373 void *vmalloc_user(unsigned long size
)
1375 struct vm_struct
*area
;
1378 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
, PAGE_KERNEL
);
1380 area
= find_vm_area(ret
);
1381 area
->flags
|= VM_USERMAP
;
1385 EXPORT_SYMBOL(vmalloc_user
);
1388 * vmalloc_node - allocate memory on a specific node
1389 * @size: allocation size
1392 * Allocate enough pages to cover @size from the page level
1393 * allocator and map them into contiguous kernel virtual space.
1395 * For tight control over page level allocator and protection flags
1396 * use __vmalloc() instead.
1398 void *vmalloc_node(unsigned long size
, int node
)
1400 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1401 node
, __builtin_return_address(0));
1403 EXPORT_SYMBOL(vmalloc_node
);
1405 #ifndef PAGE_KERNEL_EXEC
1406 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1410 * vmalloc_exec - allocate virtually contiguous, executable memory
1411 * @size: allocation size
1413 * Kernel-internal function to allocate enough pages to cover @size
1414 * the page level allocator and map them into contiguous and
1415 * executable kernel virtual space.
1417 * For tight control over page level allocator and protection flags
1418 * use __vmalloc() instead.
1421 void *vmalloc_exec(unsigned long size
)
1423 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
1426 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1427 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1428 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1429 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1431 #define GFP_VMALLOC32 GFP_KERNEL
1435 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1436 * @size: allocation size
1438 * Allocate enough 32bit PA addressable pages to cover @size from the
1439 * page level allocator and map them into contiguous kernel virtual space.
1441 void *vmalloc_32(unsigned long size
)
1443 return __vmalloc(size
, GFP_VMALLOC32
, PAGE_KERNEL
);
1445 EXPORT_SYMBOL(vmalloc_32
);
1448 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1449 * @size: allocation size
1451 * The resulting memory area is 32bit addressable and zeroed so it can be
1452 * mapped to userspace without leaking data.
1454 void *vmalloc_32_user(unsigned long size
)
1456 struct vm_struct
*area
;
1459 ret
= __vmalloc(size
, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
);
1461 area
= find_vm_area(ret
);
1462 area
->flags
|= VM_USERMAP
;
1466 EXPORT_SYMBOL(vmalloc_32_user
);
1468 long vread(char *buf
, char *addr
, unsigned long count
)
1470 struct vm_struct
*tmp
;
1471 char *vaddr
, *buf_start
= buf
;
1474 /* Don't allow overflow */
1475 if ((unsigned long) addr
+ count
< count
)
1476 count
= -(unsigned long) addr
;
1478 read_lock(&vmlist_lock
);
1479 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1480 vaddr
= (char *) tmp
->addr
;
1481 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1483 while (addr
< vaddr
) {
1491 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1502 read_unlock(&vmlist_lock
);
1503 return buf
- buf_start
;
1506 long vwrite(char *buf
, char *addr
, unsigned long count
)
1508 struct vm_struct
*tmp
;
1509 char *vaddr
, *buf_start
= buf
;
1512 /* Don't allow overflow */
1513 if ((unsigned long) addr
+ count
< count
)
1514 count
= -(unsigned long) addr
;
1516 read_lock(&vmlist_lock
);
1517 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1518 vaddr
= (char *) tmp
->addr
;
1519 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1521 while (addr
< vaddr
) {
1528 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1539 read_unlock(&vmlist_lock
);
1540 return buf
- buf_start
;
1544 * remap_vmalloc_range - map vmalloc pages to userspace
1545 * @vma: vma to cover (map full range of vma)
1546 * @addr: vmalloc memory
1547 * @pgoff: number of pages into addr before first page to map
1549 * Returns: 0 for success, -Exxx on failure
1551 * This function checks that addr is a valid vmalloc'ed area, and
1552 * that it is big enough to cover the vma. Will return failure if
1553 * that criteria isn't met.
1555 * Similar to remap_pfn_range() (see mm/memory.c)
1557 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1558 unsigned long pgoff
)
1560 struct vm_struct
*area
;
1561 unsigned long uaddr
= vma
->vm_start
;
1562 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1564 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
1567 area
= find_vm_area(addr
);
1571 if (!(area
->flags
& VM_USERMAP
))
1574 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
1577 addr
+= pgoff
<< PAGE_SHIFT
;
1579 struct page
*page
= vmalloc_to_page(addr
);
1582 ret
= vm_insert_page(vma
, uaddr
, page
);
1589 } while (usize
> 0);
1591 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1592 vma
->vm_flags
|= VM_RESERVED
;
1596 EXPORT_SYMBOL(remap_vmalloc_range
);
1599 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1602 void __attribute__((weak
)) vmalloc_sync_all(void)
1607 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
1609 /* apply_to_page_range() does all the hard work. */
1614 * alloc_vm_area - allocate a range of kernel address space
1615 * @size: size of the area
1617 * Returns: NULL on failure, vm_struct on success
1619 * This function reserves a range of kernel address space, and
1620 * allocates pagetables to map that range. No actual mappings
1621 * are created. If the kernel address space is not shared
1622 * between processes, it syncs the pagetable across all
1625 struct vm_struct
*alloc_vm_area(size_t size
)
1627 struct vm_struct
*area
;
1629 area
= get_vm_area_caller(size
, VM_IOREMAP
,
1630 __builtin_return_address(0));
1635 * This ensures that page tables are constructed for this region
1636 * of kernel virtual address space and mapped into init_mm.
1638 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
1639 area
->size
, f
, NULL
)) {
1644 /* Make sure the pagetables are constructed in process kernel
1650 EXPORT_SYMBOL_GPL(alloc_vm_area
);
1652 void free_vm_area(struct vm_struct
*area
)
1654 struct vm_struct
*ret
;
1655 ret
= remove_vm_area(area
->addr
);
1656 BUG_ON(ret
!= area
);
1659 EXPORT_SYMBOL_GPL(free_vm_area
);
1662 #ifdef CONFIG_PROC_FS
1663 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
1666 struct vm_struct
*v
;
1668 read_lock(&vmlist_lock
);
1670 while (n
> 0 && v
) {
1681 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1683 struct vm_struct
*v
= p
;
1689 static void s_stop(struct seq_file
*m
, void *p
)
1691 read_unlock(&vmlist_lock
);
1694 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
1697 unsigned int nr
, *counters
= m
->private;
1702 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
1704 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
1705 counters
[page_to_nid(v
->pages
[nr
])]++;
1707 for_each_node_state(nr
, N_HIGH_MEMORY
)
1709 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
1713 static int s_show(struct seq_file
*m
, void *p
)
1715 struct vm_struct
*v
= p
;
1717 seq_printf(m
, "0x%p-0x%p %7ld",
1718 v
->addr
, v
->addr
+ v
->size
, v
->size
);
1721 char buff
[KSYM_SYMBOL_LEN
];
1724 sprint_symbol(buff
, (unsigned long)v
->caller
);
1729 seq_printf(m
, " pages=%d", v
->nr_pages
);
1732 seq_printf(m
, " phys=%lx", v
->phys_addr
);
1734 if (v
->flags
& VM_IOREMAP
)
1735 seq_printf(m
, " ioremap");
1737 if (v
->flags
& VM_ALLOC
)
1738 seq_printf(m
, " vmalloc");
1740 if (v
->flags
& VM_MAP
)
1741 seq_printf(m
, " vmap");
1743 if (v
->flags
& VM_USERMAP
)
1744 seq_printf(m
, " user");
1746 if (v
->flags
& VM_VPAGES
)
1747 seq_printf(m
, " vpages");
1749 show_numa_info(m
, v
);
1754 static const struct seq_operations vmalloc_op
= {
1761 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
1763 unsigned int *ptr
= NULL
;
1767 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
1768 ret
= seq_open(file
, &vmalloc_op
);
1770 struct seq_file
*m
= file
->private_data
;
1777 static const struct file_operations proc_vmalloc_operations
= {
1778 .open
= vmalloc_open
,
1780 .llseek
= seq_lseek
,
1781 .release
= seq_release_private
,
1784 static int __init
proc_vmalloc_init(void)
1786 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
1789 module_init(proc_vmalloc_init
);