4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
56 * Protected counters by write_lock_irq(&tasklist_lock)
58 unsigned long total_forks
; /* Handle normal Linux uptimes. */
59 int nr_threads
; /* The idle threads do not count.. */
61 int max_threads
; /* tunable limit on nr_threads */
63 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
65 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
67 EXPORT_SYMBOL(tasklist_lock
);
69 int nr_processes(void)
74 for_each_online_cpu(cpu
)
75 total
+= per_cpu(process_counts
, cpu
);
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t
*task_struct_cachep
;
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 kmem_cache_t
*signal_cachep
;
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t
*sighand_cachep
;
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t
*files_cachep
;
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t
*fs_cachep
;
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t
*vm_area_cachep
;
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t
*mm_cachep
;
104 void free_task(struct task_struct
*tsk
)
106 free_thread_info(tsk
->thread_info
);
107 free_task_struct(tsk
);
109 EXPORT_SYMBOL(free_task
);
111 void __put_task_struct(struct task_struct
*tsk
)
113 WARN_ON(!(tsk
->exit_state
& (EXIT_DEAD
| EXIT_ZOMBIE
)));
114 WARN_ON(atomic_read(&tsk
->usage
));
115 WARN_ON(tsk
== current
);
117 if (unlikely(tsk
->audit_context
))
119 security_task_free(tsk
);
121 put_group_info(tsk
->group_info
);
123 if (!profile_handoff_task(tsk
))
127 void __init
fork_init(unsigned long mempages
)
129 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130 #ifndef ARCH_MIN_TASKALIGN
131 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
133 /* create a slab on which task_structs can be allocated */
135 kmem_cache_create("task_struct", sizeof(struct task_struct
),
136 ARCH_MIN_TASKALIGN
, SLAB_PANIC
, NULL
, NULL
);
140 * The default maximum number of threads is set to a safe
141 * value: the thread structures can take up at most half
144 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
147 * we need to allow at least 20 threads to boot a system
152 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
153 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
154 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
155 init_task
.signal
->rlim
[RLIMIT_NPROC
];
158 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
160 struct task_struct
*tsk
;
161 struct thread_info
*ti
;
163 prepare_to_copy(orig
);
165 tsk
= alloc_task_struct();
169 ti
= alloc_thread_info(tsk
);
171 free_task_struct(tsk
);
176 tsk
->thread_info
= ti
;
177 setup_thread_stack(tsk
, orig
);
179 /* One for us, one for whoever does the "release_task()" (usually parent) */
180 atomic_set(&tsk
->usage
,2);
181 atomic_set(&tsk
->fs_excl
, 0);
186 static inline int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
188 struct vm_area_struct
*mpnt
, *tmp
, **pprev
;
189 struct rb_node
**rb_link
, *rb_parent
;
191 unsigned long charge
;
192 struct mempolicy
*pol
;
194 down_write(&oldmm
->mmap_sem
);
195 flush_cache_mm(oldmm
);
196 down_write(&mm
->mmap_sem
);
200 mm
->mmap_cache
= NULL
;
201 mm
->free_area_cache
= oldmm
->mmap_base
;
202 mm
->cached_hole_size
= ~0UL;
204 cpus_clear(mm
->cpu_vm_mask
);
206 rb_link
= &mm
->mm_rb
.rb_node
;
210 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
213 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
214 long pages
= vma_pages(mpnt
);
215 mm
->total_vm
-= pages
;
216 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
221 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
222 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
223 if (security_vm_enough_memory(len
))
227 tmp
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
231 pol
= mpol_copy(vma_policy(mpnt
));
232 retval
= PTR_ERR(pol
);
234 goto fail_nomem_policy
;
235 vma_set_policy(tmp
, pol
);
236 tmp
->vm_flags
&= ~VM_LOCKED
;
242 struct inode
*inode
= file
->f_dentry
->d_inode
;
244 if (tmp
->vm_flags
& VM_DENYWRITE
)
245 atomic_dec(&inode
->i_writecount
);
247 /* insert tmp into the share list, just after mpnt */
248 spin_lock(&file
->f_mapping
->i_mmap_lock
);
249 tmp
->vm_truncate_count
= mpnt
->vm_truncate_count
;
250 flush_dcache_mmap_lock(file
->f_mapping
);
251 vma_prio_tree_add(tmp
, mpnt
);
252 flush_dcache_mmap_unlock(file
->f_mapping
);
253 spin_unlock(&file
->f_mapping
->i_mmap_lock
);
257 * Link in the new vma and copy the page table entries.
260 pprev
= &tmp
->vm_next
;
262 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
263 rb_link
= &tmp
->vm_rb
.rb_right
;
264 rb_parent
= &tmp
->vm_rb
;
267 retval
= copy_page_range(mm
, oldmm
, mpnt
);
269 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
270 tmp
->vm_ops
->open(tmp
);
277 up_write(&mm
->mmap_sem
);
279 up_write(&oldmm
->mmap_sem
);
282 kmem_cache_free(vm_area_cachep
, tmp
);
285 vm_unacct_memory(charge
);
289 static inline int mm_alloc_pgd(struct mm_struct
* mm
)
291 mm
->pgd
= pgd_alloc(mm
);
292 if (unlikely(!mm
->pgd
))
297 static inline void mm_free_pgd(struct mm_struct
* mm
)
302 #define dup_mmap(mm, oldmm) (0)
303 #define mm_alloc_pgd(mm) (0)
304 #define mm_free_pgd(mm)
305 #endif /* CONFIG_MMU */
307 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
309 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
310 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
312 #include <linux/init_task.h>
314 static struct mm_struct
* mm_init(struct mm_struct
* mm
)
316 atomic_set(&mm
->mm_users
, 1);
317 atomic_set(&mm
->mm_count
, 1);
318 init_rwsem(&mm
->mmap_sem
);
319 INIT_LIST_HEAD(&mm
->mmlist
);
320 mm
->core_waiters
= 0;
322 set_mm_counter(mm
, file_rss
, 0);
323 set_mm_counter(mm
, anon_rss
, 0);
324 spin_lock_init(&mm
->page_table_lock
);
325 rwlock_init(&mm
->ioctx_list_lock
);
326 mm
->ioctx_list
= NULL
;
327 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
328 mm
->cached_hole_size
= ~0UL;
330 if (likely(!mm_alloc_pgd(mm
))) {
339 * Allocate and initialize an mm_struct.
341 struct mm_struct
* mm_alloc(void)
343 struct mm_struct
* mm
;
347 memset(mm
, 0, sizeof(*mm
));
354 * Called when the last reference to the mm
355 * is dropped: either by a lazy thread or by
356 * mmput. Free the page directory and the mm.
358 void fastcall
__mmdrop(struct mm_struct
*mm
)
360 BUG_ON(mm
== &init_mm
);
367 * Decrement the use count and release all resources for an mm.
369 void mmput(struct mm_struct
*mm
)
371 if (atomic_dec_and_test(&mm
->mm_users
)) {
374 if (!list_empty(&mm
->mmlist
)) {
375 spin_lock(&mmlist_lock
);
376 list_del(&mm
->mmlist
);
377 spin_unlock(&mmlist_lock
);
383 EXPORT_SYMBOL_GPL(mmput
);
386 * get_task_mm - acquire a reference to the task's mm
388 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
389 * this kernel workthread has transiently adopted a user mm with use_mm,
390 * to do its AIO) is not set and if so returns a reference to it, after
391 * bumping up the use count. User must release the mm via mmput()
392 * after use. Typically used by /proc and ptrace.
394 struct mm_struct
*get_task_mm(struct task_struct
*task
)
396 struct mm_struct
*mm
;
401 if (task
->flags
& PF_BORROWED_MM
)
404 atomic_inc(&mm
->mm_users
);
409 EXPORT_SYMBOL_GPL(get_task_mm
);
411 /* Please note the differences between mmput and mm_release.
412 * mmput is called whenever we stop holding onto a mm_struct,
413 * error success whatever.
415 * mm_release is called after a mm_struct has been removed
416 * from the current process.
418 * This difference is important for error handling, when we
419 * only half set up a mm_struct for a new process and need to restore
420 * the old one. Because we mmput the new mm_struct before
421 * restoring the old one. . .
422 * Eric Biederman 10 January 1998
424 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
426 struct completion
*vfork_done
= tsk
->vfork_done
;
428 /* Get rid of any cached register state */
429 deactivate_mm(tsk
, mm
);
431 /* notify parent sleeping on vfork() */
433 tsk
->vfork_done
= NULL
;
434 complete(vfork_done
);
436 if (tsk
->clear_child_tid
&& atomic_read(&mm
->mm_users
) > 1) {
437 u32 __user
* tidptr
= tsk
->clear_child_tid
;
438 tsk
->clear_child_tid
= NULL
;
441 * We don't check the error code - if userspace has
442 * not set up a proper pointer then tough luck.
445 sys_futex(tidptr
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
449 static int copy_mm(unsigned long clone_flags
, struct task_struct
* tsk
)
451 struct mm_struct
* mm
, *oldmm
;
454 tsk
->min_flt
= tsk
->maj_flt
= 0;
455 tsk
->nvcsw
= tsk
->nivcsw
= 0;
458 tsk
->active_mm
= NULL
;
461 * Are we cloning a kernel thread?
463 * We need to steal a active VM for that..
469 if (clone_flags
& CLONE_VM
) {
470 atomic_inc(&oldmm
->mm_users
);
480 /* Copy the current MM stuff.. */
481 memcpy(mm
, oldmm
, sizeof(*mm
));
485 if (init_new_context(tsk
,mm
))
488 retval
= dup_mmap(mm
, oldmm
);
492 mm
->hiwater_rss
= get_mm_rss(mm
);
493 mm
->hiwater_vm
= mm
->total_vm
;
507 * If init_new_context() failed, we cannot use mmput() to free the mm
508 * because it calls destroy_context()
515 static inline struct fs_struct
*__copy_fs_struct(struct fs_struct
*old
)
517 struct fs_struct
*fs
= kmem_cache_alloc(fs_cachep
, GFP_KERNEL
);
518 /* We don't need to lock fs - think why ;-) */
520 atomic_set(&fs
->count
, 1);
521 rwlock_init(&fs
->lock
);
522 fs
->umask
= old
->umask
;
523 read_lock(&old
->lock
);
524 fs
->rootmnt
= mntget(old
->rootmnt
);
525 fs
->root
= dget(old
->root
);
526 fs
->pwdmnt
= mntget(old
->pwdmnt
);
527 fs
->pwd
= dget(old
->pwd
);
529 fs
->altrootmnt
= mntget(old
->altrootmnt
);
530 fs
->altroot
= dget(old
->altroot
);
532 fs
->altrootmnt
= NULL
;
535 read_unlock(&old
->lock
);
540 struct fs_struct
*copy_fs_struct(struct fs_struct
*old
)
542 return __copy_fs_struct(old
);
545 EXPORT_SYMBOL_GPL(copy_fs_struct
);
547 static inline int copy_fs(unsigned long clone_flags
, struct task_struct
* tsk
)
549 if (clone_flags
& CLONE_FS
) {
550 atomic_inc(¤t
->fs
->count
);
553 tsk
->fs
= __copy_fs_struct(current
->fs
);
559 static int count_open_files(struct fdtable
*fdt
)
561 int size
= fdt
->max_fdset
;
564 /* Find the last open fd */
565 for (i
= size
/(8*sizeof(long)); i
> 0; ) {
566 if (fdt
->open_fds
->fds_bits
[--i
])
569 i
= (i
+1) * 8 * sizeof(long);
573 static struct files_struct
*alloc_files(void)
575 struct files_struct
*newf
;
578 newf
= kmem_cache_alloc(files_cachep
, SLAB_KERNEL
);
582 atomic_set(&newf
->count
, 1);
584 spin_lock_init(&newf
->file_lock
);
587 fdt
->max_fds
= NR_OPEN_DEFAULT
;
588 fdt
->max_fdset
= __FD_SETSIZE
;
589 fdt
->close_on_exec
= &newf
->close_on_exec_init
;
590 fdt
->open_fds
= &newf
->open_fds_init
;
591 fdt
->fd
= &newf
->fd_array
[0];
592 INIT_RCU_HEAD(&fdt
->rcu
);
593 fdt
->free_files
= NULL
;
595 rcu_assign_pointer(newf
->fdt
, fdt
);
600 static int copy_files(unsigned long clone_flags
, struct task_struct
* tsk
)
602 struct files_struct
*oldf
, *newf
;
603 struct file
**old_fds
, **new_fds
;
604 int open_files
, size
, i
, error
= 0, expand
;
605 struct fdtable
*old_fdt
, *new_fdt
;
608 * A background process may not have any files ...
610 oldf
= current
->files
;
614 if (clone_flags
& CLONE_FILES
) {
615 atomic_inc(&oldf
->count
);
620 * Note: we may be using current for both targets (See exec.c)
621 * This works because we cache current->files (old) as oldf. Don't
626 newf
= alloc_files();
630 spin_lock(&oldf
->file_lock
);
631 old_fdt
= files_fdtable(oldf
);
632 new_fdt
= files_fdtable(newf
);
633 size
= old_fdt
->max_fdset
;
634 open_files
= count_open_files(old_fdt
);
638 * Check whether we need to allocate a larger fd array or fd set.
639 * Note: we're not a clone task, so the open count won't change.
641 if (open_files
> new_fdt
->max_fdset
) {
642 new_fdt
->max_fdset
= 0;
645 if (open_files
> new_fdt
->max_fds
) {
646 new_fdt
->max_fds
= 0;
650 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
652 spin_unlock(&oldf
->file_lock
);
653 spin_lock(&newf
->file_lock
);
654 error
= expand_files(newf
, open_files
-1);
655 spin_unlock(&newf
->file_lock
);
658 new_fdt
= files_fdtable(newf
);
660 * Reacquire the oldf lock and a pointer to its fd table
661 * who knows it may have a new bigger fd table. We need
662 * the latest pointer.
664 spin_lock(&oldf
->file_lock
);
665 old_fdt
= files_fdtable(oldf
);
668 old_fds
= old_fdt
->fd
;
669 new_fds
= new_fdt
->fd
;
671 memcpy(new_fdt
->open_fds
->fds_bits
, old_fdt
->open_fds
->fds_bits
, open_files
/8);
672 memcpy(new_fdt
->close_on_exec
->fds_bits
, old_fdt
->close_on_exec
->fds_bits
, open_files
/8);
674 for (i
= open_files
; i
!= 0; i
--) {
675 struct file
*f
= *old_fds
++;
680 * The fd may be claimed in the fd bitmap but not yet
681 * instantiated in the files array if a sibling thread
682 * is partway through open(). So make sure that this
683 * fd is available to the new process.
685 FD_CLR(open_files
- i
, new_fdt
->open_fds
);
687 rcu_assign_pointer(*new_fds
++, f
);
689 spin_unlock(&oldf
->file_lock
);
691 /* compute the remainder to be cleared */
692 size
= (new_fdt
->max_fds
- open_files
) * sizeof(struct file
*);
694 /* This is long word aligned thus could use a optimized version */
695 memset(new_fds
, 0, size
);
697 if (new_fdt
->max_fdset
> open_files
) {
698 int left
= (new_fdt
->max_fdset
-open_files
)/8;
699 int start
= open_files
/ (8 * sizeof(unsigned long));
701 memset(&new_fdt
->open_fds
->fds_bits
[start
], 0, left
);
702 memset(&new_fdt
->close_on_exec
->fds_bits
[start
], 0, left
);
711 free_fdset (new_fdt
->close_on_exec
, new_fdt
->max_fdset
);
712 free_fdset (new_fdt
->open_fds
, new_fdt
->max_fdset
);
713 free_fd_array(new_fdt
->fd
, new_fdt
->max_fds
);
714 kmem_cache_free(files_cachep
, newf
);
719 * Helper to unshare the files of the current task.
720 * We don't want to expose copy_files internals to
721 * the exec layer of the kernel.
724 int unshare_files(void)
726 struct files_struct
*files
= current
->files
;
732 /* This can race but the race causes us to copy when we don't
733 need to and drop the copy */
734 if(atomic_read(&files
->count
) == 1)
736 atomic_inc(&files
->count
);
739 rc
= copy_files(0, current
);
741 current
->files
= files
;
745 EXPORT_SYMBOL(unshare_files
);
747 void sighand_free_cb(struct rcu_head
*rhp
)
749 struct sighand_struct
*sp
;
751 sp
= container_of(rhp
, struct sighand_struct
, rcu
);
752 kmem_cache_free(sighand_cachep
, sp
);
755 static inline int copy_sighand(unsigned long clone_flags
, struct task_struct
* tsk
)
757 struct sighand_struct
*sig
;
759 if (clone_flags
& (CLONE_SIGHAND
| CLONE_THREAD
)) {
760 atomic_inc(¤t
->sighand
->count
);
763 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
764 rcu_assign_pointer(tsk
->sighand
, sig
);
767 spin_lock_init(&sig
->siglock
);
768 atomic_set(&sig
->count
, 1);
769 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
773 static inline int copy_signal(unsigned long clone_flags
, struct task_struct
* tsk
)
775 struct signal_struct
*sig
;
778 if (clone_flags
& CLONE_THREAD
) {
779 atomic_inc(¤t
->signal
->count
);
780 atomic_inc(¤t
->signal
->live
);
783 sig
= kmem_cache_alloc(signal_cachep
, GFP_KERNEL
);
788 ret
= copy_thread_group_keys(tsk
);
790 kmem_cache_free(signal_cachep
, sig
);
794 atomic_set(&sig
->count
, 1);
795 atomic_set(&sig
->live
, 1);
796 init_waitqueue_head(&sig
->wait_chldexit
);
798 sig
->group_exit_code
= 0;
799 sig
->group_exit_task
= NULL
;
800 sig
->group_stop_count
= 0;
801 sig
->curr_target
= NULL
;
802 init_sigpending(&sig
->shared_pending
);
803 INIT_LIST_HEAD(&sig
->posix_timers
);
805 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
);
806 sig
->it_real_incr
.tv64
= 0;
807 sig
->real_timer
.function
= it_real_fn
;
808 sig
->real_timer
.data
= tsk
;
810 sig
->it_virt_expires
= cputime_zero
;
811 sig
->it_virt_incr
= cputime_zero
;
812 sig
->it_prof_expires
= cputime_zero
;
813 sig
->it_prof_incr
= cputime_zero
;
815 sig
->leader
= 0; /* session leadership doesn't inherit */
816 sig
->tty_old_pgrp
= 0;
818 sig
->utime
= sig
->stime
= sig
->cutime
= sig
->cstime
= cputime_zero
;
819 sig
->nvcsw
= sig
->nivcsw
= sig
->cnvcsw
= sig
->cnivcsw
= 0;
820 sig
->min_flt
= sig
->maj_flt
= sig
->cmin_flt
= sig
->cmaj_flt
= 0;
822 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
823 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
824 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
826 task_lock(current
->group_leader
);
827 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
828 task_unlock(current
->group_leader
);
830 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
832 * New sole thread in the process gets an expiry time
833 * of the whole CPU time limit.
835 tsk
->it_prof_expires
=
836 secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
842 static inline void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
844 unsigned long new_flags
= p
->flags
;
846 new_flags
&= ~(PF_SUPERPRIV
| PF_NOFREEZE
);
847 new_flags
|= PF_FORKNOEXEC
;
848 if (!(clone_flags
& CLONE_PTRACE
))
850 p
->flags
= new_flags
;
853 asmlinkage
long sys_set_tid_address(int __user
*tidptr
)
855 current
->clear_child_tid
= tidptr
;
861 * This creates a new process as a copy of the old one,
862 * but does not actually start it yet.
864 * It copies the registers, and all the appropriate
865 * parts of the process environment (as per the clone
866 * flags). The actual kick-off is left to the caller.
868 static task_t
*copy_process(unsigned long clone_flags
,
869 unsigned long stack_start
,
870 struct pt_regs
*regs
,
871 unsigned long stack_size
,
872 int __user
*parent_tidptr
,
873 int __user
*child_tidptr
,
877 struct task_struct
*p
= NULL
;
879 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
880 return ERR_PTR(-EINVAL
);
883 * Thread groups must share signals as well, and detached threads
884 * can only be started up within the thread group.
886 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
887 return ERR_PTR(-EINVAL
);
890 * Shared signal handlers imply shared VM. By way of the above,
891 * thread groups also imply shared VM. Blocking this case allows
892 * for various simplifications in other code.
894 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
895 return ERR_PTR(-EINVAL
);
897 retval
= security_task_create(clone_flags
);
902 p
= dup_task_struct(current
);
907 if (atomic_read(&p
->user
->processes
) >=
908 p
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
) {
909 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
910 p
->user
!= &root_user
)
914 atomic_inc(&p
->user
->__count
);
915 atomic_inc(&p
->user
->processes
);
916 get_group_info(p
->group_info
);
919 * If multiple threads are within copy_process(), then this check
920 * triggers too late. This doesn't hurt, the check is only there
921 * to stop root fork bombs.
923 if (nr_threads
>= max_threads
)
924 goto bad_fork_cleanup_count
;
926 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
927 goto bad_fork_cleanup_count
;
929 if (p
->binfmt
&& !try_module_get(p
->binfmt
->module
))
930 goto bad_fork_cleanup_put_domain
;
933 copy_flags(clone_flags
, p
);
936 if (clone_flags
& CLONE_PARENT_SETTID
)
937 if (put_user(p
->pid
, parent_tidptr
))
938 goto bad_fork_cleanup
;
940 p
->proc_dentry
= NULL
;
942 INIT_LIST_HEAD(&p
->children
);
943 INIT_LIST_HEAD(&p
->sibling
);
944 p
->vfork_done
= NULL
;
945 spin_lock_init(&p
->alloc_lock
);
946 spin_lock_init(&p
->proc_lock
);
948 clear_tsk_thread_flag(p
, TIF_SIGPENDING
);
949 init_sigpending(&p
->pending
);
951 p
->utime
= cputime_zero
;
952 p
->stime
= cputime_zero
;
954 p
->rchar
= 0; /* I/O counter: bytes read */
955 p
->wchar
= 0; /* I/O counter: bytes written */
956 p
->syscr
= 0; /* I/O counter: read syscalls */
957 p
->syscw
= 0; /* I/O counter: write syscalls */
958 acct_clear_integrals(p
);
960 p
->it_virt_expires
= cputime_zero
;
961 p
->it_prof_expires
= cputime_zero
;
962 p
->it_sched_expires
= 0;
963 INIT_LIST_HEAD(&p
->cpu_timers
[0]);
964 INIT_LIST_HEAD(&p
->cpu_timers
[1]);
965 INIT_LIST_HEAD(&p
->cpu_timers
[2]);
967 p
->lock_depth
= -1; /* -1 = no lock */
968 do_posix_clock_monotonic_gettime(&p
->start_time
);
970 p
->io_context
= NULL
;
972 p
->audit_context
= NULL
;
975 p
->mempolicy
= mpol_copy(p
->mempolicy
);
976 if (IS_ERR(p
->mempolicy
)) {
977 retval
= PTR_ERR(p
->mempolicy
);
979 goto bad_fork_cleanup_cpuset
;
983 #ifdef CONFIG_DEBUG_MUTEXES
984 p
->blocked_on
= NULL
; /* not blocked yet */
988 if (clone_flags
& CLONE_THREAD
)
989 p
->tgid
= current
->tgid
;
991 if ((retval
= security_task_alloc(p
)))
992 goto bad_fork_cleanup_policy
;
993 if ((retval
= audit_alloc(p
)))
994 goto bad_fork_cleanup_security
;
995 /* copy all the process information */
996 if ((retval
= copy_semundo(clone_flags
, p
)))
997 goto bad_fork_cleanup_audit
;
998 if ((retval
= copy_files(clone_flags
, p
)))
999 goto bad_fork_cleanup_semundo
;
1000 if ((retval
= copy_fs(clone_flags
, p
)))
1001 goto bad_fork_cleanup_files
;
1002 if ((retval
= copy_sighand(clone_flags
, p
)))
1003 goto bad_fork_cleanup_fs
;
1004 if ((retval
= copy_signal(clone_flags
, p
)))
1005 goto bad_fork_cleanup_sighand
;
1006 if ((retval
= copy_mm(clone_flags
, p
)))
1007 goto bad_fork_cleanup_signal
;
1008 if ((retval
= copy_keys(clone_flags
, p
)))
1009 goto bad_fork_cleanup_mm
;
1010 if ((retval
= copy_namespace(clone_flags
, p
)))
1011 goto bad_fork_cleanup_keys
;
1012 retval
= copy_thread(0, clone_flags
, stack_start
, stack_size
, p
, regs
);
1014 goto bad_fork_cleanup_namespace
;
1016 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1018 * Clear TID on mm_release()?
1020 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1023 * Syscall tracing should be turned off in the child regardless
1026 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1027 #ifdef TIF_SYSCALL_EMU
1028 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1031 /* Our parent execution domain becomes current domain
1032 These must match for thread signalling to apply */
1034 p
->parent_exec_id
= p
->self_exec_id
;
1036 /* ok, now we should be set up.. */
1037 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1038 p
->pdeath_signal
= 0;
1042 * Ok, make it visible to the rest of the system.
1043 * We dont wake it up yet.
1045 p
->group_leader
= p
;
1046 INIT_LIST_HEAD(&p
->ptrace_children
);
1047 INIT_LIST_HEAD(&p
->ptrace_list
);
1049 /* Perform scheduler related setup. Assign this task to a CPU. */
1050 sched_fork(p
, clone_flags
);
1052 /* Need tasklist lock for parent etc handling! */
1053 write_lock_irq(&tasklist_lock
);
1056 * The task hasn't been attached yet, so its cpus_allowed mask will
1057 * not be changed, nor will its assigned CPU.
1059 * The cpus_allowed mask of the parent may have changed after it was
1060 * copied first time - so re-copy it here, then check the child's CPU
1061 * to ensure it is on a valid CPU (and if not, just force it back to
1062 * parent's CPU). This avoids alot of nasty races.
1064 p
->cpus_allowed
= current
->cpus_allowed
;
1065 if (unlikely(!cpu_isset(task_cpu(p
), p
->cpus_allowed
) ||
1066 !cpu_online(task_cpu(p
))))
1067 set_task_cpu(p
, smp_processor_id());
1070 * Check for pending SIGKILL! The new thread should not be allowed
1071 * to slip out of an OOM kill. (or normal SIGKILL.)
1073 if (sigismember(¤t
->pending
.signal
, SIGKILL
)) {
1074 write_unlock_irq(&tasklist_lock
);
1076 goto bad_fork_cleanup_namespace
;
1079 /* CLONE_PARENT re-uses the old parent */
1080 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
))
1081 p
->real_parent
= current
->real_parent
;
1083 p
->real_parent
= current
;
1084 p
->parent
= p
->real_parent
;
1086 if (clone_flags
& CLONE_THREAD
) {
1087 spin_lock(¤t
->sighand
->siglock
);
1089 * Important: if an exit-all has been started then
1090 * do not create this new thread - the whole thread
1091 * group is supposed to exit anyway.
1093 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
) {
1094 spin_unlock(¤t
->sighand
->siglock
);
1095 write_unlock_irq(&tasklist_lock
);
1097 goto bad_fork_cleanup_namespace
;
1099 p
->group_leader
= current
->group_leader
;
1101 if (current
->signal
->group_stop_count
> 0) {
1103 * There is an all-stop in progress for the group.
1104 * We ourselves will stop as soon as we check signals.
1105 * Make the new thread part of that group stop too.
1107 current
->signal
->group_stop_count
++;
1108 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1111 if (!cputime_eq(current
->signal
->it_virt_expires
,
1113 !cputime_eq(current
->signal
->it_prof_expires
,
1115 current
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
||
1116 !list_empty(¤t
->signal
->cpu_timers
[0]) ||
1117 !list_empty(¤t
->signal
->cpu_timers
[1]) ||
1118 !list_empty(¤t
->signal
->cpu_timers
[2])) {
1120 * Have child wake up on its first tick to check
1121 * for process CPU timers.
1123 p
->it_prof_expires
= jiffies_to_cputime(1);
1126 spin_unlock(¤t
->sighand
->siglock
);
1132 p
->ioprio
= current
->ioprio
;
1135 if (unlikely(p
->ptrace
& PT_PTRACED
))
1136 __ptrace_link(p
, current
->parent
);
1138 attach_pid(p
, PIDTYPE_PID
, p
->pid
);
1139 attach_pid(p
, PIDTYPE_TGID
, p
->tgid
);
1140 if (thread_group_leader(p
)) {
1141 p
->signal
->tty
= current
->signal
->tty
;
1142 p
->signal
->pgrp
= process_group(current
);
1143 p
->signal
->session
= current
->signal
->session
;
1144 attach_pid(p
, PIDTYPE_PGID
, process_group(p
));
1145 attach_pid(p
, PIDTYPE_SID
, p
->signal
->session
);
1147 __get_cpu_var(process_counts
)++;
1152 write_unlock_irq(&tasklist_lock
);
1153 proc_fork_connector(p
);
1156 bad_fork_cleanup_namespace
:
1158 bad_fork_cleanup_keys
:
1160 bad_fork_cleanup_mm
:
1163 bad_fork_cleanup_signal
:
1165 bad_fork_cleanup_sighand
:
1167 bad_fork_cleanup_fs
:
1168 exit_fs(p
); /* blocking */
1169 bad_fork_cleanup_files
:
1170 exit_files(p
); /* blocking */
1171 bad_fork_cleanup_semundo
:
1173 bad_fork_cleanup_audit
:
1175 bad_fork_cleanup_security
:
1176 security_task_free(p
);
1177 bad_fork_cleanup_policy
:
1179 mpol_free(p
->mempolicy
);
1180 bad_fork_cleanup_cpuset
:
1185 module_put(p
->binfmt
->module
);
1186 bad_fork_cleanup_put_domain
:
1187 module_put(task_thread_info(p
)->exec_domain
->module
);
1188 bad_fork_cleanup_count
:
1189 put_group_info(p
->group_info
);
1190 atomic_dec(&p
->user
->processes
);
1195 return ERR_PTR(retval
);
1198 struct pt_regs
* __devinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1200 memset(regs
, 0, sizeof(struct pt_regs
));
1204 task_t
* __devinit
fork_idle(int cpu
)
1207 struct pt_regs regs
;
1209 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
, NULL
, 0);
1211 return ERR_PTR(-ENOMEM
);
1212 init_idle(task
, cpu
);
1213 unhash_process(task
);
1217 static inline int fork_traceflag (unsigned clone_flags
)
1219 if (clone_flags
& CLONE_UNTRACED
)
1221 else if (clone_flags
& CLONE_VFORK
) {
1222 if (current
->ptrace
& PT_TRACE_VFORK
)
1223 return PTRACE_EVENT_VFORK
;
1224 } else if ((clone_flags
& CSIGNAL
) != SIGCHLD
) {
1225 if (current
->ptrace
& PT_TRACE_CLONE
)
1226 return PTRACE_EVENT_CLONE
;
1227 } else if (current
->ptrace
& PT_TRACE_FORK
)
1228 return PTRACE_EVENT_FORK
;
1234 * Ok, this is the main fork-routine.
1236 * It copies the process, and if successful kick-starts
1237 * it and waits for it to finish using the VM if required.
1239 long do_fork(unsigned long clone_flags
,
1240 unsigned long stack_start
,
1241 struct pt_regs
*regs
,
1242 unsigned long stack_size
,
1243 int __user
*parent_tidptr
,
1244 int __user
*child_tidptr
)
1246 struct task_struct
*p
;
1248 long pid
= alloc_pidmap();
1252 if (unlikely(current
->ptrace
)) {
1253 trace
= fork_traceflag (clone_flags
);
1255 clone_flags
|= CLONE_PTRACE
;
1258 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
, parent_tidptr
, child_tidptr
, pid
);
1260 * Do this prior waking up the new thread - the thread pointer
1261 * might get invalid after that point, if the thread exits quickly.
1264 struct completion vfork
;
1266 if (clone_flags
& CLONE_VFORK
) {
1267 p
->vfork_done
= &vfork
;
1268 init_completion(&vfork
);
1271 if ((p
->ptrace
& PT_PTRACED
) || (clone_flags
& CLONE_STOPPED
)) {
1273 * We'll start up with an immediate SIGSTOP.
1275 sigaddset(&p
->pending
.signal
, SIGSTOP
);
1276 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1279 if (!(clone_flags
& CLONE_STOPPED
))
1280 wake_up_new_task(p
, clone_flags
);
1282 p
->state
= TASK_STOPPED
;
1284 if (unlikely (trace
)) {
1285 current
->ptrace_message
= pid
;
1286 ptrace_notify ((trace
<< 8) | SIGTRAP
);
1289 if (clone_flags
& CLONE_VFORK
) {
1290 wait_for_completion(&vfork
);
1291 if (unlikely (current
->ptrace
& PT_TRACE_VFORK_DONE
))
1292 ptrace_notify ((PTRACE_EVENT_VFORK_DONE
<< 8) | SIGTRAP
);
1301 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1302 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1305 void __init
proc_caches_init(void)
1307 sighand_cachep
= kmem_cache_create("sighand_cache",
1308 sizeof(struct sighand_struct
), 0,
1309 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1310 signal_cachep
= kmem_cache_create("signal_cache",
1311 sizeof(struct signal_struct
), 0,
1312 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1313 files_cachep
= kmem_cache_create("files_cache",
1314 sizeof(struct files_struct
), 0,
1315 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1316 fs_cachep
= kmem_cache_create("fs_cache",
1317 sizeof(struct fs_struct
), 0,
1318 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1319 vm_area_cachep
= kmem_cache_create("vm_area_struct",
1320 sizeof(struct vm_area_struct
), 0,
1321 SLAB_PANIC
, NULL
, NULL
);
1322 mm_cachep
= kmem_cache_create("mm_struct",
1323 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1324 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);