2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 #include <linux/module.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
22 #include <asm/pgtable.h>
25 * swapper_space is a fiction, retained to simplify the path through
26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
27 * future use of radix_tree tags in the swap cache.
29 static const struct address_space_operations swap_aops
= {
30 .writepage
= swap_writepage
,
31 .sync_page
= block_sync_page
,
32 .set_page_dirty
= __set_page_dirty_nobuffers
,
33 .migratepage
= migrate_page
,
36 static struct backing_dev_info swap_backing_dev_info
= {
37 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
38 .unplug_io_fn
= swap_unplug_io_fn
,
41 struct address_space swapper_space
= {
42 .page_tree
= RADIX_TREE_INIT(GFP_ATOMIC
|__GFP_NOWARN
),
43 .tree_lock
= __SPIN_LOCK_UNLOCKED(swapper_space
.tree_lock
),
45 .i_mmap_nonlinear
= LIST_HEAD_INIT(swapper_space
.i_mmap_nonlinear
),
46 .backing_dev_info
= &swap_backing_dev_info
,
49 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
52 unsigned long add_total
;
53 unsigned long del_total
;
54 unsigned long find_success
;
55 unsigned long find_total
;
58 void show_swap_cache_info(void)
60 printk("%lu pages in swap cache\n", total_swapcache_pages
);
61 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
62 swap_cache_info
.add_total
, swap_cache_info
.del_total
,
63 swap_cache_info
.find_success
, swap_cache_info
.find_total
);
64 printk("Free swap = %ldkB\n", nr_swap_pages
<< (PAGE_SHIFT
- 10));
65 printk("Total swap = %lukB\n", total_swap_pages
<< (PAGE_SHIFT
- 10));
69 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
70 * but sets SwapCache flag and private instead of mapping and index.
72 static int __add_to_swap_cache(struct page
*page
, swp_entry_t entry
)
76 VM_BUG_ON(!PageLocked(page
));
77 VM_BUG_ON(PageSwapCache(page
));
78 VM_BUG_ON(!PageSwapBacked(page
));
81 SetPageSwapCache(page
);
82 set_page_private(page
, entry
.val
);
84 spin_lock_irq(&swapper_space
.tree_lock
);
85 error
= radix_tree_insert(&swapper_space
.page_tree
, entry
.val
, page
);
87 total_swapcache_pages
++;
88 __inc_zone_page_state(page
, NR_FILE_PAGES
);
89 INC_CACHE_INFO(add_total
);
91 spin_unlock_irq(&swapper_space
.tree_lock
);
93 if (unlikely(error
)) {
94 set_page_private(page
, 0UL);
95 ClearPageSwapCache(page
);
96 page_cache_release(page
);
103 int add_to_swap_cache(struct page
*page
, swp_entry_t entry
, gfp_t gfp_mask
)
107 error
= radix_tree_preload(gfp_mask
);
109 error
= __add_to_swap_cache(page
, entry
);
110 radix_tree_preload_end();
116 * This must be called only on pages that have
117 * been verified to be in the swap cache.
119 void __delete_from_swap_cache(struct page
*page
)
121 VM_BUG_ON(!PageLocked(page
));
122 VM_BUG_ON(!PageSwapCache(page
));
123 VM_BUG_ON(PageWriteback(page
));
125 radix_tree_delete(&swapper_space
.page_tree
, page_private(page
));
126 set_page_private(page
, 0);
127 ClearPageSwapCache(page
);
128 total_swapcache_pages
--;
129 __dec_zone_page_state(page
, NR_FILE_PAGES
);
130 INC_CACHE_INFO(del_total
);
134 * add_to_swap - allocate swap space for a page
135 * @page: page we want to move to swap
137 * Allocate swap space for the page and add the page to the
138 * swap cache. Caller needs to hold the page lock.
140 int add_to_swap(struct page
*page
)
145 VM_BUG_ON(!PageLocked(page
));
146 VM_BUG_ON(!PageUptodate(page
));
149 entry
= get_swap_page();
154 * Radix-tree node allocations from PF_MEMALLOC contexts could
155 * completely exhaust the page allocator. __GFP_NOMEMALLOC
156 * stops emergency reserves from being allocated.
158 * TODO: this could cause a theoretical memory reclaim
159 * deadlock in the swap out path.
162 * Add it to the swap cache and mark it dirty
164 err
= add_to_swap_cache(page
, entry
,
165 __GFP_HIGH
|__GFP_NOMEMALLOC
|__GFP_NOWARN
);
168 case 0: /* Success */
172 /* Raced with "speculative" read_swap_cache_async */
173 swapcache_free(entry
, NULL
);
176 /* -ENOMEM radix-tree allocation failure */
177 swapcache_free(entry
, NULL
);
184 * This must be called only on pages that have
185 * been verified to be in the swap cache and locked.
186 * It will never put the page into the free list,
187 * the caller has a reference on the page.
189 void delete_from_swap_cache(struct page
*page
)
193 entry
.val
= page_private(page
);
195 spin_lock_irq(&swapper_space
.tree_lock
);
196 __delete_from_swap_cache(page
);
197 spin_unlock_irq(&swapper_space
.tree_lock
);
199 swapcache_free(entry
, page
);
200 page_cache_release(page
);
204 * If we are the only user, then try to free up the swap cache.
206 * Its ok to check for PageSwapCache without the page lock
207 * here because we are going to recheck again inside
208 * try_to_free_swap() _with_ the lock.
211 static inline void free_swap_cache(struct page
*page
)
213 if (PageSwapCache(page
) && !page_mapped(page
) && trylock_page(page
)) {
214 try_to_free_swap(page
);
220 * Perform a free_page(), also freeing any swap cache associated with
221 * this page if it is the last user of the page.
223 void free_page_and_swap_cache(struct page
*page
)
225 free_swap_cache(page
);
226 page_cache_release(page
);
230 * Passed an array of pages, drop them all from swapcache and then release
231 * them. They are removed from the LRU and freed if this is their last use.
233 void free_pages_and_swap_cache(struct page
**pages
, int nr
)
235 struct page
**pagep
= pages
;
239 int todo
= min(nr
, PAGEVEC_SIZE
);
242 for (i
= 0; i
< todo
; i
++)
243 free_swap_cache(pagep
[i
]);
244 release_pages(pagep
, todo
, 0);
251 * Lookup a swap entry in the swap cache. A found page will be returned
252 * unlocked and with its refcount incremented - we rely on the kernel
253 * lock getting page table operations atomic even if we drop the page
254 * lock before returning.
256 struct page
* lookup_swap_cache(swp_entry_t entry
)
260 page
= find_get_page(&swapper_space
, entry
.val
);
263 INC_CACHE_INFO(find_success
);
265 INC_CACHE_INFO(find_total
);
270 * Locate a page of swap in physical memory, reserving swap cache space
271 * and reading the disk if it is not already cached.
272 * A failure return means that either the page allocation failed or that
273 * the swap entry is no longer in use.
275 struct page
*read_swap_cache_async(swp_entry_t entry
, gfp_t gfp_mask
,
276 struct vm_area_struct
*vma
, unsigned long addr
)
278 struct page
*found_page
, *new_page
= NULL
;
283 * First check the swap cache. Since this is normally
284 * called after lookup_swap_cache() failed, re-calling
285 * that would confuse statistics.
287 found_page
= find_get_page(&swapper_space
, entry
.val
);
292 * Get a new page to read into from swap.
295 new_page
= alloc_page_vma(gfp_mask
, vma
, addr
);
297 break; /* Out of memory */
301 * call radix_tree_preload() while we can wait.
303 err
= radix_tree_preload(gfp_mask
& GFP_KERNEL
);
308 * Swap entry may have been freed since our caller observed it.
310 err
= swapcache_prepare(entry
);
311 if (err
== -EEXIST
) { /* seems racy */
312 radix_tree_preload_end();
315 if (err
) { /* swp entry is obsolete ? */
316 radix_tree_preload_end();
321 * Associate the page with swap entry in the swap cache.
322 * May fail (-EEXIST) if there is already a page associated
323 * with this entry in the swap cache: added by a racing
324 * read_swap_cache_async, or add_to_swap or shmem_writepage
325 * re-using the just freed swap entry for an existing page.
326 * May fail (-ENOMEM) if radix-tree node allocation failed.
328 __set_page_locked(new_page
);
329 SetPageSwapBacked(new_page
);
330 err
= __add_to_swap_cache(new_page
, entry
);
332 radix_tree_preload_end();
334 * Initiate read into locked page and return.
336 lru_cache_add_anon(new_page
);
337 swap_readpage(new_page
);
340 radix_tree_preload_end();
341 ClearPageSwapBacked(new_page
);
342 __clear_page_locked(new_page
);
343 swapcache_free(entry
, NULL
);
344 } while (err
!= -ENOMEM
);
347 page_cache_release(new_page
);
352 * swapin_readahead - swap in pages in hope we need them soon
353 * @entry: swap entry of this memory
354 * @gfp_mask: memory allocation flags
355 * @vma: user vma this address belongs to
356 * @addr: target address for mempolicy
358 * Returns the struct page for entry and addr, after queueing swapin.
360 * Primitive swap readahead code. We simply read an aligned block of
361 * (1 << page_cluster) entries in the swap area. This method is chosen
362 * because it doesn't cost us any seek time. We also make sure to queue
363 * the 'original' request together with the readahead ones...
365 * This has been extended to use the NUMA policies from the mm triggering
368 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
370 struct page
*swapin_readahead(swp_entry_t entry
, gfp_t gfp_mask
,
371 struct vm_area_struct
*vma
, unsigned long addr
)
375 unsigned long offset
;
376 unsigned long end_offset
;
379 * Get starting offset for readaround, and number of pages to read.
380 * Adjust starting address by readbehind (for NUMA interleave case)?
381 * No, it's very unlikely that swap layout would follow vma layout,
382 * more likely that neighbouring swap pages came from the same node:
383 * so use the same "addr" to choose the same node for each swap read.
385 nr_pages
= valid_swaphandles(entry
, &offset
);
386 for (end_offset
= offset
+ nr_pages
; offset
< end_offset
; offset
++) {
387 /* Ok, do the async read-ahead now */
388 page
= read_swap_cache_async(swp_entry(swp_type(entry
), offset
),
389 gfp_mask
, vma
, addr
);
392 page_cache_release(page
);
394 lru_add_drain(); /* Push any new pages onto the LRU now */
395 return read_swap_cache_async(entry
, gfp_mask
, vma
, addr
);