USB: wusb: annotate association types withe proper endianness
[linux-2.6/mini2440.git] / mm / migrate.c
blob55373983c9c68410ebdb98883518e7f2b56728bd
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/rmap.h>
25 #include <linux/topology.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/writeback.h>
29 #include <linux/mempolicy.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/memcontrol.h>
33 #include <linux/syscalls.h>
35 #include "internal.h"
37 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40 * migrate_prep() needs to be called before we start compiling a list of pages
41 * to be migrated using isolate_lru_page().
43 int migrate_prep(void)
46 * Clear the LRU lists so pages can be isolated.
47 * Note that pages may be moved off the LRU after we have
48 * drained them. Those pages will fail to migrate like other
49 * pages that may be busy.
51 lru_add_drain_all();
53 return 0;
57 * Add isolated pages on the list back to the LRU under page lock
58 * to avoid leaking evictable pages back onto unevictable list.
60 * returns the number of pages put back.
62 int putback_lru_pages(struct list_head *l)
64 struct page *page;
65 struct page *page2;
66 int count = 0;
68 list_for_each_entry_safe(page, page2, l, lru) {
69 list_del(&page->lru);
70 putback_lru_page(page);
71 count++;
73 return count;
77 * Restore a potential migration pte to a working pte entry
79 static void remove_migration_pte(struct vm_area_struct *vma,
80 struct page *old, struct page *new)
82 struct mm_struct *mm = vma->vm_mm;
83 swp_entry_t entry;
84 pgd_t *pgd;
85 pud_t *pud;
86 pmd_t *pmd;
87 pte_t *ptep, pte;
88 spinlock_t *ptl;
89 unsigned long addr = page_address_in_vma(new, vma);
91 if (addr == -EFAULT)
92 return;
94 pgd = pgd_offset(mm, addr);
95 if (!pgd_present(*pgd))
96 return;
98 pud = pud_offset(pgd, addr);
99 if (!pud_present(*pud))
100 return;
102 pmd = pmd_offset(pud, addr);
103 if (!pmd_present(*pmd))
104 return;
106 ptep = pte_offset_map(pmd, addr);
108 if (!is_swap_pte(*ptep)) {
109 pte_unmap(ptep);
110 return;
113 ptl = pte_lockptr(mm, pmd);
114 spin_lock(ptl);
115 pte = *ptep;
116 if (!is_swap_pte(pte))
117 goto out;
119 entry = pte_to_swp_entry(pte);
121 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
122 goto out;
125 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
126 * Failure is not an option here: we're now expected to remove every
127 * migration pte, and will cause crashes otherwise. Normally this
128 * is not an issue: mem_cgroup_prepare_migration bumped up the old
129 * page_cgroup count for safety, that's now attached to the new page,
130 * so this charge should just be another incrementation of the count,
131 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
132 * there's been a force_empty, those reference counts may no longer
133 * be reliable, and this charge can actually fail: oh well, we don't
134 * make the situation any worse by proceeding as if it had succeeded.
136 mem_cgroup_charge(new, mm, GFP_ATOMIC);
138 get_page(new);
139 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
140 if (is_write_migration_entry(entry))
141 pte = pte_mkwrite(pte);
142 flush_cache_page(vma, addr, pte_pfn(pte));
143 set_pte_at(mm, addr, ptep, pte);
145 if (PageAnon(new))
146 page_add_anon_rmap(new, vma, addr);
147 else
148 page_add_file_rmap(new);
150 /* No need to invalidate - it was non-present before */
151 update_mmu_cache(vma, addr, pte);
153 out:
154 pte_unmap_unlock(ptep, ptl);
158 * Note that remove_file_migration_ptes will only work on regular mappings,
159 * Nonlinear mappings do not use migration entries.
161 static void remove_file_migration_ptes(struct page *old, struct page *new)
163 struct vm_area_struct *vma;
164 struct address_space *mapping = page_mapping(new);
165 struct prio_tree_iter iter;
166 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
168 if (!mapping)
169 return;
171 spin_lock(&mapping->i_mmap_lock);
173 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
174 remove_migration_pte(vma, old, new);
176 spin_unlock(&mapping->i_mmap_lock);
180 * Must hold mmap_sem lock on at least one of the vmas containing
181 * the page so that the anon_vma cannot vanish.
183 static void remove_anon_migration_ptes(struct page *old, struct page *new)
185 struct anon_vma *anon_vma;
186 struct vm_area_struct *vma;
187 unsigned long mapping;
189 mapping = (unsigned long)new->mapping;
191 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
192 return;
195 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
197 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
198 spin_lock(&anon_vma->lock);
200 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
201 remove_migration_pte(vma, old, new);
203 spin_unlock(&anon_vma->lock);
207 * Get rid of all migration entries and replace them by
208 * references to the indicated page.
210 static void remove_migration_ptes(struct page *old, struct page *new)
212 if (PageAnon(new))
213 remove_anon_migration_ptes(old, new);
214 else
215 remove_file_migration_ptes(old, new);
219 * Something used the pte of a page under migration. We need to
220 * get to the page and wait until migration is finished.
221 * When we return from this function the fault will be retried.
223 * This function is called from do_swap_page().
225 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
226 unsigned long address)
228 pte_t *ptep, pte;
229 spinlock_t *ptl;
230 swp_entry_t entry;
231 struct page *page;
233 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
234 pte = *ptep;
235 if (!is_swap_pte(pte))
236 goto out;
238 entry = pte_to_swp_entry(pte);
239 if (!is_migration_entry(entry))
240 goto out;
242 page = migration_entry_to_page(entry);
245 * Once radix-tree replacement of page migration started, page_count
246 * *must* be zero. And, we don't want to call wait_on_page_locked()
247 * against a page without get_page().
248 * So, we use get_page_unless_zero(), here. Even failed, page fault
249 * will occur again.
251 if (!get_page_unless_zero(page))
252 goto out;
253 pte_unmap_unlock(ptep, ptl);
254 wait_on_page_locked(page);
255 put_page(page);
256 return;
257 out:
258 pte_unmap_unlock(ptep, ptl);
262 * Replace the page in the mapping.
264 * The number of remaining references must be:
265 * 1 for anonymous pages without a mapping
266 * 2 for pages with a mapping
267 * 3 for pages with a mapping and PagePrivate set.
269 static int migrate_page_move_mapping(struct address_space *mapping,
270 struct page *newpage, struct page *page)
272 int expected_count;
273 void **pslot;
275 if (!mapping) {
276 /* Anonymous page without mapping */
277 if (page_count(page) != 1)
278 return -EAGAIN;
279 return 0;
282 spin_lock_irq(&mapping->tree_lock);
284 pslot = radix_tree_lookup_slot(&mapping->page_tree,
285 page_index(page));
287 expected_count = 2 + !!PagePrivate(page);
288 if (page_count(page) != expected_count ||
289 (struct page *)radix_tree_deref_slot(pslot) != page) {
290 spin_unlock_irq(&mapping->tree_lock);
291 return -EAGAIN;
294 if (!page_freeze_refs(page, expected_count)) {
295 spin_unlock_irq(&mapping->tree_lock);
296 return -EAGAIN;
300 * Now we know that no one else is looking at the page.
302 get_page(newpage); /* add cache reference */
303 if (PageSwapCache(page)) {
304 SetPageSwapCache(newpage);
305 set_page_private(newpage, page_private(page));
308 radix_tree_replace_slot(pslot, newpage);
310 page_unfreeze_refs(page, expected_count);
312 * Drop cache reference from old page.
313 * We know this isn't the last reference.
315 __put_page(page);
318 * If moved to a different zone then also account
319 * the page for that zone. Other VM counters will be
320 * taken care of when we establish references to the
321 * new page and drop references to the old page.
323 * Note that anonymous pages are accounted for
324 * via NR_FILE_PAGES and NR_ANON_PAGES if they
325 * are mapped to swap space.
327 __dec_zone_page_state(page, NR_FILE_PAGES);
328 __inc_zone_page_state(newpage, NR_FILE_PAGES);
330 spin_unlock_irq(&mapping->tree_lock);
332 return 0;
336 * Copy the page to its new location
338 static void migrate_page_copy(struct page *newpage, struct page *page)
340 int anon;
342 copy_highpage(newpage, page);
344 if (PageError(page))
345 SetPageError(newpage);
346 if (PageReferenced(page))
347 SetPageReferenced(newpage);
348 if (PageUptodate(page))
349 SetPageUptodate(newpage);
350 if (TestClearPageActive(page)) {
351 VM_BUG_ON(PageUnevictable(page));
352 SetPageActive(newpage);
353 } else
354 unevictable_migrate_page(newpage, page);
355 if (PageChecked(page))
356 SetPageChecked(newpage);
357 if (PageMappedToDisk(page))
358 SetPageMappedToDisk(newpage);
360 if (PageDirty(page)) {
361 clear_page_dirty_for_io(page);
363 * Want to mark the page and the radix tree as dirty, and
364 * redo the accounting that clear_page_dirty_for_io undid,
365 * but we can't use set_page_dirty because that function
366 * is actually a signal that all of the page has become dirty.
367 * Wheras only part of our page may be dirty.
369 __set_page_dirty_nobuffers(newpage);
372 mlock_migrate_page(newpage, page);
374 ClearPageSwapCache(page);
375 ClearPagePrivate(page);
376 set_page_private(page, 0);
377 /* page->mapping contains a flag for PageAnon() */
378 anon = PageAnon(page);
379 page->mapping = NULL;
381 if (!anon) /* This page was removed from radix-tree. */
382 mem_cgroup_uncharge_cache_page(page);
385 * If any waiters have accumulated on the new page then
386 * wake them up.
388 if (PageWriteback(newpage))
389 end_page_writeback(newpage);
392 /************************************************************
393 * Migration functions
394 ***********************************************************/
396 /* Always fail migration. Used for mappings that are not movable */
397 int fail_migrate_page(struct address_space *mapping,
398 struct page *newpage, struct page *page)
400 return -EIO;
402 EXPORT_SYMBOL(fail_migrate_page);
405 * Common logic to directly migrate a single page suitable for
406 * pages that do not use PagePrivate.
408 * Pages are locked upon entry and exit.
410 int migrate_page(struct address_space *mapping,
411 struct page *newpage, struct page *page)
413 int rc;
415 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
417 rc = migrate_page_move_mapping(mapping, newpage, page);
419 if (rc)
420 return rc;
422 migrate_page_copy(newpage, page);
423 return 0;
425 EXPORT_SYMBOL(migrate_page);
427 #ifdef CONFIG_BLOCK
429 * Migration function for pages with buffers. This function can only be used
430 * if the underlying filesystem guarantees that no other references to "page"
431 * exist.
433 int buffer_migrate_page(struct address_space *mapping,
434 struct page *newpage, struct page *page)
436 struct buffer_head *bh, *head;
437 int rc;
439 if (!page_has_buffers(page))
440 return migrate_page(mapping, newpage, page);
442 head = page_buffers(page);
444 rc = migrate_page_move_mapping(mapping, newpage, page);
446 if (rc)
447 return rc;
449 bh = head;
450 do {
451 get_bh(bh);
452 lock_buffer(bh);
453 bh = bh->b_this_page;
455 } while (bh != head);
457 ClearPagePrivate(page);
458 set_page_private(newpage, page_private(page));
459 set_page_private(page, 0);
460 put_page(page);
461 get_page(newpage);
463 bh = head;
464 do {
465 set_bh_page(bh, newpage, bh_offset(bh));
466 bh = bh->b_this_page;
468 } while (bh != head);
470 SetPagePrivate(newpage);
472 migrate_page_copy(newpage, page);
474 bh = head;
475 do {
476 unlock_buffer(bh);
477 put_bh(bh);
478 bh = bh->b_this_page;
480 } while (bh != head);
482 return 0;
484 EXPORT_SYMBOL(buffer_migrate_page);
485 #endif
488 * Writeback a page to clean the dirty state
490 static int writeout(struct address_space *mapping, struct page *page)
492 struct writeback_control wbc = {
493 .sync_mode = WB_SYNC_NONE,
494 .nr_to_write = 1,
495 .range_start = 0,
496 .range_end = LLONG_MAX,
497 .nonblocking = 1,
498 .for_reclaim = 1
500 int rc;
502 if (!mapping->a_ops->writepage)
503 /* No write method for the address space */
504 return -EINVAL;
506 if (!clear_page_dirty_for_io(page))
507 /* Someone else already triggered a write */
508 return -EAGAIN;
511 * A dirty page may imply that the underlying filesystem has
512 * the page on some queue. So the page must be clean for
513 * migration. Writeout may mean we loose the lock and the
514 * page state is no longer what we checked for earlier.
515 * At this point we know that the migration attempt cannot
516 * be successful.
518 remove_migration_ptes(page, page);
520 rc = mapping->a_ops->writepage(page, &wbc);
522 if (rc != AOP_WRITEPAGE_ACTIVATE)
523 /* unlocked. Relock */
524 lock_page(page);
526 return (rc < 0) ? -EIO : -EAGAIN;
530 * Default handling if a filesystem does not provide a migration function.
532 static int fallback_migrate_page(struct address_space *mapping,
533 struct page *newpage, struct page *page)
535 if (PageDirty(page))
536 return writeout(mapping, page);
539 * Buffers may be managed in a filesystem specific way.
540 * We must have no buffers or drop them.
542 if (PagePrivate(page) &&
543 !try_to_release_page(page, GFP_KERNEL))
544 return -EAGAIN;
546 return migrate_page(mapping, newpage, page);
550 * Move a page to a newly allocated page
551 * The page is locked and all ptes have been successfully removed.
553 * The new page will have replaced the old page if this function
554 * is successful.
556 * Return value:
557 * < 0 - error code
558 * == 0 - success
560 static int move_to_new_page(struct page *newpage, struct page *page)
562 struct address_space *mapping;
563 int rc;
566 * Block others from accessing the page when we get around to
567 * establishing additional references. We are the only one
568 * holding a reference to the new page at this point.
570 if (!trylock_page(newpage))
571 BUG();
573 /* Prepare mapping for the new page.*/
574 newpage->index = page->index;
575 newpage->mapping = page->mapping;
576 if (PageSwapBacked(page))
577 SetPageSwapBacked(newpage);
579 mapping = page_mapping(page);
580 if (!mapping)
581 rc = migrate_page(mapping, newpage, page);
582 else if (mapping->a_ops->migratepage)
584 * Most pages have a mapping and most filesystems
585 * should provide a migration function. Anonymous
586 * pages are part of swap space which also has its
587 * own migration function. This is the most common
588 * path for page migration.
590 rc = mapping->a_ops->migratepage(mapping,
591 newpage, page);
592 else
593 rc = fallback_migrate_page(mapping, newpage, page);
595 if (!rc) {
596 remove_migration_ptes(page, newpage);
597 } else
598 newpage->mapping = NULL;
600 unlock_page(newpage);
602 return rc;
606 * Obtain the lock on page, remove all ptes and migrate the page
607 * to the newly allocated page in newpage.
609 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
610 struct page *page, int force)
612 int rc = 0;
613 int *result = NULL;
614 struct page *newpage = get_new_page(page, private, &result);
615 int rcu_locked = 0;
616 int charge = 0;
618 if (!newpage)
619 return -ENOMEM;
621 if (page_count(page) == 1) {
622 /* page was freed from under us. So we are done. */
623 goto move_newpage;
626 charge = mem_cgroup_prepare_migration(page, newpage);
627 if (charge == -ENOMEM) {
628 rc = -ENOMEM;
629 goto move_newpage;
631 /* prepare cgroup just returns 0 or -ENOMEM */
632 BUG_ON(charge);
634 rc = -EAGAIN;
635 if (!trylock_page(page)) {
636 if (!force)
637 goto move_newpage;
638 lock_page(page);
641 if (PageWriteback(page)) {
642 if (!force)
643 goto unlock;
644 wait_on_page_writeback(page);
647 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
648 * we cannot notice that anon_vma is freed while we migrates a page.
649 * This rcu_read_lock() delays freeing anon_vma pointer until the end
650 * of migration. File cache pages are no problem because of page_lock()
651 * File Caches may use write_page() or lock_page() in migration, then,
652 * just care Anon page here.
654 if (PageAnon(page)) {
655 rcu_read_lock();
656 rcu_locked = 1;
660 * Corner case handling:
661 * 1. When a new swap-cache page is read into, it is added to the LRU
662 * and treated as swapcache but it has no rmap yet.
663 * Calling try_to_unmap() against a page->mapping==NULL page will
664 * trigger a BUG. So handle it here.
665 * 2. An orphaned page (see truncate_complete_page) might have
666 * fs-private metadata. The page can be picked up due to memory
667 * offlining. Everywhere else except page reclaim, the page is
668 * invisible to the vm, so the page can not be migrated. So try to
669 * free the metadata, so the page can be freed.
671 if (!page->mapping) {
672 if (!PageAnon(page) && PagePrivate(page)) {
674 * Go direct to try_to_free_buffers() here because
675 * a) that's what try_to_release_page() would do anyway
676 * b) we may be under rcu_read_lock() here, so we can't
677 * use GFP_KERNEL which is what try_to_release_page()
678 * needs to be effective.
680 try_to_free_buffers(page);
682 goto rcu_unlock;
685 /* Establish migration ptes or remove ptes */
686 try_to_unmap(page, 1);
688 if (!page_mapped(page))
689 rc = move_to_new_page(newpage, page);
691 if (rc)
692 remove_migration_ptes(page, page);
693 rcu_unlock:
694 if (rcu_locked)
695 rcu_read_unlock();
697 unlock:
698 unlock_page(page);
700 if (rc != -EAGAIN) {
702 * A page that has been migrated has all references
703 * removed and will be freed. A page that has not been
704 * migrated will have kepts its references and be
705 * restored.
707 list_del(&page->lru);
708 putback_lru_page(page);
711 move_newpage:
712 if (!charge)
713 mem_cgroup_end_migration(newpage);
716 * Move the new page to the LRU. If migration was not successful
717 * then this will free the page.
719 putback_lru_page(newpage);
721 if (result) {
722 if (rc)
723 *result = rc;
724 else
725 *result = page_to_nid(newpage);
727 return rc;
731 * migrate_pages
733 * The function takes one list of pages to migrate and a function
734 * that determines from the page to be migrated and the private data
735 * the target of the move and allocates the page.
737 * The function returns after 10 attempts or if no pages
738 * are movable anymore because to has become empty
739 * or no retryable pages exist anymore. All pages will be
740 * returned to the LRU or freed.
742 * Return: Number of pages not migrated or error code.
744 int migrate_pages(struct list_head *from,
745 new_page_t get_new_page, unsigned long private)
747 int retry = 1;
748 int nr_failed = 0;
749 int pass = 0;
750 struct page *page;
751 struct page *page2;
752 int swapwrite = current->flags & PF_SWAPWRITE;
753 int rc;
755 if (!swapwrite)
756 current->flags |= PF_SWAPWRITE;
758 for(pass = 0; pass < 10 && retry; pass++) {
759 retry = 0;
761 list_for_each_entry_safe(page, page2, from, lru) {
762 cond_resched();
764 rc = unmap_and_move(get_new_page, private,
765 page, pass > 2);
767 switch(rc) {
768 case -ENOMEM:
769 goto out;
770 case -EAGAIN:
771 retry++;
772 break;
773 case 0:
774 break;
775 default:
776 /* Permanent failure */
777 nr_failed++;
778 break;
782 rc = 0;
783 out:
784 if (!swapwrite)
785 current->flags &= ~PF_SWAPWRITE;
787 putback_lru_pages(from);
789 if (rc)
790 return rc;
792 return nr_failed + retry;
795 #ifdef CONFIG_NUMA
797 * Move a list of individual pages
799 struct page_to_node {
800 unsigned long addr;
801 struct page *page;
802 int node;
803 int status;
806 static struct page *new_page_node(struct page *p, unsigned long private,
807 int **result)
809 struct page_to_node *pm = (struct page_to_node *)private;
811 while (pm->node != MAX_NUMNODES && pm->page != p)
812 pm++;
814 if (pm->node == MAX_NUMNODES)
815 return NULL;
817 *result = &pm->status;
819 return alloc_pages_node(pm->node,
820 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
824 * Move a set of pages as indicated in the pm array. The addr
825 * field must be set to the virtual address of the page to be moved
826 * and the node number must contain a valid target node.
827 * The pm array ends with node = MAX_NUMNODES.
829 static int do_move_page_to_node_array(struct mm_struct *mm,
830 struct page_to_node *pm,
831 int migrate_all)
833 int err;
834 struct page_to_node *pp;
835 LIST_HEAD(pagelist);
837 migrate_prep();
838 down_read(&mm->mmap_sem);
841 * Build a list of pages to migrate
843 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
844 struct vm_area_struct *vma;
845 struct page *page;
847 err = -EFAULT;
848 vma = find_vma(mm, pp->addr);
849 if (!vma || !vma_migratable(vma))
850 goto set_status;
852 page = follow_page(vma, pp->addr, FOLL_GET);
854 err = PTR_ERR(page);
855 if (IS_ERR(page))
856 goto set_status;
858 err = -ENOENT;
859 if (!page)
860 goto set_status;
862 if (PageReserved(page)) /* Check for zero page */
863 goto put_and_set;
865 pp->page = page;
866 err = page_to_nid(page);
868 if (err == pp->node)
870 * Node already in the right place
872 goto put_and_set;
874 err = -EACCES;
875 if (page_mapcount(page) > 1 &&
876 !migrate_all)
877 goto put_and_set;
879 err = isolate_lru_page(page);
880 if (!err)
881 list_add_tail(&page->lru, &pagelist);
882 put_and_set:
884 * Either remove the duplicate refcount from
885 * isolate_lru_page() or drop the page ref if it was
886 * not isolated.
888 put_page(page);
889 set_status:
890 pp->status = err;
893 err = 0;
894 if (!list_empty(&pagelist))
895 err = migrate_pages(&pagelist, new_page_node,
896 (unsigned long)pm);
898 up_read(&mm->mmap_sem);
899 return err;
903 * Migrate an array of page address onto an array of nodes and fill
904 * the corresponding array of status.
906 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
907 unsigned long nr_pages,
908 const void __user * __user *pages,
909 const int __user *nodes,
910 int __user *status, int flags)
912 struct page_to_node *pm;
913 nodemask_t task_nodes;
914 unsigned long chunk_nr_pages;
915 unsigned long chunk_start;
916 int err;
918 task_nodes = cpuset_mems_allowed(task);
920 err = -ENOMEM;
921 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
922 if (!pm)
923 goto out;
925 * Store a chunk of page_to_node array in a page,
926 * but keep the last one as a marker
928 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
930 for (chunk_start = 0;
931 chunk_start < nr_pages;
932 chunk_start += chunk_nr_pages) {
933 int j;
935 if (chunk_start + chunk_nr_pages > nr_pages)
936 chunk_nr_pages = nr_pages - chunk_start;
938 /* fill the chunk pm with addrs and nodes from user-space */
939 for (j = 0; j < chunk_nr_pages; j++) {
940 const void __user *p;
941 int node;
943 err = -EFAULT;
944 if (get_user(p, pages + j + chunk_start))
945 goto out_pm;
946 pm[j].addr = (unsigned long) p;
948 if (get_user(node, nodes + j + chunk_start))
949 goto out_pm;
951 err = -ENODEV;
952 if (!node_state(node, N_HIGH_MEMORY))
953 goto out_pm;
955 err = -EACCES;
956 if (!node_isset(node, task_nodes))
957 goto out_pm;
959 pm[j].node = node;
962 /* End marker for this chunk */
963 pm[chunk_nr_pages].node = MAX_NUMNODES;
965 /* Migrate this chunk */
966 err = do_move_page_to_node_array(mm, pm,
967 flags & MPOL_MF_MOVE_ALL);
968 if (err < 0)
969 goto out_pm;
971 /* Return status information */
972 for (j = 0; j < chunk_nr_pages; j++)
973 if (put_user(pm[j].status, status + j + chunk_start)) {
974 err = -EFAULT;
975 goto out_pm;
978 err = 0;
980 out_pm:
981 free_page((unsigned long)pm);
982 out:
983 return err;
987 * Determine the nodes of an array of pages and store it in an array of status.
989 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
990 const void __user **pages, int *status)
992 unsigned long i;
994 down_read(&mm->mmap_sem);
996 for (i = 0; i < nr_pages; i++) {
997 unsigned long addr = (unsigned long)(*pages);
998 struct vm_area_struct *vma;
999 struct page *page;
1000 int err = -EFAULT;
1002 vma = find_vma(mm, addr);
1003 if (!vma)
1004 goto set_status;
1006 page = follow_page(vma, addr, 0);
1008 err = PTR_ERR(page);
1009 if (IS_ERR(page))
1010 goto set_status;
1012 err = -ENOENT;
1013 /* Use PageReserved to check for zero page */
1014 if (!page || PageReserved(page))
1015 goto set_status;
1017 err = page_to_nid(page);
1018 set_status:
1019 *status = err;
1021 pages++;
1022 status++;
1025 up_read(&mm->mmap_sem);
1029 * Determine the nodes of a user array of pages and store it in
1030 * a user array of status.
1032 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1033 const void __user * __user *pages,
1034 int __user *status)
1036 #define DO_PAGES_STAT_CHUNK_NR 16
1037 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1038 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1039 unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1040 int err;
1042 for (i = 0; i < nr_pages; i += chunk_nr) {
1043 if (chunk_nr + i > nr_pages)
1044 chunk_nr = nr_pages - i;
1046 err = copy_from_user(chunk_pages, &pages[i],
1047 chunk_nr * sizeof(*chunk_pages));
1048 if (err) {
1049 err = -EFAULT;
1050 goto out;
1053 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1055 err = copy_to_user(&status[i], chunk_status,
1056 chunk_nr * sizeof(*chunk_status));
1057 if (err) {
1058 err = -EFAULT;
1059 goto out;
1062 err = 0;
1064 out:
1065 return err;
1069 * Move a list of pages in the address space of the currently executing
1070 * process.
1072 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
1073 const void __user * __user *pages,
1074 const int __user *nodes,
1075 int __user *status, int flags)
1077 const struct cred *cred = current_cred(), *tcred;
1078 struct task_struct *task;
1079 struct mm_struct *mm;
1080 int err;
1082 /* Check flags */
1083 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1084 return -EINVAL;
1086 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1087 return -EPERM;
1089 /* Find the mm_struct */
1090 read_lock(&tasklist_lock);
1091 task = pid ? find_task_by_vpid(pid) : current;
1092 if (!task) {
1093 read_unlock(&tasklist_lock);
1094 return -ESRCH;
1096 mm = get_task_mm(task);
1097 read_unlock(&tasklist_lock);
1099 if (!mm)
1100 return -EINVAL;
1103 * Check if this process has the right to modify the specified
1104 * process. The right exists if the process has administrative
1105 * capabilities, superuser privileges or the same
1106 * userid as the target process.
1108 rcu_read_lock();
1109 tcred = __task_cred(task);
1110 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1111 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1112 !capable(CAP_SYS_NICE)) {
1113 rcu_read_unlock();
1114 err = -EPERM;
1115 goto out;
1117 rcu_read_unlock();
1119 err = security_task_movememory(task);
1120 if (err)
1121 goto out;
1123 if (nodes) {
1124 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1125 flags);
1126 } else {
1127 err = do_pages_stat(mm, nr_pages, pages, status);
1130 out:
1131 mmput(mm);
1132 return err;
1136 * Call migration functions in the vma_ops that may prepare
1137 * memory in a vm for migration. migration functions may perform
1138 * the migration for vmas that do not have an underlying page struct.
1140 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1141 const nodemask_t *from, unsigned long flags)
1143 struct vm_area_struct *vma;
1144 int err = 0;
1146 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1147 if (vma->vm_ops && vma->vm_ops->migrate) {
1148 err = vma->vm_ops->migrate(vma, to, from, flags);
1149 if (err)
1150 break;
1153 return err;
1155 #endif