[SCSI] mptfc: abort of board reset leaves port dead requiring reboot
[linux-2.6/mini2440.git] / mm / shmem.c
blob4c5e68e4e9aed7fcf6b31a88d240046ffeb0f899
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/config.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/devfs_fs_kernel.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/file.h>
34 #include <linux/swap.h>
35 #include <linux/pagemap.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/backing-dev.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/mount.h>
41 #include <linux/writeback.h>
42 #include <linux/vfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/security.h>
45 #include <linux/swapops.h>
46 #include <linux/mempolicy.h>
47 #include <linux/namei.h>
48 #include <linux/ctype.h>
49 #include <linux/migrate.h>
51 #include <asm/uaccess.h>
52 #include <asm/div64.h>
53 #include <asm/pgtable.h>
55 /* This magic number is used in glibc for posix shared memory */
56 #define TMPFS_MAGIC 0x01021994
58 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
59 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
60 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
62 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
63 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
65 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
67 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
68 #define SHMEM_PAGEIN VM_READ
69 #define SHMEM_TRUNCATE VM_WRITE
71 /* Definition to limit shmem_truncate's steps between cond_rescheds */
72 #define LATENCY_LIMIT 64
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
77 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
78 enum sgp_type {
79 SGP_QUICK, /* don't try more than file page cache lookup */
80 SGP_READ, /* don't exceed i_size, don't allocate page */
81 SGP_CACHE, /* don't exceed i_size, may allocate page */
82 SGP_WRITE, /* may exceed i_size, may allocate page */
85 static int shmem_getpage(struct inode *inode, unsigned long idx,
86 struct page **pagep, enum sgp_type sgp, int *type);
88 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
91 * The above definition of ENTRIES_PER_PAGE, and the use of
92 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
93 * might be reconsidered if it ever diverges from PAGE_SIZE.
95 return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
98 static inline void shmem_dir_free(struct page *page)
100 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
103 static struct page **shmem_dir_map(struct page *page)
105 return (struct page **)kmap_atomic(page, KM_USER0);
108 static inline void shmem_dir_unmap(struct page **dir)
110 kunmap_atomic(dir, KM_USER0);
113 static swp_entry_t *shmem_swp_map(struct page *page)
115 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
118 static inline void shmem_swp_balance_unmap(void)
121 * When passing a pointer to an i_direct entry, to code which
122 * also handles indirect entries and so will shmem_swp_unmap,
123 * we must arrange for the preempt count to remain in balance.
124 * What kmap_atomic of a lowmem page does depends on config
125 * and architecture, so pretend to kmap_atomic some lowmem page.
127 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
130 static inline void shmem_swp_unmap(swp_entry_t *entry)
132 kunmap_atomic(entry, KM_USER1);
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 return sb->s_fs_info;
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 return (flags & VM_ACCOUNT)?
149 security_vm_enough_memory(VM_ACCT(size)): 0;
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 if (flags & VM_ACCOUNT)
155 vm_unacct_memory(VM_ACCT(size));
159 * ... whereas tmpfs objects are accounted incrementally as
160 * pages are allocated, in order to allow huge sparse files.
161 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
162 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
164 static inline int shmem_acct_block(unsigned long flags)
166 return (flags & VM_ACCOUNT)?
167 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
170 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
172 if (!(flags & VM_ACCOUNT))
173 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
176 static struct super_operations shmem_ops;
177 static struct address_space_operations shmem_aops;
178 static struct file_operations shmem_file_operations;
179 static struct inode_operations shmem_inode_operations;
180 static struct inode_operations shmem_dir_inode_operations;
181 static struct vm_operations_struct shmem_vm_ops;
183 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
184 .ra_pages = 0, /* No readahead */
185 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
186 .unplug_io_fn = default_unplug_io_fn,
189 static LIST_HEAD(shmem_swaplist);
190 static DEFINE_SPINLOCK(shmem_swaplist_lock);
192 static void shmem_free_blocks(struct inode *inode, long pages)
194 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
195 if (sbinfo->max_blocks) {
196 spin_lock(&sbinfo->stat_lock);
197 sbinfo->free_blocks += pages;
198 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
199 spin_unlock(&sbinfo->stat_lock);
204 * shmem_recalc_inode - recalculate the size of an inode
206 * @inode: inode to recalc
208 * We have to calculate the free blocks since the mm can drop
209 * undirtied hole pages behind our back.
211 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
212 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
214 * It has to be called with the spinlock held.
216 static void shmem_recalc_inode(struct inode *inode)
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 long freed;
221 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
222 if (freed > 0) {
223 info->alloced -= freed;
224 shmem_unacct_blocks(info->flags, freed);
225 shmem_free_blocks(inode, freed);
230 * shmem_swp_entry - find the swap vector position in the info structure
232 * @info: info structure for the inode
233 * @index: index of the page to find
234 * @page: optional page to add to the structure. Has to be preset to
235 * all zeros
237 * If there is no space allocated yet it will return NULL when
238 * page is NULL, else it will use the page for the needed block,
239 * setting it to NULL on return to indicate that it has been used.
241 * The swap vector is organized the following way:
243 * There are SHMEM_NR_DIRECT entries directly stored in the
244 * shmem_inode_info structure. So small files do not need an addional
245 * allocation.
247 * For pages with index > SHMEM_NR_DIRECT there is the pointer
248 * i_indirect which points to a page which holds in the first half
249 * doubly indirect blocks, in the second half triple indirect blocks:
251 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
252 * following layout (for SHMEM_NR_DIRECT == 16):
254 * i_indirect -> dir --> 16-19
255 * | +-> 20-23
257 * +-->dir2 --> 24-27
258 * | +-> 28-31
259 * | +-> 32-35
260 * | +-> 36-39
262 * +-->dir3 --> 40-43
263 * +-> 44-47
264 * +-> 48-51
265 * +-> 52-55
267 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
269 unsigned long offset;
270 struct page **dir;
271 struct page *subdir;
273 if (index < SHMEM_NR_DIRECT) {
274 shmem_swp_balance_unmap();
275 return info->i_direct+index;
277 if (!info->i_indirect) {
278 if (page) {
279 info->i_indirect = *page;
280 *page = NULL;
282 return NULL; /* need another page */
285 index -= SHMEM_NR_DIRECT;
286 offset = index % ENTRIES_PER_PAGE;
287 index /= ENTRIES_PER_PAGE;
288 dir = shmem_dir_map(info->i_indirect);
290 if (index >= ENTRIES_PER_PAGE/2) {
291 index -= ENTRIES_PER_PAGE/2;
292 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
293 index %= ENTRIES_PER_PAGE;
294 subdir = *dir;
295 if (!subdir) {
296 if (page) {
297 *dir = *page;
298 *page = NULL;
300 shmem_dir_unmap(dir);
301 return NULL; /* need another page */
303 shmem_dir_unmap(dir);
304 dir = shmem_dir_map(subdir);
307 dir += index;
308 subdir = *dir;
309 if (!subdir) {
310 if (!page || !(subdir = *page)) {
311 shmem_dir_unmap(dir);
312 return NULL; /* need a page */
314 *dir = subdir;
315 *page = NULL;
317 shmem_dir_unmap(dir);
318 return shmem_swp_map(subdir) + offset;
321 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
323 long incdec = value? 1: -1;
325 entry->val = value;
326 info->swapped += incdec;
327 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
328 struct page *page = kmap_atomic_to_page(entry);
329 set_page_private(page, page_private(page) + incdec);
334 * shmem_swp_alloc - get the position of the swap entry for the page.
335 * If it does not exist allocate the entry.
337 * @info: info structure for the inode
338 * @index: index of the page to find
339 * @sgp: check and recheck i_size? skip allocation?
341 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
343 struct inode *inode = &info->vfs_inode;
344 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
345 struct page *page = NULL;
346 swp_entry_t *entry;
348 if (sgp != SGP_WRITE &&
349 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
350 return ERR_PTR(-EINVAL);
352 while (!(entry = shmem_swp_entry(info, index, &page))) {
353 if (sgp == SGP_READ)
354 return shmem_swp_map(ZERO_PAGE(0));
356 * Test free_blocks against 1 not 0, since we have 1 data
357 * page (and perhaps indirect index pages) yet to allocate:
358 * a waste to allocate index if we cannot allocate data.
360 if (sbinfo->max_blocks) {
361 spin_lock(&sbinfo->stat_lock);
362 if (sbinfo->free_blocks <= 1) {
363 spin_unlock(&sbinfo->stat_lock);
364 return ERR_PTR(-ENOSPC);
366 sbinfo->free_blocks--;
367 inode->i_blocks += BLOCKS_PER_PAGE;
368 spin_unlock(&sbinfo->stat_lock);
371 spin_unlock(&info->lock);
372 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
373 if (page)
374 set_page_private(page, 0);
375 spin_lock(&info->lock);
377 if (!page) {
378 shmem_free_blocks(inode, 1);
379 return ERR_PTR(-ENOMEM);
381 if (sgp != SGP_WRITE &&
382 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
383 entry = ERR_PTR(-EINVAL);
384 break;
386 if (info->next_index <= index)
387 info->next_index = index + 1;
389 if (page) {
390 /* another task gave its page, or truncated the file */
391 shmem_free_blocks(inode, 1);
392 shmem_dir_free(page);
394 if (info->next_index <= index && !IS_ERR(entry))
395 info->next_index = index + 1;
396 return entry;
400 * shmem_free_swp - free some swap entries in a directory
402 * @dir: pointer to the directory
403 * @edir: pointer after last entry of the directory
405 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
407 swp_entry_t *ptr;
408 int freed = 0;
410 for (ptr = dir; ptr < edir; ptr++) {
411 if (ptr->val) {
412 free_swap_and_cache(*ptr);
413 *ptr = (swp_entry_t){0};
414 freed++;
417 return freed;
420 static int shmem_map_and_free_swp(struct page *subdir,
421 int offset, int limit, struct page ***dir)
423 swp_entry_t *ptr;
424 int freed = 0;
426 ptr = shmem_swp_map(subdir);
427 for (; offset < limit; offset += LATENCY_LIMIT) {
428 int size = limit - offset;
429 if (size > LATENCY_LIMIT)
430 size = LATENCY_LIMIT;
431 freed += shmem_free_swp(ptr+offset, ptr+offset+size);
432 if (need_resched()) {
433 shmem_swp_unmap(ptr);
434 if (*dir) {
435 shmem_dir_unmap(*dir);
436 *dir = NULL;
438 cond_resched();
439 ptr = shmem_swp_map(subdir);
442 shmem_swp_unmap(ptr);
443 return freed;
446 static void shmem_free_pages(struct list_head *next)
448 struct page *page;
449 int freed = 0;
451 do {
452 page = container_of(next, struct page, lru);
453 next = next->next;
454 shmem_dir_free(page);
455 freed++;
456 if (freed >= LATENCY_LIMIT) {
457 cond_resched();
458 freed = 0;
460 } while (next);
463 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
465 struct shmem_inode_info *info = SHMEM_I(inode);
466 unsigned long idx;
467 unsigned long size;
468 unsigned long limit;
469 unsigned long stage;
470 unsigned long diroff;
471 struct page **dir;
472 struct page *topdir;
473 struct page *middir;
474 struct page *subdir;
475 swp_entry_t *ptr;
476 LIST_HEAD(pages_to_free);
477 long nr_pages_to_free = 0;
478 long nr_swaps_freed = 0;
479 int offset;
480 int freed;
481 int punch_hole = 0;
483 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
484 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
485 if (idx >= info->next_index)
486 return;
488 spin_lock(&info->lock);
489 info->flags |= SHMEM_TRUNCATE;
490 if (likely(end == (loff_t) -1)) {
491 limit = info->next_index;
492 info->next_index = idx;
493 } else {
494 limit = (end + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
495 if (limit > info->next_index)
496 limit = info->next_index;
497 punch_hole = 1;
500 topdir = info->i_indirect;
501 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
502 info->i_indirect = NULL;
503 nr_pages_to_free++;
504 list_add(&topdir->lru, &pages_to_free);
506 spin_unlock(&info->lock);
508 if (info->swapped && idx < SHMEM_NR_DIRECT) {
509 ptr = info->i_direct;
510 size = limit;
511 if (size > SHMEM_NR_DIRECT)
512 size = SHMEM_NR_DIRECT;
513 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
515 if (!topdir)
516 goto done2;
518 BUG_ON(limit <= SHMEM_NR_DIRECT);
519 limit -= SHMEM_NR_DIRECT;
520 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
521 offset = idx % ENTRIES_PER_PAGE;
522 idx -= offset;
524 dir = shmem_dir_map(topdir);
525 stage = ENTRIES_PER_PAGEPAGE/2;
526 if (idx < ENTRIES_PER_PAGEPAGE/2) {
527 middir = topdir;
528 diroff = idx/ENTRIES_PER_PAGE;
529 } else {
530 dir += ENTRIES_PER_PAGE/2;
531 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
532 while (stage <= idx)
533 stage += ENTRIES_PER_PAGEPAGE;
534 middir = *dir;
535 if (*dir) {
536 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
537 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
538 if (!diroff && !offset) {
539 *dir = NULL;
540 nr_pages_to_free++;
541 list_add(&middir->lru, &pages_to_free);
543 shmem_dir_unmap(dir);
544 dir = shmem_dir_map(middir);
545 } else {
546 diroff = 0;
547 offset = 0;
548 idx = stage;
552 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
553 if (unlikely(idx == stage)) {
554 shmem_dir_unmap(dir);
555 dir = shmem_dir_map(topdir) +
556 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
557 while (!*dir) {
558 dir++;
559 idx += ENTRIES_PER_PAGEPAGE;
560 if (idx >= limit)
561 goto done1;
563 stage = idx + ENTRIES_PER_PAGEPAGE;
564 middir = *dir;
565 *dir = NULL;
566 nr_pages_to_free++;
567 list_add(&middir->lru, &pages_to_free);
568 shmem_dir_unmap(dir);
569 cond_resched();
570 dir = shmem_dir_map(middir);
571 diroff = 0;
573 subdir = dir[diroff];
574 if (subdir && page_private(subdir)) {
575 size = limit - idx;
576 if (size > ENTRIES_PER_PAGE)
577 size = ENTRIES_PER_PAGE;
578 freed = shmem_map_and_free_swp(subdir,
579 offset, size, &dir);
580 if (!dir)
581 dir = shmem_dir_map(middir);
582 nr_swaps_freed += freed;
583 if (offset)
584 spin_lock(&info->lock);
585 set_page_private(subdir, page_private(subdir) - freed);
586 if (offset)
587 spin_unlock(&info->lock);
588 if (!punch_hole)
589 BUG_ON(page_private(subdir) > offset);
591 if (offset)
592 offset = 0;
593 else if (subdir && !page_private(subdir)) {
594 dir[diroff] = NULL;
595 nr_pages_to_free++;
596 list_add(&subdir->lru, &pages_to_free);
599 done1:
600 shmem_dir_unmap(dir);
601 done2:
602 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
604 * Call truncate_inode_pages again: racing shmem_unuse_inode
605 * may have swizzled a page in from swap since vmtruncate or
606 * generic_delete_inode did it, before we lowered next_index.
607 * Also, though shmem_getpage checks i_size before adding to
608 * cache, no recheck after: so fix the narrow window there too.
610 truncate_inode_pages_range(inode->i_mapping, start, end);
613 spin_lock(&info->lock);
614 info->flags &= ~SHMEM_TRUNCATE;
615 info->swapped -= nr_swaps_freed;
616 if (nr_pages_to_free)
617 shmem_free_blocks(inode, nr_pages_to_free);
618 shmem_recalc_inode(inode);
619 spin_unlock(&info->lock);
622 * Empty swap vector directory pages to be freed?
624 if (!list_empty(&pages_to_free)) {
625 pages_to_free.prev->next = NULL;
626 shmem_free_pages(pages_to_free.next);
630 static void shmem_truncate(struct inode *inode)
632 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
635 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
637 struct inode *inode = dentry->d_inode;
638 struct page *page = NULL;
639 int error;
641 if (attr->ia_valid & ATTR_SIZE) {
642 if (attr->ia_size < inode->i_size) {
644 * If truncating down to a partial page, then
645 * if that page is already allocated, hold it
646 * in memory until the truncation is over, so
647 * truncate_partial_page cannnot miss it were
648 * it assigned to swap.
650 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
651 (void) shmem_getpage(inode,
652 attr->ia_size>>PAGE_CACHE_SHIFT,
653 &page, SGP_READ, NULL);
656 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
657 * detect if any pages might have been added to cache
658 * after truncate_inode_pages. But we needn't bother
659 * if it's being fully truncated to zero-length: the
660 * nrpages check is efficient enough in that case.
662 if (attr->ia_size) {
663 struct shmem_inode_info *info = SHMEM_I(inode);
664 spin_lock(&info->lock);
665 info->flags &= ~SHMEM_PAGEIN;
666 spin_unlock(&info->lock);
671 error = inode_change_ok(inode, attr);
672 if (!error)
673 error = inode_setattr(inode, attr);
674 if (page)
675 page_cache_release(page);
676 return error;
679 static void shmem_delete_inode(struct inode *inode)
681 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
682 struct shmem_inode_info *info = SHMEM_I(inode);
684 if (inode->i_op->truncate == shmem_truncate) {
685 truncate_inode_pages(inode->i_mapping, 0);
686 shmem_unacct_size(info->flags, inode->i_size);
687 inode->i_size = 0;
688 shmem_truncate(inode);
689 if (!list_empty(&info->swaplist)) {
690 spin_lock(&shmem_swaplist_lock);
691 list_del_init(&info->swaplist);
692 spin_unlock(&shmem_swaplist_lock);
695 BUG_ON(inode->i_blocks);
696 if (sbinfo->max_inodes) {
697 spin_lock(&sbinfo->stat_lock);
698 sbinfo->free_inodes++;
699 spin_unlock(&sbinfo->stat_lock);
701 clear_inode(inode);
704 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
706 swp_entry_t *ptr;
708 for (ptr = dir; ptr < edir; ptr++) {
709 if (ptr->val == entry.val)
710 return ptr - dir;
712 return -1;
715 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
717 struct inode *inode;
718 unsigned long idx;
719 unsigned long size;
720 unsigned long limit;
721 unsigned long stage;
722 struct page **dir;
723 struct page *subdir;
724 swp_entry_t *ptr;
725 int offset;
727 idx = 0;
728 ptr = info->i_direct;
729 spin_lock(&info->lock);
730 limit = info->next_index;
731 size = limit;
732 if (size > SHMEM_NR_DIRECT)
733 size = SHMEM_NR_DIRECT;
734 offset = shmem_find_swp(entry, ptr, ptr+size);
735 if (offset >= 0) {
736 shmem_swp_balance_unmap();
737 goto found;
739 if (!info->i_indirect)
740 goto lost2;
742 dir = shmem_dir_map(info->i_indirect);
743 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
745 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
746 if (unlikely(idx == stage)) {
747 shmem_dir_unmap(dir-1);
748 dir = shmem_dir_map(info->i_indirect) +
749 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
750 while (!*dir) {
751 dir++;
752 idx += ENTRIES_PER_PAGEPAGE;
753 if (idx >= limit)
754 goto lost1;
756 stage = idx + ENTRIES_PER_PAGEPAGE;
757 subdir = *dir;
758 shmem_dir_unmap(dir);
759 dir = shmem_dir_map(subdir);
761 subdir = *dir;
762 if (subdir && page_private(subdir)) {
763 ptr = shmem_swp_map(subdir);
764 size = limit - idx;
765 if (size > ENTRIES_PER_PAGE)
766 size = ENTRIES_PER_PAGE;
767 offset = shmem_find_swp(entry, ptr, ptr+size);
768 if (offset >= 0) {
769 shmem_dir_unmap(dir);
770 goto found;
772 shmem_swp_unmap(ptr);
775 lost1:
776 shmem_dir_unmap(dir-1);
777 lost2:
778 spin_unlock(&info->lock);
779 return 0;
780 found:
781 idx += offset;
782 inode = &info->vfs_inode;
783 if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
784 info->flags |= SHMEM_PAGEIN;
785 shmem_swp_set(info, ptr + offset, 0);
787 shmem_swp_unmap(ptr);
788 spin_unlock(&info->lock);
790 * Decrement swap count even when the entry is left behind:
791 * try_to_unuse will skip over mms, then reincrement count.
793 swap_free(entry);
794 return 1;
798 * shmem_unuse() search for an eventually swapped out shmem page.
800 int shmem_unuse(swp_entry_t entry, struct page *page)
802 struct list_head *p, *next;
803 struct shmem_inode_info *info;
804 int found = 0;
806 spin_lock(&shmem_swaplist_lock);
807 list_for_each_safe(p, next, &shmem_swaplist) {
808 info = list_entry(p, struct shmem_inode_info, swaplist);
809 if (!info->swapped)
810 list_del_init(&info->swaplist);
811 else if (shmem_unuse_inode(info, entry, page)) {
812 /* move head to start search for next from here */
813 list_move_tail(&shmem_swaplist, &info->swaplist);
814 found = 1;
815 break;
818 spin_unlock(&shmem_swaplist_lock);
819 return found;
823 * Move the page from the page cache to the swap cache.
825 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
827 struct shmem_inode_info *info;
828 swp_entry_t *entry, swap;
829 struct address_space *mapping;
830 unsigned long index;
831 struct inode *inode;
833 BUG_ON(!PageLocked(page));
834 BUG_ON(page_mapped(page));
836 mapping = page->mapping;
837 index = page->index;
838 inode = mapping->host;
839 info = SHMEM_I(inode);
840 if (info->flags & VM_LOCKED)
841 goto redirty;
842 swap = get_swap_page();
843 if (!swap.val)
844 goto redirty;
846 spin_lock(&info->lock);
847 shmem_recalc_inode(inode);
848 if (index >= info->next_index) {
849 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
850 goto unlock;
852 entry = shmem_swp_entry(info, index, NULL);
853 BUG_ON(!entry);
854 BUG_ON(entry->val);
856 if (move_to_swap_cache(page, swap) == 0) {
857 shmem_swp_set(info, entry, swap.val);
858 shmem_swp_unmap(entry);
859 spin_unlock(&info->lock);
860 if (list_empty(&info->swaplist)) {
861 spin_lock(&shmem_swaplist_lock);
862 /* move instead of add in case we're racing */
863 list_move_tail(&info->swaplist, &shmem_swaplist);
864 spin_unlock(&shmem_swaplist_lock);
866 unlock_page(page);
867 return 0;
870 shmem_swp_unmap(entry);
871 unlock:
872 spin_unlock(&info->lock);
873 swap_free(swap);
874 redirty:
875 set_page_dirty(page);
876 return AOP_WRITEPAGE_ACTIVATE; /* Return with the page locked */
879 #ifdef CONFIG_NUMA
880 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
882 char *nodelist = strchr(value, ':');
883 int err = 1;
885 if (nodelist) {
886 /* NUL-terminate policy string */
887 *nodelist++ = '\0';
888 if (nodelist_parse(nodelist, *policy_nodes))
889 goto out;
891 if (!strcmp(value, "default")) {
892 *policy = MPOL_DEFAULT;
893 /* Don't allow a nodelist */
894 if (!nodelist)
895 err = 0;
896 } else if (!strcmp(value, "prefer")) {
897 *policy = MPOL_PREFERRED;
898 /* Insist on a nodelist of one node only */
899 if (nodelist) {
900 char *rest = nodelist;
901 while (isdigit(*rest))
902 rest++;
903 if (!*rest)
904 err = 0;
906 } else if (!strcmp(value, "bind")) {
907 *policy = MPOL_BIND;
908 /* Insist on a nodelist */
909 if (nodelist)
910 err = 0;
911 } else if (!strcmp(value, "interleave")) {
912 *policy = MPOL_INTERLEAVE;
913 /* Default to nodes online if no nodelist */
914 if (!nodelist)
915 *policy_nodes = node_online_map;
916 err = 0;
918 out:
919 /* Restore string for error message */
920 if (nodelist)
921 *--nodelist = ':';
922 return err;
925 static struct page *shmem_swapin_async(struct shared_policy *p,
926 swp_entry_t entry, unsigned long idx)
928 struct page *page;
929 struct vm_area_struct pvma;
931 /* Create a pseudo vma that just contains the policy */
932 memset(&pvma, 0, sizeof(struct vm_area_struct));
933 pvma.vm_end = PAGE_SIZE;
934 pvma.vm_pgoff = idx;
935 pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
936 page = read_swap_cache_async(entry, &pvma, 0);
937 mpol_free(pvma.vm_policy);
938 return page;
941 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
942 unsigned long idx)
944 struct shared_policy *p = &info->policy;
945 int i, num;
946 struct page *page;
947 unsigned long offset;
949 num = valid_swaphandles(entry, &offset);
950 for (i = 0; i < num; offset++, i++) {
951 page = shmem_swapin_async(p,
952 swp_entry(swp_type(entry), offset), idx);
953 if (!page)
954 break;
955 page_cache_release(page);
957 lru_add_drain(); /* Push any new pages onto the LRU now */
958 return shmem_swapin_async(p, entry, idx);
961 static struct page *
962 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
963 unsigned long idx)
965 struct vm_area_struct pvma;
966 struct page *page;
968 memset(&pvma, 0, sizeof(struct vm_area_struct));
969 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
970 pvma.vm_pgoff = idx;
971 pvma.vm_end = PAGE_SIZE;
972 page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
973 mpol_free(pvma.vm_policy);
974 return page;
976 #else
977 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
979 return 1;
982 static inline struct page *
983 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
985 swapin_readahead(entry, 0, NULL);
986 return read_swap_cache_async(entry, NULL, 0);
989 static inline struct page *
990 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
992 return alloc_page(gfp | __GFP_ZERO);
994 #endif
997 * shmem_getpage - either get the page from swap or allocate a new one
999 * If we allocate a new one we do not mark it dirty. That's up to the
1000 * vm. If we swap it in we mark it dirty since we also free the swap
1001 * entry since a page cannot live in both the swap and page cache
1003 static int shmem_getpage(struct inode *inode, unsigned long idx,
1004 struct page **pagep, enum sgp_type sgp, int *type)
1006 struct address_space *mapping = inode->i_mapping;
1007 struct shmem_inode_info *info = SHMEM_I(inode);
1008 struct shmem_sb_info *sbinfo;
1009 struct page *filepage = *pagep;
1010 struct page *swappage;
1011 swp_entry_t *entry;
1012 swp_entry_t swap;
1013 int error;
1015 if (idx >= SHMEM_MAX_INDEX)
1016 return -EFBIG;
1018 * Normally, filepage is NULL on entry, and either found
1019 * uptodate immediately, or allocated and zeroed, or read
1020 * in under swappage, which is then assigned to filepage.
1021 * But shmem_prepare_write passes in a locked filepage,
1022 * which may be found not uptodate by other callers too,
1023 * and may need to be copied from the swappage read in.
1025 repeat:
1026 if (!filepage)
1027 filepage = find_lock_page(mapping, idx);
1028 if (filepage && PageUptodate(filepage))
1029 goto done;
1030 error = 0;
1031 if (sgp == SGP_QUICK)
1032 goto failed;
1034 spin_lock(&info->lock);
1035 shmem_recalc_inode(inode);
1036 entry = shmem_swp_alloc(info, idx, sgp);
1037 if (IS_ERR(entry)) {
1038 spin_unlock(&info->lock);
1039 error = PTR_ERR(entry);
1040 goto failed;
1042 swap = *entry;
1044 if (swap.val) {
1045 /* Look it up and read it in.. */
1046 swappage = lookup_swap_cache(swap);
1047 if (!swappage) {
1048 shmem_swp_unmap(entry);
1049 spin_unlock(&info->lock);
1050 /* here we actually do the io */
1051 if (type && *type == VM_FAULT_MINOR) {
1052 inc_page_state(pgmajfault);
1053 *type = VM_FAULT_MAJOR;
1055 swappage = shmem_swapin(info, swap, idx);
1056 if (!swappage) {
1057 spin_lock(&info->lock);
1058 entry = shmem_swp_alloc(info, idx, sgp);
1059 if (IS_ERR(entry))
1060 error = PTR_ERR(entry);
1061 else {
1062 if (entry->val == swap.val)
1063 error = -ENOMEM;
1064 shmem_swp_unmap(entry);
1066 spin_unlock(&info->lock);
1067 if (error)
1068 goto failed;
1069 goto repeat;
1071 wait_on_page_locked(swappage);
1072 page_cache_release(swappage);
1073 goto repeat;
1076 /* We have to do this with page locked to prevent races */
1077 if (TestSetPageLocked(swappage)) {
1078 shmem_swp_unmap(entry);
1079 spin_unlock(&info->lock);
1080 wait_on_page_locked(swappage);
1081 page_cache_release(swappage);
1082 goto repeat;
1084 if (!PageSwapCache(swappage)) {
1085 /* Page migration has occured */
1086 shmem_swp_unmap(entry);
1087 spin_unlock(&info->lock);
1088 unlock_page(swappage);
1089 page_cache_release(swappage);
1090 goto repeat;
1092 if (PageWriteback(swappage)) {
1093 shmem_swp_unmap(entry);
1094 spin_unlock(&info->lock);
1095 wait_on_page_writeback(swappage);
1096 unlock_page(swappage);
1097 page_cache_release(swappage);
1098 goto repeat;
1100 if (!PageUptodate(swappage)) {
1101 shmem_swp_unmap(entry);
1102 spin_unlock(&info->lock);
1103 unlock_page(swappage);
1104 page_cache_release(swappage);
1105 error = -EIO;
1106 goto failed;
1109 if (filepage) {
1110 shmem_swp_set(info, entry, 0);
1111 shmem_swp_unmap(entry);
1112 delete_from_swap_cache(swappage);
1113 spin_unlock(&info->lock);
1114 copy_highpage(filepage, swappage);
1115 unlock_page(swappage);
1116 page_cache_release(swappage);
1117 flush_dcache_page(filepage);
1118 SetPageUptodate(filepage);
1119 set_page_dirty(filepage);
1120 swap_free(swap);
1121 } else if (!(error = move_from_swap_cache(
1122 swappage, idx, mapping))) {
1123 info->flags |= SHMEM_PAGEIN;
1124 shmem_swp_set(info, entry, 0);
1125 shmem_swp_unmap(entry);
1126 spin_unlock(&info->lock);
1127 filepage = swappage;
1128 swap_free(swap);
1129 } else {
1130 shmem_swp_unmap(entry);
1131 spin_unlock(&info->lock);
1132 unlock_page(swappage);
1133 page_cache_release(swappage);
1134 if (error == -ENOMEM) {
1135 /* let kswapd refresh zone for GFP_ATOMICs */
1136 blk_congestion_wait(WRITE, HZ/50);
1138 goto repeat;
1140 } else if (sgp == SGP_READ && !filepage) {
1141 shmem_swp_unmap(entry);
1142 filepage = find_get_page(mapping, idx);
1143 if (filepage &&
1144 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1145 spin_unlock(&info->lock);
1146 wait_on_page_locked(filepage);
1147 page_cache_release(filepage);
1148 filepage = NULL;
1149 goto repeat;
1151 spin_unlock(&info->lock);
1152 } else {
1153 shmem_swp_unmap(entry);
1154 sbinfo = SHMEM_SB(inode->i_sb);
1155 if (sbinfo->max_blocks) {
1156 spin_lock(&sbinfo->stat_lock);
1157 if (sbinfo->free_blocks == 0 ||
1158 shmem_acct_block(info->flags)) {
1159 spin_unlock(&sbinfo->stat_lock);
1160 spin_unlock(&info->lock);
1161 error = -ENOSPC;
1162 goto failed;
1164 sbinfo->free_blocks--;
1165 inode->i_blocks += BLOCKS_PER_PAGE;
1166 spin_unlock(&sbinfo->stat_lock);
1167 } else if (shmem_acct_block(info->flags)) {
1168 spin_unlock(&info->lock);
1169 error = -ENOSPC;
1170 goto failed;
1173 if (!filepage) {
1174 spin_unlock(&info->lock);
1175 filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1176 info,
1177 idx);
1178 if (!filepage) {
1179 shmem_unacct_blocks(info->flags, 1);
1180 shmem_free_blocks(inode, 1);
1181 error = -ENOMEM;
1182 goto failed;
1185 spin_lock(&info->lock);
1186 entry = shmem_swp_alloc(info, idx, sgp);
1187 if (IS_ERR(entry))
1188 error = PTR_ERR(entry);
1189 else {
1190 swap = *entry;
1191 shmem_swp_unmap(entry);
1193 if (error || swap.val || 0 != add_to_page_cache_lru(
1194 filepage, mapping, idx, GFP_ATOMIC)) {
1195 spin_unlock(&info->lock);
1196 page_cache_release(filepage);
1197 shmem_unacct_blocks(info->flags, 1);
1198 shmem_free_blocks(inode, 1);
1199 filepage = NULL;
1200 if (error)
1201 goto failed;
1202 goto repeat;
1204 info->flags |= SHMEM_PAGEIN;
1207 info->alloced++;
1208 spin_unlock(&info->lock);
1209 flush_dcache_page(filepage);
1210 SetPageUptodate(filepage);
1212 done:
1213 if (*pagep != filepage) {
1214 unlock_page(filepage);
1215 *pagep = filepage;
1217 return 0;
1219 failed:
1220 if (*pagep != filepage) {
1221 unlock_page(filepage);
1222 page_cache_release(filepage);
1224 return error;
1227 struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1229 struct inode *inode = vma->vm_file->f_dentry->d_inode;
1230 struct page *page = NULL;
1231 unsigned long idx;
1232 int error;
1234 idx = (address - vma->vm_start) >> PAGE_SHIFT;
1235 idx += vma->vm_pgoff;
1236 idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1237 if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1238 return NOPAGE_SIGBUS;
1240 error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1241 if (error)
1242 return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1244 mark_page_accessed(page);
1245 return page;
1248 static int shmem_populate(struct vm_area_struct *vma,
1249 unsigned long addr, unsigned long len,
1250 pgprot_t prot, unsigned long pgoff, int nonblock)
1252 struct inode *inode = vma->vm_file->f_dentry->d_inode;
1253 struct mm_struct *mm = vma->vm_mm;
1254 enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1255 unsigned long size;
1257 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1258 if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1259 return -EINVAL;
1261 while ((long) len > 0) {
1262 struct page *page = NULL;
1263 int err;
1265 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1267 err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1268 if (err)
1269 return err;
1270 /* Page may still be null, but only if nonblock was set. */
1271 if (page) {
1272 mark_page_accessed(page);
1273 err = install_page(mm, vma, addr, page, prot);
1274 if (err) {
1275 page_cache_release(page);
1276 return err;
1278 } else if (vma->vm_flags & VM_NONLINEAR) {
1279 /* No page was found just because we can't read it in
1280 * now (being here implies nonblock != 0), but the page
1281 * may exist, so set the PTE to fault it in later. */
1282 err = install_file_pte(mm, vma, addr, pgoff, prot);
1283 if (err)
1284 return err;
1287 len -= PAGE_SIZE;
1288 addr += PAGE_SIZE;
1289 pgoff++;
1291 return 0;
1294 #ifdef CONFIG_NUMA
1295 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1297 struct inode *i = vma->vm_file->f_dentry->d_inode;
1298 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1301 struct mempolicy *
1302 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1304 struct inode *i = vma->vm_file->f_dentry->d_inode;
1305 unsigned long idx;
1307 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1308 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1310 #endif
1312 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1314 struct inode *inode = file->f_dentry->d_inode;
1315 struct shmem_inode_info *info = SHMEM_I(inode);
1316 int retval = -ENOMEM;
1318 spin_lock(&info->lock);
1319 if (lock && !(info->flags & VM_LOCKED)) {
1320 if (!user_shm_lock(inode->i_size, user))
1321 goto out_nomem;
1322 info->flags |= VM_LOCKED;
1324 if (!lock && (info->flags & VM_LOCKED) && user) {
1325 user_shm_unlock(inode->i_size, user);
1326 info->flags &= ~VM_LOCKED;
1328 retval = 0;
1329 out_nomem:
1330 spin_unlock(&info->lock);
1331 return retval;
1334 int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1336 file_accessed(file);
1337 vma->vm_ops = &shmem_vm_ops;
1338 return 0;
1341 static struct inode *
1342 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1344 struct inode *inode;
1345 struct shmem_inode_info *info;
1346 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1348 if (sbinfo->max_inodes) {
1349 spin_lock(&sbinfo->stat_lock);
1350 if (!sbinfo->free_inodes) {
1351 spin_unlock(&sbinfo->stat_lock);
1352 return NULL;
1354 sbinfo->free_inodes--;
1355 spin_unlock(&sbinfo->stat_lock);
1358 inode = new_inode(sb);
1359 if (inode) {
1360 inode->i_mode = mode;
1361 inode->i_uid = current->fsuid;
1362 inode->i_gid = current->fsgid;
1363 inode->i_blksize = PAGE_CACHE_SIZE;
1364 inode->i_blocks = 0;
1365 inode->i_mapping->a_ops = &shmem_aops;
1366 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1367 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1368 info = SHMEM_I(inode);
1369 memset(info, 0, (char *)inode - (char *)info);
1370 spin_lock_init(&info->lock);
1371 INIT_LIST_HEAD(&info->swaplist);
1373 switch (mode & S_IFMT) {
1374 default:
1375 init_special_inode(inode, mode, dev);
1376 break;
1377 case S_IFREG:
1378 inode->i_op = &shmem_inode_operations;
1379 inode->i_fop = &shmem_file_operations;
1380 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1381 &sbinfo->policy_nodes);
1382 break;
1383 case S_IFDIR:
1384 inode->i_nlink++;
1385 /* Some things misbehave if size == 0 on a directory */
1386 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1387 inode->i_op = &shmem_dir_inode_operations;
1388 inode->i_fop = &simple_dir_operations;
1389 break;
1390 case S_IFLNK:
1392 * Must not load anything in the rbtree,
1393 * mpol_free_shared_policy will not be called.
1395 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1396 NULL);
1397 break;
1399 } else if (sbinfo->max_inodes) {
1400 spin_lock(&sbinfo->stat_lock);
1401 sbinfo->free_inodes++;
1402 spin_unlock(&sbinfo->stat_lock);
1404 return inode;
1407 #ifdef CONFIG_TMPFS
1408 static struct inode_operations shmem_symlink_inode_operations;
1409 static struct inode_operations shmem_symlink_inline_operations;
1412 * Normally tmpfs makes no use of shmem_prepare_write, but it
1413 * lets a tmpfs file be used read-write below the loop driver.
1415 static int
1416 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1418 struct inode *inode = page->mapping->host;
1419 return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1422 static ssize_t
1423 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1425 struct inode *inode = file->f_dentry->d_inode;
1426 loff_t pos;
1427 unsigned long written;
1428 ssize_t err;
1430 if ((ssize_t) count < 0)
1431 return -EINVAL;
1433 if (!access_ok(VERIFY_READ, buf, count))
1434 return -EFAULT;
1436 mutex_lock(&inode->i_mutex);
1438 pos = *ppos;
1439 written = 0;
1441 err = generic_write_checks(file, &pos, &count, 0);
1442 if (err || !count)
1443 goto out;
1445 err = remove_suid(file->f_dentry);
1446 if (err)
1447 goto out;
1449 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1451 do {
1452 struct page *page = NULL;
1453 unsigned long bytes, index, offset;
1454 char *kaddr;
1455 int left;
1457 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1458 index = pos >> PAGE_CACHE_SHIFT;
1459 bytes = PAGE_CACHE_SIZE - offset;
1460 if (bytes > count)
1461 bytes = count;
1464 * We don't hold page lock across copy from user -
1465 * what would it guard against? - so no deadlock here.
1466 * But it still may be a good idea to prefault below.
1469 err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1470 if (err)
1471 break;
1473 left = bytes;
1474 if (PageHighMem(page)) {
1475 volatile unsigned char dummy;
1476 __get_user(dummy, buf);
1477 __get_user(dummy, buf + bytes - 1);
1479 kaddr = kmap_atomic(page, KM_USER0);
1480 left = __copy_from_user_inatomic(kaddr + offset,
1481 buf, bytes);
1482 kunmap_atomic(kaddr, KM_USER0);
1484 if (left) {
1485 kaddr = kmap(page);
1486 left = __copy_from_user(kaddr + offset, buf, bytes);
1487 kunmap(page);
1490 written += bytes;
1491 count -= bytes;
1492 pos += bytes;
1493 buf += bytes;
1494 if (pos > inode->i_size)
1495 i_size_write(inode, pos);
1497 flush_dcache_page(page);
1498 set_page_dirty(page);
1499 mark_page_accessed(page);
1500 page_cache_release(page);
1502 if (left) {
1503 pos -= left;
1504 written -= left;
1505 err = -EFAULT;
1506 break;
1510 * Our dirty pages are not counted in nr_dirty,
1511 * and we do not attempt to balance dirty pages.
1514 cond_resched();
1515 } while (count);
1517 *ppos = pos;
1518 if (written)
1519 err = written;
1520 out:
1521 mutex_unlock(&inode->i_mutex);
1522 return err;
1525 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1527 struct inode *inode = filp->f_dentry->d_inode;
1528 struct address_space *mapping = inode->i_mapping;
1529 unsigned long index, offset;
1531 index = *ppos >> PAGE_CACHE_SHIFT;
1532 offset = *ppos & ~PAGE_CACHE_MASK;
1534 for (;;) {
1535 struct page *page = NULL;
1536 unsigned long end_index, nr, ret;
1537 loff_t i_size = i_size_read(inode);
1539 end_index = i_size >> PAGE_CACHE_SHIFT;
1540 if (index > end_index)
1541 break;
1542 if (index == end_index) {
1543 nr = i_size & ~PAGE_CACHE_MASK;
1544 if (nr <= offset)
1545 break;
1548 desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1549 if (desc->error) {
1550 if (desc->error == -EINVAL)
1551 desc->error = 0;
1552 break;
1556 * We must evaluate after, since reads (unlike writes)
1557 * are called without i_mutex protection against truncate
1559 nr = PAGE_CACHE_SIZE;
1560 i_size = i_size_read(inode);
1561 end_index = i_size >> PAGE_CACHE_SHIFT;
1562 if (index == end_index) {
1563 nr = i_size & ~PAGE_CACHE_MASK;
1564 if (nr <= offset) {
1565 if (page)
1566 page_cache_release(page);
1567 break;
1570 nr -= offset;
1572 if (page) {
1574 * If users can be writing to this page using arbitrary
1575 * virtual addresses, take care about potential aliasing
1576 * before reading the page on the kernel side.
1578 if (mapping_writably_mapped(mapping))
1579 flush_dcache_page(page);
1581 * Mark the page accessed if we read the beginning.
1583 if (!offset)
1584 mark_page_accessed(page);
1585 } else {
1586 page = ZERO_PAGE(0);
1587 page_cache_get(page);
1591 * Ok, we have the page, and it's up-to-date, so
1592 * now we can copy it to user space...
1594 * The actor routine returns how many bytes were actually used..
1595 * NOTE! This may not be the same as how much of a user buffer
1596 * we filled up (we may be padding etc), so we can only update
1597 * "pos" here (the actor routine has to update the user buffer
1598 * pointers and the remaining count).
1600 ret = actor(desc, page, offset, nr);
1601 offset += ret;
1602 index += offset >> PAGE_CACHE_SHIFT;
1603 offset &= ~PAGE_CACHE_MASK;
1605 page_cache_release(page);
1606 if (ret != nr || !desc->count)
1607 break;
1609 cond_resched();
1612 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1613 file_accessed(filp);
1616 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1618 read_descriptor_t desc;
1620 if ((ssize_t) count < 0)
1621 return -EINVAL;
1622 if (!access_ok(VERIFY_WRITE, buf, count))
1623 return -EFAULT;
1624 if (!count)
1625 return 0;
1627 desc.written = 0;
1628 desc.count = count;
1629 desc.arg.buf = buf;
1630 desc.error = 0;
1632 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1633 if (desc.written)
1634 return desc.written;
1635 return desc.error;
1638 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1639 size_t count, read_actor_t actor, void *target)
1641 read_descriptor_t desc;
1643 if (!count)
1644 return 0;
1646 desc.written = 0;
1647 desc.count = count;
1648 desc.arg.data = target;
1649 desc.error = 0;
1651 do_shmem_file_read(in_file, ppos, &desc, actor);
1652 if (desc.written)
1653 return desc.written;
1654 return desc.error;
1657 static int shmem_statfs(struct super_block *sb, struct kstatfs *buf)
1659 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1661 buf->f_type = TMPFS_MAGIC;
1662 buf->f_bsize = PAGE_CACHE_SIZE;
1663 buf->f_namelen = NAME_MAX;
1664 spin_lock(&sbinfo->stat_lock);
1665 if (sbinfo->max_blocks) {
1666 buf->f_blocks = sbinfo->max_blocks;
1667 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1669 if (sbinfo->max_inodes) {
1670 buf->f_files = sbinfo->max_inodes;
1671 buf->f_ffree = sbinfo->free_inodes;
1673 /* else leave those fields 0 like simple_statfs */
1674 spin_unlock(&sbinfo->stat_lock);
1675 return 0;
1679 * File creation. Allocate an inode, and we're done..
1681 static int
1682 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1684 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1685 int error = -ENOSPC;
1687 if (inode) {
1688 error = security_inode_init_security(inode, dir, NULL, NULL,
1689 NULL);
1690 if (error) {
1691 if (error != -EOPNOTSUPP) {
1692 iput(inode);
1693 return error;
1695 error = 0;
1697 if (dir->i_mode & S_ISGID) {
1698 inode->i_gid = dir->i_gid;
1699 if (S_ISDIR(mode))
1700 inode->i_mode |= S_ISGID;
1702 dir->i_size += BOGO_DIRENT_SIZE;
1703 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1704 d_instantiate(dentry, inode);
1705 dget(dentry); /* Extra count - pin the dentry in core */
1707 return error;
1710 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1712 int error;
1714 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1715 return error;
1716 dir->i_nlink++;
1717 return 0;
1720 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1721 struct nameidata *nd)
1723 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1727 * Link a file..
1729 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1731 struct inode *inode = old_dentry->d_inode;
1732 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1735 * No ordinary (disk based) filesystem counts links as inodes;
1736 * but each new link needs a new dentry, pinning lowmem, and
1737 * tmpfs dentries cannot be pruned until they are unlinked.
1739 if (sbinfo->max_inodes) {
1740 spin_lock(&sbinfo->stat_lock);
1741 if (!sbinfo->free_inodes) {
1742 spin_unlock(&sbinfo->stat_lock);
1743 return -ENOSPC;
1745 sbinfo->free_inodes--;
1746 spin_unlock(&sbinfo->stat_lock);
1749 dir->i_size += BOGO_DIRENT_SIZE;
1750 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1751 inode->i_nlink++;
1752 atomic_inc(&inode->i_count); /* New dentry reference */
1753 dget(dentry); /* Extra pinning count for the created dentry */
1754 d_instantiate(dentry, inode);
1755 return 0;
1758 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1760 struct inode *inode = dentry->d_inode;
1762 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1763 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1764 if (sbinfo->max_inodes) {
1765 spin_lock(&sbinfo->stat_lock);
1766 sbinfo->free_inodes++;
1767 spin_unlock(&sbinfo->stat_lock);
1771 dir->i_size -= BOGO_DIRENT_SIZE;
1772 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1773 inode->i_nlink--;
1774 dput(dentry); /* Undo the count from "create" - this does all the work */
1775 return 0;
1778 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1780 if (!simple_empty(dentry))
1781 return -ENOTEMPTY;
1783 dir->i_nlink--;
1784 return shmem_unlink(dir, dentry);
1788 * The VFS layer already does all the dentry stuff for rename,
1789 * we just have to decrement the usage count for the target if
1790 * it exists so that the VFS layer correctly free's it when it
1791 * gets overwritten.
1793 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1795 struct inode *inode = old_dentry->d_inode;
1796 int they_are_dirs = S_ISDIR(inode->i_mode);
1798 if (!simple_empty(new_dentry))
1799 return -ENOTEMPTY;
1801 if (new_dentry->d_inode) {
1802 (void) shmem_unlink(new_dir, new_dentry);
1803 if (they_are_dirs)
1804 old_dir->i_nlink--;
1805 } else if (they_are_dirs) {
1806 old_dir->i_nlink--;
1807 new_dir->i_nlink++;
1810 old_dir->i_size -= BOGO_DIRENT_SIZE;
1811 new_dir->i_size += BOGO_DIRENT_SIZE;
1812 old_dir->i_ctime = old_dir->i_mtime =
1813 new_dir->i_ctime = new_dir->i_mtime =
1814 inode->i_ctime = CURRENT_TIME;
1815 return 0;
1818 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1820 int error;
1821 int len;
1822 struct inode *inode;
1823 struct page *page = NULL;
1824 char *kaddr;
1825 struct shmem_inode_info *info;
1827 len = strlen(symname) + 1;
1828 if (len > PAGE_CACHE_SIZE)
1829 return -ENAMETOOLONG;
1831 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1832 if (!inode)
1833 return -ENOSPC;
1835 error = security_inode_init_security(inode, dir, NULL, NULL,
1836 NULL);
1837 if (error) {
1838 if (error != -EOPNOTSUPP) {
1839 iput(inode);
1840 return error;
1842 error = 0;
1845 info = SHMEM_I(inode);
1846 inode->i_size = len-1;
1847 if (len <= (char *)inode - (char *)info) {
1848 /* do it inline */
1849 memcpy(info, symname, len);
1850 inode->i_op = &shmem_symlink_inline_operations;
1851 } else {
1852 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1853 if (error) {
1854 iput(inode);
1855 return error;
1857 inode->i_op = &shmem_symlink_inode_operations;
1858 kaddr = kmap_atomic(page, KM_USER0);
1859 memcpy(kaddr, symname, len);
1860 kunmap_atomic(kaddr, KM_USER0);
1861 set_page_dirty(page);
1862 page_cache_release(page);
1864 if (dir->i_mode & S_ISGID)
1865 inode->i_gid = dir->i_gid;
1866 dir->i_size += BOGO_DIRENT_SIZE;
1867 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1868 d_instantiate(dentry, inode);
1869 dget(dentry);
1870 return 0;
1873 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1875 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1876 return NULL;
1879 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1881 struct page *page = NULL;
1882 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1883 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1884 return page;
1887 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1889 if (!IS_ERR(nd_get_link(nd))) {
1890 struct page *page = cookie;
1891 kunmap(page);
1892 mark_page_accessed(page);
1893 page_cache_release(page);
1897 static struct inode_operations shmem_symlink_inline_operations = {
1898 .readlink = generic_readlink,
1899 .follow_link = shmem_follow_link_inline,
1902 static struct inode_operations shmem_symlink_inode_operations = {
1903 .truncate = shmem_truncate,
1904 .readlink = generic_readlink,
1905 .follow_link = shmem_follow_link,
1906 .put_link = shmem_put_link,
1909 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
1910 gid_t *gid, unsigned long *blocks, unsigned long *inodes,
1911 int *policy, nodemask_t *policy_nodes)
1913 char *this_char, *value, *rest;
1915 while (options != NULL) {
1916 this_char = options;
1917 for (;;) {
1919 * NUL-terminate this option: unfortunately,
1920 * mount options form a comma-separated list,
1921 * but mpol's nodelist may also contain commas.
1923 options = strchr(options, ',');
1924 if (options == NULL)
1925 break;
1926 options++;
1927 if (!isdigit(*options)) {
1928 options[-1] = '\0';
1929 break;
1932 if (!*this_char)
1933 continue;
1934 if ((value = strchr(this_char,'=')) != NULL) {
1935 *value++ = 0;
1936 } else {
1937 printk(KERN_ERR
1938 "tmpfs: No value for mount option '%s'\n",
1939 this_char);
1940 return 1;
1943 if (!strcmp(this_char,"size")) {
1944 unsigned long long size;
1945 size = memparse(value,&rest);
1946 if (*rest == '%') {
1947 size <<= PAGE_SHIFT;
1948 size *= totalram_pages;
1949 do_div(size, 100);
1950 rest++;
1952 if (*rest)
1953 goto bad_val;
1954 *blocks = size >> PAGE_CACHE_SHIFT;
1955 } else if (!strcmp(this_char,"nr_blocks")) {
1956 *blocks = memparse(value,&rest);
1957 if (*rest)
1958 goto bad_val;
1959 } else if (!strcmp(this_char,"nr_inodes")) {
1960 *inodes = memparse(value,&rest);
1961 if (*rest)
1962 goto bad_val;
1963 } else if (!strcmp(this_char,"mode")) {
1964 if (!mode)
1965 continue;
1966 *mode = simple_strtoul(value,&rest,8);
1967 if (*rest)
1968 goto bad_val;
1969 } else if (!strcmp(this_char,"uid")) {
1970 if (!uid)
1971 continue;
1972 *uid = simple_strtoul(value,&rest,0);
1973 if (*rest)
1974 goto bad_val;
1975 } else if (!strcmp(this_char,"gid")) {
1976 if (!gid)
1977 continue;
1978 *gid = simple_strtoul(value,&rest,0);
1979 if (*rest)
1980 goto bad_val;
1981 } else if (!strcmp(this_char,"mpol")) {
1982 if (shmem_parse_mpol(value,policy,policy_nodes))
1983 goto bad_val;
1984 } else {
1985 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1986 this_char);
1987 return 1;
1990 return 0;
1992 bad_val:
1993 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1994 value, this_char);
1995 return 1;
1999 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2001 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2002 unsigned long max_blocks = sbinfo->max_blocks;
2003 unsigned long max_inodes = sbinfo->max_inodes;
2004 int policy = sbinfo->policy;
2005 nodemask_t policy_nodes = sbinfo->policy_nodes;
2006 unsigned long blocks;
2007 unsigned long inodes;
2008 int error = -EINVAL;
2010 if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2011 &max_inodes, &policy, &policy_nodes))
2012 return error;
2014 spin_lock(&sbinfo->stat_lock);
2015 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2016 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2017 if (max_blocks < blocks)
2018 goto out;
2019 if (max_inodes < inodes)
2020 goto out;
2022 * Those tests also disallow limited->unlimited while any are in
2023 * use, so i_blocks will always be zero when max_blocks is zero;
2024 * but we must separately disallow unlimited->limited, because
2025 * in that case we have no record of how much is already in use.
2027 if (max_blocks && !sbinfo->max_blocks)
2028 goto out;
2029 if (max_inodes && !sbinfo->max_inodes)
2030 goto out;
2032 error = 0;
2033 sbinfo->max_blocks = max_blocks;
2034 sbinfo->free_blocks = max_blocks - blocks;
2035 sbinfo->max_inodes = max_inodes;
2036 sbinfo->free_inodes = max_inodes - inodes;
2037 sbinfo->policy = policy;
2038 sbinfo->policy_nodes = policy_nodes;
2039 out:
2040 spin_unlock(&sbinfo->stat_lock);
2041 return error;
2043 #endif
2045 static void shmem_put_super(struct super_block *sb)
2047 kfree(sb->s_fs_info);
2048 sb->s_fs_info = NULL;
2051 static int shmem_fill_super(struct super_block *sb,
2052 void *data, int silent)
2054 struct inode *inode;
2055 struct dentry *root;
2056 int mode = S_IRWXUGO | S_ISVTX;
2057 uid_t uid = current->fsuid;
2058 gid_t gid = current->fsgid;
2059 int err = -ENOMEM;
2060 struct shmem_sb_info *sbinfo;
2061 unsigned long blocks = 0;
2062 unsigned long inodes = 0;
2063 int policy = MPOL_DEFAULT;
2064 nodemask_t policy_nodes = node_online_map;
2066 #ifdef CONFIG_TMPFS
2068 * Per default we only allow half of the physical ram per
2069 * tmpfs instance, limiting inodes to one per page of lowmem;
2070 * but the internal instance is left unlimited.
2072 if (!(sb->s_flags & MS_NOUSER)) {
2073 blocks = totalram_pages / 2;
2074 inodes = totalram_pages - totalhigh_pages;
2075 if (inodes > blocks)
2076 inodes = blocks;
2077 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2078 &inodes, &policy, &policy_nodes))
2079 return -EINVAL;
2081 #else
2082 sb->s_flags |= MS_NOUSER;
2083 #endif
2085 /* Round up to L1_CACHE_BYTES to resist false sharing */
2086 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2087 L1_CACHE_BYTES), GFP_KERNEL);
2088 if (!sbinfo)
2089 return -ENOMEM;
2091 spin_lock_init(&sbinfo->stat_lock);
2092 sbinfo->max_blocks = blocks;
2093 sbinfo->free_blocks = blocks;
2094 sbinfo->max_inodes = inodes;
2095 sbinfo->free_inodes = inodes;
2096 sbinfo->policy = policy;
2097 sbinfo->policy_nodes = policy_nodes;
2099 sb->s_fs_info = sbinfo;
2100 sb->s_maxbytes = SHMEM_MAX_BYTES;
2101 sb->s_blocksize = PAGE_CACHE_SIZE;
2102 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2103 sb->s_magic = TMPFS_MAGIC;
2104 sb->s_op = &shmem_ops;
2106 inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2107 if (!inode)
2108 goto failed;
2109 inode->i_uid = uid;
2110 inode->i_gid = gid;
2111 root = d_alloc_root(inode);
2112 if (!root)
2113 goto failed_iput;
2114 sb->s_root = root;
2115 return 0;
2117 failed_iput:
2118 iput(inode);
2119 failed:
2120 shmem_put_super(sb);
2121 return err;
2124 static struct kmem_cache *shmem_inode_cachep;
2126 static struct inode *shmem_alloc_inode(struct super_block *sb)
2128 struct shmem_inode_info *p;
2129 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2130 if (!p)
2131 return NULL;
2132 return &p->vfs_inode;
2135 static void shmem_destroy_inode(struct inode *inode)
2137 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2138 /* only struct inode is valid if it's an inline symlink */
2139 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2141 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2144 static void init_once(void *foo, struct kmem_cache *cachep,
2145 unsigned long flags)
2147 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2149 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2150 SLAB_CTOR_CONSTRUCTOR) {
2151 inode_init_once(&p->vfs_inode);
2155 static int init_inodecache(void)
2157 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2158 sizeof(struct shmem_inode_info),
2159 0, 0, init_once, NULL);
2160 if (shmem_inode_cachep == NULL)
2161 return -ENOMEM;
2162 return 0;
2165 static void destroy_inodecache(void)
2167 if (kmem_cache_destroy(shmem_inode_cachep))
2168 printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n");
2171 static struct address_space_operations shmem_aops = {
2172 .writepage = shmem_writepage,
2173 .set_page_dirty = __set_page_dirty_nobuffers,
2174 #ifdef CONFIG_TMPFS
2175 .prepare_write = shmem_prepare_write,
2176 .commit_write = simple_commit_write,
2177 #endif
2178 .migratepage = migrate_page,
2181 static struct file_operations shmem_file_operations = {
2182 .mmap = shmem_mmap,
2183 #ifdef CONFIG_TMPFS
2184 .llseek = generic_file_llseek,
2185 .read = shmem_file_read,
2186 .write = shmem_file_write,
2187 .fsync = simple_sync_file,
2188 .sendfile = shmem_file_sendfile,
2189 #endif
2192 static struct inode_operations shmem_inode_operations = {
2193 .truncate = shmem_truncate,
2194 .setattr = shmem_notify_change,
2195 .truncate_range = shmem_truncate_range,
2198 static struct inode_operations shmem_dir_inode_operations = {
2199 #ifdef CONFIG_TMPFS
2200 .create = shmem_create,
2201 .lookup = simple_lookup,
2202 .link = shmem_link,
2203 .unlink = shmem_unlink,
2204 .symlink = shmem_symlink,
2205 .mkdir = shmem_mkdir,
2206 .rmdir = shmem_rmdir,
2207 .mknod = shmem_mknod,
2208 .rename = shmem_rename,
2209 #endif
2212 static struct super_operations shmem_ops = {
2213 .alloc_inode = shmem_alloc_inode,
2214 .destroy_inode = shmem_destroy_inode,
2215 #ifdef CONFIG_TMPFS
2216 .statfs = shmem_statfs,
2217 .remount_fs = shmem_remount_fs,
2218 #endif
2219 .delete_inode = shmem_delete_inode,
2220 .drop_inode = generic_delete_inode,
2221 .put_super = shmem_put_super,
2224 static struct vm_operations_struct shmem_vm_ops = {
2225 .nopage = shmem_nopage,
2226 .populate = shmem_populate,
2227 #ifdef CONFIG_NUMA
2228 .set_policy = shmem_set_policy,
2229 .get_policy = shmem_get_policy,
2230 #endif
2234 static struct super_block *shmem_get_sb(struct file_system_type *fs_type,
2235 int flags, const char *dev_name, void *data)
2237 return get_sb_nodev(fs_type, flags, data, shmem_fill_super);
2240 static struct file_system_type tmpfs_fs_type = {
2241 .owner = THIS_MODULE,
2242 .name = "tmpfs",
2243 .get_sb = shmem_get_sb,
2244 .kill_sb = kill_litter_super,
2246 static struct vfsmount *shm_mnt;
2248 static int __init init_tmpfs(void)
2250 int error;
2252 error = init_inodecache();
2253 if (error)
2254 goto out3;
2256 error = register_filesystem(&tmpfs_fs_type);
2257 if (error) {
2258 printk(KERN_ERR "Could not register tmpfs\n");
2259 goto out2;
2261 #ifdef CONFIG_TMPFS
2262 devfs_mk_dir("shm");
2263 #endif
2264 shm_mnt = do_kern_mount(tmpfs_fs_type.name, MS_NOUSER,
2265 tmpfs_fs_type.name, NULL);
2266 if (IS_ERR(shm_mnt)) {
2267 error = PTR_ERR(shm_mnt);
2268 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2269 goto out1;
2271 return 0;
2273 out1:
2274 unregister_filesystem(&tmpfs_fs_type);
2275 out2:
2276 destroy_inodecache();
2277 out3:
2278 shm_mnt = ERR_PTR(error);
2279 return error;
2281 module_init(init_tmpfs)
2284 * shmem_file_setup - get an unlinked file living in tmpfs
2286 * @name: name for dentry (to be seen in /proc/<pid>/maps
2287 * @size: size to be set for the file
2290 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2292 int error;
2293 struct file *file;
2294 struct inode *inode;
2295 struct dentry *dentry, *root;
2296 struct qstr this;
2298 if (IS_ERR(shm_mnt))
2299 return (void *)shm_mnt;
2301 if (size < 0 || size > SHMEM_MAX_BYTES)
2302 return ERR_PTR(-EINVAL);
2304 if (shmem_acct_size(flags, size))
2305 return ERR_PTR(-ENOMEM);
2307 error = -ENOMEM;
2308 this.name = name;
2309 this.len = strlen(name);
2310 this.hash = 0; /* will go */
2311 root = shm_mnt->mnt_root;
2312 dentry = d_alloc(root, &this);
2313 if (!dentry)
2314 goto put_memory;
2316 error = -ENFILE;
2317 file = get_empty_filp();
2318 if (!file)
2319 goto put_dentry;
2321 error = -ENOSPC;
2322 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2323 if (!inode)
2324 goto close_file;
2326 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2327 d_instantiate(dentry, inode);
2328 inode->i_size = size;
2329 inode->i_nlink = 0; /* It is unlinked */
2330 file->f_vfsmnt = mntget(shm_mnt);
2331 file->f_dentry = dentry;
2332 file->f_mapping = inode->i_mapping;
2333 file->f_op = &shmem_file_operations;
2334 file->f_mode = FMODE_WRITE | FMODE_READ;
2335 return file;
2337 close_file:
2338 put_filp(file);
2339 put_dentry:
2340 dput(dentry);
2341 put_memory:
2342 shmem_unacct_size(flags, size);
2343 return ERR_PTR(error);
2347 * shmem_zero_setup - setup a shared anonymous mapping
2349 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2351 int shmem_zero_setup(struct vm_area_struct *vma)
2353 struct file *file;
2354 loff_t size = vma->vm_end - vma->vm_start;
2356 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2357 if (IS_ERR(file))
2358 return PTR_ERR(file);
2360 if (vma->vm_file)
2361 fput(vma->vm_file);
2362 vma->vm_file = file;
2363 vma->vm_ops = &shmem_vm_ops;
2364 return 0;