1 /**************************************************************************
3 * Copyright (C) 2000-2008 Alacritech, Inc. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer in the documentation and/or other materials provided
14 * with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY ALACRITECH, INC. ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ALACRITECH, INC. OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as representing
31 * official policies, either expressed or implied, of Alacritech, Inc.
33 **************************************************************************/
38 * The SXG driver for Alacritech's 10Gbe products.
40 * NOTE: This is the standard, non-accelerated version of Alacritech's
44 #include <linux/kernel.h>
45 #include <linux/string.h>
46 #include <linux/errno.h>
47 #include <linux/module.h>
48 #include <linux/moduleparam.h>
49 #include <linux/ioport.h>
50 #include <linux/slab.h>
51 #include <linux/interrupt.h>
52 #include <linux/timer.h>
53 #include <linux/pci.h>
54 #include <linux/spinlock.h>
55 #include <linux/init.h>
56 #include <linux/netdevice.h>
57 #include <linux/etherdevice.h>
58 #include <linux/ethtool.h>
59 #include <linux/skbuff.h>
60 #include <linux/delay.h>
61 #include <linux/types.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/mii.h>
65 #define SLIC_DUMP_ENABLED 0
66 #define SLIC_GET_STATS_ENABLED 0
67 #define LINUX_FREES_ADAPTER_RESOURCES 1
68 #define SXG_OFFLOAD_IP_CHECKSUM 0
69 #define SXG_POWER_MANAGEMENT_ENABLED 0
80 #include "sxgphycode.h"
81 #include "saharadbgdownload.h"
83 static int sxg_allocate_buffer_memory(p_adapter_t adapter
, u32 Size
, SXG_BUFFER_TYPE BufferType
);
84 static void sxg_allocate_rcvblock_complete(p_adapter_t adapter
, void * RcvBlock
, dma_addr_t PhysicalAddress
, u32 Length
);
85 static void sxg_allocate_sgl_buffer_complete(p_adapter_t adapter
, PSXG_SCATTER_GATHER SxgSgl
, dma_addr_t PhysicalAddress
, u32 Length
);
87 static void sxg_mcast_init_crc32(void);
89 static int sxg_entry_open(p_net_device dev
);
90 static int sxg_entry_halt(p_net_device dev
);
91 static int sxg_ioctl(p_net_device dev
, struct ifreq
*rq
, int cmd
);
92 static int sxg_send_packets(struct sk_buff
*skb
, p_net_device dev
);
93 static int sxg_transmit_packet(p_adapter_t adapter
, struct sk_buff
*skb
);
94 static void sxg_dumb_sgl(PSCATTER_GATHER_LIST pSgl
, PSXG_SCATTER_GATHER SxgSgl
);
96 static void sxg_handle_interrupt(p_adapter_t adapter
);
97 static int sxg_process_isr(p_adapter_t adapter
, u32 MessageId
);
98 static u32
sxg_process_event_queue(p_adapter_t adapter
, u32 RssId
);
99 static void sxg_complete_slow_send(p_adapter_t adapter
);
100 static struct sk_buff
*sxg_slow_receive(p_adapter_t adapter
, PSXG_EVENT Event
);
101 static void sxg_process_rcv_error(p_adapter_t adapter
, u32 ErrorStatus
);
102 static bool sxg_mac_filter(p_adapter_t adapter
,
103 p_ether_header EtherHdr
, ushort length
);
105 #if SLIC_GET_STATS_ENABLED
106 static struct net_device_stats
*sxg_get_stats(p_net_device dev
);
109 static int sxg_mac_set_address(p_net_device dev
, void * ptr
);
111 static void sxg_adapter_set_hwaddr(p_adapter_t adapter
);
113 static void sxg_unmap_mmio_space(p_adapter_t adapter
);
114 static void sxg_mcast_set_mask(p_adapter_t adapter
);
116 static int sxg_initialize_adapter(p_adapter_t adapter
);
117 static void sxg_stock_rcv_buffers(p_adapter_t adapter
);
118 static void sxg_complete_descriptor_blocks(p_adapter_t adapter
, unsigned char Index
);
119 static int sxg_initialize_link(p_adapter_t adapter
);
120 static int sxg_phy_init(p_adapter_t adapter
);
121 static void sxg_link_event(p_adapter_t adapter
);
122 static SXG_LINK_STATE
sxg_get_link_state(p_adapter_t adapter
);
123 static void sxg_link_state(p_adapter_t adapter
, SXG_LINK_STATE LinkState
);
124 static int sxg_write_mdio_reg(p_adapter_t adapter
,
125 u32 DevAddr
, u32 RegAddr
, u32 Value
);
126 static int sxg_read_mdio_reg(p_adapter_t adapter
,
127 u32 DevAddr
, u32 RegAddr
, u32
* pValue
);
128 static void sxg_mcast_set_list(p_net_device dev
);
134 static unsigned int sxg_first_init
= 1;
135 static char *sxg_banner
=
136 "Alacritech SLIC Technology(tm) Server and Storage 10Gbe Accelerator (Non-Accelerated)\n";
138 static int sxg_debug
= 1;
139 static int debug
= -1;
140 static p_net_device head_netdevice
= NULL
;
142 static sxgbase_driver_t sxg_global
= {
145 static int intagg_delay
= 100;
146 static u32 dynamic_intagg
= 0;
148 #define DRV_NAME "sxg"
149 #define DRV_VERSION "1.0.1"
150 #define DRV_AUTHOR "Alacritech, Inc. Engineering"
151 #define DRV_DESCRIPTION "Alacritech SLIC Techonology(tm) Non-Accelerated 10Gbe Driver"
152 #define DRV_COPYRIGHT "Copyright 2000-2008 Alacritech, Inc. All rights reserved."
154 MODULE_AUTHOR(DRV_AUTHOR
);
155 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
156 MODULE_LICENSE("GPL");
158 module_param(dynamic_intagg
, int, 0);
159 MODULE_PARM_DESC(dynamic_intagg
, "Dynamic Interrupt Aggregation Setting");
160 module_param(intagg_delay
, int, 0);
161 MODULE_PARM_DESC(intagg_delay
, "uSec Interrupt Aggregation Delay");
163 static struct pci_device_id sxg_pci_tbl
[] __devinitdata
= {
164 {PCI_DEVICE(SXG_VENDOR_ID
, SXG_DEVICE_ID
)},
167 MODULE_DEVICE_TABLE(pci
, sxg_pci_tbl
);
169 /***********************************************************************
170 ************************************************************************
171 ************************************************************************
172 ************************************************************************
173 ************************************************************************/
175 static inline void sxg_reg32_write(void __iomem
*reg
, u32 value
, bool flush
)
182 static inline void sxg_reg64_write(p_adapter_t adapter
, void __iomem
*reg
,
185 u32 value_high
= (u32
) (value
>> 32);
186 u32 value_low
= (u32
) (value
& 0x00000000FFFFFFFF);
189 spin_lock_irqsave(&adapter
->Bit64RegLock
, flags
);
190 writel(value_high
, (void __iomem
*)(&adapter
->UcodeRegs
[cpu
].Upper
));
191 writel(value_low
, reg
);
192 spin_unlock_irqrestore(&adapter
->Bit64RegLock
, flags
);
195 static void sxg_init_driver(void)
197 if (sxg_first_init
) {
198 DBG_ERROR("sxg: %s sxg_first_init set jiffies[%lx]\n",
199 __FUNCTION__
, jiffies
);
201 spin_lock_init(&sxg_global
.driver_lock
);
205 static void sxg_dbg_macaddrs(p_adapter_t adapter
)
207 DBG_ERROR(" (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
208 adapter
->netdev
->name
, adapter
->currmacaddr
[0],
209 adapter
->currmacaddr
[1], adapter
->currmacaddr
[2],
210 adapter
->currmacaddr
[3], adapter
->currmacaddr
[4],
211 adapter
->currmacaddr
[5]);
212 DBG_ERROR(" (%s) mac %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
213 adapter
->netdev
->name
, adapter
->macaddr
[0],
214 adapter
->macaddr
[1], adapter
->macaddr
[2],
215 adapter
->macaddr
[3], adapter
->macaddr
[4],
216 adapter
->macaddr
[5]);
221 static SXG_DRIVER SxgDriver
;
224 static sxg_trace_buffer_t LSxgTraceBuffer
;
226 static sxg_trace_buffer_t
*SxgTraceBuffer
= NULL
;
229 * sxg_download_microcode
231 * Download Microcode to Sahara adapter
234 * adapter - A pointer to our adapter structure
235 * UcodeSel - microcode file selection
240 static bool sxg_download_microcode(p_adapter_t adapter
, SXG_UCODE_SEL UcodeSel
)
242 PSXG_HW_REGS HwRegs
= adapter
->HwRegs
;
245 u32
* Instruction
= NULL
;
246 u32 BaseAddress
, AddressOffset
, Address
;
252 u32 sectionStart
[16];
254 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "DnldUcod",
256 DBG_ERROR("sxg: %s ENTER\n", __FUNCTION__
);
259 case SXG_UCODE_SAHARA
: // Sahara operational ucode
260 numSections
= SNumSections
;
261 for (i
= 0; i
< numSections
; i
++) {
262 sectionSize
[i
] = SSectionSize
[i
];
263 sectionStart
[i
] = SSectionStart
[i
];
267 printk(KERN_ERR KBUILD_MODNAME
268 ": Woah, big error with the microcode!\n");
272 DBG_ERROR("sxg: RESET THE CARD\n");
273 // First, reset the card
274 WRITE_REG(HwRegs
->Reset
, 0xDEAD, FLUSH
);
276 // Download each section of the microcode as specified in
277 // its download file. The *download.c file is generated using
278 // the saharaobjtoc facility which converts the metastep .obj
279 // file to a .c file which contains a two dimentional array.
280 for (Section
= 0; Section
< numSections
; Section
++) {
281 DBG_ERROR("sxg: SECTION # %d\n", Section
);
283 case SXG_UCODE_SAHARA
:
284 Instruction
= (u32
*) & SaharaUCode
[Section
][0];
290 BaseAddress
= sectionStart
[Section
];
291 ThisSectionSize
= sectionSize
[Section
] / 12; // Size in instructions
292 for (AddressOffset
= 0; AddressOffset
< ThisSectionSize
;
294 Address
= BaseAddress
+ AddressOffset
;
295 ASSERT((Address
& ~MICROCODE_ADDRESS_MASK
) == 0);
296 // Write instruction bits 31 - 0
297 WRITE_REG(HwRegs
->UcodeDataLow
, *Instruction
, FLUSH
);
298 // Write instruction bits 63-32
299 WRITE_REG(HwRegs
->UcodeDataMiddle
, *(Instruction
+ 1),
301 // Write instruction bits 95-64
302 WRITE_REG(HwRegs
->UcodeDataHigh
, *(Instruction
+ 2),
304 // Write instruction address with the WRITE bit set
305 WRITE_REG(HwRegs
->UcodeAddr
,
306 (Address
| MICROCODE_ADDRESS_WRITE
), FLUSH
);
307 // Sahara bug in the ucode download logic - the write to DataLow
308 // for the next instruction could get corrupted. To avoid this,
309 // write to DataLow again for this instruction (which may get
310 // corrupted, but it doesn't matter), then increment the address
311 // and write the data for the next instruction to DataLow. That
312 // write should succeed.
313 WRITE_REG(HwRegs
->UcodeDataLow
, *Instruction
, TRUE
);
314 // Advance 3 u32S to start of next instruction
318 // Now repeat the entire operation reading the instruction back and
319 // checking for parity errors
320 for (Section
= 0; Section
< numSections
; Section
++) {
321 DBG_ERROR("sxg: check SECTION # %d\n", Section
);
323 case SXG_UCODE_SAHARA
:
324 Instruction
= (u32
*) & SaharaUCode
[Section
][0];
330 BaseAddress
= sectionStart
[Section
];
331 ThisSectionSize
= sectionSize
[Section
] / 12; // Size in instructions
332 for (AddressOffset
= 0; AddressOffset
< ThisSectionSize
;
334 Address
= BaseAddress
+ AddressOffset
;
335 // Write the address with the READ bit set
336 WRITE_REG(HwRegs
->UcodeAddr
,
337 (Address
| MICROCODE_ADDRESS_READ
), FLUSH
);
338 // Read it back and check parity bit.
339 READ_REG(HwRegs
->UcodeAddr
, ValueRead
);
340 if (ValueRead
& MICROCODE_ADDRESS_PARITY
) {
341 DBG_ERROR("sxg: %s PARITY ERROR\n",
344 return (FALSE
); // Parity error
346 ASSERT((ValueRead
& MICROCODE_ADDRESS_MASK
) == Address
);
347 // Read the instruction back and compare
348 READ_REG(HwRegs
->UcodeDataLow
, ValueRead
);
349 if (ValueRead
!= *Instruction
) {
350 DBG_ERROR("sxg: %s MISCOMPARE LOW\n",
352 return (FALSE
); // Miscompare
354 READ_REG(HwRegs
->UcodeDataMiddle
, ValueRead
);
355 if (ValueRead
!= *(Instruction
+ 1)) {
356 DBG_ERROR("sxg: %s MISCOMPARE MIDDLE\n",
358 return (FALSE
); // Miscompare
360 READ_REG(HwRegs
->UcodeDataHigh
, ValueRead
);
361 if (ValueRead
!= *(Instruction
+ 2)) {
362 DBG_ERROR("sxg: %s MISCOMPARE HIGH\n",
364 return (FALSE
); // Miscompare
366 // Advance 3 u32S to start of next instruction
371 // Everything OK, Go.
372 WRITE_REG(HwRegs
->UcodeAddr
, MICROCODE_ADDRESS_GO
, FLUSH
);
374 // Poll the CardUp register to wait for microcode to initialize
375 // Give up after 10,000 attemps (500ms).
376 for (i
= 0; i
< 10000; i
++) {
378 READ_REG(adapter
->UcodeRegs
[0].CardUp
, ValueRead
);
379 if (ValueRead
== 0xCAFE) {
380 DBG_ERROR("sxg: %s BOO YA 0xCAFE\n", __FUNCTION__
);
385 DBG_ERROR("sxg: %s TIMEOUT\n", __FUNCTION__
);
387 return (FALSE
); // Timeout
389 // Now write the LoadSync register. This is used to
390 // synchronize with the card so it can scribble on the memory
391 // that contained 0xCAFE from the "CardUp" step above
392 if (UcodeSel
== SXG_UCODE_SAHARA
) {
393 WRITE_REG(adapter
->UcodeRegs
[0].LoadSync
, 0, FLUSH
);
396 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XDnldUcd",
398 DBG_ERROR("sxg: %s EXIT\n", __FUNCTION__
);
404 * sxg_allocate_resources - Allocate memory and locks
407 * adapter - A pointer to our adapter structure
412 static int sxg_allocate_resources(p_adapter_t adapter
)
416 u32 RssIds
, IsrCount
;
417 // PSXG_XMT_RING XmtRing;
418 // PSXG_RCV_RING RcvRing;
420 DBG_ERROR("%s ENTER\n", __FUNCTION__
);
422 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "AllocRes",
425 // Windows tells us how many CPUs it plans to use for
427 RssIds
= SXG_RSS_CPU_COUNT(adapter
);
428 IsrCount
= adapter
->MsiEnabled
? RssIds
: 1;
430 DBG_ERROR("%s Setup the spinlocks\n", __FUNCTION__
);
432 // Allocate spinlocks and initialize listheads first.
433 spin_lock_init(&adapter
->RcvQLock
);
434 spin_lock_init(&adapter
->SglQLock
);
435 spin_lock_init(&adapter
->XmtZeroLock
);
436 spin_lock_init(&adapter
->Bit64RegLock
);
437 spin_lock_init(&adapter
->AdapterLock
);
439 DBG_ERROR("%s Setup the lists\n", __FUNCTION__
);
441 InitializeListHead(&adapter
->FreeRcvBuffers
);
442 InitializeListHead(&adapter
->FreeRcvBlocks
);
443 InitializeListHead(&adapter
->AllRcvBlocks
);
444 InitializeListHead(&adapter
->FreeSglBuffers
);
445 InitializeListHead(&adapter
->AllSglBuffers
);
447 // Mark these basic allocations done. This flags essentially
448 // tells the SxgFreeResources routine that it can grab spinlocks
449 // and reference listheads.
450 adapter
->BasicAllocations
= TRUE
;
451 // Main allocation loop. Start with the maximum supported by
452 // the microcode and back off if memory allocation
453 // fails. If we hit a minimum, fail.
456 DBG_ERROR("%s Allocate XmtRings size[%lx]\n", __FUNCTION__
,
457 (sizeof(SXG_XMT_RING
) * 1));
459 // Start with big items first - receive and transmit rings. At the moment
460 // I'm going to keep the ring size fixed and adjust the number of
461 // TCBs if we fail. Later we might consider reducing the ring size as well..
462 adapter
->XmtRings
= pci_alloc_consistent(adapter
->pcidev
,
463 sizeof(SXG_XMT_RING
) *
465 &adapter
->PXmtRings
);
466 DBG_ERROR("%s XmtRings[%p]\n", __FUNCTION__
, adapter
->XmtRings
);
468 if (!adapter
->XmtRings
) {
469 goto per_tcb_allocation_failed
;
471 memset(adapter
->XmtRings
, 0, sizeof(SXG_XMT_RING
) * 1);
473 DBG_ERROR("%s Allocate RcvRings size[%lx]\n", __FUNCTION__
,
474 (sizeof(SXG_RCV_RING
) * 1));
476 pci_alloc_consistent(adapter
->pcidev
,
477 sizeof(SXG_RCV_RING
) * 1,
478 &adapter
->PRcvRings
);
479 DBG_ERROR("%s RcvRings[%p]\n", __FUNCTION__
, adapter
->RcvRings
);
480 if (!adapter
->RcvRings
) {
481 goto per_tcb_allocation_failed
;
483 memset(adapter
->RcvRings
, 0, sizeof(SXG_RCV_RING
) * 1);
486 per_tcb_allocation_failed
:
487 // an allocation failed. Free any successful allocations.
488 if (adapter
->XmtRings
) {
489 pci_free_consistent(adapter
->pcidev
,
490 sizeof(SXG_XMT_RING
) * 4096,
493 adapter
->XmtRings
= NULL
;
495 if (adapter
->RcvRings
) {
496 pci_free_consistent(adapter
->pcidev
,
497 sizeof(SXG_RCV_RING
) * 4096,
500 adapter
->RcvRings
= NULL
;
502 // Loop around and try again....
505 DBG_ERROR("%s Initialize RCV ZERO and XMT ZERO rings\n", __FUNCTION__
);
506 // Initialize rcv zero and xmt zero rings
507 SXG_INITIALIZE_RING(adapter
->RcvRingZeroInfo
, SXG_RCV_RING_SIZE
);
508 SXG_INITIALIZE_RING(adapter
->XmtRingZeroInfo
, SXG_XMT_RING_SIZE
);
510 // Sanity check receive data structure format
511 ASSERT((adapter
->ReceiveBufferSize
== SXG_RCV_DATA_BUFFER_SIZE
) ||
512 (adapter
->ReceiveBufferSize
== SXG_RCV_JUMBO_BUFFER_SIZE
));
513 ASSERT(sizeof(SXG_RCV_DESCRIPTOR_BLOCK
) ==
514 SXG_RCV_DESCRIPTOR_BLOCK_SIZE
);
516 // Allocate receive data buffers. We allocate a block of buffers and
517 // a corresponding descriptor block at once. See sxghw.h:SXG_RCV_BLOCK
518 for (i
= 0; i
< SXG_INITIAL_RCV_DATA_BUFFERS
;
519 i
+= SXG_RCV_DESCRIPTORS_PER_BLOCK
) {
520 sxg_allocate_buffer_memory(adapter
,
521 SXG_RCV_BLOCK_SIZE(adapter
->
523 SXG_BUFFER_TYPE_RCV
);
525 // NBL resource allocation can fail in the 'AllocateComplete' routine, which
526 // doesn't return status. Make sure we got the number of buffers we requested
527 if (adapter
->FreeRcvBufferCount
< SXG_INITIAL_RCV_DATA_BUFFERS
) {
528 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XAResF6",
529 adapter
, adapter
->FreeRcvBufferCount
, SXG_MAX_ENTRIES
,
531 return (STATUS_RESOURCES
);
534 DBG_ERROR("%s Allocate EventRings size[%lx]\n", __FUNCTION__
,
535 (sizeof(SXG_EVENT_RING
) * RssIds
));
537 // Allocate event queues.
538 adapter
->EventRings
= pci_alloc_consistent(adapter
->pcidev
,
539 sizeof(SXG_EVENT_RING
) *
541 &adapter
->PEventRings
);
543 if (!adapter
->EventRings
) {
544 // Caller will call SxgFreeAdapter to clean up above allocations
545 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XAResF8",
546 adapter
, SXG_MAX_ENTRIES
, 0, 0);
547 status
= STATUS_RESOURCES
;
548 goto per_tcb_allocation_failed
;
550 memset(adapter
->EventRings
, 0, sizeof(SXG_EVENT_RING
) * RssIds
);
552 DBG_ERROR("%s Allocate ISR size[%x]\n", __FUNCTION__
, IsrCount
);
554 adapter
->Isr
= pci_alloc_consistent(adapter
->pcidev
,
555 IsrCount
, &adapter
->PIsr
);
557 // Caller will call SxgFreeAdapter to clean up above allocations
558 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XAResF9",
559 adapter
, SXG_MAX_ENTRIES
, 0, 0);
560 status
= STATUS_RESOURCES
;
561 goto per_tcb_allocation_failed
;
563 memset(adapter
->Isr
, 0, sizeof(u32
) * IsrCount
);
565 DBG_ERROR("%s Allocate shared XMT ring zero index location size[%lx]\n",
566 __FUNCTION__
, sizeof(u32
));
568 // Allocate shared XMT ring zero index location
569 adapter
->XmtRingZeroIndex
= pci_alloc_consistent(adapter
->pcidev
,
573 if (!adapter
->XmtRingZeroIndex
) {
574 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XAResF10",
575 adapter
, SXG_MAX_ENTRIES
, 0, 0);
576 status
= STATUS_RESOURCES
;
577 goto per_tcb_allocation_failed
;
579 memset(adapter
->XmtRingZeroIndex
, 0, sizeof(u32
));
581 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XAlcResS",
582 adapter
, SXG_MAX_ENTRIES
, 0, 0);
584 DBG_ERROR("%s EXIT\n", __FUNCTION__
);
585 return (STATUS_SUCCESS
);
591 * Set up PCI Configuration space
594 * pcidev - A pointer to our adapter structure
597 static void sxg_config_pci(struct pci_dev
*pcidev
)
602 pci_read_config_word(pcidev
, PCI_COMMAND
, &pci_command
);
603 DBG_ERROR("sxg: %s PCI command[%4.4x]\n", __FUNCTION__
, pci_command
);
604 // Set the command register
605 new_command
= pci_command
| (PCI_COMMAND_MEMORY
| // Memory Space Enable
606 PCI_COMMAND_MASTER
| // Bus master enable
607 PCI_COMMAND_INVALIDATE
| // Memory write and invalidate
608 PCI_COMMAND_PARITY
| // Parity error response
609 PCI_COMMAND_SERR
| // System ERR
610 PCI_COMMAND_FAST_BACK
); // Fast back-to-back
611 if (pci_command
!= new_command
) {
612 DBG_ERROR("%s -- Updating PCI COMMAND register %4.4x->%4.4x.\n",
613 __FUNCTION__
, pci_command
, new_command
);
614 pci_write_config_word(pcidev
, PCI_COMMAND
, new_command
);
618 static int sxg_entry_probe(struct pci_dev
*pcidev
,
619 const struct pci_device_id
*pci_tbl_entry
)
621 static int did_version
= 0;
623 struct net_device
*netdev
;
625 void __iomem
*memmapped_ioaddr
;
627 ulong mmio_start
= 0;
630 DBG_ERROR("sxg: %s 2.6 VERSION ENTER jiffies[%lx] cpu %d\n",
631 __FUNCTION__
, jiffies
, smp_processor_id());
633 // Initialize trace buffer
635 SxgTraceBuffer
= &LSxgTraceBuffer
;
636 SXG_TRACE_INIT(SxgTraceBuffer
, TRACE_NOISY
);
639 sxg_global
.dynamic_intagg
= dynamic_intagg
;
641 err
= pci_enable_device(pcidev
);
643 DBG_ERROR("Call pci_enable_device(%p) status[%x]\n", pcidev
, err
);
648 if (sxg_debug
> 0 && did_version
++ == 0) {
649 printk(KERN_INFO
"%s\n", sxg_banner
);
650 printk(KERN_INFO
"%s\n", DRV_VERSION
);
653 if (!(err
= pci_set_dma_mask(pcidev
, DMA_64BIT_MASK
))) {
654 DBG_ERROR("pci_set_dma_mask(DMA_64BIT_MASK) successful\n");
656 if ((err
= pci_set_dma_mask(pcidev
, DMA_32BIT_MASK
))) {
658 ("No usable DMA configuration, aborting err[%x]\n",
662 DBG_ERROR("pci_set_dma_mask(DMA_32BIT_MASK) successful\n");
665 DBG_ERROR("Call pci_request_regions\n");
667 err
= pci_request_regions(pcidev
, DRV_NAME
);
669 DBG_ERROR("pci_request_regions FAILED err[%x]\n", err
);
673 DBG_ERROR("call pci_set_master\n");
674 pci_set_master(pcidev
);
676 DBG_ERROR("call alloc_etherdev\n");
677 netdev
= alloc_etherdev(sizeof(adapter_t
));
680 goto err_out_exit_sxg_probe
;
682 DBG_ERROR("alloc_etherdev for slic netdev[%p]\n", netdev
);
684 SET_NETDEV_DEV(netdev
, &pcidev
->dev
);
686 pci_set_drvdata(pcidev
, netdev
);
687 adapter
= netdev_priv(netdev
);
688 adapter
->netdev
= netdev
;
689 adapter
->pcidev
= pcidev
;
691 mmio_start
= pci_resource_start(pcidev
, 0);
692 mmio_len
= pci_resource_len(pcidev
, 0);
694 DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
695 mmio_start
, mmio_len
);
697 memmapped_ioaddr
= ioremap(mmio_start
, mmio_len
);
698 DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __FUNCTION__
, memmapped_ioaddr
);
699 if (!memmapped_ioaddr
) {
700 DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
701 __FUNCTION__
, mmio_len
, mmio_start
);
702 goto err_out_free_mmio_region
;
705 DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, start[%lx] len[%lx], IRQ %d.\n",
706 __func__
, memmapped_ioaddr
, mmio_start
, mmio_len
, pcidev
->irq
);
708 adapter
->HwRegs
= (void *) memmapped_ioaddr
;
709 adapter
->base_addr
= memmapped_ioaddr
;
711 mmio_start
= pci_resource_start(pcidev
, 2);
712 mmio_len
= pci_resource_len(pcidev
, 2);
714 DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
715 mmio_start
, mmio_len
);
717 memmapped_ioaddr
= ioremap(mmio_start
, mmio_len
);
718 DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__
, memmapped_ioaddr
);
719 if (!memmapped_ioaddr
) {
720 DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
721 __FUNCTION__
, mmio_len
, mmio_start
);
722 goto err_out_free_mmio_region
;
725 DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, "
726 "start[%lx] len[%lx], IRQ %d.\n", __func__
,
727 memmapped_ioaddr
, mmio_start
, mmio_len
, pcidev
->irq
);
729 adapter
->UcodeRegs
= (void *)memmapped_ioaddr
;
731 adapter
->State
= SXG_STATE_INITIALIZING
;
732 // Maintain a list of all adapters anchored by
733 // the global SxgDriver structure.
734 adapter
->Next
= SxgDriver
.Adapters
;
735 SxgDriver
.Adapters
= adapter
;
736 adapter
->AdapterID
= ++SxgDriver
.AdapterID
;
738 // Initialize CRC table used to determine multicast hash
739 sxg_mcast_init_crc32();
741 adapter
->JumboEnabled
= FALSE
;
742 adapter
->RssEnabled
= FALSE
;
743 if (adapter
->JumboEnabled
) {
744 adapter
->FrameSize
= JUMBOMAXFRAME
;
745 adapter
->ReceiveBufferSize
= SXG_RCV_JUMBO_BUFFER_SIZE
;
747 adapter
->FrameSize
= ETHERMAXFRAME
;
748 adapter
->ReceiveBufferSize
= SXG_RCV_DATA_BUFFER_SIZE
;
751 // status = SXG_READ_EEPROM(adapter);
753 // goto sxg_init_bad;
756 DBG_ERROR("sxg: %s ENTER sxg_config_pci\n", __FUNCTION__
);
757 sxg_config_pci(pcidev
);
758 DBG_ERROR("sxg: %s EXIT sxg_config_pci\n", __FUNCTION__
);
760 DBG_ERROR("sxg: %s ENTER sxg_init_driver\n", __FUNCTION__
);
762 DBG_ERROR("sxg: %s EXIT sxg_init_driver\n", __FUNCTION__
);
764 adapter
->vendid
= pci_tbl_entry
->vendor
;
765 adapter
->devid
= pci_tbl_entry
->device
;
766 adapter
->subsysid
= pci_tbl_entry
->subdevice
;
767 adapter
->busnumber
= pcidev
->bus
->number
;
768 adapter
->slotnumber
= ((pcidev
->devfn
>> 3) & 0x1F);
769 adapter
->functionnumber
= (pcidev
->devfn
& 0x7);
770 adapter
->memorylength
= pci_resource_len(pcidev
, 0);
771 adapter
->irq
= pcidev
->irq
;
772 adapter
->next_netdevice
= head_netdevice
;
773 head_netdevice
= netdev
;
774 // adapter->chipid = chip_idx;
775 adapter
->port
= 0; //adapter->functionnumber;
776 adapter
->cardindex
= adapter
->port
;
778 // Allocate memory and other resources
779 DBG_ERROR("sxg: %s ENTER sxg_allocate_resources\n", __FUNCTION__
);
780 status
= sxg_allocate_resources(adapter
);
781 DBG_ERROR("sxg: %s EXIT sxg_allocate_resources status %x\n",
782 __FUNCTION__
, status
);
783 if (status
!= STATUS_SUCCESS
) {
787 DBG_ERROR("sxg: %s ENTER sxg_download_microcode\n", __FUNCTION__
);
788 if (sxg_download_microcode(adapter
, SXG_UCODE_SAHARA
)) {
789 DBG_ERROR("sxg: %s ENTER sxg_adapter_set_hwaddr\n",
791 sxg_adapter_set_hwaddr(adapter
);
793 adapter
->state
= ADAPT_FAIL
;
794 adapter
->linkstate
= LINK_DOWN
;
795 DBG_ERROR("sxg_download_microcode FAILED status[%x]\n", status
);
798 netdev
->base_addr
= (unsigned long)adapter
->base_addr
;
799 netdev
->irq
= adapter
->irq
;
800 netdev
->open
= sxg_entry_open
;
801 netdev
->stop
= sxg_entry_halt
;
802 netdev
->hard_start_xmit
= sxg_send_packets
;
803 netdev
->do_ioctl
= sxg_ioctl
;
805 netdev
->set_mac_address
= sxg_mac_set_address
;
806 #if SLIC_GET_STATS_ENABLED
807 netdev
->get_stats
= sxg_get_stats
;
809 netdev
->set_multicast_list
= sxg_mcast_set_list
;
812 strcpy(netdev
->name
, "eth%d");
813 // strcpy(netdev->name, pci_name(pcidev));
814 if ((err
= register_netdev(netdev
))) {
815 DBG_ERROR("Cannot register net device, aborting. %s\n",
821 ("sxg: %s addr 0x%lx, irq %d, MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
822 netdev
->name
, netdev
->base_addr
, pcidev
->irq
, netdev
->dev_addr
[0],
823 netdev
->dev_addr
[1], netdev
->dev_addr
[2], netdev
->dev_addr
[3],
824 netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
827 ASSERT(status
== FALSE
);
828 // sxg_free_adapter(adapter);
830 DBG_ERROR("sxg: %s EXIT status[%x] jiffies[%lx] cpu %d\n", __FUNCTION__
,
831 status
, jiffies
, smp_processor_id());
835 iounmap((void *)memmapped_ioaddr
);
837 err_out_free_mmio_region
:
838 release_mem_region(mmio_start
, mmio_len
);
840 err_out_exit_sxg_probe
:
842 DBG_ERROR("%s EXIT jiffies[%lx] cpu %d\n", __FUNCTION__
, jiffies
,
849 /***********************************************************************
850 * LINE BASE Interrupt routines..
851 ***********************************************************************/
854 * sxg_disable_interrupt
856 * DisableInterrupt Handler
860 * adapter: Our adapter structure
865 static void sxg_disable_interrupt(p_adapter_t adapter
)
867 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "DisIntr",
868 adapter
, adapter
->InterruptsEnabled
, 0, 0);
869 // For now, RSS is disabled with line based interrupts
870 ASSERT(adapter
->RssEnabled
== FALSE
);
871 ASSERT(adapter
->MsiEnabled
== FALSE
);
873 // Turn off interrupts by writing to the icr register.
875 WRITE_REG(adapter
->UcodeRegs
[0].Icr
, SXG_ICR(0, SXG_ICR_DISABLE
), TRUE
);
877 adapter
->InterruptsEnabled
= 0;
879 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XDisIntr",
880 adapter
, adapter
->InterruptsEnabled
, 0, 0);
885 * sxg_enable_interrupt
887 * EnableInterrupt Handler
891 * adapter: Our adapter structure
896 static void sxg_enable_interrupt(p_adapter_t adapter
)
898 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "EnIntr",
899 adapter
, adapter
->InterruptsEnabled
, 0, 0);
900 // For now, RSS is disabled with line based interrupts
901 ASSERT(adapter
->RssEnabled
== FALSE
);
902 ASSERT(adapter
->MsiEnabled
== FALSE
);
904 // Turn on interrupts by writing to the icr register.
906 WRITE_REG(adapter
->UcodeRegs
[0].Icr
, SXG_ICR(0, SXG_ICR_ENABLE
), TRUE
);
908 adapter
->InterruptsEnabled
= 1;
910 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XEnIntr",
916 * sxg_isr - Process an line-based interrupt
919 * Context - Our adapter structure
920 * QueueDefault - Output parameter to queue to default CPU
921 * TargetCpus - Output bitmap to schedule DPC's
924 * TRUE if our interrupt
926 static irqreturn_t
sxg_isr(int irq
, void *dev_id
)
928 p_net_device dev
= (p_net_device
) dev_id
;
929 p_adapter_t adapter
= (p_adapter_t
) netdev_priv(dev
);
930 // u32 CpuMask = 0, i;
932 adapter
->Stats
.NumInts
++;
933 if (adapter
->Isr
[0] == 0) {
934 // The SLIC driver used to experience a number of spurious interrupts
935 // due to the delay associated with the masking of the interrupt
936 // (we'd bounce back in here). If we see that again with Sahara,
937 // add a READ_REG of the Icr register after the WRITE_REG below.
938 adapter
->Stats
.FalseInts
++;
942 // Move the Isr contents and clear the value in
943 // shared memory, and mask interrupts
945 adapter
->IsrCopy
[0] = adapter
->Isr
[0];
947 WRITE_REG(adapter
->UcodeRegs
[0].Icr
, SXG_ICR(0, SXG_ICR_MASK
), TRUE
);
948 // ASSERT(adapter->IsrDpcsPending == 0);
949 #if XXXTODO // RSS Stuff
950 // If RSS is enabled and the ISR specifies
951 // SXG_ISR_EVENT, then schedule DPC's
952 // based on event queues.
953 if (adapter
->RssEnabled
&& (adapter
->IsrCopy
[0] & SXG_ISR_EVENT
)) {
955 i
< adapter
->RssSystemInfo
->ProcessorInfo
.RssCpuCount
;
957 PSXG_EVENT_RING EventRing
= &adapter
->EventRings
[i
];
959 &EventRing
->Ring
[adapter
->NextEvent
[i
]];
960 unsigned char Cpu
= adapter
->RssSystemInfo
->RssIdToCpu
[i
];
961 if (Event
->Status
& EVENT_STATUS_VALID
) {
962 adapter
->IsrDpcsPending
++;
963 CpuMask
|= (1 << Cpu
);
967 // Now, either schedule the CPUs specified by the CpuMask,
970 *QueueDefault
= FALSE
;
972 adapter
->IsrDpcsPending
= 1;
973 *QueueDefault
= TRUE
;
975 *TargetCpus
= CpuMask
;
978 // There are no DPCs in Linux, so call the handler now
980 sxg_handle_interrupt(adapter
);
985 static void sxg_handle_interrupt(p_adapter_t adapter
)
987 // unsigned char RssId = 0;
990 if (adapter
->Stats
.RcvNoBuffer
< 5) {
991 DBG_ERROR("Enter sxg_handle_interrupt ISR[%x]\n",
992 adapter
->IsrCopy
[0]);
994 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "HndlIntr",
995 adapter
, adapter
->IsrCopy
[0], 0, 0);
996 // For now, RSS is disabled with line based interrupts
997 ASSERT(adapter
->RssEnabled
== FALSE
);
998 ASSERT(adapter
->MsiEnabled
== FALSE
);
999 ASSERT(adapter
->IsrCopy
[0]);
1000 /////////////////////////////
1002 // Always process the event queue.
1003 sxg_process_event_queue(adapter
,
1004 (adapter
->RssEnabled
? /*RssId */ 0 : 0));
1006 #if XXXTODO // RSS stuff
1007 if (--adapter
->IsrDpcsPending
) {
1009 ASSERT(adapter
->RssEnabled
);
1010 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "DPCsPend",
1016 // Last (or only) DPC processes the ISR and clears the interrupt.
1018 NewIsr
= sxg_process_isr(adapter
, 0);
1020 // Reenable interrupts
1022 adapter
->IsrCopy
[0] = 0;
1023 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "ClearIsr",
1024 adapter
, NewIsr
, 0, 0);
1026 if (adapter
->Stats
.RcvNoBuffer
< 5) {
1028 ("Exit sxg_handle_interrupt2 after enabling interrupt\n");
1031 WRITE_REG(adapter
->UcodeRegs
[0].Isr
, NewIsr
, TRUE
);
1033 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XHndlInt",
1039 * sxg_process_isr - Process an interrupt. Called from the line-based and
1040 * message based interrupt DPC routines
1043 * adapter - Our adapter structure
1044 * Queue - The ISR that needs processing
1049 static int sxg_process_isr(p_adapter_t adapter
, u32 MessageId
)
1051 u32 Isr
= adapter
->IsrCopy
[MessageId
];
1054 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "ProcIsr",
1055 adapter
, Isr
, 0, 0);
1058 if (Isr
& SXG_ISR_ERR
) {
1059 if (Isr
& SXG_ISR_PDQF
) {
1060 adapter
->Stats
.PdqFull
++;
1061 DBG_ERROR("%s: SXG_ISR_ERR PDQF!!\n", __FUNCTION__
);
1064 if (Isr
& SXG_ISR_RMISS
) {
1065 // There is a bunch of code in the SLIC driver which
1066 // attempts to process more receive events per DPC
1067 // if we start to fall behind. We'll probably
1068 // need to do something similar here, but hold
1069 // off for now. I don't want to make the code more
1070 // complicated than strictly needed.
1071 adapter
->Stats
.RcvNoBuffer
++;
1072 if (adapter
->Stats
.RcvNoBuffer
< 5) {
1073 DBG_ERROR("%s: SXG_ISR_ERR RMISS!!\n",
1078 if (Isr
& SXG_ISR_DEAD
) {
1079 // Set aside the crash info and set the adapter state to RESET
1081 (unsigned char) ((Isr
& SXG_ISR_CPU
) >> SXG_ISR_CPU_SHIFT
);
1082 adapter
->CrashLocation
= (ushort
) (Isr
& SXG_ISR_CRASH
);
1083 adapter
->Dead
= TRUE
;
1084 DBG_ERROR("%s: ISR_DEAD %x, CPU: %d\n", __FUNCTION__
,
1085 adapter
->CrashLocation
, adapter
->CrashCpu
);
1088 if (Isr
& SXG_ISR_ERFULL
) {
1089 // Same issue as RMISS, really. This means the
1090 // host is falling behind the card. Need to increase
1091 // event ring size, process more events per interrupt,
1092 // and/or reduce/remove interrupt aggregation.
1093 adapter
->Stats
.EventRingFull
++;
1094 DBG_ERROR("%s: SXG_ISR_ERR EVENT RING FULL!!\n",
1097 // Transmit drop - no DRAM buffers or XMT error
1098 if (Isr
& SXG_ISR_XDROP
) {
1099 adapter
->Stats
.XmtDrops
++;
1100 adapter
->Stats
.XmtErrors
++;
1101 DBG_ERROR("%s: SXG_ISR_ERR XDROP!!\n", __FUNCTION__
);
1104 // Slowpath send completions
1105 if (Isr
& SXG_ISR_SPSEND
) {
1106 sxg_complete_slow_send(adapter
);
1109 if (Isr
& SXG_ISR_UPC
) {
1110 ASSERT(adapter
->DumpCmdRunning
); // Maybe change when debug is added..
1111 adapter
->DumpCmdRunning
= FALSE
;
1114 if (Isr
& SXG_ISR_LINK
) {
1115 sxg_link_event(adapter
);
1117 // Debug - breakpoint hit
1118 if (Isr
& SXG_ISR_BREAK
) {
1119 // At the moment AGDB isn't written to support interactive
1120 // debug sessions. When it is, this interrupt will be used
1121 // to signal AGDB that it has hit a breakpoint. For now, ASSERT.
1124 // Heartbeat response
1125 if (Isr
& SXG_ISR_PING
) {
1126 adapter
->PingOutstanding
= FALSE
;
1128 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XProcIsr",
1129 adapter
, Isr
, NewIsr
, 0);
1136 * sxg_process_event_queue - Process our event queue
1139 * - adapter - Adapter structure
1140 * - RssId - The event queue requiring processing
1145 static u32
sxg_process_event_queue(p_adapter_t adapter
, u32 RssId
)
1147 PSXG_EVENT_RING EventRing
= &adapter
->EventRings
[RssId
];
1148 PSXG_EVENT Event
= &EventRing
->Ring
[adapter
->NextEvent
[RssId
]];
1149 u32 EventsProcessed
= 0, Batches
= 0;
1151 struct sk_buff
*skb
;
1152 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1153 struct sk_buff
*prev_skb
= NULL
;
1154 struct sk_buff
*IndicationList
[SXG_RCV_ARRAYSIZE
];
1156 PSXG_RCV_DATA_BUFFER_HDR RcvDataBufferHdr
;
1158 u32 ReturnStatus
= 0;
1160 ASSERT((adapter
->State
== SXG_STATE_RUNNING
) ||
1161 (adapter
->State
== SXG_STATE_PAUSING
) ||
1162 (adapter
->State
== SXG_STATE_PAUSED
) ||
1163 (adapter
->State
== SXG_STATE_HALTING
));
1164 // We may still have unprocessed events on the queue if
1165 // the card crashed. Don't process them.
1166 if (adapter
->Dead
) {
1169 // In theory there should only be a single processor that
1170 // accesses this queue, and only at interrupt-DPC time. So
1171 // we shouldn't need a lock for any of this.
1172 while (Event
->Status
& EVENT_STATUS_VALID
) {
1173 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "Event",
1174 Event
, Event
->Code
, Event
->Status
,
1175 adapter
->NextEvent
);
1176 switch (Event
->Code
) {
1177 case EVENT_CODE_BUFFERS
:
1178 ASSERT(!(Event
->CommandIndex
& 0xFF00)); // SXG_RING_INFO Head & Tail == unsigned char
1180 sxg_complete_descriptor_blocks(adapter
,
1181 Event
->CommandIndex
);
1184 case EVENT_CODE_SLOWRCV
:
1185 --adapter
->RcvBuffersOnCard
;
1186 if ((skb
= sxg_slow_receive(adapter
, Event
))) {
1188 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1189 // Add it to our indication list
1190 SXG_ADD_RCV_PACKET(adapter
, skb
, prev_skb
,
1191 IndicationList
, num_skbs
);
1192 // In Linux, we just pass up each skb to the protocol above at this point,
1193 // there is no capability of an indication list.
1195 // CHECK skb_pull(skb, INIC_RCVBUF_HEADSIZE);
1196 rx_bytes
= Event
->Length
; // (rcvbuf->length & IRHDDR_FLEN_MSK);
1197 skb_put(skb
, rx_bytes
);
1198 adapter
->stats
.rx_packets
++;
1199 adapter
->stats
.rx_bytes
+= rx_bytes
;
1200 #if SXG_OFFLOAD_IP_CHECKSUM
1201 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1203 skb
->dev
= adapter
->netdev
;
1204 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
1210 DBG_ERROR("%s: ERROR Invalid EventCode %d\n",
1211 __FUNCTION__
, Event
->Code
);
1214 // See if we need to restock card receive buffers.
1215 // There are two things to note here:
1216 // First - This test is not SMP safe. The
1217 // adapter->BuffersOnCard field is protected via atomic interlocked calls, but
1218 // we do not protect it with respect to these tests. The only way to do that
1219 // is with a lock, and I don't want to grab a lock every time we adjust the
1220 // BuffersOnCard count. Instead, we allow the buffer replenishment to be off
1221 // once in a while. The worst that can happen is the card is given one
1222 // more-or-less descriptor block than the arbitrary value we've chosen.
1224 // In short DO NOT ADD A LOCK HERE, OR WHERE RcvBuffersOnCard is adjusted.
1225 // Second - We expect this test to rarely evaluate to true. We attempt to
1226 // refill descriptor blocks as they are returned to us
1227 // (sxg_complete_descriptor_blocks), so The only time this should evaluate
1228 // to true is when sxg_complete_descriptor_blocks failed to allocate
1230 if (adapter
->RcvBuffersOnCard
< SXG_RCV_DATA_BUFFERS
) {
1231 sxg_stock_rcv_buffers(adapter
);
1233 // It's more efficient to just set this to zero.
1234 // But clearing the top bit saves potential debug info...
1235 Event
->Status
&= ~EVENT_STATUS_VALID
;
1236 // Advanct to the next event
1237 SXG_ADVANCE_INDEX(adapter
->NextEvent
[RssId
], EVENT_RING_SIZE
);
1238 Event
= &EventRing
->Ring
[adapter
->NextEvent
[RssId
]];
1240 if (EventsProcessed
== EVENT_RING_BATCH
) {
1241 // Release a batch of events back to the card
1242 WRITE_REG(adapter
->UcodeRegs
[RssId
].EventRelease
,
1243 EVENT_RING_BATCH
, FALSE
);
1244 EventsProcessed
= 0;
1245 // If we've processed our batch limit, break out of the
1246 // loop and return SXG_ISR_EVENT to arrange for us to
1248 if (Batches
++ == EVENT_BATCH_LIMIT
) {
1249 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
,
1250 TRACE_NOISY
, "EvtLimit", Batches
,
1251 adapter
->NextEvent
, 0, 0);
1252 ReturnStatus
= SXG_ISR_EVENT
;
1257 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1259 // Indicate any received dumb-nic frames
1261 SXG_INDICATE_PACKETS(adapter
, IndicationList
, num_skbs
);
1264 // Release events back to the card.
1266 if (EventsProcessed
) {
1267 WRITE_REG(adapter
->UcodeRegs
[RssId
].EventRelease
,
1268 EventsProcessed
, FALSE
);
1270 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XPrcEvnt",
1271 Batches
, EventsProcessed
, adapter
->NextEvent
, num_skbs
);
1273 return (ReturnStatus
);
1277 * sxg_complete_slow_send - Complete slowpath or dumb-nic sends
1280 * adapter - A pointer to our adapter structure
1285 static void sxg_complete_slow_send(p_adapter_t adapter
)
1287 PSXG_XMT_RING XmtRing
= &adapter
->XmtRings
[0];
1288 PSXG_RING_INFO XmtRingInfo
= &adapter
->XmtRingZeroInfo
;
1292 // NOTE - This lock is dropped and regrabbed in this loop.
1293 // This means two different processors can both be running
1294 // through this loop. Be *very* careful.
1295 spin_lock(&adapter
->XmtZeroLock
);
1296 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "CmpSnds",
1297 adapter
, XmtRingInfo
->Head
, XmtRingInfo
->Tail
, 0);
1299 while (XmtRingInfo
->Tail
!= *adapter
->XmtRingZeroIndex
) {
1300 // Locate the current Cmd (ring descriptor entry), and
1301 // associated SGL, and advance the tail
1302 SXG_RETURN_CMD(XmtRing
, XmtRingInfo
, XmtCmd
, ContextType
);
1303 ASSERT(ContextType
);
1304 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "CmpSnd",
1305 XmtRingInfo
->Head
, XmtRingInfo
->Tail
, XmtCmd
, 0);
1306 // Clear the SGL field.
1309 switch (*ContextType
) {
1312 struct sk_buff
*skb
;
1313 // Dumb-nic send. Command context is the dumb-nic SGL
1314 skb
= (struct sk_buff
*)ContextType
;
1315 // Complete the send
1316 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
,
1317 TRACE_IMPORTANT
, "DmSndCmp", skb
, 0,
1319 ASSERT(adapter
->Stats
.XmtQLen
);
1320 adapter
->Stats
.XmtQLen
--; // within XmtZeroLock
1321 adapter
->Stats
.XmtOk
++;
1322 // Now drop the lock and complete the send back to
1323 // Microsoft. We need to drop the lock because
1324 // Microsoft can come back with a chimney send, which
1325 // results in a double trip in SxgTcpOuput
1326 spin_unlock(&adapter
->XmtZeroLock
);
1327 SXG_COMPLETE_DUMB_SEND(adapter
, skb
);
1329 spin_lock(&adapter
->XmtZeroLock
);
1336 spin_unlock(&adapter
->XmtZeroLock
);
1337 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "CmpSnd",
1338 adapter
, XmtRingInfo
->Head
, XmtRingInfo
->Tail
, 0);
1345 * adapter - A pointer to our adapter structure
1346 * Event - Receive event
1351 static struct sk_buff
*sxg_slow_receive(p_adapter_t adapter
, PSXG_EVENT Event
)
1353 PSXG_RCV_DATA_BUFFER_HDR RcvDataBufferHdr
;
1354 struct sk_buff
*Packet
;
1356 RcvDataBufferHdr
= (PSXG_RCV_DATA_BUFFER_HDR
) Event
->HostHandle
;
1357 ASSERT(RcvDataBufferHdr
);
1358 ASSERT(RcvDataBufferHdr
->State
== SXG_BUFFER_ONCARD
);
1359 ASSERT(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr
) ==
1360 RcvDataBufferHdr
->VirtualAddress
);
1361 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_IMPORTANT
, "SlowRcv", Event
,
1362 RcvDataBufferHdr
, RcvDataBufferHdr
->State
,
1363 RcvDataBufferHdr
->VirtualAddress
);
1364 // Drop rcv frames in non-running state
1365 switch (adapter
->State
) {
1366 case SXG_STATE_RUNNING
:
1368 case SXG_STATE_PAUSING
:
1369 case SXG_STATE_PAUSED
:
1370 case SXG_STATE_HALTING
:
1377 // Change buffer state to UPSTREAM
1378 RcvDataBufferHdr
->State
= SXG_BUFFER_UPSTREAM
;
1379 if (Event
->Status
& EVENT_STATUS_RCVERR
) {
1380 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "RcvError",
1381 Event
, Event
->Status
, Event
->HostHandle
, 0);
1382 // XXXTODO - Remove this print later
1383 DBG_ERROR("SXG: Receive error %x\n",
1385 SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr
));
1386 sxg_process_rcv_error(adapter
,
1388 SXG_RECEIVE_DATA_LOCATION
1389 (RcvDataBufferHdr
));
1392 #if XXXTODO // VLAN stuff
1393 // If there's a VLAN tag, extract it and validate it
1394 if (((p_ether_header
) (SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr
)))->
1395 EtherType
== ETHERTYPE_VLAN
) {
1396 if (SxgExtractVlanHeader(adapter
, RcvDataBufferHdr
, Event
) !=
1398 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
,
1400 SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr
),
1407 // Dumb-nic frame. See if it passes our mac filter and update stats
1409 if (!sxg_mac_filter(adapter
,
1411 SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr
),
1413 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "RcvFiltr",
1414 Event
, SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr
),
1419 Packet
= RcvDataBufferHdr
->SxgDumbRcvPacket
;
1421 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_IMPORTANT
, "DumbRcv",
1422 RcvDataBufferHdr
, Packet
, Event
->Length
, 0);
1424 // Lastly adjust the receive packet length.
1426 SXG_ADJUST_RCV_PACKET(Packet
, RcvDataBufferHdr
, Event
);
1431 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "DropRcv",
1432 RcvDataBufferHdr
, Event
->Length
, 0, 0);
1433 adapter
->Stats
.RcvDiscards
++;
1434 spin_lock(&adapter
->RcvQLock
);
1435 SXG_FREE_RCV_DATA_BUFFER(adapter
, RcvDataBufferHdr
);
1436 spin_unlock(&adapter
->RcvQLock
);
1441 * sxg_process_rcv_error - process receive error and update
1445 * adapter - Adapter structure
1446 * ErrorStatus - 4-byte receive error status
1451 static void sxg_process_rcv_error(p_adapter_t adapter
, u32 ErrorStatus
)
1455 adapter
->Stats
.RcvErrors
++;
1457 if (ErrorStatus
& SXG_RCV_STATUS_TRANSPORT_ERROR
) {
1458 Error
= ErrorStatus
& SXG_RCV_STATUS_TRANSPORT_MASK
;
1460 case SXG_RCV_STATUS_TRANSPORT_CSUM
:
1461 adapter
->Stats
.TransportCsum
++;
1463 case SXG_RCV_STATUS_TRANSPORT_UFLOW
:
1464 adapter
->Stats
.TransportUflow
++;
1466 case SXG_RCV_STATUS_TRANSPORT_HDRLEN
:
1467 adapter
->Stats
.TransportHdrLen
++;
1471 if (ErrorStatus
& SXG_RCV_STATUS_NETWORK_ERROR
) {
1472 Error
= ErrorStatus
& SXG_RCV_STATUS_NETWORK_MASK
;
1474 case SXG_RCV_STATUS_NETWORK_CSUM
:
1475 adapter
->Stats
.NetworkCsum
++;
1477 case SXG_RCV_STATUS_NETWORK_UFLOW
:
1478 adapter
->Stats
.NetworkUflow
++;
1480 case SXG_RCV_STATUS_NETWORK_HDRLEN
:
1481 adapter
->Stats
.NetworkHdrLen
++;
1485 if (ErrorStatus
& SXG_RCV_STATUS_PARITY
) {
1486 adapter
->Stats
.Parity
++;
1488 if (ErrorStatus
& SXG_RCV_STATUS_LINK_ERROR
) {
1489 Error
= ErrorStatus
& SXG_RCV_STATUS_LINK_MASK
;
1491 case SXG_RCV_STATUS_LINK_PARITY
:
1492 adapter
->Stats
.LinkParity
++;
1494 case SXG_RCV_STATUS_LINK_EARLY
:
1495 adapter
->Stats
.LinkEarly
++;
1497 case SXG_RCV_STATUS_LINK_BUFOFLOW
:
1498 adapter
->Stats
.LinkBufOflow
++;
1500 case SXG_RCV_STATUS_LINK_CODE
:
1501 adapter
->Stats
.LinkCode
++;
1503 case SXG_RCV_STATUS_LINK_DRIBBLE
:
1504 adapter
->Stats
.LinkDribble
++;
1506 case SXG_RCV_STATUS_LINK_CRC
:
1507 adapter
->Stats
.LinkCrc
++;
1509 case SXG_RCV_STATUS_LINK_OFLOW
:
1510 adapter
->Stats
.LinkOflow
++;
1512 case SXG_RCV_STATUS_LINK_UFLOW
:
1513 adapter
->Stats
.LinkUflow
++;
1523 * adapter - Adapter structure
1524 * pether - Ethernet header
1525 * length - Frame length
1528 * TRUE if the frame is to be allowed
1530 static bool sxg_mac_filter(p_adapter_t adapter
, p_ether_header EtherHdr
, ushort length
)
1534 if (SXG_MULTICAST_PACKET(EtherHdr
)) {
1535 if (SXG_BROADCAST_PACKET(EtherHdr
)) {
1537 if (adapter
->MacFilter
& MAC_BCAST
) {
1538 adapter
->Stats
.DumbRcvBcastPkts
++;
1539 adapter
->Stats
.DumbRcvBcastBytes
+= length
;
1540 adapter
->Stats
.DumbRcvPkts
++;
1541 adapter
->Stats
.DumbRcvBytes
+= length
;
1546 if (adapter
->MacFilter
& MAC_ALLMCAST
) {
1547 adapter
->Stats
.DumbRcvMcastPkts
++;
1548 adapter
->Stats
.DumbRcvMcastBytes
+= length
;
1549 adapter
->Stats
.DumbRcvPkts
++;
1550 adapter
->Stats
.DumbRcvBytes
+= length
;
1553 if (adapter
->MacFilter
& MAC_MCAST
) {
1554 PSXG_MULTICAST_ADDRESS MulticastAddrs
=
1555 adapter
->MulticastAddrs
;
1556 while (MulticastAddrs
) {
1557 ETHER_EQ_ADDR(MulticastAddrs
->Address
,
1558 EtherHdr
->ether_dhost
,
1564 DumbRcvMcastBytes
+= length
;
1565 adapter
->Stats
.DumbRcvPkts
++;
1566 adapter
->Stats
.DumbRcvBytes
+=
1570 MulticastAddrs
= MulticastAddrs
->Next
;
1574 } else if (adapter
->MacFilter
& MAC_DIRECTED
) {
1575 // Not broadcast or multicast. Must be directed at us or
1576 // the card is in promiscuous mode. Either way, consider it
1577 // ours if MAC_DIRECTED is set
1578 adapter
->Stats
.DumbRcvUcastPkts
++;
1579 adapter
->Stats
.DumbRcvUcastBytes
+= length
;
1580 adapter
->Stats
.DumbRcvPkts
++;
1581 adapter
->Stats
.DumbRcvBytes
+= length
;
1584 if (adapter
->MacFilter
& MAC_PROMISC
) {
1585 // Whatever it is, keep it.
1586 adapter
->Stats
.DumbRcvPkts
++;
1587 adapter
->Stats
.DumbRcvBytes
+= length
;
1590 adapter
->Stats
.RcvDiscards
++;
1594 static int sxg_register_interrupt(p_adapter_t adapter
)
1596 if (!adapter
->intrregistered
) {
1600 ("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x] %x\n",
1601 __FUNCTION__
, adapter
, adapter
->netdev
->irq
, NR_IRQS
);
1603 spin_unlock_irqrestore(&sxg_global
.driver_lock
, sxg_global
.flags
);
1605 retval
= request_irq(adapter
->netdev
->irq
,
1608 adapter
->netdev
->name
, adapter
->netdev
);
1610 spin_lock_irqsave(&sxg_global
.driver_lock
, sxg_global
.flags
);
1613 DBG_ERROR("sxg: request_irq (%s) FAILED [%x]\n",
1614 adapter
->netdev
->name
, retval
);
1617 adapter
->intrregistered
= 1;
1618 adapter
->IntRegistered
= TRUE
;
1619 // Disable RSS with line-based interrupts
1620 adapter
->MsiEnabled
= FALSE
;
1621 adapter
->RssEnabled
= FALSE
;
1622 DBG_ERROR("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x]\n",
1623 __FUNCTION__
, adapter
, adapter
->netdev
->irq
);
1625 return (STATUS_SUCCESS
);
1628 static void sxg_deregister_interrupt(p_adapter_t adapter
)
1630 DBG_ERROR("sxg: %s ENTER adapter[%p]\n", __FUNCTION__
, adapter
);
1632 slic_init_cleanup(adapter
);
1634 memset(&adapter
->stats
, 0, sizeof(struct net_device_stats
));
1635 adapter
->error_interrupts
= 0;
1636 adapter
->rcv_interrupts
= 0;
1637 adapter
->xmit_interrupts
= 0;
1638 adapter
->linkevent_interrupts
= 0;
1639 adapter
->upr_interrupts
= 0;
1640 adapter
->num_isrs
= 0;
1641 adapter
->xmit_completes
= 0;
1642 adapter
->rcv_broadcasts
= 0;
1643 adapter
->rcv_multicasts
= 0;
1644 adapter
->rcv_unicasts
= 0;
1645 DBG_ERROR("sxg: %s EXIT\n", __FUNCTION__
);
1651 * Perform initialization of our slic interface.
1654 static int sxg_if_init(p_adapter_t adapter
)
1656 p_net_device dev
= adapter
->netdev
;
1659 DBG_ERROR("sxg: %s (%s) ENTER states[%d:%d:%d] flags[%x]\n",
1660 __FUNCTION__
, adapter
->netdev
->name
,
1661 adapter
->queues_initialized
, adapter
->state
,
1662 adapter
->linkstate
, dev
->flags
);
1664 /* adapter should be down at this point */
1665 if (adapter
->state
!= ADAPT_DOWN
) {
1666 DBG_ERROR("sxg_if_init adapter->state != ADAPT_DOWN\n");
1669 ASSERT(adapter
->linkstate
== LINK_DOWN
);
1671 adapter
->devflags_prev
= dev
->flags
;
1672 adapter
->macopts
= MAC_DIRECTED
;
1674 DBG_ERROR("sxg: %s (%s) Set MAC options: ", __FUNCTION__
,
1675 adapter
->netdev
->name
);
1676 if (dev
->flags
& IFF_BROADCAST
) {
1677 adapter
->macopts
|= MAC_BCAST
;
1678 DBG_ERROR("BCAST ");
1680 if (dev
->flags
& IFF_PROMISC
) {
1681 adapter
->macopts
|= MAC_PROMISC
;
1682 DBG_ERROR("PROMISC ");
1684 if (dev
->flags
& IFF_ALLMULTI
) {
1685 adapter
->macopts
|= MAC_ALLMCAST
;
1686 DBG_ERROR("ALL_MCAST ");
1688 if (dev
->flags
& IFF_MULTICAST
) {
1689 adapter
->macopts
|= MAC_MCAST
;
1690 DBG_ERROR("MCAST ");
1694 status
= sxg_register_interrupt(adapter
);
1695 if (status
!= STATUS_SUCCESS
) {
1696 DBG_ERROR("sxg_if_init: sxg_register_interrupt FAILED %x\n",
1698 sxg_deregister_interrupt(adapter
);
1702 adapter
->state
= ADAPT_UP
;
1705 * clear any pending events, then enable interrupts
1707 DBG_ERROR("sxg: %s ENABLE interrupts(slic)\n", __FUNCTION__
);
1709 return (STATUS_SUCCESS
);
1712 static int sxg_entry_open(p_net_device dev
)
1714 p_adapter_t adapter
= (p_adapter_t
) netdev_priv(dev
);
1718 DBG_ERROR("sxg: %s adapter->activated[%d]\n", __FUNCTION__
,
1719 adapter
->activated
);
1721 ("sxg: %s (%s): [jiffies[%lx] cpu %d] dev[%p] adapt[%p] port[%d]\n",
1722 __FUNCTION__
, adapter
->netdev
->name
, jiffies
, smp_processor_id(),
1723 adapter
->netdev
, adapter
, adapter
->port
);
1725 netif_stop_queue(adapter
->netdev
);
1727 spin_lock_irqsave(&sxg_global
.driver_lock
, sxg_global
.flags
);
1728 if (!adapter
->activated
) {
1729 sxg_global
.num_sxg_ports_active
++;
1730 adapter
->activated
= 1;
1733 // Initialize the adapter
1734 DBG_ERROR("sxg: %s ENTER sxg_initialize_adapter\n", __FUNCTION__
);
1735 status
= sxg_initialize_adapter(adapter
);
1736 DBG_ERROR("sxg: %s EXIT sxg_initialize_adapter status[%x]\n",
1737 __FUNCTION__
, status
);
1739 if (status
== STATUS_SUCCESS
) {
1740 DBG_ERROR("sxg: %s ENTER sxg_if_init\n", __FUNCTION__
);
1741 status
= sxg_if_init(adapter
);
1742 DBG_ERROR("sxg: %s EXIT sxg_if_init status[%x]\n", __FUNCTION__
,
1746 if (status
!= STATUS_SUCCESS
) {
1747 if (adapter
->activated
) {
1748 sxg_global
.num_sxg_ports_active
--;
1749 adapter
->activated
= 0;
1751 spin_unlock_irqrestore(&sxg_global
.driver_lock
,
1755 DBG_ERROR("sxg: %s ENABLE ALL INTERRUPTS\n", __FUNCTION__
);
1757 // Enable interrupts
1758 SXG_ENABLE_ALL_INTERRUPTS(adapter
);
1760 DBG_ERROR("sxg: %s EXIT\n", __FUNCTION__
);
1762 spin_unlock_irqrestore(&sxg_global
.driver_lock
, sxg_global
.flags
);
1763 return STATUS_SUCCESS
;
1766 static void __devexit
sxg_entry_remove(struct pci_dev
*pcidev
)
1768 p_net_device dev
= pci_get_drvdata(pcidev
);
1770 unsigned int mmio_len
= 0;
1771 p_adapter_t adapter
= (p_adapter_t
) netdev_priv(dev
);
1774 DBG_ERROR("sxg: %s ENTER dev[%p] adapter[%p]\n", __FUNCTION__
, dev
,
1776 sxg_deregister_interrupt(adapter
);
1777 sxg_unmap_mmio_space(adapter
);
1778 DBG_ERROR("sxg: %s unregister_netdev\n", __FUNCTION__
);
1779 unregister_netdev(dev
);
1781 mmio_start
= pci_resource_start(pcidev
, 0);
1782 mmio_len
= pci_resource_len(pcidev
, 0);
1784 DBG_ERROR("sxg: %s rel_region(0) start[%x] len[%x]\n", __FUNCTION__
,
1785 mmio_start
, mmio_len
);
1786 release_mem_region(mmio_start
, mmio_len
);
1788 DBG_ERROR("sxg: %s iounmap dev->base_addr[%x]\n", __FUNCTION__
,
1789 (unsigned int) dev
->base_addr
);
1790 iounmap((char *)dev
->base_addr
);
1792 DBG_ERROR("sxg: %s deallocate device\n", __FUNCTION__
);
1794 DBG_ERROR("sxg: %s EXIT\n", __FUNCTION__
);
1797 static int sxg_entry_halt(p_net_device dev
)
1799 p_adapter_t adapter
= (p_adapter_t
) netdev_priv(dev
);
1801 spin_lock_irqsave(&sxg_global
.driver_lock
, sxg_global
.flags
);
1802 DBG_ERROR("sxg: %s (%s) ENTER\n", __FUNCTION__
, dev
->name
);
1804 netif_stop_queue(adapter
->netdev
);
1805 adapter
->state
= ADAPT_DOWN
;
1806 adapter
->linkstate
= LINK_DOWN
;
1807 adapter
->devflags_prev
= 0;
1808 DBG_ERROR("sxg: %s (%s) set adapter[%p] state to ADAPT_DOWN(%d)\n",
1809 __FUNCTION__
, dev
->name
, adapter
, adapter
->state
);
1811 DBG_ERROR("sxg: %s (%s) EXIT\n", __FUNCTION__
, dev
->name
);
1812 DBG_ERROR("sxg: %s EXIT\n", __FUNCTION__
);
1813 spin_unlock_irqrestore(&sxg_global
.driver_lock
, sxg_global
.flags
);
1814 return (STATUS_SUCCESS
);
1817 static int sxg_ioctl(p_net_device dev
, struct ifreq
*rq
, int cmd
)
1820 // DBG_ERROR("sxg: %s cmd[%x] rq[%p] dev[%p]\n", __FUNCTION__, cmd, rq, dev);
1822 case SIOCSLICSETINTAGG
:
1824 // p_adapter_t adapter = (p_adapter_t) netdev_priv(dev);
1828 if (copy_from_user(data
, rq
->ifr_data
, 28)) {
1830 ("copy_from_user FAILED getting initial params\n");
1835 "%s: set interrupt aggregation to %d\n",
1836 __FUNCTION__
, intagg
);
1841 // DBG_ERROR("sxg: %s UNSUPPORTED[%x]\n", __FUNCTION__, cmd);
1847 #define NORMAL_ETHFRAME 0
1851 * sxg_send_packets - Send a skb packet
1854 * skb - The packet to send
1855 * dev - Our linux net device that refs our adapter
1858 * 0 regardless of outcome XXXTODO refer to e1000 driver
1860 static int sxg_send_packets(struct sk_buff
*skb
, p_net_device dev
)
1862 p_adapter_t adapter
= (p_adapter_t
) netdev_priv(dev
);
1863 u32 status
= STATUS_SUCCESS
;
1865 DBG_ERROR("sxg: %s ENTER sxg_send_packets skb[%p]\n", __FUNCTION__
,
1867 // Check the adapter state
1868 switch (adapter
->State
) {
1869 case SXG_STATE_INITIALIZING
:
1870 case SXG_STATE_HALTED
:
1871 case SXG_STATE_SHUTDOWN
:
1872 ASSERT(0); // unexpected
1874 case SXG_STATE_RESETTING
:
1875 case SXG_STATE_SLEEP
:
1876 case SXG_STATE_BOOTDIAG
:
1877 case SXG_STATE_DIAG
:
1878 case SXG_STATE_HALTING
:
1879 status
= STATUS_FAILURE
;
1881 case SXG_STATE_RUNNING
:
1882 if (adapter
->LinkState
!= SXG_LINK_UP
) {
1883 status
= STATUS_FAILURE
;
1888 status
= STATUS_FAILURE
;
1890 if (status
!= STATUS_SUCCESS
) {
1894 status
= sxg_transmit_packet(adapter
, skb
);
1895 if (status
== STATUS_SUCCESS
) {
1900 // reject & complete all the packets if they cant be sent
1901 if (status
!= STATUS_SUCCESS
) {
1903 // sxg_send_packets_fail(adapter, skb, status);
1905 SXG_DROP_DUMB_SEND(adapter
, skb
);
1906 adapter
->stats
.tx_dropped
++;
1909 DBG_ERROR("sxg: %s EXIT sxg_send_packets status[%x]\n", __FUNCTION__
,
1917 * sxg_transmit_packet
1919 * This function transmits a single packet.
1922 * adapter - Pointer to our adapter structure
1923 * skb - The packet to be sent
1928 static int sxg_transmit_packet(p_adapter_t adapter
, struct sk_buff
*skb
)
1930 PSCATTER_GATHER_LIST pSgl
;
1931 PSXG_SCATTER_GATHER SxgSgl
;
1933 u32 SglBufferLength
;
1935 // The vast majority of work is done in the shared
1936 // sxg_dumb_sgl routine.
1937 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "DumbSend",
1938 adapter
, skb
, 0, 0);
1940 // Allocate a SGL buffer
1941 SXG_GET_SGL_BUFFER(adapter
, SxgSgl
);
1943 adapter
->Stats
.NoSglBuf
++;
1944 adapter
->Stats
.XmtErrors
++;
1945 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "SndPktF1",
1946 adapter
, skb
, 0, 0);
1947 return (STATUS_RESOURCES
);
1949 ASSERT(SxgSgl
->adapter
== adapter
);
1950 SglBuffer
= SXG_SGL_BUFFER(SxgSgl
);
1951 SglBufferLength
= SXG_SGL_BUF_SIZE
;
1952 SxgSgl
->VlanTag
.VlanTci
= 0;
1953 SxgSgl
->VlanTag
.VlanTpid
= 0;
1954 SxgSgl
->Type
= SXG_SGL_DUMB
;
1955 SxgSgl
->DumbPacket
= skb
;
1958 // Call the common sxg_dumb_sgl routine to complete the send.
1959 sxg_dumb_sgl(pSgl
, SxgSgl
);
1960 // Return success sxg_dumb_sgl (or something later) will complete it.
1961 return (STATUS_SUCCESS
);
1969 * SxgSgl - SXG_SCATTER_GATHER
1974 static void sxg_dumb_sgl(PSCATTER_GATHER_LIST pSgl
, PSXG_SCATTER_GATHER SxgSgl
)
1976 p_adapter_t adapter
= SxgSgl
->adapter
;
1977 struct sk_buff
*skb
= SxgSgl
->DumbPacket
;
1978 // For now, all dumb-nic sends go on RSS queue zero
1979 PSXG_XMT_RING XmtRing
= &adapter
->XmtRings
[0];
1980 PSXG_RING_INFO XmtRingInfo
= &adapter
->XmtRingZeroInfo
;
1981 PSXG_CMD XmtCmd
= NULL
;
1983 u32 DataLength
= skb
->len
;
1984 // unsigned int BufLen;
1988 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "DumbSgl",
1989 pSgl
, SxgSgl
, 0, 0);
1991 // Set aside a pointer to the sgl
1992 SxgSgl
->pSgl
= pSgl
;
1994 // Sanity check that our SGL format is as we expect.
1995 ASSERT(sizeof(SXG_X64_SGE
) == sizeof(SCATTER_GATHER_ELEMENT
));
1996 // Shouldn't be a vlan tag on this frame
1997 ASSERT(SxgSgl
->VlanTag
.VlanTci
== 0);
1998 ASSERT(SxgSgl
->VlanTag
.VlanTpid
== 0);
2000 // From here below we work with the SGL placed in our
2003 SxgSgl
->Sgl
.NumberOfElements
= 1;
2005 // Grab the spinlock and acquire a command
2006 spin_lock(&adapter
->XmtZeroLock
);
2007 SXG_GET_CMD(XmtRing
, XmtRingInfo
, XmtCmd
, SxgSgl
);
2008 if (XmtCmd
== NULL
) {
2009 // Call sxg_complete_slow_send to see if we can
2010 // free up any XmtRingZero entries and then try again
2011 spin_unlock(&adapter
->XmtZeroLock
);
2012 sxg_complete_slow_send(adapter
);
2013 spin_lock(&adapter
->XmtZeroLock
);
2014 SXG_GET_CMD(XmtRing
, XmtRingInfo
, XmtCmd
, SxgSgl
);
2015 if (XmtCmd
== NULL
) {
2016 adapter
->Stats
.XmtZeroFull
++;
2020 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "DumbCmd",
2021 XmtCmd
, XmtRingInfo
->Head
, XmtRingInfo
->Tail
, 0);
2023 adapter
->Stats
.DumbXmtPkts
++;
2024 adapter
->Stats
.DumbXmtBytes
+= DataLength
;
2025 #if XXXTODO // Stats stuff
2026 if (SXG_MULTICAST_PACKET(EtherHdr
)) {
2027 if (SXG_BROADCAST_PACKET(EtherHdr
)) {
2028 adapter
->Stats
.DumbXmtBcastPkts
++;
2029 adapter
->Stats
.DumbXmtBcastBytes
+= DataLength
;
2031 adapter
->Stats
.DumbXmtMcastPkts
++;
2032 adapter
->Stats
.DumbXmtMcastBytes
+= DataLength
;
2035 adapter
->Stats
.DumbXmtUcastPkts
++;
2036 adapter
->Stats
.DumbXmtUcastBytes
+= DataLength
;
2039 // Fill in the command
2040 // Copy out the first SGE to the command and adjust for offset
2041 phys_addr
= pci_map_single(adapter
->pcidev
, skb
->data
, skb
->len
, PCI_DMA_TODEVICE
);
2042 XmtCmd
->Buffer
.FirstSgeAddress
= SXG_GET_ADDR_HIGH(phys_addr
);
2043 XmtCmd
->Buffer
.FirstSgeAddress
= XmtCmd
->Buffer
.FirstSgeAddress
<< 32;
2044 XmtCmd
->Buffer
.FirstSgeAddress
=
2045 XmtCmd
->Buffer
.FirstSgeAddress
| SXG_GET_ADDR_LOW(phys_addr
);
2046 // XmtCmd->Buffer.FirstSgeAddress = SxgSgl->Sgl.Elements[Index].Address;
2047 // XmtCmd->Buffer.FirstSgeAddress.LowPart += MdlOffset;
2048 XmtCmd
->Buffer
.FirstSgeLength
= DataLength
;
2049 // Set a pointer to the remaining SGL entries
2050 // XmtCmd->Sgl = SxgSgl->PhysicalAddress;
2051 // Advance the physical address of the SxgSgl structure to
2053 // SglOffset = (u32)((u32 *)(&SxgSgl->Sgl.Elements[Index+1]) -
2055 // XmtCmd->Sgl.LowPart += SglOffset;
2056 XmtCmd
->Buffer
.SgeOffset
= 0;
2057 // Note - TotalLength might be overwritten with MSS below..
2058 XmtCmd
->Buffer
.TotalLength
= DataLength
;
2059 XmtCmd
->SgEntries
= 1; //(ushort)(SxgSgl->Sgl.NumberOfElements - Index);
2062 // Advance transmit cmd descripter by 1.
2063 // NOTE - See comments in SxgTcpOutput where we write
2064 // to the XmtCmd register regarding CPU ID values and/or
2065 // multiple commands.
2068 WRITE_REG(adapter
->UcodeRegs
[0].XmtCmd
, 1, TRUE
);
2071 adapter
->Stats
.XmtQLen
++; // Stats within lock
2072 spin_unlock(&adapter
->XmtZeroLock
);
2073 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XDumSgl2",
2074 XmtCmd
, pSgl
, SxgSgl
, 0);
2078 // NOTE - Only jump to this label AFTER grabbing the
2079 // XmtZeroLock, and DO NOT DROP IT between the
2080 // command allocation and the following abort.
2082 SXG_ABORT_CMD(XmtRingInfo
);
2084 spin_unlock(&adapter
->XmtZeroLock
);
2087 // Jump to this label if failure occurs before the
2088 // XmtZeroLock is grabbed
2089 adapter
->Stats
.XmtErrors
++;
2090 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_IMPORTANT
, "DumSGFal",
2091 pSgl
, SxgSgl
, XmtRingInfo
->Head
, XmtRingInfo
->Tail
);
2093 SXG_COMPLETE_DUMB_SEND(adapter
, SxgSgl
->DumbPacket
); // SxgSgl->DumbPacket is the skb
2096 /***************************************************************
2097 * Link management functions
2098 ***************************************************************/
2101 * sxg_initialize_link - Initialize the link stuff
2104 * adapter - A pointer to our adapter structure
2109 static int sxg_initialize_link(p_adapter_t adapter
)
2111 PSXG_HW_REGS HwRegs
= adapter
->HwRegs
;
2117 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "InitLink",
2120 // Reset PHY and XGXS module
2121 WRITE_REG(HwRegs
->LinkStatus
, LS_SERDES_POWER_DOWN
, TRUE
);
2123 // Reset transmit configuration register
2124 WRITE_REG(HwRegs
->XmtConfig
, XMT_CONFIG_RESET
, TRUE
);
2126 // Reset receive configuration register
2127 WRITE_REG(HwRegs
->RcvConfig
, RCV_CONFIG_RESET
, TRUE
);
2129 // Reset all MAC modules
2130 WRITE_REG(HwRegs
->MacConfig0
, AXGMAC_CFG0_SUB_RESET
, TRUE
);
2133 // XXXTODO - This assumes the MAC address (0a:0b:0c:0d:0e:0f)
2134 // is stored with the first nibble (0a) in the byte 0
2135 // of the Mac address. Possibly reverse?
2136 Value
= *(u32
*) adapter
->MacAddr
;
2137 WRITE_REG(HwRegs
->LinkAddress0Low
, Value
, TRUE
);
2138 // also write the MAC address to the MAC. Endian is reversed.
2139 WRITE_REG(HwRegs
->MacAddressLow
, ntohl(Value
), TRUE
);
2140 Value
= (*(u16
*) & adapter
->MacAddr
[4] & 0x0000FFFF);
2141 WRITE_REG(HwRegs
->LinkAddress0High
, Value
| LINK_ADDRESS_ENABLE
, TRUE
);
2142 // endian swap for the MAC (put high bytes in bits [31:16], swapped)
2143 Value
= ntohl(Value
);
2144 WRITE_REG(HwRegs
->MacAddressHigh
, Value
, TRUE
);
2146 WRITE_REG(HwRegs
->LinkAddress1Low
, 0, TRUE
);
2147 WRITE_REG(HwRegs
->LinkAddress1High
, 0, TRUE
);
2149 WRITE_REG(HwRegs
->LinkAddress2Low
, 0, TRUE
);
2150 WRITE_REG(HwRegs
->LinkAddress2High
, 0, TRUE
);
2152 WRITE_REG(HwRegs
->LinkAddress3Low
, 0, TRUE
);
2153 WRITE_REG(HwRegs
->LinkAddress3High
, 0, TRUE
);
2155 // Enable MAC modules
2156 WRITE_REG(HwRegs
->MacConfig0
, 0, TRUE
);
2159 WRITE_REG(HwRegs
->MacConfig1
, (AXGMAC_CFG1_XMT_PAUSE
| // Allow sending of pause
2160 AXGMAC_CFG1_XMT_EN
| // Enable XMT
2161 AXGMAC_CFG1_RCV_PAUSE
| // Enable detection of pause
2162 AXGMAC_CFG1_RCV_EN
| // Enable receive
2163 AXGMAC_CFG1_SHORT_ASSERT
| // short frame detection
2164 AXGMAC_CFG1_CHECK_LEN
| // Verify frame length
2165 AXGMAC_CFG1_GEN_FCS
| // Generate FCS
2166 AXGMAC_CFG1_PAD_64
), // Pad frames to 64 bytes
2169 // Set AXGMAC max frame length if jumbo. Not needed for standard MTU
2170 if (adapter
->JumboEnabled
) {
2171 WRITE_REG(HwRegs
->MacMaxFrameLen
, AXGMAC_MAXFRAME_JUMBO
, TRUE
);
2173 // AMIIM Configuration Register -
2174 // The value placed in the AXGMAC_AMIIM_CFG_HALF_CLOCK portion
2175 // (bottom bits) of this register is used to determine the
2176 // MDC frequency as specified in the A-XGMAC Design Document.
2177 // This value must not be zero. The following value (62 or 0x3E)
2178 // is based on our MAC transmit clock frequency (MTCLK) of 312.5 MHz.
2179 // Given a maximum MDIO clock frequency of 2.5 MHz (see the PHY spec),
2180 // we get: 312.5/(2*(X+1)) < 2.5 ==> X = 62.
2181 // This value happens to be the default value for this register,
2182 // so we really don't have to do this.
2183 WRITE_REG(HwRegs
->MacAmiimConfig
, 0x0000003E, TRUE
);
2185 // Power up and enable PHY and XAUI/XGXS/Serdes logic
2186 WRITE_REG(HwRegs
->LinkStatus
,
2189 LS_XGXS_CTL
| LS_PHY_CLK_EN
| LS_ATTN_ALARM
), TRUE
);
2190 DBG_ERROR("After Power Up and enable PHY in sxg_initialize_link\n");
2192 // Per information given by Aeluros, wait 100 ms after removing reset.
2193 // It's not enough to wait for the self-clearing reset bit in reg 0 to clear.
2196 // Verify the PHY has come up by checking that the Reset bit has cleared.
2197 status
= sxg_read_mdio_reg(adapter
, MIIM_DEV_PHY_PMA
, // PHY PMA/PMD module
2198 PHY_PMA_CONTROL1
, // PMA/PMD control register
2200 if (status
!= STATUS_SUCCESS
)
2201 return (STATUS_FAILURE
);
2202 if (Value
& PMA_CONTROL1_RESET
) // reset complete if bit is 0
2203 return (STATUS_FAILURE
);
2205 // The SERDES should be initialized by now - confirm
2206 READ_REG(HwRegs
->LinkStatus
, Value
);
2207 if (Value
& LS_SERDES_DOWN
) // verify SERDES is initialized
2208 return (STATUS_FAILURE
);
2210 // The XAUI link should also be up - confirm
2211 if (!(Value
& LS_XAUI_LINK_UP
)) // verify XAUI link is up
2212 return (STATUS_FAILURE
);
2214 // Initialize the PHY
2215 status
= sxg_phy_init(adapter
);
2216 if (status
!= STATUS_SUCCESS
)
2217 return (STATUS_FAILURE
);
2219 // Enable the Link Alarm
2220 status
= sxg_write_mdio_reg(adapter
, MIIM_DEV_PHY_PMA
, // PHY PMA/PMD module
2221 LASI_CONTROL
, // LASI control register
2222 LASI_CTL_LS_ALARM_ENABLE
); // enable link alarm bit
2223 if (status
!= STATUS_SUCCESS
)
2224 return (STATUS_FAILURE
);
2226 // XXXTODO - temporary - verify bit is set
2227 status
= sxg_read_mdio_reg(adapter
, MIIM_DEV_PHY_PMA
, // PHY PMA/PMD module
2228 LASI_CONTROL
, // LASI control register
2230 if (status
!= STATUS_SUCCESS
)
2231 return (STATUS_FAILURE
);
2232 if (!(Value
& LASI_CTL_LS_ALARM_ENABLE
)) {
2233 DBG_ERROR("Error! LASI Control Alarm Enable bit not set!\n");
2236 MaxFrame
= adapter
->JumboEnabled
? JUMBOMAXFRAME
: ETHERMAXFRAME
;
2237 ConfigData
= (RCV_CONFIG_ENABLE
|
2238 RCV_CONFIG_ENPARSE
|
2240 RCV_CONFIG_RCVPAUSE
|
2243 RCV_CONFIG_HASH_16
|
2244 RCV_CONFIG_SOCKET
| RCV_CONFIG_BUFSIZE(MaxFrame
));
2245 WRITE_REG(HwRegs
->RcvConfig
, ConfigData
, TRUE
);
2247 WRITE_REG(HwRegs
->XmtConfig
, XMT_CONFIG_ENABLE
, TRUE
);
2249 // Mark the link as down. We'll get a link event when it comes up.
2250 sxg_link_state(adapter
, SXG_LINK_DOWN
);
2252 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XInitLnk",
2254 return (STATUS_SUCCESS
);
2258 * sxg_phy_init - Initialize the PHY
2261 * adapter - A pointer to our adapter structure
2266 static int sxg_phy_init(p_adapter_t adapter
)
2272 DBG_ERROR("ENTER %s\n", __FUNCTION__
);
2274 // Read a register to identify the PHY type
2275 status
= sxg_read_mdio_reg(adapter
, MIIM_DEV_PHY_PMA
, // PHY PMA/PMD module
2276 0xC205, // PHY ID register (?)
2277 &Value
); // XXXTODO - add def
2278 if (status
!= STATUS_SUCCESS
)
2279 return (STATUS_FAILURE
);
2281 if (Value
== 0x0012) { // 0x0012 == AEL2005C PHY(?) - XXXTODO - add def
2283 ("AEL2005C PHY detected. Downloading PHY microcode.\n");
2285 // Initialize AEL2005C PHY and download PHY microcode
2286 for (p
= PhyUcode
; p
->Addr
!= 0xFFFF; p
++) {
2288 // if address == 0, data == sleep time in ms
2291 // write the given data to the specified address
2292 status
= sxg_write_mdio_reg(adapter
, MIIM_DEV_PHY_PMA
, // PHY PMA/PMD module
2293 p
->Addr
, // PHY address
2294 p
->Data
); // PHY data
2295 if (status
!= STATUS_SUCCESS
)
2296 return (STATUS_FAILURE
);
2300 DBG_ERROR("EXIT %s\n", __FUNCTION__
);
2302 return (STATUS_SUCCESS
);
2306 * sxg_link_event - Process a link event notification from the card
2309 * adapter - A pointer to our adapter structure
2314 static void sxg_link_event(p_adapter_t adapter
)
2316 PSXG_HW_REGS HwRegs
= adapter
->HwRegs
;
2317 SXG_LINK_STATE LinkState
;
2321 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "LinkEvnt",
2323 DBG_ERROR("ENTER %s\n", __FUNCTION__
);
2325 // Check the Link Status register. We should have a Link Alarm.
2326 READ_REG(HwRegs
->LinkStatus
, Value
);
2327 if (Value
& LS_LINK_ALARM
) {
2328 // We got a Link Status alarm. First, pause to let the
2329 // link state settle (it can bounce a number of times)
2332 // Now clear the alarm by reading the LASI status register.
2333 status
= sxg_read_mdio_reg(adapter
, MIIM_DEV_PHY_PMA
, // PHY PMA/PMD module
2334 LASI_STATUS
, // LASI status register
2336 if (status
!= STATUS_SUCCESS
) {
2337 DBG_ERROR("Error reading LASI Status MDIO register!\n");
2338 sxg_link_state(adapter
, SXG_LINK_DOWN
);
2341 ASSERT(Value
& LASI_STATUS_LS_ALARM
);
2343 // Now get and set the link state
2344 LinkState
= sxg_get_link_state(adapter
);
2345 sxg_link_state(adapter
, LinkState
);
2346 DBG_ERROR("SXG: Link Alarm occurred. Link is %s\n",
2347 ((LinkState
== SXG_LINK_UP
) ? "UP" : "DOWN"));
2349 // XXXTODO - Assuming Link Attention is only being generated for the
2350 // Link Alarm pin (and not for a XAUI Link Status change), then it's
2351 // impossible to get here. Yet we've gotten here twice (under extreme
2352 // conditions - bouncing the link up and down many times a second).
2353 // Needs further investigation.
2354 DBG_ERROR("SXG: sxg_link_event: Can't get here!\n");
2355 DBG_ERROR("SXG: Link Status == 0x%08X.\n", Value
);
2358 DBG_ERROR("EXIT %s\n", __FUNCTION__
);
2363 * sxg_get_link_state - Determine if the link is up or down
2366 * adapter - A pointer to our adapter structure
2371 static SXG_LINK_STATE
sxg_get_link_state(p_adapter_t adapter
)
2376 DBG_ERROR("ENTER %s\n", __FUNCTION__
);
2378 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "GetLink",
2381 // Per the Xenpak spec (and the IEEE 10Gb spec?), the link is up if
2382 // the following 3 bits (from 3 different MDIO registers) are all true.
2383 status
= sxg_read_mdio_reg(adapter
, MIIM_DEV_PHY_PMA
, // PHY PMA/PMD module
2384 PHY_PMA_RCV_DET
, // PMA/PMD Receive Signal Detect register
2386 if (status
!= STATUS_SUCCESS
)
2389 // If PMA/PMD receive signal detect is 0, then the link is down
2390 if (!(Value
& PMA_RCV_DETECT
))
2391 return (SXG_LINK_DOWN
);
2393 status
= sxg_read_mdio_reg(adapter
, MIIM_DEV_PHY_PCS
, // PHY PCS module
2394 PHY_PCS_10G_STATUS1
, // PCS 10GBASE-R Status 1 register
2396 if (status
!= STATUS_SUCCESS
)
2399 // If PCS is not locked to receive blocks, then the link is down
2400 if (!(Value
& PCS_10B_BLOCK_LOCK
))
2401 return (SXG_LINK_DOWN
);
2403 status
= sxg_read_mdio_reg(adapter
, MIIM_DEV_PHY_XS
, // PHY XS module
2404 PHY_XS_LANE_STATUS
, // XS Lane Status register
2406 if (status
!= STATUS_SUCCESS
)
2409 // If XS transmit lanes are not aligned, then the link is down
2410 if (!(Value
& XS_LANE_ALIGN
))
2411 return (SXG_LINK_DOWN
);
2413 // All 3 bits are true, so the link is up
2414 DBG_ERROR("EXIT %s\n", __FUNCTION__
);
2416 return (SXG_LINK_UP
);
2419 // An error occurred reading an MDIO register. This shouldn't happen.
2420 DBG_ERROR("Error reading an MDIO register!\n");
2422 return (SXG_LINK_DOWN
);
2425 static void sxg_indicate_link_state(p_adapter_t adapter
, SXG_LINK_STATE LinkState
)
2427 if (adapter
->LinkState
== SXG_LINK_UP
) {
2428 DBG_ERROR("%s: LINK now UP, call netif_start_queue\n",
2430 netif_start_queue(adapter
->netdev
);
2432 DBG_ERROR("%s: LINK now DOWN, call netif_stop_queue\n",
2434 netif_stop_queue(adapter
->netdev
);
2439 * sxg_link_state - Set the link state and if necessary, indicate.
2440 * This routine the central point of processing for all link state changes.
2441 * Nothing else in the driver should alter the link state or perform
2442 * link state indications
2445 * adapter - A pointer to our adapter structure
2446 * LinkState - The link state
2451 static void sxg_link_state(p_adapter_t adapter
, SXG_LINK_STATE LinkState
)
2453 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_IMPORTANT
, "LnkINDCT",
2454 adapter
, LinkState
, adapter
->LinkState
, adapter
->State
);
2456 DBG_ERROR("ENTER %s\n", __FUNCTION__
);
2458 // Hold the adapter lock during this routine. Maybe move
2459 // the lock to the caller.
2460 spin_lock(&adapter
->AdapterLock
);
2461 if (LinkState
== adapter
->LinkState
) {
2462 // Nothing changed..
2463 spin_unlock(&adapter
->AdapterLock
);
2464 DBG_ERROR("EXIT #0 %s\n", __FUNCTION__
);
2467 // Save the adapter state
2468 adapter
->LinkState
= LinkState
;
2470 // Drop the lock and indicate link state
2471 spin_unlock(&adapter
->AdapterLock
);
2472 DBG_ERROR("EXIT #1 %s\n", __FUNCTION__
);
2474 sxg_indicate_link_state(adapter
, LinkState
);
2478 * sxg_write_mdio_reg - Write to a register on the MDIO bus
2481 * adapter - A pointer to our adapter structure
2482 * DevAddr - MDIO device number being addressed
2483 * RegAddr - register address for the specified MDIO device
2484 * Value - value to write to the MDIO register
2489 static int sxg_write_mdio_reg(p_adapter_t adapter
,
2490 u32 DevAddr
, u32 RegAddr
, u32 Value
)
2492 PSXG_HW_REGS HwRegs
= adapter
->HwRegs
;
2493 u32 AddrOp
; // Address operation (written to MIIM field reg)
2494 u32 WriteOp
; // Write operation (written to MIIM field reg)
2495 u32 Cmd
; // Command (written to MIIM command reg)
2499 // DBG_ERROR("ENTER %s\n", __FUNCTION__);
2501 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "WrtMDIO",
2504 // Ensure values don't exceed field width
2505 DevAddr
&= 0x001F; // 5-bit field
2506 RegAddr
&= 0xFFFF; // 16-bit field
2507 Value
&= 0xFFFF; // 16-bit field
2509 // Set MIIM field register bits for an MIIM address operation
2510 AddrOp
= (MIIM_PORT_NUM
<< AXGMAC_AMIIM_FIELD_PORT_SHIFT
) |
2511 (DevAddr
<< AXGMAC_AMIIM_FIELD_DEV_SHIFT
) |
2512 (MIIM_TA_10GB
<< AXGMAC_AMIIM_FIELD_TA_SHIFT
) |
2513 (MIIM_OP_ADDR
<< AXGMAC_AMIIM_FIELD_OP_SHIFT
) | RegAddr
;
2515 // Set MIIM field register bits for an MIIM write operation
2516 WriteOp
= (MIIM_PORT_NUM
<< AXGMAC_AMIIM_FIELD_PORT_SHIFT
) |
2517 (DevAddr
<< AXGMAC_AMIIM_FIELD_DEV_SHIFT
) |
2518 (MIIM_TA_10GB
<< AXGMAC_AMIIM_FIELD_TA_SHIFT
) |
2519 (MIIM_OP_WRITE
<< AXGMAC_AMIIM_FIELD_OP_SHIFT
) | Value
;
2521 // Set MIIM command register bits to execute an MIIM command
2522 Cmd
= AXGMAC_AMIIM_CMD_START
| AXGMAC_AMIIM_CMD_10G_OPERATION
;
2524 // Reset the command register command bit (in case it's not 0)
2525 WRITE_REG(HwRegs
->MacAmiimCmd
, 0, TRUE
);
2527 // MIIM write to set the address of the specified MDIO register
2528 WRITE_REG(HwRegs
->MacAmiimField
, AddrOp
, TRUE
);
2530 // Write to MIIM Command Register to execute to address operation
2531 WRITE_REG(HwRegs
->MacAmiimCmd
, Cmd
, TRUE
);
2533 // Poll AMIIM Indicator register to wait for completion
2534 Timeout
= SXG_LINK_TIMEOUT
;
2536 udelay(100); // Timeout in 100us units
2537 READ_REG(HwRegs
->MacAmiimIndicator
, ValueRead
);
2538 if (--Timeout
== 0) {
2539 return (STATUS_FAILURE
);
2541 } while (ValueRead
& AXGMAC_AMIIM_INDC_BUSY
);
2543 // Reset the command register command bit
2544 WRITE_REG(HwRegs
->MacAmiimCmd
, 0, TRUE
);
2546 // MIIM write to set up an MDIO write operation
2547 WRITE_REG(HwRegs
->MacAmiimField
, WriteOp
, TRUE
);
2549 // Write to MIIM Command Register to execute the write operation
2550 WRITE_REG(HwRegs
->MacAmiimCmd
, Cmd
, TRUE
);
2552 // Poll AMIIM Indicator register to wait for completion
2553 Timeout
= SXG_LINK_TIMEOUT
;
2555 udelay(100); // Timeout in 100us units
2556 READ_REG(HwRegs
->MacAmiimIndicator
, ValueRead
);
2557 if (--Timeout
== 0) {
2558 return (STATUS_FAILURE
);
2560 } while (ValueRead
& AXGMAC_AMIIM_INDC_BUSY
);
2562 // DBG_ERROR("EXIT %s\n", __FUNCTION__);
2564 return (STATUS_SUCCESS
);
2568 * sxg_read_mdio_reg - Read a register on the MDIO bus
2571 * adapter - A pointer to our adapter structure
2572 * DevAddr - MDIO device number being addressed
2573 * RegAddr - register address for the specified MDIO device
2574 * pValue - pointer to where to put data read from the MDIO register
2579 static int sxg_read_mdio_reg(p_adapter_t adapter
,
2580 u32 DevAddr
, u32 RegAddr
, u32
* pValue
)
2582 PSXG_HW_REGS HwRegs
= adapter
->HwRegs
;
2583 u32 AddrOp
; // Address operation (written to MIIM field reg)
2584 u32 ReadOp
; // Read operation (written to MIIM field reg)
2585 u32 Cmd
; // Command (written to MIIM command reg)
2589 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "WrtMDIO",
2591 // DBG_ERROR("ENTER %s\n", __FUNCTION__);
2593 // Ensure values don't exceed field width
2594 DevAddr
&= 0x001F; // 5-bit field
2595 RegAddr
&= 0xFFFF; // 16-bit field
2597 // Set MIIM field register bits for an MIIM address operation
2598 AddrOp
= (MIIM_PORT_NUM
<< AXGMAC_AMIIM_FIELD_PORT_SHIFT
) |
2599 (DevAddr
<< AXGMAC_AMIIM_FIELD_DEV_SHIFT
) |
2600 (MIIM_TA_10GB
<< AXGMAC_AMIIM_FIELD_TA_SHIFT
) |
2601 (MIIM_OP_ADDR
<< AXGMAC_AMIIM_FIELD_OP_SHIFT
) | RegAddr
;
2603 // Set MIIM field register bits for an MIIM read operation
2604 ReadOp
= (MIIM_PORT_NUM
<< AXGMAC_AMIIM_FIELD_PORT_SHIFT
) |
2605 (DevAddr
<< AXGMAC_AMIIM_FIELD_DEV_SHIFT
) |
2606 (MIIM_TA_10GB
<< AXGMAC_AMIIM_FIELD_TA_SHIFT
) |
2607 (MIIM_OP_READ
<< AXGMAC_AMIIM_FIELD_OP_SHIFT
);
2609 // Set MIIM command register bits to execute an MIIM command
2610 Cmd
= AXGMAC_AMIIM_CMD_START
| AXGMAC_AMIIM_CMD_10G_OPERATION
;
2612 // Reset the command register command bit (in case it's not 0)
2613 WRITE_REG(HwRegs
->MacAmiimCmd
, 0, TRUE
);
2615 // MIIM write to set the address of the specified MDIO register
2616 WRITE_REG(HwRegs
->MacAmiimField
, AddrOp
, TRUE
);
2618 // Write to MIIM Command Register to execute to address operation
2619 WRITE_REG(HwRegs
->MacAmiimCmd
, Cmd
, TRUE
);
2621 // Poll AMIIM Indicator register to wait for completion
2622 Timeout
= SXG_LINK_TIMEOUT
;
2624 udelay(100); // Timeout in 100us units
2625 READ_REG(HwRegs
->MacAmiimIndicator
, ValueRead
);
2626 if (--Timeout
== 0) {
2627 return (STATUS_FAILURE
);
2629 } while (ValueRead
& AXGMAC_AMIIM_INDC_BUSY
);
2631 // Reset the command register command bit
2632 WRITE_REG(HwRegs
->MacAmiimCmd
, 0, TRUE
);
2634 // MIIM write to set up an MDIO register read operation
2635 WRITE_REG(HwRegs
->MacAmiimField
, ReadOp
, TRUE
);
2637 // Write to MIIM Command Register to execute the read operation
2638 WRITE_REG(HwRegs
->MacAmiimCmd
, Cmd
, TRUE
);
2640 // Poll AMIIM Indicator register to wait for completion
2641 Timeout
= SXG_LINK_TIMEOUT
;
2643 udelay(100); // Timeout in 100us units
2644 READ_REG(HwRegs
->MacAmiimIndicator
, ValueRead
);
2645 if (--Timeout
== 0) {
2646 return (STATUS_FAILURE
);
2648 } while (ValueRead
& AXGMAC_AMIIM_INDC_BUSY
);
2650 // Read the MDIO register data back from the field register
2651 READ_REG(HwRegs
->MacAmiimField
, *pValue
);
2652 *pValue
&= 0xFFFF; // data is in the lower 16 bits
2654 // DBG_ERROR("EXIT %s\n", __FUNCTION__);
2656 return (STATUS_SUCCESS
);
2660 * Allocate a mcast_address structure to hold the multicast address.
2663 static int sxg_mcast_add_list(p_adapter_t adapter
, char *address
)
2665 p_mcast_address_t mcaddr
, mlist
;
2668 /* Check to see if it already exists */
2669 mlist
= adapter
->mcastaddrs
;
2671 ETHER_EQ_ADDR(mlist
->address
, address
, equaladdr
);
2673 return (STATUS_SUCCESS
);
2675 mlist
= mlist
->next
;
2678 /* Doesn't already exist. Allocate a structure to hold it */
2679 mcaddr
= kmalloc(sizeof(mcast_address_t
), GFP_ATOMIC
);
2683 memcpy(mcaddr
->address
, address
, 6);
2685 mcaddr
->next
= adapter
->mcastaddrs
;
2686 adapter
->mcastaddrs
= mcaddr
;
2688 return (STATUS_SUCCESS
);
2692 * Functions to obtain the CRC corresponding to the destination mac address.
2693 * This is a standard ethernet CRC in that it is a 32-bit, reflected CRC using
2695 * x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1.
2697 * After the CRC for the 6 bytes is generated (but before the value is complemented),
2698 * we must then transpose the value and return bits 30-23.
2701 static u32 sxg_crc_table
[256]; /* Table of CRC's for all possible byte values */
2702 static u32 sxg_crc_init
; /* Is table initialized */
2705 * Contruct the CRC32 table
2707 static void sxg_mcast_init_crc32(void)
2709 u32 c
; /* CRC shit reg */
2710 u32 e
= 0; /* Poly X-or pattern */
2711 int i
; /* counter */
2712 int k
; /* byte being shifted into crc */
2714 static int p
[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 };
2716 for (i
= 0; i
< sizeof(p
) / sizeof(int); i
++) {
2717 e
|= 1L << (31 - p
[i
]);
2720 for (i
= 1; i
< 256; i
++) {
2722 for (k
= 8; k
; k
--) {
2723 c
= c
& 1 ? (c
>> 1) ^ e
: c
>> 1;
2725 sxg_crc_table
[i
] = c
;
2730 * Return the MAC hast as described above.
2732 static unsigned char sxg_mcast_get_mac_hash(char *macaddr
)
2737 unsigned char machash
= 0;
2739 if (!sxg_crc_init
) {
2740 sxg_mcast_init_crc32();
2744 crc
= 0xFFFFFFFF; /* Preload shift register, per crc-32 spec */
2745 for (i
= 0, p
= macaddr
; i
< 6; ++p
, ++i
) {
2746 crc
= (crc
>> 8) ^ sxg_crc_table
[(crc
^ *p
) & 0xFF];
2749 /* Return bits 1-8, transposed */
2750 for (i
= 1; i
< 9; i
++) {
2751 machash
|= (((crc
>> i
) & 1) << (8 - i
));
2757 static void sxg_mcast_set_bit(p_adapter_t adapter
, char *address
)
2759 unsigned char crcpoly
;
2761 /* Get the CRC polynomial for the mac address */
2762 crcpoly
= sxg_mcast_get_mac_hash(address
);
2764 /* We only have space on the SLIC for 64 entries. Lop
2765 * off the top two bits. (2^6 = 64)
2769 /* OR in the new bit into our 64 bit mask. */
2770 adapter
->MulticastMask
|= (u64
) 1 << crcpoly
;
2773 static void sxg_mcast_set_list(p_net_device dev
)
2776 p_adapter_t adapter
= (p_adapter_t
) netdev_priv(dev
);
2777 int status
= STATUS_SUCCESS
;
2780 struct dev_mc_list
*mc_list
= dev
->mc_list
;
2781 int mc_count
= dev
->mc_count
;
2785 for (i
= 1; i
<= mc_count
; i
++) {
2786 addresses
= (char *) & mc_list
->dmi_addr
;
2787 if (mc_list
->dmi_addrlen
== 6) {
2788 status
= sxg_mcast_add_list(adapter
, addresses
);
2789 if (status
!= STATUS_SUCCESS
) {
2796 sxg_mcast_set_bit(adapter
, addresses
);
2797 mc_list
= mc_list
->next
;
2800 DBG_ERROR("%s a->devflags_prev[%x] dev->flags[%x] status[%x]\n",
2801 __FUNCTION__
, adapter
->devflags_prev
, dev
->flags
, status
);
2802 if (adapter
->devflags_prev
!= dev
->flags
) {
2803 adapter
->macopts
= MAC_DIRECTED
;
2805 if (dev
->flags
& IFF_BROADCAST
) {
2806 adapter
->macopts
|= MAC_BCAST
;
2808 if (dev
->flags
& IFF_PROMISC
) {
2809 adapter
->macopts
|= MAC_PROMISC
;
2811 if (dev
->flags
& IFF_ALLMULTI
) {
2812 adapter
->macopts
|= MAC_ALLMCAST
;
2814 if (dev
->flags
& IFF_MULTICAST
) {
2815 adapter
->macopts
|= MAC_MCAST
;
2818 adapter
->devflags_prev
= dev
->flags
;
2819 DBG_ERROR("%s call sxg_config_set adapter->macopts[%x]\n",
2820 __FUNCTION__
, adapter
->macopts
);
2821 sxg_config_set(adapter
, TRUE
);
2823 if (status
== STATUS_SUCCESS
) {
2824 sxg_mcast_set_mask(adapter
);
2831 static void sxg_mcast_set_mask(p_adapter_t adapter
)
2833 PSXG_UCODE_REGS sxg_regs
= adapter
->UcodeRegs
;
2835 DBG_ERROR("%s ENTER (%s) macopts[%x] mask[%llx]\n", __FUNCTION__
,
2836 adapter
->netdev
->name
, (unsigned int) adapter
->MacFilter
,
2837 adapter
->MulticastMask
);
2839 if (adapter
->MacFilter
& (MAC_ALLMCAST
| MAC_PROMISC
)) {
2840 /* Turn on all multicast addresses. We have to do this for promiscuous
2841 * mode as well as ALLMCAST mode. It saves the Microcode from having
2842 * to keep state about the MAC configuration.
2844 // DBG_ERROR("sxg: %s macopts = MAC_ALLMCAST | MAC_PROMISC\n SLUT MODE!!!\n",__FUNCTION__);
2845 WRITE_REG(sxg_regs
->McastLow
, 0xFFFFFFFF, FLUSH
);
2846 WRITE_REG(sxg_regs
->McastHigh
, 0xFFFFFFFF, FLUSH
);
2847 // DBG_ERROR("%s (%s) WRITE to slic_regs slic_mcastlow&high 0xFFFFFFFF\n",__FUNCTION__, adapter->netdev->name);
2850 /* Commit our multicast mast to the SLIC by writing to the multicast
2851 * address mask registers
2853 DBG_ERROR("%s (%s) WRITE mcastlow[%lx] mcasthigh[%lx]\n",
2854 __FUNCTION__
, adapter
->netdev
->name
,
2855 ((ulong
) (adapter
->MulticastMask
& 0xFFFFFFFF)),
2857 ((adapter
->MulticastMask
>> 32) & 0xFFFFFFFF)));
2859 WRITE_REG(sxg_regs
->McastLow
,
2860 (u32
) (adapter
->MulticastMask
& 0xFFFFFFFF),
2862 WRITE_REG(sxg_regs
->McastHigh
,
2864 MulticastMask
>> 32) & 0xFFFFFFFF),
2869 static void sxg_unmap_mmio_space(p_adapter_t adapter
)
2871 #if LINUX_FREES_ADAPTER_RESOURCES
2872 // if (adapter->Regs) {
2873 // iounmap(adapter->Regs);
2875 // adapter->slic_regs = NULL;
2881 * SxgFreeResources - Free everything allocated in SxgAllocateResources
2884 * adapter - A pointer to our adapter structure
2889 void SxgFreeResources(p_adapter_t adapter
)
2891 u32 RssIds
, IsrCount
;
2892 PTCP_OBJECT TcpObject
;
2894 BOOLEAN TimerCancelled
;
2896 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "FreeRes",
2897 adapter
, adapter
->MaxTcbs
, 0, 0);
2899 RssIds
= SXG_RSS_CPU_COUNT(adapter
);
2900 IsrCount
= adapter
->MsiEnabled
? RssIds
: 1;
2902 if (adapter
->BasicAllocations
== FALSE
) {
2903 // No allocations have been made, including spinlocks,
2904 // or listhead initializations. Return.
2908 if (!(IsListEmpty(&adapter
->AllRcvBlocks
))) {
2909 SxgFreeRcvBlocks(adapter
);
2911 if (!(IsListEmpty(&adapter
->AllSglBuffers
))) {
2912 SxgFreeSglBuffers(adapter
);
2914 // Free event queues.
2915 if (adapter
->EventRings
) {
2916 pci_free_consistent(adapter
->pcidev
,
2917 sizeof(SXG_EVENT_RING
) * RssIds
,
2918 adapter
->EventRings
, adapter
->PEventRings
);
2921 pci_free_consistent(adapter
->pcidev
,
2922 sizeof(u32
) * IsrCount
,
2923 adapter
->Isr
, adapter
->PIsr
);
2925 if (adapter
->XmtRingZeroIndex
) {
2926 pci_free_consistent(adapter
->pcidev
,
2928 adapter
->XmtRingZeroIndex
,
2929 adapter
->PXmtRingZeroIndex
);
2931 if (adapter
->IndirectionTable
) {
2932 pci_free_consistent(adapter
->pcidev
,
2933 SXG_MAX_RSS_TABLE_SIZE
,
2934 adapter
->IndirectionTable
,
2935 adapter
->PIndirectionTable
);
2938 SXG_FREE_PACKET_POOL(adapter
->PacketPoolHandle
);
2939 SXG_FREE_BUFFER_POOL(adapter
->BufferPoolHandle
);
2941 // Unmap register spaces
2942 SxgUnmapResources(adapter
);
2945 if (adapter
->DmaHandle
) {
2946 SXG_DEREGISTER_DMA(adapter
->DmaHandle
);
2948 // Deregister interrupt
2949 SxgDeregisterInterrupt(adapter
);
2951 // Possibly free system info (5.2 only)
2952 SXG_RELEASE_SYSTEM_INFO(adapter
);
2954 SxgDiagFreeResources(adapter
);
2956 SxgFreeMCastAddrs(adapter
);
2958 if (SXG_TIMER_ALLOCATED(adapter
->ResetTimer
)) {
2959 SXG_CANCEL_TIMER(adapter
->ResetTimer
, TimerCancelled
);
2960 SXG_FREE_TIMER(adapter
->ResetTimer
);
2962 if (SXG_TIMER_ALLOCATED(adapter
->RssTimer
)) {
2963 SXG_CANCEL_TIMER(adapter
->RssTimer
, TimerCancelled
);
2964 SXG_FREE_TIMER(adapter
->RssTimer
);
2966 if (SXG_TIMER_ALLOCATED(adapter
->OffloadTimer
)) {
2967 SXG_CANCEL_TIMER(adapter
->OffloadTimer
, TimerCancelled
);
2968 SXG_FREE_TIMER(adapter
->OffloadTimer
);
2971 adapter
->BasicAllocations
= FALSE
;
2973 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XFreeRes",
2974 adapter
, adapter
->MaxTcbs
, 0, 0);
2979 * sxg_allocate_complete -
2981 * This routine is called when a memory allocation has completed.
2984 * p_adapter_t - Our adapter structure
2985 * VirtualAddress - Memory virtual address
2986 * PhysicalAddress - Memory physical address
2987 * Length - Length of memory allocated (or 0)
2988 * Context - The type of buffer allocated
2993 static void sxg_allocate_complete(p_adapter_t adapter
,
2994 void *VirtualAddress
,
2995 dma_addr_t PhysicalAddress
,
2996 u32 Length
, SXG_BUFFER_TYPE Context
)
2998 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "AllocCmp",
2999 adapter
, VirtualAddress
, Length
, Context
);
3000 ASSERT(adapter
->AllocationsPending
);
3001 --adapter
->AllocationsPending
;
3005 case SXG_BUFFER_TYPE_RCV
:
3006 sxg_allocate_rcvblock_complete(adapter
,
3008 PhysicalAddress
, Length
);
3010 case SXG_BUFFER_TYPE_SGL
:
3011 sxg_allocate_sgl_buffer_complete(adapter
,
3012 (PSXG_SCATTER_GATHER
)
3014 PhysicalAddress
, Length
);
3017 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XAlocCmp",
3018 adapter
, VirtualAddress
, Length
, Context
);
3022 * sxg_allocate_buffer_memory - Shared memory allocation routine used for
3023 * synchronous and asynchronous buffer allocations
3026 * adapter - A pointer to our adapter structure
3027 * Size - block size to allocate
3028 * BufferType - Type of buffer to allocate
3033 static int sxg_allocate_buffer_memory(p_adapter_t adapter
,
3034 u32 Size
, SXG_BUFFER_TYPE BufferType
)
3040 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "AllocMem",
3041 adapter
, Size
, BufferType
, 0);
3042 // Grab the adapter lock and check the state.
3043 // If we're in anything other than INITIALIZING or
3044 // RUNNING state, fail. This is to prevent
3045 // allocations in an improper driver state
3046 spin_lock(&adapter
->AdapterLock
);
3048 // Increment the AllocationsPending count while holding
3049 // the lock. Pause processing relies on this
3050 ++adapter
->AllocationsPending
;
3051 spin_unlock(&adapter
->AdapterLock
);
3053 // At initialization time allocate resources synchronously.
3054 Buffer
= pci_alloc_consistent(adapter
->pcidev
, Size
, &pBuffer
);
3055 if (Buffer
== NULL
) {
3056 spin_lock(&adapter
->AdapterLock
);
3057 // Decrement the AllocationsPending count while holding
3058 // the lock. Pause processing relies on this
3059 --adapter
->AllocationsPending
;
3060 spin_unlock(&adapter
->AdapterLock
);
3061 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "AlcMemF1",
3062 adapter
, Size
, BufferType
, 0);
3063 return (STATUS_RESOURCES
);
3065 sxg_allocate_complete(adapter
, Buffer
, pBuffer
, Size
, BufferType
);
3066 status
= STATUS_SUCCESS
;
3068 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XAlocMem",
3069 adapter
, Size
, BufferType
, status
);
3074 * sxg_allocate_rcvblock_complete - Complete a receive descriptor block allocation
3077 * adapter - A pointer to our adapter structure
3078 * RcvBlock - receive block virtual address
3079 * PhysicalAddress - Physical address
3080 * Length - Memory length
3085 static void sxg_allocate_rcvblock_complete(p_adapter_t adapter
,
3087 dma_addr_t PhysicalAddress
, u32 Length
)
3090 u32 BufferSize
= adapter
->ReceiveBufferSize
;
3092 PSXG_RCV_BLOCK_HDR RcvBlockHdr
;
3093 unsigned char *RcvDataBuffer
;
3094 PSXG_RCV_DATA_BUFFER_HDR RcvDataBufferHdr
;
3095 PSXG_RCV_DESCRIPTOR_BLOCK RcvDescriptorBlock
;
3096 PSXG_RCV_DESCRIPTOR_BLOCK_HDR RcvDescriptorBlockHdr
;
3098 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "AlRcvBlk",
3099 adapter
, RcvBlock
, Length
, 0);
3100 if (RcvBlock
== NULL
) {
3103 memset(RcvBlock
, 0, Length
);
3104 ASSERT((BufferSize
== SXG_RCV_DATA_BUFFER_SIZE
) ||
3105 (BufferSize
== SXG_RCV_JUMBO_BUFFER_SIZE
));
3106 ASSERT(Length
== SXG_RCV_BLOCK_SIZE(BufferSize
));
3107 // First, initialize the contained pool of receive data
3108 // buffers. This initialization requires NBL/NB/MDL allocations,
3109 // If any of them fail, free the block and return without
3110 // queueing the shared memory
3111 RcvDataBuffer
= RcvBlock
;
3113 for (i
= 0, Paddr
= *PhysicalAddress
;
3114 i
< SXG_RCV_DESCRIPTORS_PER_BLOCK
;
3115 i
++, Paddr
.LowPart
+= BufferSize
, RcvDataBuffer
+= BufferSize
)
3117 for (i
= 0, Paddr
= PhysicalAddress
;
3118 i
< SXG_RCV_DESCRIPTORS_PER_BLOCK
;
3119 i
++, Paddr
+= BufferSize
, RcvDataBuffer
+= BufferSize
) {
3122 (PSXG_RCV_DATA_BUFFER_HDR
) (RcvDataBuffer
+
3123 SXG_RCV_DATA_BUFFER_HDR_OFFSET
3125 RcvDataBufferHdr
->VirtualAddress
= RcvDataBuffer
;
3126 RcvDataBufferHdr
->PhysicalAddress
= Paddr
;
3127 RcvDataBufferHdr
->State
= SXG_BUFFER_UPSTREAM
; // For FREE macro assertion
3128 RcvDataBufferHdr
->Size
=
3129 SXG_RCV_BUFFER_DATA_SIZE(BufferSize
);
3131 SXG_ALLOCATE_RCV_PACKET(adapter
, RcvDataBufferHdr
);
3132 if (RcvDataBufferHdr
->SxgDumbRcvPacket
== NULL
)
3137 // Place this entire block of memory on the AllRcvBlocks queue so it can be
3140 (PSXG_RCV_BLOCK_HDR
) ((unsigned char *)RcvBlock
+
3141 SXG_RCV_BLOCK_HDR_OFFSET(BufferSize
));
3142 RcvBlockHdr
->VirtualAddress
= RcvBlock
;
3143 RcvBlockHdr
->PhysicalAddress
= PhysicalAddress
;
3144 spin_lock(&adapter
->RcvQLock
);
3145 adapter
->AllRcvBlockCount
++;
3146 InsertTailList(&adapter
->AllRcvBlocks
, &RcvBlockHdr
->AllList
);
3147 spin_unlock(&adapter
->RcvQLock
);
3149 // Now free the contained receive data buffers that we initialized above
3150 RcvDataBuffer
= RcvBlock
;
3151 for (i
= 0, Paddr
= PhysicalAddress
;
3152 i
< SXG_RCV_DESCRIPTORS_PER_BLOCK
;
3153 i
++, Paddr
+= BufferSize
, RcvDataBuffer
+= BufferSize
) {
3154 RcvDataBufferHdr
= (PSXG_RCV_DATA_BUFFER_HDR
) (RcvDataBuffer
+
3155 SXG_RCV_DATA_BUFFER_HDR_OFFSET
3157 spin_lock(&adapter
->RcvQLock
);
3158 SXG_FREE_RCV_DATA_BUFFER(adapter
, RcvDataBufferHdr
);
3159 spin_unlock(&adapter
->RcvQLock
);
3162 // Locate the descriptor block and put it on a separate free queue
3163 RcvDescriptorBlock
= (PSXG_RCV_DESCRIPTOR_BLOCK
) ((unsigned char *)RcvBlock
+
3164 SXG_RCV_DESCRIPTOR_BLOCK_OFFSET
3166 RcvDescriptorBlockHdr
=
3167 (PSXG_RCV_DESCRIPTOR_BLOCK_HDR
) ((unsigned char *)RcvBlock
+
3168 SXG_RCV_DESCRIPTOR_BLOCK_HDR_OFFSET
3170 RcvDescriptorBlockHdr
->VirtualAddress
= RcvDescriptorBlock
;
3171 RcvDescriptorBlockHdr
->PhysicalAddress
= Paddr
;
3172 spin_lock(&adapter
->RcvQLock
);
3173 SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter
, RcvDescriptorBlockHdr
);
3174 spin_unlock(&adapter
->RcvQLock
);
3175 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XAlRBlk",
3176 adapter
, RcvBlock
, Length
, 0);
3179 // Free any allocated resources
3181 RcvDataBuffer
= RcvBlock
;
3182 for (i
= 0; i
< SXG_RCV_DESCRIPTORS_PER_BLOCK
;
3183 i
++, RcvDataBuffer
+= BufferSize
) {
3185 (PSXG_RCV_DATA_BUFFER_HDR
) (RcvDataBuffer
+
3186 SXG_RCV_DATA_BUFFER_HDR_OFFSET
3188 SXG_FREE_RCV_PACKET(RcvDataBufferHdr
);
3190 pci_free_consistent(adapter
->pcidev
,
3191 Length
, RcvBlock
, PhysicalAddress
);
3193 DBG_ERROR("%s: OUT OF RESOURCES\n", __FUNCTION__
);
3194 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_IMPORTANT
, "RcvAFail",
3195 adapter
, adapter
->FreeRcvBufferCount
,
3196 adapter
->FreeRcvBlockCount
, adapter
->AllRcvBlockCount
);
3197 adapter
->Stats
.NoMem
++;
3201 * sxg_allocate_sgl_buffer_complete - Complete a SGL buffer allocation
3204 * adapter - A pointer to our adapter structure
3205 * SxgSgl - SXG_SCATTER_GATHER buffer
3206 * PhysicalAddress - Physical address
3207 * Length - Memory length
3212 static void sxg_allocate_sgl_buffer_complete(p_adapter_t adapter
,
3213 PSXG_SCATTER_GATHER SxgSgl
,
3214 dma_addr_t PhysicalAddress
, u32 Length
)
3216 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "AlSglCmp",
3217 adapter
, SxgSgl
, Length
, 0);
3218 spin_lock(&adapter
->SglQLock
);
3219 adapter
->AllSglBufferCount
++;
3220 memset(SxgSgl
, 0, sizeof(SXG_SCATTER_GATHER
));
3221 SxgSgl
->PhysicalAddress
= PhysicalAddress
; /* *PhysicalAddress; */
3222 SxgSgl
->adapter
= adapter
; // Initialize backpointer once
3223 InsertTailList(&adapter
->AllSglBuffers
, &SxgSgl
->AllList
);
3224 spin_unlock(&adapter
->SglQLock
);
3225 SxgSgl
->State
= SXG_BUFFER_BUSY
;
3226 SXG_FREE_SGL_BUFFER(adapter
, SxgSgl
, NULL
);
3227 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XAlSgl",
3228 adapter
, SxgSgl
, Length
, 0);
3231 static unsigned char temp_mac_address
[6] = { 0x00, 0xab, 0xcd, 0xef, 0x12, 0x69 };
3233 static void sxg_adapter_set_hwaddr(p_adapter_t adapter
)
3235 // DBG_ERROR ("%s ENTER card->config_set[%x] port[%d] physport[%d] funct#[%d]\n", __FUNCTION__,
3236 // card->config_set, adapter->port, adapter->physport, adapter->functionnumber);
3238 // sxg_dbg_macaddrs(adapter);
3240 memcpy(adapter
->macaddr
, temp_mac_address
, sizeof(SXG_CONFIG_MAC
));
3241 // DBG_ERROR ("%s AFTER copying from config.macinfo into currmacaddr\n", __FUNCTION__);
3242 // sxg_dbg_macaddrs(adapter);
3243 if (!(adapter
->currmacaddr
[0] ||
3244 adapter
->currmacaddr
[1] ||
3245 adapter
->currmacaddr
[2] ||
3246 adapter
->currmacaddr
[3] ||
3247 adapter
->currmacaddr
[4] || adapter
->currmacaddr
[5])) {
3248 memcpy(adapter
->currmacaddr
, adapter
->macaddr
, 6);
3250 if (adapter
->netdev
) {
3251 memcpy(adapter
->netdev
->dev_addr
, adapter
->currmacaddr
, 6);
3253 // DBG_ERROR ("%s EXIT port %d\n", __FUNCTION__, adapter->port);
3254 sxg_dbg_macaddrs(adapter
);
3258 static int sxg_mac_set_address(p_net_device dev
, void * ptr
)
3261 p_adapter_t adapter
= (p_adapter_t
) netdev_priv(dev
);
3262 struct sockaddr
*addr
= ptr
;
3264 DBG_ERROR("%s ENTER (%s)\n", __FUNCTION__
, adapter
->netdev
->name
);
3266 if (netif_running(dev
)) {
3272 DBG_ERROR("sxg: %s (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
3273 __FUNCTION__
, adapter
->netdev
->name
, adapter
->currmacaddr
[0],
3274 adapter
->currmacaddr
[1], adapter
->currmacaddr
[2],
3275 adapter
->currmacaddr
[3], adapter
->currmacaddr
[4],
3276 adapter
->currmacaddr
[5]);
3277 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
3278 memcpy(adapter
->currmacaddr
, addr
->sa_data
, dev
->addr_len
);
3279 DBG_ERROR("sxg: %s (%s) new %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
3280 __FUNCTION__
, adapter
->netdev
->name
, adapter
->currmacaddr
[0],
3281 adapter
->currmacaddr
[1], adapter
->currmacaddr
[2],
3282 adapter
->currmacaddr
[3], adapter
->currmacaddr
[4],
3283 adapter
->currmacaddr
[5]);
3285 sxg_config_set(adapter
, TRUE
);
3290 /*****************************************************************************/
3291 /************* SXG DRIVER FUNCTIONS (below) ********************************/
3292 /*****************************************************************************/
3295 * sxg_initialize_adapter - Initialize adapter
3298 * adapter - A pointer to our adapter structure
3303 static int sxg_initialize_adapter(p_adapter_t adapter
)
3305 u32 RssIds
, IsrCount
;
3309 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "InitAdpt",
3312 RssIds
= 1; // XXXTODO SXG_RSS_CPU_COUNT(adapter);
3313 IsrCount
= adapter
->MsiEnabled
? RssIds
: 1;
3315 // Sanity check SXG_UCODE_REGS structure definition to
3316 // make sure the length is correct
3317 ASSERT(sizeof(SXG_UCODE_REGS
) == SXG_REGISTER_SIZE_PER_CPU
);
3319 // Disable interrupts
3320 SXG_DISABLE_ALL_INTERRUPTS(adapter
);
3323 ASSERT((adapter
->FrameSize
== ETHERMAXFRAME
) ||
3324 (adapter
->FrameSize
== JUMBOMAXFRAME
));
3325 WRITE_REG(adapter
->UcodeRegs
[0].LinkMtu
, adapter
->FrameSize
, TRUE
);
3327 // Set event ring base address and size
3328 WRITE_REG64(adapter
,
3329 adapter
->UcodeRegs
[0].EventBase
, adapter
->PEventRings
, 0);
3330 WRITE_REG(adapter
->UcodeRegs
[0].EventSize
, EVENT_RING_SIZE
, TRUE
);
3332 // Per-ISR initialization
3333 for (i
= 0; i
< IsrCount
; i
++) {
3335 // Set interrupt status pointer
3336 Addr
= adapter
->PIsr
+ (i
* sizeof(u32
));
3337 WRITE_REG64(adapter
, adapter
->UcodeRegs
[i
].Isp
, Addr
, i
);
3340 // XMT ring zero index
3341 WRITE_REG64(adapter
,
3342 adapter
->UcodeRegs
[0].SPSendIndex
,
3343 adapter
->PXmtRingZeroIndex
, 0);
3345 // Per-RSS initialization
3346 for (i
= 0; i
< RssIds
; i
++) {
3347 // Release all event ring entries to the Microcode
3348 WRITE_REG(adapter
->UcodeRegs
[i
].EventRelease
, EVENT_RING_SIZE
,
3352 // Transmit ring base and size
3353 WRITE_REG64(adapter
,
3354 adapter
->UcodeRegs
[0].XmtBase
, adapter
->PXmtRings
, 0);
3355 WRITE_REG(adapter
->UcodeRegs
[0].XmtSize
, SXG_XMT_RING_SIZE
, TRUE
);
3357 // Receive ring base and size
3358 WRITE_REG64(adapter
,
3359 adapter
->UcodeRegs
[0].RcvBase
, adapter
->PRcvRings
, 0);
3360 WRITE_REG(adapter
->UcodeRegs
[0].RcvSize
, SXG_RCV_RING_SIZE
, TRUE
);
3362 // Populate the card with receive buffers
3363 sxg_stock_rcv_buffers(adapter
);
3365 // Initialize checksum offload capabilities. At the moment
3366 // we always enable IP and TCP receive checksums on the card.
3367 // Depending on the checksum configuration specified by the
3368 // user, we can choose to report or ignore the checksum
3369 // information provided by the card.
3370 WRITE_REG(adapter
->UcodeRegs
[0].ReceiveChecksum
,
3371 SXG_RCV_TCP_CSUM_ENABLED
| SXG_RCV_IP_CSUM_ENABLED
, TRUE
);
3373 // Initialize the MAC, XAUI
3374 DBG_ERROR("sxg: %s ENTER sxg_initialize_link\n", __FUNCTION__
);
3375 status
= sxg_initialize_link(adapter
);
3376 DBG_ERROR("sxg: %s EXIT sxg_initialize_link status[%x]\n", __FUNCTION__
,
3378 if (status
!= STATUS_SUCCESS
) {
3381 // Initialize Dead to FALSE.
3382 // SlicCheckForHang or SlicDumpThread will take it from here.
3383 adapter
->Dead
= FALSE
;
3384 adapter
->PingOutstanding
= FALSE
;
3386 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XInit",
3388 return (STATUS_SUCCESS
);
3392 * sxg_fill_descriptor_block - Populate a descriptor block and give it to
3393 * the card. The caller should hold the RcvQLock
3396 * adapter - A pointer to our adapter structure
3397 * RcvDescriptorBlockHdr - Descriptor block to fill
3402 static int sxg_fill_descriptor_block(p_adapter_t adapter
,
3403 PSXG_RCV_DESCRIPTOR_BLOCK_HDR RcvDescriptorBlockHdr
)
3406 PSXG_RING_INFO RcvRingInfo
= &adapter
->RcvRingZeroInfo
;
3407 PSXG_RCV_DATA_BUFFER_HDR RcvDataBufferHdr
;
3408 PSXG_RCV_DESCRIPTOR_BLOCK RcvDescriptorBlock
;
3409 PSXG_CMD RingDescriptorCmd
;
3410 PSXG_RCV_RING RingZero
= &adapter
->RcvRings
[0];
3412 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "FilBlk",
3413 adapter
, adapter
->RcvBuffersOnCard
,
3414 adapter
->FreeRcvBufferCount
, adapter
->AllRcvBlockCount
);
3416 ASSERT(RcvDescriptorBlockHdr
);
3418 // If we don't have the resources to fill the descriptor block,
3420 if ((adapter
->FreeRcvBufferCount
< SXG_RCV_DESCRIPTORS_PER_BLOCK
) ||
3421 SXG_RING_FULL(RcvRingInfo
)) {
3422 adapter
->Stats
.NoMem
++;
3423 return (STATUS_FAILURE
);
3425 // Get a ring descriptor command
3426 SXG_GET_CMD(RingZero
,
3427 RcvRingInfo
, RingDescriptorCmd
, RcvDescriptorBlockHdr
);
3428 ASSERT(RingDescriptorCmd
);
3429 RcvDescriptorBlockHdr
->State
= SXG_BUFFER_ONCARD
;
3430 RcvDescriptorBlock
=
3431 (PSXG_RCV_DESCRIPTOR_BLOCK
) RcvDescriptorBlockHdr
->VirtualAddress
;
3433 // Fill in the descriptor block
3434 for (i
= 0; i
< SXG_RCV_DESCRIPTORS_PER_BLOCK
; i
++) {
3435 SXG_GET_RCV_DATA_BUFFER(adapter
, RcvDataBufferHdr
);
3436 ASSERT(RcvDataBufferHdr
);
3437 SXG_REINIATIALIZE_PACKET(RcvDataBufferHdr
->SxgDumbRcvPacket
);
3438 RcvDataBufferHdr
->State
= SXG_BUFFER_ONCARD
;
3439 RcvDescriptorBlock
->Descriptors
[i
].VirtualAddress
= (void *)RcvDataBufferHdr
;
3440 RcvDescriptorBlock
->Descriptors
[i
].PhysicalAddress
=
3441 RcvDataBufferHdr
->PhysicalAddress
;
3443 // Add the descriptor block to receive descriptor ring 0
3444 RingDescriptorCmd
->Sgl
= RcvDescriptorBlockHdr
->PhysicalAddress
;
3446 // RcvBuffersOnCard is not protected via the receive lock (see
3447 // sxg_process_event_queue) We don't want to grap a lock every time a
3448 // buffer is returned to us, so we use atomic interlocked functions
3450 adapter
->RcvBuffersOnCard
+= SXG_RCV_DESCRIPTORS_PER_BLOCK
;
3452 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "DscBlk",
3453 RcvDescriptorBlockHdr
,
3454 RingDescriptorCmd
, RcvRingInfo
->Head
, RcvRingInfo
->Tail
);
3456 WRITE_REG(adapter
->UcodeRegs
[0].RcvCmd
, 1, true);
3457 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XFilBlk",
3458 adapter
, adapter
->RcvBuffersOnCard
,
3459 adapter
->FreeRcvBufferCount
, adapter
->AllRcvBlockCount
);
3460 return (STATUS_SUCCESS
);
3464 * sxg_stock_rcv_buffers - Stock the card with receive buffers
3467 * adapter - A pointer to our adapter structure
3472 static void sxg_stock_rcv_buffers(p_adapter_t adapter
)
3474 PSXG_RCV_DESCRIPTOR_BLOCK_HDR RcvDescriptorBlockHdr
;
3476 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "StockBuf",
3477 adapter
, adapter
->RcvBuffersOnCard
,
3478 adapter
->FreeRcvBufferCount
, adapter
->AllRcvBlockCount
);
3479 // First, see if we've got less than our minimum threshold of
3480 // receive buffers, there isn't an allocation in progress, and
3481 // we haven't exceeded our maximum.. get another block of buffers
3482 // None of this needs to be SMP safe. It's round numbers.
3483 if ((adapter
->FreeRcvBufferCount
< SXG_MIN_RCV_DATA_BUFFERS
) &&
3484 (adapter
->AllRcvBlockCount
< SXG_MAX_RCV_BLOCKS
) &&
3485 (adapter
->AllocationsPending
== 0)) {
3486 sxg_allocate_buffer_memory(adapter
,
3487 SXG_RCV_BLOCK_SIZE(adapter
->
3489 SXG_BUFFER_TYPE_RCV
);
3491 // Now grab the RcvQLock lock and proceed
3492 spin_lock(&adapter
->RcvQLock
);
3493 while (adapter
->RcvBuffersOnCard
< SXG_RCV_DATA_BUFFERS
) {
3496 // Get a descriptor block
3497 RcvDescriptorBlockHdr
= NULL
;
3498 if (adapter
->FreeRcvBlockCount
) {
3499 _ple
= RemoveHeadList(&adapter
->FreeRcvBlocks
);
3500 RcvDescriptorBlockHdr
= container_of(_ple
, SXG_RCV_DESCRIPTOR_BLOCK_HDR
, FreeList
);
3501 adapter
->FreeRcvBlockCount
--;
3502 RcvDescriptorBlockHdr
->State
= SXG_BUFFER_BUSY
;
3505 if (RcvDescriptorBlockHdr
== NULL
) {
3507 adapter
->Stats
.NoMem
++;
3510 // Fill in the descriptor block and give it to the card
3511 if (sxg_fill_descriptor_block(adapter
, RcvDescriptorBlockHdr
) ==
3513 // Free the descriptor block
3514 SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter
,
3515 RcvDescriptorBlockHdr
);
3519 spin_unlock(&adapter
->RcvQLock
);
3520 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XFilBlks",
3521 adapter
, adapter
->RcvBuffersOnCard
,
3522 adapter
->FreeRcvBufferCount
, adapter
->AllRcvBlockCount
);
3526 * sxg_complete_descriptor_blocks - Return descriptor blocks that have been
3527 * completed by the microcode
3530 * adapter - A pointer to our adapter structure
3531 * Index - Where the microcode is up to
3536 static void sxg_complete_descriptor_blocks(p_adapter_t adapter
, unsigned char Index
)
3538 PSXG_RCV_RING RingZero
= &adapter
->RcvRings
[0];
3539 PSXG_RING_INFO RcvRingInfo
= &adapter
->RcvRingZeroInfo
;
3540 PSXG_RCV_DESCRIPTOR_BLOCK_HDR RcvDescriptorBlockHdr
;
3541 PSXG_CMD RingDescriptorCmd
;
3543 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "CmpRBlks",
3544 adapter
, Index
, RcvRingInfo
->Head
, RcvRingInfo
->Tail
);
3546 // Now grab the RcvQLock lock and proceed
3547 spin_lock(&adapter
->RcvQLock
);
3548 ASSERT(Index
!= RcvRingInfo
->Tail
);
3549 while (RcvRingInfo
->Tail
!= Index
) {
3551 // Locate the current Cmd (ring descriptor entry), and
3552 // associated receive descriptor block, and advance
3555 SXG_RETURN_CMD(RingZero
,
3557 RingDescriptorCmd
, RcvDescriptorBlockHdr
);
3558 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "CmpRBlk",
3559 RcvRingInfo
->Head
, RcvRingInfo
->Tail
,
3560 RingDescriptorCmd
, RcvDescriptorBlockHdr
);
3562 // Clear the SGL field
3563 RingDescriptorCmd
->Sgl
= 0;
3564 // Attempt to refill it and hand it right back to the
3565 // card. If we fail to refill it, free the descriptor block
3566 // header. The card will be restocked later via the
3567 // RcvBuffersOnCard test
3568 if (sxg_fill_descriptor_block(adapter
, RcvDescriptorBlockHdr
) ==
3570 SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter
,
3571 RcvDescriptorBlockHdr
);
3574 spin_unlock(&adapter
->RcvQLock
);
3575 SXG_TRACE(TRACE_SXG
, SxgTraceBuffer
, TRACE_NOISY
, "XCRBlks",
3576 adapter
, Index
, RcvRingInfo
->Head
, RcvRingInfo
->Tail
);
3580 static struct pci_driver sxg_driver
= {
3582 .id_table
= sxg_pci_tbl
,
3583 .probe
= sxg_entry_probe
,
3584 .remove
= sxg_entry_remove
,
3585 #if SXG_POWER_MANAGEMENT_ENABLED
3586 .suspend
= sxgpm_suspend
,
3587 .resume
= sxgpm_resume
,
3589 /* .shutdown = slic_shutdown, MOOK_INVESTIGATE */
3592 static int __init
sxg_module_init(void)
3599 return pci_register_driver(&sxg_driver
);
3602 static void __exit
sxg_module_cleanup(void)
3604 pci_unregister_driver(&sxg_driver
);
3607 module_init(sxg_module_init
);
3608 module_exit(sxg_module_cleanup
);