2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
43 * Test whether an inode is a fast symlink.
45 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
47 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
48 (inode
->i_sb
->s_blocksize
>> 9) : 0;
50 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
62 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
63 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
69 BUFFER_TRACE(bh
, "enter");
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
73 bh
, is_metadata
, inode
->i_mode
,
74 test_opt(inode
->i_sb
, DATA_FLAGS
));
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
81 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
82 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
84 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
85 return ext4_journal_forget(handle
, bh
);
91 * data!=journal && (is_metadata || should_journal_data(inode))
93 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
94 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
96 ext4_abort(inode
->i_sb
, __FUNCTION__
,
97 "error %d when attempting revoke", err
);
98 BUFFER_TRACE(bh
, "exit");
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
106 static unsigned long blocks_for_truncate(struct inode
*inode
)
108 unsigned long needed
;
110 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
115 * like a regular file for ext4 to try to delete it. Things
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
121 /* But we need to bound the transaction so we don't overflow the
123 if (needed
> EXT4_MAX_TRANS_DATA
)
124 needed
= EXT4_MAX_TRANS_DATA
;
126 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
139 static handle_t
*start_transaction(struct inode
*inode
)
143 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
147 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
152 * Try to extend this transaction for the purposes of truncation.
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
157 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
159 if (handle
->h_buffer_credits
> EXT4_RESERVE_TRANS_BLOCKS
)
161 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
171 static int ext4_journal_test_restart(handle_t
*handle
, struct inode
*inode
)
173 jbd_debug(2, "restarting handle %p\n", handle
);
174 return ext4_journal_restart(handle
, blocks_for_truncate(inode
));
178 * Called at the last iput() if i_nlink is zero.
180 void ext4_delete_inode (struct inode
* inode
)
184 truncate_inode_pages(&inode
->i_data
, 0);
186 if (is_bad_inode(inode
))
189 handle
= start_transaction(inode
);
190 if (IS_ERR(handle
)) {
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
196 ext4_orphan_del(NULL
, inode
);
204 ext4_truncate(inode
);
206 * Kill off the orphan record which ext4_truncate created.
207 * AKPM: I think this can be inside the above `if'.
208 * Note that ext4_orphan_del() has to be able to cope with the
209 * deletion of a non-existent orphan - this is because we don't
210 * know if ext4_truncate() actually created an orphan record.
211 * (Well, we could do this if we need to, but heck - it works)
213 ext4_orphan_del(handle
, inode
);
214 EXT4_I(inode
)->i_dtime
= get_seconds();
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
223 if (ext4_mark_inode_dirty(handle
, inode
))
224 /* If that failed, just do the required in-core inode clear. */
227 ext4_free_inode(handle
, inode
);
228 ext4_journal_stop(handle
);
231 clear_inode(inode
); /* We must guarantee clearing of inode... */
237 struct buffer_head
*bh
;
240 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
242 p
->key
= *(p
->p
= v
);
246 static int verify_chain(Indirect
*from
, Indirect
*to
)
248 while (from
<= to
&& from
->key
== *from
->p
)
254 * ext4_block_to_path - parse the block number into array of offsets
255 * @inode: inode in question (we are only interested in its superblock)
256 * @i_block: block number to be parsed
257 * @offsets: array to store the offsets in
258 * @boundary: set this non-zero if the referred-to block is likely to be
259 * followed (on disk) by an indirect block.
261 * To store the locations of file's data ext4 uses a data structure common
262 * for UNIX filesystems - tree of pointers anchored in the inode, with
263 * data blocks at leaves and indirect blocks in intermediate nodes.
264 * This function translates the block number into path in that tree -
265 * return value is the path length and @offsets[n] is the offset of
266 * pointer to (n+1)th node in the nth one. If @block is out of range
267 * (negative or too large) warning is printed and zero returned.
269 * Note: function doesn't find node addresses, so no IO is needed. All
270 * we need to know is the capacity of indirect blocks (taken from the
275 * Portability note: the last comparison (check that we fit into triple
276 * indirect block) is spelled differently, because otherwise on an
277 * architecture with 32-bit longs and 8Kb pages we might get into trouble
278 * if our filesystem had 8Kb blocks. We might use long long, but that would
279 * kill us on x86. Oh, well, at least the sign propagation does not matter -
280 * i_block would have to be negative in the very beginning, so we would not
284 static int ext4_block_to_path(struct inode
*inode
,
285 long i_block
, int offsets
[4], int *boundary
)
287 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
288 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
289 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
290 indirect_blocks
= ptrs
,
291 double_blocks
= (1 << (ptrs_bits
* 2));
296 ext4_warning (inode
->i_sb
, "ext4_block_to_path", "block < 0");
297 } else if (i_block
< direct_blocks
) {
298 offsets
[n
++] = i_block
;
299 final
= direct_blocks
;
300 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
301 offsets
[n
++] = EXT4_IND_BLOCK
;
302 offsets
[n
++] = i_block
;
304 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
305 offsets
[n
++] = EXT4_DIND_BLOCK
;
306 offsets
[n
++] = i_block
>> ptrs_bits
;
307 offsets
[n
++] = i_block
& (ptrs
- 1);
309 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
310 offsets
[n
++] = EXT4_TIND_BLOCK
;
311 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
312 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
313 offsets
[n
++] = i_block
& (ptrs
- 1);
316 ext4_warning(inode
->i_sb
, "ext4_block_to_path", "block > big");
319 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
324 * ext4_get_branch - read the chain of indirect blocks leading to data
325 * @inode: inode in question
326 * @depth: depth of the chain (1 - direct pointer, etc.)
327 * @offsets: offsets of pointers in inode/indirect blocks
328 * @chain: place to store the result
329 * @err: here we store the error value
331 * Function fills the array of triples <key, p, bh> and returns %NULL
332 * if everything went OK or the pointer to the last filled triple
333 * (incomplete one) otherwise. Upon the return chain[i].key contains
334 * the number of (i+1)-th block in the chain (as it is stored in memory,
335 * i.e. little-endian 32-bit), chain[i].p contains the address of that
336 * number (it points into struct inode for i==0 and into the bh->b_data
337 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
338 * block for i>0 and NULL for i==0. In other words, it holds the block
339 * numbers of the chain, addresses they were taken from (and where we can
340 * verify that chain did not change) and buffer_heads hosting these
343 * Function stops when it stumbles upon zero pointer (absent block)
344 * (pointer to last triple returned, *@err == 0)
345 * or when it gets an IO error reading an indirect block
346 * (ditto, *@err == -EIO)
347 * or when it notices that chain had been changed while it was reading
348 * (ditto, *@err == -EAGAIN)
349 * or when it reads all @depth-1 indirect blocks successfully and finds
350 * the whole chain, all way to the data (returns %NULL, *err == 0).
352 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
, int *offsets
,
353 Indirect chain
[4], int *err
)
355 struct super_block
*sb
= inode
->i_sb
;
357 struct buffer_head
*bh
;
360 /* i_data is not going away, no lock needed */
361 add_chain (chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
365 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
368 /* Reader: pointers */
369 if (!verify_chain(chain
, p
))
371 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
389 * ext4_find_near - find a place for allocation with sufficient locality
391 * @ind: descriptor of indirect block.
393 * This function returns the prefered place for block allocation.
394 * It is used when heuristic for sequential allocation fails.
396 * + if there is a block to the left of our position - allocate near it.
397 * + if pointer will live in indirect block - allocate near that block.
398 * + if pointer will live in inode - allocate in the same
401 * In the latter case we colour the starting block by the callers PID to
402 * prevent it from clashing with concurrent allocations for a different inode
403 * in the same block group. The PID is used here so that functionally related
404 * files will be close-by on-disk.
406 * Caller must make sure that @ind is valid and will stay that way.
408 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
410 struct ext4_inode_info
*ei
= EXT4_I(inode
);
411 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
413 ext4_fsblk_t bg_start
;
414 ext4_grpblk_t colour
;
416 /* Try to find previous block */
417 for (p
= ind
->p
- 1; p
>= start
; p
--) {
419 return le32_to_cpu(*p
);
422 /* No such thing, so let's try location of indirect block */
424 return ind
->bh
->b_blocknr
;
427 * It is going to be referred to from the inode itself? OK, just put it
428 * into the same cylinder group then.
430 bg_start
= ext4_group_first_block_no(inode
->i_sb
, ei
->i_block_group
);
431 colour
= (current
->pid
% 16) *
432 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
433 return bg_start
+ colour
;
437 * ext4_find_goal - find a prefered place for allocation.
439 * @block: block we want
440 * @chain: chain of indirect blocks
441 * @partial: pointer to the last triple within a chain
442 * @goal: place to store the result.
444 * Normally this function find the prefered place for block allocation,
445 * stores it in *@goal and returns zero.
448 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, long block
,
449 Indirect chain
[4], Indirect
*partial
)
451 struct ext4_block_alloc_info
*block_i
;
453 block_i
= EXT4_I(inode
)->i_block_alloc_info
;
456 * try the heuristic for sequential allocation,
457 * failing that at least try to get decent locality.
459 if (block_i
&& (block
== block_i
->last_alloc_logical_block
+ 1)
460 && (block_i
->last_alloc_physical_block
!= 0)) {
461 return block_i
->last_alloc_physical_block
+ 1;
464 return ext4_find_near(inode
, partial
);
468 * ext4_blks_to_allocate: Look up the block map and count the number
469 * of direct blocks need to be allocated for the given branch.
471 * @branch: chain of indirect blocks
472 * @k: number of blocks need for indirect blocks
473 * @blks: number of data blocks to be mapped.
474 * @blocks_to_boundary: the offset in the indirect block
476 * return the total number of blocks to be allocate, including the
477 * direct and indirect blocks.
479 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned long blks
,
480 int blocks_to_boundary
)
482 unsigned long count
= 0;
485 * Simple case, [t,d]Indirect block(s) has not allocated yet
486 * then it's clear blocks on that path have not allocated
489 /* right now we don't handle cross boundary allocation */
490 if (blks
< blocks_to_boundary
+ 1)
493 count
+= blocks_to_boundary
+ 1;
498 while (count
< blks
&& count
<= blocks_to_boundary
&&
499 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
506 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
507 * @indirect_blks: the number of blocks need to allocate for indirect
510 * @new_blocks: on return it will store the new block numbers for
511 * the indirect blocks(if needed) and the first direct block,
512 * @blks: on return it will store the total number of allocated
515 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
516 ext4_fsblk_t goal
, int indirect_blks
, int blks
,
517 ext4_fsblk_t new_blocks
[4], int *err
)
520 unsigned long count
= 0;
522 ext4_fsblk_t current_block
= 0;
526 * Here we try to allocate the requested multiple blocks at once,
527 * on a best-effort basis.
528 * To build a branch, we should allocate blocks for
529 * the indirect blocks(if not allocated yet), and at least
530 * the first direct block of this branch. That's the
531 * minimum number of blocks need to allocate(required)
533 target
= blks
+ indirect_blks
;
537 /* allocating blocks for indirect blocks and direct blocks */
538 current_block
= ext4_new_blocks(handle
,inode
,goal
,&count
,err
);
543 /* allocate blocks for indirect blocks */
544 while (index
< indirect_blks
&& count
) {
545 new_blocks
[index
++] = current_block
++;
553 /* save the new block number for the first direct block */
554 new_blocks
[index
] = current_block
;
556 /* total number of blocks allocated for direct blocks */
561 for (i
= 0; i
<index
; i
++)
562 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1);
567 * ext4_alloc_branch - allocate and set up a chain of blocks.
569 * @indirect_blks: number of allocated indirect blocks
570 * @blks: number of allocated direct blocks
571 * @offsets: offsets (in the blocks) to store the pointers to next.
572 * @branch: place to store the chain in.
574 * This function allocates blocks, zeroes out all but the last one,
575 * links them into chain and (if we are synchronous) writes them to disk.
576 * In other words, it prepares a branch that can be spliced onto the
577 * inode. It stores the information about that chain in the branch[], in
578 * the same format as ext4_get_branch() would do. We are calling it after
579 * we had read the existing part of chain and partial points to the last
580 * triple of that (one with zero ->key). Upon the exit we have the same
581 * picture as after the successful ext4_get_block(), except that in one
582 * place chain is disconnected - *branch->p is still zero (we did not
583 * set the last link), but branch->key contains the number that should
584 * be placed into *branch->p to fill that gap.
586 * If allocation fails we free all blocks we've allocated (and forget
587 * their buffer_heads) and return the error value the from failed
588 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
589 * as described above and return 0.
591 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
592 int indirect_blks
, int *blks
, ext4_fsblk_t goal
,
593 int *offsets
, Indirect
*branch
)
595 int blocksize
= inode
->i_sb
->s_blocksize
;
598 struct buffer_head
*bh
;
600 ext4_fsblk_t new_blocks
[4];
601 ext4_fsblk_t current_block
;
603 num
= ext4_alloc_blocks(handle
, inode
, goal
, indirect_blks
,
604 *blks
, new_blocks
, &err
);
608 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
610 * metadata blocks and data blocks are allocated.
612 for (n
= 1; n
<= indirect_blks
; n
++) {
614 * Get buffer_head for parent block, zero it out
615 * and set the pointer to new one, then send
618 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
621 BUFFER_TRACE(bh
, "call get_create_access");
622 err
= ext4_journal_get_create_access(handle
, bh
);
629 memset(bh
->b_data
, 0, blocksize
);
630 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
631 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
632 *branch
[n
].p
= branch
[n
].key
;
633 if ( n
== indirect_blks
) {
634 current_block
= new_blocks
[n
];
636 * End of chain, update the last new metablock of
637 * the chain to point to the new allocated
638 * data blocks numbers
640 for (i
=1; i
< num
; i
++)
641 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
643 BUFFER_TRACE(bh
, "marking uptodate");
644 set_buffer_uptodate(bh
);
647 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
648 err
= ext4_journal_dirty_metadata(handle
, bh
);
655 /* Allocation failed, free what we already allocated */
656 for (i
= 1; i
<= n
; i
++) {
657 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
658 ext4_journal_forget(handle
, branch
[i
].bh
);
660 for (i
= 0; i
<indirect_blks
; i
++)
661 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1);
663 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
);
669 * ext4_splice_branch - splice the allocated branch onto inode.
671 * @block: (logical) number of block we are adding
672 * @chain: chain of indirect blocks (with a missing link - see
674 * @where: location of missing link
675 * @num: number of indirect blocks we are adding
676 * @blks: number of direct blocks we are adding
678 * This function fills the missing link and does all housekeeping needed in
679 * inode (->i_blocks, etc.). In case of success we end up with the full
680 * chain to new block and return 0.
682 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
683 long block
, Indirect
*where
, int num
, int blks
)
687 struct ext4_block_alloc_info
*block_i
;
688 ext4_fsblk_t current_block
;
690 block_i
= EXT4_I(inode
)->i_block_alloc_info
;
692 * If we're splicing into a [td]indirect block (as opposed to the
693 * inode) then we need to get write access to the [td]indirect block
697 BUFFER_TRACE(where
->bh
, "get_write_access");
698 err
= ext4_journal_get_write_access(handle
, where
->bh
);
704 *where
->p
= where
->key
;
707 * Update the host buffer_head or inode to point to more just allocated
708 * direct blocks blocks
710 if (num
== 0 && blks
> 1) {
711 current_block
= le32_to_cpu(where
->key
) + 1;
712 for (i
= 1; i
< blks
; i
++)
713 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
717 * update the most recently allocated logical & physical block
718 * in i_block_alloc_info, to assist find the proper goal block for next
722 block_i
->last_alloc_logical_block
= block
+ blks
- 1;
723 block_i
->last_alloc_physical_block
=
724 le32_to_cpu(where
[num
].key
) + blks
- 1;
727 /* We are done with atomic stuff, now do the rest of housekeeping */
729 inode
->i_ctime
= ext4_current_time(inode
);
730 ext4_mark_inode_dirty(handle
, inode
);
732 /* had we spliced it onto indirect block? */
735 * If we spliced it onto an indirect block, we haven't
736 * altered the inode. Note however that if it is being spliced
737 * onto an indirect block at the very end of the file (the
738 * file is growing) then we *will* alter the inode to reflect
739 * the new i_size. But that is not done here - it is done in
740 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
742 jbd_debug(5, "splicing indirect only\n");
743 BUFFER_TRACE(where
->bh
, "call ext4_journal_dirty_metadata");
744 err
= ext4_journal_dirty_metadata(handle
, where
->bh
);
749 * OK, we spliced it into the inode itself on a direct block.
750 * Inode was dirtied above.
752 jbd_debug(5, "splicing direct\n");
757 for (i
= 1; i
<= num
; i
++) {
758 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
759 ext4_journal_forget(handle
, where
[i
].bh
);
760 ext4_free_blocks(handle
,inode
,le32_to_cpu(where
[i
-1].key
),1);
762 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
);
768 * Allocation strategy is simple: if we have to allocate something, we will
769 * have to go the whole way to leaf. So let's do it before attaching anything
770 * to tree, set linkage between the newborn blocks, write them if sync is
771 * required, recheck the path, free and repeat if check fails, otherwise
772 * set the last missing link (that will protect us from any truncate-generated
773 * removals - all blocks on the path are immune now) and possibly force the
774 * write on the parent block.
775 * That has a nice additional property: no special recovery from the failed
776 * allocations is needed - we simply release blocks and do not touch anything
777 * reachable from inode.
779 * `handle' can be NULL if create == 0.
781 * The BKL may not be held on entry here. Be sure to take it early.
782 * return > 0, # of blocks mapped or allocated.
783 * return = 0, if plain lookup failed.
784 * return < 0, error case.
786 int ext4_get_blocks_handle(handle_t
*handle
, struct inode
*inode
,
787 sector_t iblock
, unsigned long maxblocks
,
788 struct buffer_head
*bh_result
,
789 int create
, int extend_disksize
)
797 int blocks_to_boundary
= 0;
799 struct ext4_inode_info
*ei
= EXT4_I(inode
);
801 ext4_fsblk_t first_block
= 0;
804 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
805 J_ASSERT(handle
!= NULL
|| create
== 0);
806 depth
= ext4_block_to_path(inode
,iblock
,offsets
,&blocks_to_boundary
);
811 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
813 /* Simplest case - block found, no allocation needed */
815 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
816 clear_buffer_new(bh_result
);
819 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
822 if (!verify_chain(chain
, partial
)) {
824 * Indirect block might be removed by
825 * truncate while we were reading it.
826 * Handling of that case: forget what we've
827 * got now. Flag the err as EAGAIN, so it
834 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
836 if (blk
== first_block
+ count
)
845 /* Next simple case - plain lookup or failed read of indirect block */
846 if (!create
|| err
== -EIO
)
849 mutex_lock(&ei
->truncate_mutex
);
852 * If the indirect block is missing while we are reading
853 * the chain(ext4_get_branch() returns -EAGAIN err), or
854 * if the chain has been changed after we grab the semaphore,
855 * (either because another process truncated this branch, or
856 * another get_block allocated this branch) re-grab the chain to see if
857 * the request block has been allocated or not.
859 * Since we already block the truncate/other get_block
860 * at this point, we will have the current copy of the chain when we
861 * splice the branch into the tree.
863 if (err
== -EAGAIN
|| !verify_chain(chain
, partial
)) {
864 while (partial
> chain
) {
868 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
871 mutex_unlock(&ei
->truncate_mutex
);
874 clear_buffer_new(bh_result
);
880 * Okay, we need to do block allocation. Lazily initialize the block
881 * allocation info here if necessary
883 if (S_ISREG(inode
->i_mode
) && (!ei
->i_block_alloc_info
))
884 ext4_init_block_alloc_info(inode
);
886 goal
= ext4_find_goal(inode
, iblock
, chain
, partial
);
888 /* the number of blocks need to allocate for [d,t]indirect blocks */
889 indirect_blks
= (chain
+ depth
) - partial
- 1;
892 * Next look up the indirect map to count the totoal number of
893 * direct blocks to allocate for this branch.
895 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
896 maxblocks
, blocks_to_boundary
);
898 * Block out ext4_truncate while we alter the tree
900 err
= ext4_alloc_branch(handle
, inode
, indirect_blks
, &count
, goal
,
901 offsets
+ (partial
- chain
), partial
);
904 * The ext4_splice_branch call will free and forget any buffers
905 * on the new chain if there is a failure, but that risks using
906 * up transaction credits, especially for bitmaps where the
907 * credits cannot be returned. Can we handle this somehow? We
908 * may need to return -EAGAIN upwards in the worst case. --sct
911 err
= ext4_splice_branch(handle
, inode
, iblock
,
912 partial
, indirect_blks
, count
);
914 * i_disksize growing is protected by truncate_mutex. Don't forget to
915 * protect it if you're about to implement concurrent
916 * ext4_get_block() -bzzz
918 if (!err
&& extend_disksize
&& inode
->i_size
> ei
->i_disksize
)
919 ei
->i_disksize
= inode
->i_size
;
920 mutex_unlock(&ei
->truncate_mutex
);
924 set_buffer_new(bh_result
);
926 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
927 if (count
> blocks_to_boundary
)
928 set_buffer_boundary(bh_result
);
930 /* Clean up and exit */
931 partial
= chain
+ depth
- 1; /* the whole chain */
933 while (partial
> chain
) {
934 BUFFER_TRACE(partial
->bh
, "call brelse");
938 BUFFER_TRACE(bh_result
, "returned");
943 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
945 static int ext4_get_block(struct inode
*inode
, sector_t iblock
,
946 struct buffer_head
*bh_result
, int create
)
948 handle_t
*handle
= ext4_journal_current_handle();
950 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
953 goto get_block
; /* A read */
956 goto get_block
; /* A single block get */
958 if (handle
->h_transaction
->t_state
== T_LOCKED
) {
960 * Huge direct-io writes can hold off commits for long
961 * periods of time. Let this commit run.
963 ext4_journal_stop(handle
);
964 handle
= ext4_journal_start(inode
, DIO_CREDITS
);
966 ret
= PTR_ERR(handle
);
970 if (handle
->h_buffer_credits
<= EXT4_RESERVE_TRANS_BLOCKS
) {
972 * Getting low on buffer credits...
974 ret
= ext4_journal_extend(handle
, DIO_CREDITS
);
977 * Couldn't extend the transaction. Start a new one.
979 ret
= ext4_journal_restart(handle
, DIO_CREDITS
);
985 ret
= ext4_get_blocks_wrap(handle
, inode
, iblock
,
986 max_blocks
, bh_result
, create
, 0);
988 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
996 * `handle' can be NULL if create is zero
998 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
999 long block
, int create
, int *errp
)
1001 struct buffer_head dummy
;
1004 J_ASSERT(handle
!= NULL
|| create
== 0);
1007 dummy
.b_blocknr
= -1000;
1008 buffer_trace_init(&dummy
.b_history
);
1009 err
= ext4_get_blocks_wrap(handle
, inode
, block
, 1,
1012 * ext4_get_blocks_handle() returns number of blocks
1013 * mapped. 0 in case of a HOLE.
1021 if (!err
&& buffer_mapped(&dummy
)) {
1022 struct buffer_head
*bh
;
1023 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1028 if (buffer_new(&dummy
)) {
1029 J_ASSERT(create
!= 0);
1030 J_ASSERT(handle
!= 0);
1033 * Now that we do not always journal data, we should
1034 * keep in mind whether this should always journal the
1035 * new buffer as metadata. For now, regular file
1036 * writes use ext4_get_block instead, so it's not a
1040 BUFFER_TRACE(bh
, "call get_create_access");
1041 fatal
= ext4_journal_get_create_access(handle
, bh
);
1042 if (!fatal
&& !buffer_uptodate(bh
)) {
1043 memset(bh
->b_data
,0,inode
->i_sb
->s_blocksize
);
1044 set_buffer_uptodate(bh
);
1047 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
1048 err
= ext4_journal_dirty_metadata(handle
, bh
);
1052 BUFFER_TRACE(bh
, "not a new buffer");
1065 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1066 int block
, int create
, int *err
)
1068 struct buffer_head
* bh
;
1070 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1073 if (buffer_uptodate(bh
))
1075 ll_rw_block(READ_META
, 1, &bh
);
1077 if (buffer_uptodate(bh
))
1084 static int walk_page_buffers( handle_t
*handle
,
1085 struct buffer_head
*head
,
1089 int (*fn
)( handle_t
*handle
,
1090 struct buffer_head
*bh
))
1092 struct buffer_head
*bh
;
1093 unsigned block_start
, block_end
;
1094 unsigned blocksize
= head
->b_size
;
1096 struct buffer_head
*next
;
1098 for ( bh
= head
, block_start
= 0;
1099 ret
== 0 && (bh
!= head
|| !block_start
);
1100 block_start
= block_end
, bh
= next
)
1102 next
= bh
->b_this_page
;
1103 block_end
= block_start
+ blocksize
;
1104 if (block_end
<= from
|| block_start
>= to
) {
1105 if (partial
&& !buffer_uptodate(bh
))
1109 err
= (*fn
)(handle
, bh
);
1117 * To preserve ordering, it is essential that the hole instantiation and
1118 * the data write be encapsulated in a single transaction. We cannot
1119 * close off a transaction and start a new one between the ext4_get_block()
1120 * and the commit_write(). So doing the jbd2_journal_start at the start of
1121 * prepare_write() is the right place.
1123 * Also, this function can nest inside ext4_writepage() ->
1124 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1125 * has generated enough buffer credits to do the whole page. So we won't
1126 * block on the journal in that case, which is good, because the caller may
1129 * By accident, ext4 can be reentered when a transaction is open via
1130 * quota file writes. If we were to commit the transaction while thus
1131 * reentered, there can be a deadlock - we would be holding a quota
1132 * lock, and the commit would never complete if another thread had a
1133 * transaction open and was blocking on the quota lock - a ranking
1136 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1137 * will _not_ run commit under these circumstances because handle->h_ref
1138 * is elevated. We'll still have enough credits for the tiny quotafile
1141 static int do_journal_get_write_access(handle_t
*handle
,
1142 struct buffer_head
*bh
)
1144 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1146 return ext4_journal_get_write_access(handle
, bh
);
1149 static int ext4_prepare_write(struct file
*file
, struct page
*page
,
1150 unsigned from
, unsigned to
)
1152 struct inode
*inode
= page
->mapping
->host
;
1153 int ret
, needed_blocks
= ext4_writepage_trans_blocks(inode
);
1158 handle
= ext4_journal_start(inode
, needed_blocks
);
1159 if (IS_ERR(handle
)) {
1160 ret
= PTR_ERR(handle
);
1163 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
1164 ret
= nobh_prepare_write(page
, from
, to
, ext4_get_block
);
1166 ret
= block_prepare_write(page
, from
, to
, ext4_get_block
);
1168 goto prepare_write_failed
;
1170 if (ext4_should_journal_data(inode
)) {
1171 ret
= walk_page_buffers(handle
, page_buffers(page
),
1172 from
, to
, NULL
, do_journal_get_write_access
);
1174 prepare_write_failed
:
1176 ext4_journal_stop(handle
);
1177 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1183 int ext4_journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
1185 int err
= jbd2_journal_dirty_data(handle
, bh
);
1187 ext4_journal_abort_handle(__FUNCTION__
, __FUNCTION__
,
1192 /* For commit_write() in data=journal mode */
1193 static int commit_write_fn(handle_t
*handle
, struct buffer_head
*bh
)
1195 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1197 set_buffer_uptodate(bh
);
1198 return ext4_journal_dirty_metadata(handle
, bh
);
1202 * We need to pick up the new inode size which generic_commit_write gave us
1203 * `file' can be NULL - eg, when called from page_symlink().
1205 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1206 * buffers are managed internally.
1208 static int ext4_ordered_commit_write(struct file
*file
, struct page
*page
,
1209 unsigned from
, unsigned to
)
1211 handle_t
*handle
= ext4_journal_current_handle();
1212 struct inode
*inode
= page
->mapping
->host
;
1215 ret
= walk_page_buffers(handle
, page_buffers(page
),
1216 from
, to
, NULL
, ext4_journal_dirty_data
);
1220 * generic_commit_write() will run mark_inode_dirty() if i_size
1221 * changes. So let's piggyback the i_disksize mark_inode_dirty
1226 new_i_size
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
1227 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
1228 EXT4_I(inode
)->i_disksize
= new_i_size
;
1229 ret
= generic_commit_write(file
, page
, from
, to
);
1231 ret2
= ext4_journal_stop(handle
);
1237 static int ext4_writeback_commit_write(struct file
*file
, struct page
*page
,
1238 unsigned from
, unsigned to
)
1240 handle_t
*handle
= ext4_journal_current_handle();
1241 struct inode
*inode
= page
->mapping
->host
;
1245 new_i_size
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
1246 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
1247 EXT4_I(inode
)->i_disksize
= new_i_size
;
1249 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
1250 ret
= nobh_commit_write(file
, page
, from
, to
);
1252 ret
= generic_commit_write(file
, page
, from
, to
);
1254 ret2
= ext4_journal_stop(handle
);
1260 static int ext4_journalled_commit_write(struct file
*file
,
1261 struct page
*page
, unsigned from
, unsigned to
)
1263 handle_t
*handle
= ext4_journal_current_handle();
1264 struct inode
*inode
= page
->mapping
->host
;
1270 * Here we duplicate the generic_commit_write() functionality
1272 pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
1274 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1275 to
, &partial
, commit_write_fn
);
1277 SetPageUptodate(page
);
1278 if (pos
> inode
->i_size
)
1279 i_size_write(inode
, pos
);
1280 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1281 if (inode
->i_size
> EXT4_I(inode
)->i_disksize
) {
1282 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
1283 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1287 ret2
= ext4_journal_stop(handle
);
1294 * bmap() is special. It gets used by applications such as lilo and by
1295 * the swapper to find the on-disk block of a specific piece of data.
1297 * Naturally, this is dangerous if the block concerned is still in the
1298 * journal. If somebody makes a swapfile on an ext4 data-journaling
1299 * filesystem and enables swap, then they may get a nasty shock when the
1300 * data getting swapped to that swapfile suddenly gets overwritten by
1301 * the original zero's written out previously to the journal and
1302 * awaiting writeback in the kernel's buffer cache.
1304 * So, if we see any bmap calls here on a modified, data-journaled file,
1305 * take extra steps to flush any blocks which might be in the cache.
1307 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
1309 struct inode
*inode
= mapping
->host
;
1313 if (EXT4_I(inode
)->i_state
& EXT4_STATE_JDATA
) {
1315 * This is a REALLY heavyweight approach, but the use of
1316 * bmap on dirty files is expected to be extremely rare:
1317 * only if we run lilo or swapon on a freshly made file
1318 * do we expect this to happen.
1320 * (bmap requires CAP_SYS_RAWIO so this does not
1321 * represent an unprivileged user DOS attack --- we'd be
1322 * in trouble if mortal users could trigger this path at
1325 * NB. EXT4_STATE_JDATA is not set on files other than
1326 * regular files. If somebody wants to bmap a directory
1327 * or symlink and gets confused because the buffer
1328 * hasn't yet been flushed to disk, they deserve
1329 * everything they get.
1332 EXT4_I(inode
)->i_state
&= ~EXT4_STATE_JDATA
;
1333 journal
= EXT4_JOURNAL(inode
);
1334 jbd2_journal_lock_updates(journal
);
1335 err
= jbd2_journal_flush(journal
);
1336 jbd2_journal_unlock_updates(journal
);
1342 return generic_block_bmap(mapping
,block
,ext4_get_block
);
1345 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1351 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1357 static int jbd2_journal_dirty_data_fn(handle_t
*handle
, struct buffer_head
*bh
)
1359 if (buffer_mapped(bh
))
1360 return ext4_journal_dirty_data(handle
, bh
);
1365 * Note that we always start a transaction even if we're not journalling
1366 * data. This is to preserve ordering: any hole instantiation within
1367 * __block_write_full_page -> ext4_get_block() should be journalled
1368 * along with the data so we don't crash and then get metadata which
1369 * refers to old data.
1371 * In all journalling modes block_write_full_page() will start the I/O.
1375 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1380 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1382 * Same applies to ext4_get_block(). We will deadlock on various things like
1383 * lock_journal and i_truncate_mutex.
1385 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1388 * 16May01: If we're reentered then journal_current_handle() will be
1389 * non-zero. We simply *return*.
1391 * 1 July 2001: @@@ FIXME:
1392 * In journalled data mode, a data buffer may be metadata against the
1393 * current transaction. But the same file is part of a shared mapping
1394 * and someone does a writepage() on it.
1396 * We will move the buffer onto the async_data list, but *after* it has
1397 * been dirtied. So there's a small window where we have dirty data on
1400 * Note that this only applies to the last partial page in the file. The
1401 * bit which block_write_full_page() uses prepare/commit for. (That's
1402 * broken code anyway: it's wrong for msync()).
1404 * It's a rare case: affects the final partial page, for journalled data
1405 * where the file is subject to bith write() and writepage() in the same
1406 * transction. To fix it we'll need a custom block_write_full_page().
1407 * We'll probably need that anyway for journalling writepage() output.
1409 * We don't honour synchronous mounts for writepage(). That would be
1410 * disastrous. Any write() or metadata operation will sync the fs for
1413 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1414 * we don't need to open a transaction here.
1416 static int ext4_ordered_writepage(struct page
*page
,
1417 struct writeback_control
*wbc
)
1419 struct inode
*inode
= page
->mapping
->host
;
1420 struct buffer_head
*page_bufs
;
1421 handle_t
*handle
= NULL
;
1425 J_ASSERT(PageLocked(page
));
1428 * We give up here if we're reentered, because it might be for a
1429 * different filesystem.
1431 if (ext4_journal_current_handle())
1434 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1436 if (IS_ERR(handle
)) {
1437 ret
= PTR_ERR(handle
);
1441 if (!page_has_buffers(page
)) {
1442 create_empty_buffers(page
, inode
->i_sb
->s_blocksize
,
1443 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1445 page_bufs
= page_buffers(page
);
1446 walk_page_buffers(handle
, page_bufs
, 0,
1447 PAGE_CACHE_SIZE
, NULL
, bget_one
);
1449 ret
= block_write_full_page(page
, ext4_get_block
, wbc
);
1452 * The page can become unlocked at any point now, and
1453 * truncate can then come in and change things. So we
1454 * can't touch *page from now on. But *page_bufs is
1455 * safe due to elevated refcount.
1459 * And attach them to the current transaction. But only if
1460 * block_write_full_page() succeeded. Otherwise they are unmapped,
1461 * and generally junk.
1464 err
= walk_page_buffers(handle
, page_bufs
, 0, PAGE_CACHE_SIZE
,
1465 NULL
, jbd2_journal_dirty_data_fn
);
1469 walk_page_buffers(handle
, page_bufs
, 0,
1470 PAGE_CACHE_SIZE
, NULL
, bput_one
);
1471 err
= ext4_journal_stop(handle
);
1477 redirty_page_for_writepage(wbc
, page
);
1482 static int ext4_writeback_writepage(struct page
*page
,
1483 struct writeback_control
*wbc
)
1485 struct inode
*inode
= page
->mapping
->host
;
1486 handle_t
*handle
= NULL
;
1490 if (ext4_journal_current_handle())
1493 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1494 if (IS_ERR(handle
)) {
1495 ret
= PTR_ERR(handle
);
1499 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
1500 ret
= nobh_writepage(page
, ext4_get_block
, wbc
);
1502 ret
= block_write_full_page(page
, ext4_get_block
, wbc
);
1504 err
= ext4_journal_stop(handle
);
1510 redirty_page_for_writepage(wbc
, page
);
1515 static int ext4_journalled_writepage(struct page
*page
,
1516 struct writeback_control
*wbc
)
1518 struct inode
*inode
= page
->mapping
->host
;
1519 handle_t
*handle
= NULL
;
1523 if (ext4_journal_current_handle())
1526 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1527 if (IS_ERR(handle
)) {
1528 ret
= PTR_ERR(handle
);
1532 if (!page_has_buffers(page
) || PageChecked(page
)) {
1534 * It's mmapped pagecache. Add buffers and journal it. There
1535 * doesn't seem much point in redirtying the page here.
1537 ClearPageChecked(page
);
1538 ret
= block_prepare_write(page
, 0, PAGE_CACHE_SIZE
,
1541 ext4_journal_stop(handle
);
1544 ret
= walk_page_buffers(handle
, page_buffers(page
), 0,
1545 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
);
1547 err
= walk_page_buffers(handle
, page_buffers(page
), 0,
1548 PAGE_CACHE_SIZE
, NULL
, commit_write_fn
);
1551 EXT4_I(inode
)->i_state
|= EXT4_STATE_JDATA
;
1555 * It may be a page full of checkpoint-mode buffers. We don't
1556 * really know unless we go poke around in the buffer_heads.
1557 * But block_write_full_page will do the right thing.
1559 ret
= block_write_full_page(page
, ext4_get_block
, wbc
);
1561 err
= ext4_journal_stop(handle
);
1568 redirty_page_for_writepage(wbc
, page
);
1574 static int ext4_readpage(struct file
*file
, struct page
*page
)
1576 return mpage_readpage(page
, ext4_get_block
);
1580 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
1581 struct list_head
*pages
, unsigned nr_pages
)
1583 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
1586 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
1588 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
1591 * If it's a full truncate we just forget about the pending dirtying
1594 ClearPageChecked(page
);
1596 jbd2_journal_invalidatepage(journal
, page
, offset
);
1599 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
1601 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
1603 WARN_ON(PageChecked(page
));
1604 if (!page_has_buffers(page
))
1606 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
1610 * If the O_DIRECT write will extend the file then add this inode to the
1611 * orphan list. So recovery will truncate it back to the original size
1612 * if the machine crashes during the write.
1614 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1615 * crashes then stale disk data _may_ be exposed inside the file.
1617 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
1618 const struct iovec
*iov
, loff_t offset
,
1619 unsigned long nr_segs
)
1621 struct file
*file
= iocb
->ki_filp
;
1622 struct inode
*inode
= file
->f_mapping
->host
;
1623 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1624 handle_t
*handle
= NULL
;
1627 size_t count
= iov_length(iov
, nr_segs
);
1630 loff_t final_size
= offset
+ count
;
1632 handle
= ext4_journal_start(inode
, DIO_CREDITS
);
1633 if (IS_ERR(handle
)) {
1634 ret
= PTR_ERR(handle
);
1637 if (final_size
> inode
->i_size
) {
1638 ret
= ext4_orphan_add(handle
, inode
);
1642 ei
->i_disksize
= inode
->i_size
;
1646 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
1648 ext4_get_block
, NULL
);
1651 * Reacquire the handle: ext4_get_block() can restart the transaction
1653 handle
= ext4_journal_current_handle();
1659 if (orphan
&& inode
->i_nlink
)
1660 ext4_orphan_del(handle
, inode
);
1661 if (orphan
&& ret
> 0) {
1662 loff_t end
= offset
+ ret
;
1663 if (end
> inode
->i_size
) {
1664 ei
->i_disksize
= end
;
1665 i_size_write(inode
, end
);
1667 * We're going to return a positive `ret'
1668 * here due to non-zero-length I/O, so there's
1669 * no way of reporting error returns from
1670 * ext4_mark_inode_dirty() to userspace. So
1673 ext4_mark_inode_dirty(handle
, inode
);
1676 err
= ext4_journal_stop(handle
);
1685 * Pages can be marked dirty completely asynchronously from ext4's journalling
1686 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1687 * much here because ->set_page_dirty is called under VFS locks. The page is
1688 * not necessarily locked.
1690 * We cannot just dirty the page and leave attached buffers clean, because the
1691 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1692 * or jbddirty because all the journalling code will explode.
1694 * So what we do is to mark the page "pending dirty" and next time writepage
1695 * is called, propagate that into the buffers appropriately.
1697 static int ext4_journalled_set_page_dirty(struct page
*page
)
1699 SetPageChecked(page
);
1700 return __set_page_dirty_nobuffers(page
);
1703 static const struct address_space_operations ext4_ordered_aops
= {
1704 .readpage
= ext4_readpage
,
1705 .readpages
= ext4_readpages
,
1706 .writepage
= ext4_ordered_writepage
,
1707 .sync_page
= block_sync_page
,
1708 .prepare_write
= ext4_prepare_write
,
1709 .commit_write
= ext4_ordered_commit_write
,
1711 .invalidatepage
= ext4_invalidatepage
,
1712 .releasepage
= ext4_releasepage
,
1713 .direct_IO
= ext4_direct_IO
,
1714 .migratepage
= buffer_migrate_page
,
1717 static const struct address_space_operations ext4_writeback_aops
= {
1718 .readpage
= ext4_readpage
,
1719 .readpages
= ext4_readpages
,
1720 .writepage
= ext4_writeback_writepage
,
1721 .sync_page
= block_sync_page
,
1722 .prepare_write
= ext4_prepare_write
,
1723 .commit_write
= ext4_writeback_commit_write
,
1725 .invalidatepage
= ext4_invalidatepage
,
1726 .releasepage
= ext4_releasepage
,
1727 .direct_IO
= ext4_direct_IO
,
1728 .migratepage
= buffer_migrate_page
,
1731 static const struct address_space_operations ext4_journalled_aops
= {
1732 .readpage
= ext4_readpage
,
1733 .readpages
= ext4_readpages
,
1734 .writepage
= ext4_journalled_writepage
,
1735 .sync_page
= block_sync_page
,
1736 .prepare_write
= ext4_prepare_write
,
1737 .commit_write
= ext4_journalled_commit_write
,
1738 .set_page_dirty
= ext4_journalled_set_page_dirty
,
1740 .invalidatepage
= ext4_invalidatepage
,
1741 .releasepage
= ext4_releasepage
,
1744 void ext4_set_aops(struct inode
*inode
)
1746 if (ext4_should_order_data(inode
))
1747 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
1748 else if (ext4_should_writeback_data(inode
))
1749 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
1751 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
1755 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1756 * up to the end of the block which corresponds to `from'.
1757 * This required during truncate. We need to physically zero the tail end
1758 * of that block so it doesn't yield old data if the file is later grown.
1760 int ext4_block_truncate_page(handle_t
*handle
, struct page
*page
,
1761 struct address_space
*mapping
, loff_t from
)
1763 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
1764 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
1765 unsigned blocksize
, iblock
, length
, pos
;
1766 struct inode
*inode
= mapping
->host
;
1767 struct buffer_head
*bh
;
1770 blocksize
= inode
->i_sb
->s_blocksize
;
1771 length
= blocksize
- (offset
& (blocksize
- 1));
1772 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
1775 * For "nobh" option, we can only work if we don't need to
1776 * read-in the page - otherwise we create buffers to do the IO.
1778 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
1779 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
1780 zero_user_page(page
, offset
, length
, KM_USER0
);
1781 set_page_dirty(page
);
1785 if (!page_has_buffers(page
))
1786 create_empty_buffers(page
, blocksize
, 0);
1788 /* Find the buffer that contains "offset" */
1789 bh
= page_buffers(page
);
1791 while (offset
>= pos
) {
1792 bh
= bh
->b_this_page
;
1798 if (buffer_freed(bh
)) {
1799 BUFFER_TRACE(bh
, "freed: skip");
1803 if (!buffer_mapped(bh
)) {
1804 BUFFER_TRACE(bh
, "unmapped");
1805 ext4_get_block(inode
, iblock
, bh
, 0);
1806 /* unmapped? It's a hole - nothing to do */
1807 if (!buffer_mapped(bh
)) {
1808 BUFFER_TRACE(bh
, "still unmapped");
1813 /* Ok, it's mapped. Make sure it's up-to-date */
1814 if (PageUptodate(page
))
1815 set_buffer_uptodate(bh
);
1817 if (!buffer_uptodate(bh
)) {
1819 ll_rw_block(READ
, 1, &bh
);
1821 /* Uhhuh. Read error. Complain and punt. */
1822 if (!buffer_uptodate(bh
))
1826 if (ext4_should_journal_data(inode
)) {
1827 BUFFER_TRACE(bh
, "get write access");
1828 err
= ext4_journal_get_write_access(handle
, bh
);
1833 zero_user_page(page
, offset
, length
, KM_USER0
);
1835 BUFFER_TRACE(bh
, "zeroed end of block");
1838 if (ext4_should_journal_data(inode
)) {
1839 err
= ext4_journal_dirty_metadata(handle
, bh
);
1841 if (ext4_should_order_data(inode
))
1842 err
= ext4_journal_dirty_data(handle
, bh
);
1843 mark_buffer_dirty(bh
);
1848 page_cache_release(page
);
1853 * Probably it should be a library function... search for first non-zero word
1854 * or memcmp with zero_page, whatever is better for particular architecture.
1857 static inline int all_zeroes(__le32
*p
, __le32
*q
)
1866 * ext4_find_shared - find the indirect blocks for partial truncation.
1867 * @inode: inode in question
1868 * @depth: depth of the affected branch
1869 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1870 * @chain: place to store the pointers to partial indirect blocks
1871 * @top: place to the (detached) top of branch
1873 * This is a helper function used by ext4_truncate().
1875 * When we do truncate() we may have to clean the ends of several
1876 * indirect blocks but leave the blocks themselves alive. Block is
1877 * partially truncated if some data below the new i_size is refered
1878 * from it (and it is on the path to the first completely truncated
1879 * data block, indeed). We have to free the top of that path along
1880 * with everything to the right of the path. Since no allocation
1881 * past the truncation point is possible until ext4_truncate()
1882 * finishes, we may safely do the latter, but top of branch may
1883 * require special attention - pageout below the truncation point
1884 * might try to populate it.
1886 * We atomically detach the top of branch from the tree, store the
1887 * block number of its root in *@top, pointers to buffer_heads of
1888 * partially truncated blocks - in @chain[].bh and pointers to
1889 * their last elements that should not be removed - in
1890 * @chain[].p. Return value is the pointer to last filled element
1893 * The work left to caller to do the actual freeing of subtrees:
1894 * a) free the subtree starting from *@top
1895 * b) free the subtrees whose roots are stored in
1896 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1897 * c) free the subtrees growing from the inode past the @chain[0].
1898 * (no partially truncated stuff there). */
1900 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
1901 int offsets
[4], Indirect chain
[4], __le32
*top
)
1903 Indirect
*partial
, *p
;
1907 /* Make k index the deepest non-null offest + 1 */
1908 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
1910 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
1911 /* Writer: pointers */
1913 partial
= chain
+ k
-1;
1915 * If the branch acquired continuation since we've looked at it -
1916 * fine, it should all survive and (new) top doesn't belong to us.
1918 if (!partial
->key
&& *partial
->p
)
1921 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
1924 * OK, we've found the last block that must survive. The rest of our
1925 * branch should be detached before unlocking. However, if that rest
1926 * of branch is all ours and does not grow immediately from the inode
1927 * it's easier to cheat and just decrement partial->p.
1929 if (p
== chain
+ k
- 1 && p
> chain
) {
1933 /* Nope, don't do this in ext4. Must leave the tree intact */
1940 while(partial
> p
) {
1941 brelse(partial
->bh
);
1949 * Zero a number of block pointers in either an inode or an indirect block.
1950 * If we restart the transaction we must again get write access to the
1951 * indirect block for further modification.
1953 * We release `count' blocks on disk, but (last - first) may be greater
1954 * than `count' because there can be holes in there.
1956 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
1957 struct buffer_head
*bh
, ext4_fsblk_t block_to_free
,
1958 unsigned long count
, __le32
*first
, __le32
*last
)
1961 if (try_to_extend_transaction(handle
, inode
)) {
1963 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
1964 ext4_journal_dirty_metadata(handle
, bh
);
1966 ext4_mark_inode_dirty(handle
, inode
);
1967 ext4_journal_test_restart(handle
, inode
);
1969 BUFFER_TRACE(bh
, "retaking write access");
1970 ext4_journal_get_write_access(handle
, bh
);
1975 * Any buffers which are on the journal will be in memory. We find
1976 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
1977 * on them. We've already detached each block from the file, so
1978 * bforget() in jbd2_journal_forget() should be safe.
1980 * AKPM: turn on bforget in jbd2_journal_forget()!!!
1982 for (p
= first
; p
< last
; p
++) {
1983 u32 nr
= le32_to_cpu(*p
);
1985 struct buffer_head
*bh
;
1988 bh
= sb_find_get_block(inode
->i_sb
, nr
);
1989 ext4_forget(handle
, 0, inode
, bh
, nr
);
1993 ext4_free_blocks(handle
, inode
, block_to_free
, count
);
1997 * ext4_free_data - free a list of data blocks
1998 * @handle: handle for this transaction
1999 * @inode: inode we are dealing with
2000 * @this_bh: indirect buffer_head which contains *@first and *@last
2001 * @first: array of block numbers
2002 * @last: points immediately past the end of array
2004 * We are freeing all blocks refered from that array (numbers are stored as
2005 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2007 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2008 * blocks are contiguous then releasing them at one time will only affect one
2009 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2010 * actually use a lot of journal space.
2012 * @this_bh will be %NULL if @first and @last point into the inode's direct
2015 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
2016 struct buffer_head
*this_bh
,
2017 __le32
*first
, __le32
*last
)
2019 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
2020 unsigned long count
= 0; /* Number of blocks in the run */
2021 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
2024 ext4_fsblk_t nr
; /* Current block # */
2025 __le32
*p
; /* Pointer into inode/ind
2026 for current block */
2029 if (this_bh
) { /* For indirect block */
2030 BUFFER_TRACE(this_bh
, "get_write_access");
2031 err
= ext4_journal_get_write_access(handle
, this_bh
);
2032 /* Important: if we can't update the indirect pointers
2033 * to the blocks, we can't free them. */
2038 for (p
= first
; p
< last
; p
++) {
2039 nr
= le32_to_cpu(*p
);
2041 /* accumulate blocks to free if they're contiguous */
2044 block_to_free_p
= p
;
2046 } else if (nr
== block_to_free
+ count
) {
2049 ext4_clear_blocks(handle
, inode
, this_bh
,
2051 count
, block_to_free_p
, p
);
2053 block_to_free_p
= p
;
2060 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
2061 count
, block_to_free_p
, p
);
2064 BUFFER_TRACE(this_bh
, "call ext4_journal_dirty_metadata");
2065 ext4_journal_dirty_metadata(handle
, this_bh
);
2070 * ext4_free_branches - free an array of branches
2071 * @handle: JBD handle for this transaction
2072 * @inode: inode we are dealing with
2073 * @parent_bh: the buffer_head which contains *@first and *@last
2074 * @first: array of block numbers
2075 * @last: pointer immediately past the end of array
2076 * @depth: depth of the branches to free
2078 * We are freeing all blocks refered from these branches (numbers are
2079 * stored as little-endian 32-bit) and updating @inode->i_blocks
2082 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
2083 struct buffer_head
*parent_bh
,
2084 __le32
*first
, __le32
*last
, int depth
)
2089 if (is_handle_aborted(handle
))
2093 struct buffer_head
*bh
;
2094 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
2096 while (--p
>= first
) {
2097 nr
= le32_to_cpu(*p
);
2099 continue; /* A hole */
2101 /* Go read the buffer for the next level down */
2102 bh
= sb_bread(inode
->i_sb
, nr
);
2105 * A read failure? Report error and clear slot
2109 ext4_error(inode
->i_sb
, "ext4_free_branches",
2110 "Read failure, inode=%lu, block=%llu",
2115 /* This zaps the entire block. Bottom up. */
2116 BUFFER_TRACE(bh
, "free child branches");
2117 ext4_free_branches(handle
, inode
, bh
,
2118 (__le32
*)bh
->b_data
,
2119 (__le32
*)bh
->b_data
+ addr_per_block
,
2123 * We've probably journalled the indirect block several
2124 * times during the truncate. But it's no longer
2125 * needed and we now drop it from the transaction via
2126 * jbd2_journal_revoke().
2128 * That's easy if it's exclusively part of this
2129 * transaction. But if it's part of the committing
2130 * transaction then jbd2_journal_forget() will simply
2131 * brelse() it. That means that if the underlying
2132 * block is reallocated in ext4_get_block(),
2133 * unmap_underlying_metadata() will find this block
2134 * and will try to get rid of it. damn, damn.
2136 * If this block has already been committed to the
2137 * journal, a revoke record will be written. And
2138 * revoke records must be emitted *before* clearing
2139 * this block's bit in the bitmaps.
2141 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
2144 * Everything below this this pointer has been
2145 * released. Now let this top-of-subtree go.
2147 * We want the freeing of this indirect block to be
2148 * atomic in the journal with the updating of the
2149 * bitmap block which owns it. So make some room in
2152 * We zero the parent pointer *after* freeing its
2153 * pointee in the bitmaps, so if extend_transaction()
2154 * for some reason fails to put the bitmap changes and
2155 * the release into the same transaction, recovery
2156 * will merely complain about releasing a free block,
2157 * rather than leaking blocks.
2159 if (is_handle_aborted(handle
))
2161 if (try_to_extend_transaction(handle
, inode
)) {
2162 ext4_mark_inode_dirty(handle
, inode
);
2163 ext4_journal_test_restart(handle
, inode
);
2166 ext4_free_blocks(handle
, inode
, nr
, 1);
2170 * The block which we have just freed is
2171 * pointed to by an indirect block: journal it
2173 BUFFER_TRACE(parent_bh
, "get_write_access");
2174 if (!ext4_journal_get_write_access(handle
,
2177 BUFFER_TRACE(parent_bh
,
2178 "call ext4_journal_dirty_metadata");
2179 ext4_journal_dirty_metadata(handle
,
2185 /* We have reached the bottom of the tree. */
2186 BUFFER_TRACE(parent_bh
, "free data blocks");
2187 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
2194 * We block out ext4_get_block() block instantiations across the entire
2195 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2196 * simultaneously on behalf of the same inode.
2198 * As we work through the truncate and commmit bits of it to the journal there
2199 * is one core, guiding principle: the file's tree must always be consistent on
2200 * disk. We must be able to restart the truncate after a crash.
2202 * The file's tree may be transiently inconsistent in memory (although it
2203 * probably isn't), but whenever we close off and commit a journal transaction,
2204 * the contents of (the filesystem + the journal) must be consistent and
2205 * restartable. It's pretty simple, really: bottom up, right to left (although
2206 * left-to-right works OK too).
2208 * Note that at recovery time, journal replay occurs *before* the restart of
2209 * truncate against the orphan inode list.
2211 * The committed inode has the new, desired i_size (which is the same as
2212 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
2213 * that this inode's truncate did not complete and it will again call
2214 * ext4_truncate() to have another go. So there will be instantiated blocks
2215 * to the right of the truncation point in a crashed ext4 filesystem. But
2216 * that's fine - as long as they are linked from the inode, the post-crash
2217 * ext4_truncate() run will find them and release them.
2219 void ext4_truncate(struct inode
*inode
)
2222 struct ext4_inode_info
*ei
= EXT4_I(inode
);
2223 __le32
*i_data
= ei
->i_data
;
2224 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
2225 struct address_space
*mapping
= inode
->i_mapping
;
2232 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
2235 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
2236 S_ISLNK(inode
->i_mode
)))
2238 if (ext4_inode_is_fast_symlink(inode
))
2240 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
2244 * We have to lock the EOF page here, because lock_page() nests
2245 * outside jbd2_journal_start().
2247 if ((inode
->i_size
& (blocksize
- 1)) == 0) {
2248 /* Block boundary? Nothing to do */
2251 page
= grab_cache_page(mapping
,
2252 inode
->i_size
>> PAGE_CACHE_SHIFT
);
2257 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
2258 return ext4_ext_truncate(inode
, page
);
2260 handle
= start_transaction(inode
);
2261 if (IS_ERR(handle
)) {
2263 clear_highpage(page
);
2264 flush_dcache_page(page
);
2266 page_cache_release(page
);
2268 return; /* AKPM: return what? */
2271 last_block
= (inode
->i_size
+ blocksize
-1)
2272 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
2275 ext4_block_truncate_page(handle
, page
, mapping
, inode
->i_size
);
2277 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
2279 goto out_stop
; /* error */
2282 * OK. This truncate is going to happen. We add the inode to the
2283 * orphan list, so that if this truncate spans multiple transactions,
2284 * and we crash, we will resume the truncate when the filesystem
2285 * recovers. It also marks the inode dirty, to catch the new size.
2287 * Implication: the file must always be in a sane, consistent
2288 * truncatable state while each transaction commits.
2290 if (ext4_orphan_add(handle
, inode
))
2294 * The orphan list entry will now protect us from any crash which
2295 * occurs before the truncate completes, so it is now safe to propagate
2296 * the new, shorter inode size (held for now in i_size) into the
2297 * on-disk inode. We do this via i_disksize, which is the value which
2298 * ext4 *really* writes onto the disk inode.
2300 ei
->i_disksize
= inode
->i_size
;
2303 * From here we block out all ext4_get_block() callers who want to
2304 * modify the block allocation tree.
2306 mutex_lock(&ei
->truncate_mutex
);
2308 if (n
== 1) { /* direct blocks */
2309 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
2310 i_data
+ EXT4_NDIR_BLOCKS
);
2314 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
2315 /* Kill the top of shared branch (not detached) */
2317 if (partial
== chain
) {
2318 /* Shared branch grows from the inode */
2319 ext4_free_branches(handle
, inode
, NULL
,
2320 &nr
, &nr
+1, (chain
+n
-1) - partial
);
2323 * We mark the inode dirty prior to restart,
2324 * and prior to stop. No need for it here.
2327 /* Shared branch grows from an indirect block */
2328 BUFFER_TRACE(partial
->bh
, "get_write_access");
2329 ext4_free_branches(handle
, inode
, partial
->bh
,
2331 partial
->p
+1, (chain
+n
-1) - partial
);
2334 /* Clear the ends of indirect blocks on the shared branch */
2335 while (partial
> chain
) {
2336 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
2337 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
2338 (chain
+n
-1) - partial
);
2339 BUFFER_TRACE(partial
->bh
, "call brelse");
2340 brelse (partial
->bh
);
2344 /* Kill the remaining (whole) subtrees */
2345 switch (offsets
[0]) {
2347 nr
= i_data
[EXT4_IND_BLOCK
];
2349 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
2350 i_data
[EXT4_IND_BLOCK
] = 0;
2352 case EXT4_IND_BLOCK
:
2353 nr
= i_data
[EXT4_DIND_BLOCK
];
2355 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
2356 i_data
[EXT4_DIND_BLOCK
] = 0;
2358 case EXT4_DIND_BLOCK
:
2359 nr
= i_data
[EXT4_TIND_BLOCK
];
2361 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
2362 i_data
[EXT4_TIND_BLOCK
] = 0;
2364 case EXT4_TIND_BLOCK
:
2368 ext4_discard_reservation(inode
);
2370 mutex_unlock(&ei
->truncate_mutex
);
2371 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
2372 ext4_mark_inode_dirty(handle
, inode
);
2375 * In a multi-transaction truncate, we only make the final transaction
2382 * If this was a simple ftruncate(), and the file will remain alive
2383 * then we need to clear up the orphan record which we created above.
2384 * However, if this was a real unlink then we were called by
2385 * ext4_delete_inode(), and we allow that function to clean up the
2386 * orphan info for us.
2389 ext4_orphan_del(handle
, inode
);
2391 ext4_journal_stop(handle
);
2394 static ext4_fsblk_t
ext4_get_inode_block(struct super_block
*sb
,
2395 unsigned long ino
, struct ext4_iloc
*iloc
)
2397 unsigned long desc
, group_desc
, block_group
;
2398 unsigned long offset
;
2400 struct buffer_head
*bh
;
2401 struct ext4_group_desc
* gdp
;
2403 if (!ext4_valid_inum(sb
, ino
)) {
2405 * This error is already checked for in namei.c unless we are
2406 * looking at an NFS filehandle, in which case no error
2412 block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
2413 if (block_group
>= EXT4_SB(sb
)->s_groups_count
) {
2414 ext4_error(sb
,"ext4_get_inode_block","group >= groups count");
2418 group_desc
= block_group
>> EXT4_DESC_PER_BLOCK_BITS(sb
);
2419 desc
= block_group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2420 bh
= EXT4_SB(sb
)->s_group_desc
[group_desc
];
2422 ext4_error (sb
, "ext4_get_inode_block",
2423 "Descriptor not loaded");
2427 gdp
= (struct ext4_group_desc
*)((__u8
*)bh
->b_data
+
2428 desc
* EXT4_DESC_SIZE(sb
));
2430 * Figure out the offset within the block group inode table
2432 offset
= ((ino
- 1) % EXT4_INODES_PER_GROUP(sb
)) *
2433 EXT4_INODE_SIZE(sb
);
2434 block
= ext4_inode_table(sb
, gdp
) +
2435 (offset
>> EXT4_BLOCK_SIZE_BITS(sb
));
2437 iloc
->block_group
= block_group
;
2438 iloc
->offset
= offset
& (EXT4_BLOCK_SIZE(sb
) - 1);
2443 * ext4_get_inode_loc returns with an extra refcount against the inode's
2444 * underlying buffer_head on success. If 'in_mem' is true, we have all
2445 * data in memory that is needed to recreate the on-disk version of this
2448 static int __ext4_get_inode_loc(struct inode
*inode
,
2449 struct ext4_iloc
*iloc
, int in_mem
)
2452 struct buffer_head
*bh
;
2454 block
= ext4_get_inode_block(inode
->i_sb
, inode
->i_ino
, iloc
);
2458 bh
= sb_getblk(inode
->i_sb
, block
);
2460 ext4_error (inode
->i_sb
, "ext4_get_inode_loc",
2461 "unable to read inode block - "
2462 "inode=%lu, block=%llu",
2463 inode
->i_ino
, block
);
2466 if (!buffer_uptodate(bh
)) {
2468 if (buffer_uptodate(bh
)) {
2469 /* someone brought it uptodate while we waited */
2475 * If we have all information of the inode in memory and this
2476 * is the only valid inode in the block, we need not read the
2480 struct buffer_head
*bitmap_bh
;
2481 struct ext4_group_desc
*desc
;
2482 int inodes_per_buffer
;
2483 int inode_offset
, i
;
2487 block_group
= (inode
->i_ino
- 1) /
2488 EXT4_INODES_PER_GROUP(inode
->i_sb
);
2489 inodes_per_buffer
= bh
->b_size
/
2490 EXT4_INODE_SIZE(inode
->i_sb
);
2491 inode_offset
= ((inode
->i_ino
- 1) %
2492 EXT4_INODES_PER_GROUP(inode
->i_sb
));
2493 start
= inode_offset
& ~(inodes_per_buffer
- 1);
2495 /* Is the inode bitmap in cache? */
2496 desc
= ext4_get_group_desc(inode
->i_sb
,
2501 bitmap_bh
= sb_getblk(inode
->i_sb
,
2502 ext4_inode_bitmap(inode
->i_sb
, desc
));
2507 * If the inode bitmap isn't in cache then the
2508 * optimisation may end up performing two reads instead
2509 * of one, so skip it.
2511 if (!buffer_uptodate(bitmap_bh
)) {
2515 for (i
= start
; i
< start
+ inodes_per_buffer
; i
++) {
2516 if (i
== inode_offset
)
2518 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
2522 if (i
== start
+ inodes_per_buffer
) {
2523 /* all other inodes are free, so skip I/O */
2524 memset(bh
->b_data
, 0, bh
->b_size
);
2525 set_buffer_uptodate(bh
);
2533 * There are other valid inodes in the buffer, this inode
2534 * has in-inode xattrs, or we don't have this inode in memory.
2535 * Read the block from disk.
2538 bh
->b_end_io
= end_buffer_read_sync
;
2539 submit_bh(READ_META
, bh
);
2541 if (!buffer_uptodate(bh
)) {
2542 ext4_error(inode
->i_sb
, "ext4_get_inode_loc",
2543 "unable to read inode block - "
2544 "inode=%lu, block=%llu",
2545 inode
->i_ino
, block
);
2555 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
2557 /* We have all inode data except xattrs in memory here. */
2558 return __ext4_get_inode_loc(inode
, iloc
,
2559 !(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
));
2562 void ext4_set_inode_flags(struct inode
*inode
)
2564 unsigned int flags
= EXT4_I(inode
)->i_flags
;
2566 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
2567 if (flags
& EXT4_SYNC_FL
)
2568 inode
->i_flags
|= S_SYNC
;
2569 if (flags
& EXT4_APPEND_FL
)
2570 inode
->i_flags
|= S_APPEND
;
2571 if (flags
& EXT4_IMMUTABLE_FL
)
2572 inode
->i_flags
|= S_IMMUTABLE
;
2573 if (flags
& EXT4_NOATIME_FL
)
2574 inode
->i_flags
|= S_NOATIME
;
2575 if (flags
& EXT4_DIRSYNC_FL
)
2576 inode
->i_flags
|= S_DIRSYNC
;
2579 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2580 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
2582 unsigned int flags
= ei
->vfs_inode
.i_flags
;
2584 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
2585 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
2587 ei
->i_flags
|= EXT4_SYNC_FL
;
2588 if (flags
& S_APPEND
)
2589 ei
->i_flags
|= EXT4_APPEND_FL
;
2590 if (flags
& S_IMMUTABLE
)
2591 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
2592 if (flags
& S_NOATIME
)
2593 ei
->i_flags
|= EXT4_NOATIME_FL
;
2594 if (flags
& S_DIRSYNC
)
2595 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
2598 void ext4_read_inode(struct inode
* inode
)
2600 struct ext4_iloc iloc
;
2601 struct ext4_inode
*raw_inode
;
2602 struct ext4_inode_info
*ei
= EXT4_I(inode
);
2603 struct buffer_head
*bh
;
2606 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2607 ei
->i_acl
= EXT4_ACL_NOT_CACHED
;
2608 ei
->i_default_acl
= EXT4_ACL_NOT_CACHED
;
2610 ei
->i_block_alloc_info
= NULL
;
2612 if (__ext4_get_inode_loc(inode
, &iloc
, 0))
2615 raw_inode
= ext4_raw_inode(&iloc
);
2616 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
2617 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
2618 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
2619 if(!(test_opt (inode
->i_sb
, NO_UID32
))) {
2620 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
2621 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
2623 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
2624 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
2627 ei
->i_dir_start_lookup
= 0;
2628 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
2629 /* We now have enough fields to check if the inode was active or not.
2630 * This is needed because nfsd might try to access dead inodes
2631 * the test is that same one that e2fsck uses
2632 * NeilBrown 1999oct15
2634 if (inode
->i_nlink
== 0) {
2635 if (inode
->i_mode
== 0 ||
2636 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
2637 /* this inode is deleted */
2641 /* The only unlinked inodes we let through here have
2642 * valid i_mode and are being read by the orphan
2643 * recovery code: that's fine, we're about to complete
2644 * the process of deleting those. */
2646 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
2647 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
2648 #ifdef EXT4_FRAGMENTS
2649 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
2650 ei
->i_frag_no
= raw_inode
->i_frag
;
2651 ei
->i_frag_size
= raw_inode
->i_fsize
;
2653 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
2654 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
2655 cpu_to_le32(EXT4_OS_HURD
))
2657 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
2658 if (!S_ISREG(inode
->i_mode
)) {
2659 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
2662 ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
2664 ei
->i_disksize
= inode
->i_size
;
2665 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
2666 ei
->i_block_group
= iloc
.block_group
;
2668 * NOTE! The in-memory inode i_data array is in little-endian order
2669 * even on big-endian machines: we do NOT byteswap the block numbers!
2671 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
2672 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
2673 INIT_LIST_HEAD(&ei
->i_orphan
);
2675 if (inode
->i_ino
>= EXT4_FIRST_INO(inode
->i_sb
) + 1 &&
2676 EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
2678 * When mke2fs creates big inodes it does not zero out
2679 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2680 * so ignore those first few inodes.
2682 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
2683 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
2684 EXT4_INODE_SIZE(inode
->i_sb
)) {
2688 if (ei
->i_extra_isize
== 0) {
2689 /* The extra space is currently unused. Use it. */
2690 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
2691 EXT4_GOOD_OLD_INODE_SIZE
;
2693 __le32
*magic
= (void *)raw_inode
+
2694 EXT4_GOOD_OLD_INODE_SIZE
+
2696 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
2697 ei
->i_state
|= EXT4_STATE_XATTR
;
2700 ei
->i_extra_isize
= 0;
2702 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
2703 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
2704 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
2705 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
2707 if (S_ISREG(inode
->i_mode
)) {
2708 inode
->i_op
= &ext4_file_inode_operations
;
2709 inode
->i_fop
= &ext4_file_operations
;
2710 ext4_set_aops(inode
);
2711 } else if (S_ISDIR(inode
->i_mode
)) {
2712 inode
->i_op
= &ext4_dir_inode_operations
;
2713 inode
->i_fop
= &ext4_dir_operations
;
2714 } else if (S_ISLNK(inode
->i_mode
)) {
2715 if (ext4_inode_is_fast_symlink(inode
))
2716 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
2718 inode
->i_op
= &ext4_symlink_inode_operations
;
2719 ext4_set_aops(inode
);
2722 inode
->i_op
= &ext4_special_inode_operations
;
2723 if (raw_inode
->i_block
[0])
2724 init_special_inode(inode
, inode
->i_mode
,
2725 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
2727 init_special_inode(inode
, inode
->i_mode
,
2728 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
2731 ext4_set_inode_flags(inode
);
2735 make_bad_inode(inode
);
2740 * Post the struct inode info into an on-disk inode location in the
2741 * buffer-cache. This gobbles the caller's reference to the
2742 * buffer_head in the inode location struct.
2744 * The caller must have write access to iloc->bh.
2746 static int ext4_do_update_inode(handle_t
*handle
,
2747 struct inode
*inode
,
2748 struct ext4_iloc
*iloc
)
2750 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
2751 struct ext4_inode_info
*ei
= EXT4_I(inode
);
2752 struct buffer_head
*bh
= iloc
->bh
;
2753 int err
= 0, rc
, block
;
2755 /* For fields not not tracking in the in-memory inode,
2756 * initialise them to zero for new inodes. */
2757 if (ei
->i_state
& EXT4_STATE_NEW
)
2758 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
2760 ext4_get_inode_flags(ei
);
2761 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
2762 if(!(test_opt(inode
->i_sb
, NO_UID32
))) {
2763 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
2764 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
2766 * Fix up interoperability with old kernels. Otherwise, old inodes get
2767 * re-used with the upper 16 bits of the uid/gid intact
2770 raw_inode
->i_uid_high
=
2771 cpu_to_le16(high_16_bits(inode
->i_uid
));
2772 raw_inode
->i_gid_high
=
2773 cpu_to_le16(high_16_bits(inode
->i_gid
));
2775 raw_inode
->i_uid_high
= 0;
2776 raw_inode
->i_gid_high
= 0;
2779 raw_inode
->i_uid_low
=
2780 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
2781 raw_inode
->i_gid_low
=
2782 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
2783 raw_inode
->i_uid_high
= 0;
2784 raw_inode
->i_gid_high
= 0;
2786 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
2787 raw_inode
->i_size
= cpu_to_le32(ei
->i_disksize
);
2789 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
2790 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
2791 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
2792 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
2794 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
2795 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
2796 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
2797 #ifdef EXT4_FRAGMENTS
2798 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
2799 raw_inode
->i_frag
= ei
->i_frag_no
;
2800 raw_inode
->i_fsize
= ei
->i_frag_size
;
2802 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
2803 cpu_to_le32(EXT4_OS_HURD
))
2804 raw_inode
->i_file_acl_high
=
2805 cpu_to_le16(ei
->i_file_acl
>> 32);
2806 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
2807 if (!S_ISREG(inode
->i_mode
)) {
2808 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
2810 raw_inode
->i_size_high
=
2811 cpu_to_le32(ei
->i_disksize
>> 32);
2812 if (ei
->i_disksize
> 0x7fffffffULL
) {
2813 struct super_block
*sb
= inode
->i_sb
;
2814 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
2815 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
2816 EXT4_SB(sb
)->s_es
->s_rev_level
==
2817 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
2818 /* If this is the first large file
2819 * created, add a flag to the superblock.
2821 err
= ext4_journal_get_write_access(handle
,
2822 EXT4_SB(sb
)->s_sbh
);
2825 ext4_update_dynamic_rev(sb
);
2826 EXT4_SET_RO_COMPAT_FEATURE(sb
,
2827 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
2830 err
= ext4_journal_dirty_metadata(handle
,
2831 EXT4_SB(sb
)->s_sbh
);
2835 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
2836 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
2837 if (old_valid_dev(inode
->i_rdev
)) {
2838 raw_inode
->i_block
[0] =
2839 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
2840 raw_inode
->i_block
[1] = 0;
2842 raw_inode
->i_block
[0] = 0;
2843 raw_inode
->i_block
[1] =
2844 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
2845 raw_inode
->i_block
[2] = 0;
2847 } else for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
2848 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
2850 if (ei
->i_extra_isize
)
2851 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
2853 BUFFER_TRACE(bh
, "call ext4_journal_dirty_metadata");
2854 rc
= ext4_journal_dirty_metadata(handle
, bh
);
2857 ei
->i_state
&= ~EXT4_STATE_NEW
;
2861 ext4_std_error(inode
->i_sb
, err
);
2866 * ext4_write_inode()
2868 * We are called from a few places:
2870 * - Within generic_file_write() for O_SYNC files.
2871 * Here, there will be no transaction running. We wait for any running
2872 * trasnaction to commit.
2874 * - Within sys_sync(), kupdate and such.
2875 * We wait on commit, if tol to.
2877 * - Within prune_icache() (PF_MEMALLOC == true)
2878 * Here we simply return. We can't afford to block kswapd on the
2881 * In all cases it is actually safe for us to return without doing anything,
2882 * because the inode has been copied into a raw inode buffer in
2883 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2886 * Note that we are absolutely dependent upon all inode dirtiers doing the
2887 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2888 * which we are interested.
2890 * It would be a bug for them to not do this. The code:
2892 * mark_inode_dirty(inode)
2894 * inode->i_size = expr;
2896 * is in error because a kswapd-driven write_inode() could occur while
2897 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2898 * will no longer be on the superblock's dirty inode list.
2900 int ext4_write_inode(struct inode
*inode
, int wait
)
2902 if (current
->flags
& PF_MEMALLOC
)
2905 if (ext4_journal_current_handle()) {
2906 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
2914 return ext4_force_commit(inode
->i_sb
);
2920 * Called from notify_change.
2922 * We want to trap VFS attempts to truncate the file as soon as
2923 * possible. In particular, we want to make sure that when the VFS
2924 * shrinks i_size, we put the inode on the orphan list and modify
2925 * i_disksize immediately, so that during the subsequent flushing of
2926 * dirty pages and freeing of disk blocks, we can guarantee that any
2927 * commit will leave the blocks being flushed in an unused state on
2928 * disk. (On recovery, the inode will get truncated and the blocks will
2929 * be freed, so we have a strong guarantee that no future commit will
2930 * leave these blocks visible to the user.)
2932 * Called with inode->sem down.
2934 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2936 struct inode
*inode
= dentry
->d_inode
;
2938 const unsigned int ia_valid
= attr
->ia_valid
;
2940 error
= inode_change_ok(inode
, attr
);
2944 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
2945 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
2948 /* (user+group)*(old+new) structure, inode write (sb,
2949 * inode block, ? - but truncate inode update has it) */
2950 handle
= ext4_journal_start(inode
, 2*(EXT4_QUOTA_INIT_BLOCKS(inode
->i_sb
)+
2951 EXT4_QUOTA_DEL_BLOCKS(inode
->i_sb
))+3);
2952 if (IS_ERR(handle
)) {
2953 error
= PTR_ERR(handle
);
2956 error
= DQUOT_TRANSFER(inode
, attr
) ? -EDQUOT
: 0;
2958 ext4_journal_stop(handle
);
2961 /* Update corresponding info in inode so that everything is in
2962 * one transaction */
2963 if (attr
->ia_valid
& ATTR_UID
)
2964 inode
->i_uid
= attr
->ia_uid
;
2965 if (attr
->ia_valid
& ATTR_GID
)
2966 inode
->i_gid
= attr
->ia_gid
;
2967 error
= ext4_mark_inode_dirty(handle
, inode
);
2968 ext4_journal_stop(handle
);
2971 if (S_ISREG(inode
->i_mode
) &&
2972 attr
->ia_valid
& ATTR_SIZE
&& attr
->ia_size
< inode
->i_size
) {
2975 handle
= ext4_journal_start(inode
, 3);
2976 if (IS_ERR(handle
)) {
2977 error
= PTR_ERR(handle
);
2981 error
= ext4_orphan_add(handle
, inode
);
2982 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
2983 rc
= ext4_mark_inode_dirty(handle
, inode
);
2986 ext4_journal_stop(handle
);
2989 rc
= inode_setattr(inode
, attr
);
2991 /* If inode_setattr's call to ext4_truncate failed to get a
2992 * transaction handle at all, we need to clean up the in-core
2993 * orphan list manually. */
2995 ext4_orphan_del(NULL
, inode
);
2997 if (!rc
&& (ia_valid
& ATTR_MODE
))
2998 rc
= ext4_acl_chmod(inode
);
3001 ext4_std_error(inode
->i_sb
, error
);
3009 * How many blocks doth make a writepage()?
3011 * With N blocks per page, it may be:
3016 * N+5 bitmap blocks (from the above)
3017 * N+5 group descriptor summary blocks
3020 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3022 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3024 * With ordered or writeback data it's the same, less the N data blocks.
3026 * If the inode's direct blocks can hold an integral number of pages then a
3027 * page cannot straddle two indirect blocks, and we can only touch one indirect
3028 * and dindirect block, and the "5" above becomes "3".
3030 * This still overestimates under most circumstances. If we were to pass the
3031 * start and end offsets in here as well we could do block_to_path() on each
3032 * block and work out the exact number of indirects which are touched. Pah.
3035 int ext4_writepage_trans_blocks(struct inode
*inode
)
3037 int bpp
= ext4_journal_blocks_per_page(inode
);
3038 int indirects
= (EXT4_NDIR_BLOCKS
% bpp
) ? 5 : 3;
3041 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
3042 return ext4_ext_writepage_trans_blocks(inode
, bpp
);
3044 if (ext4_should_journal_data(inode
))
3045 ret
= 3 * (bpp
+ indirects
) + 2;
3047 ret
= 2 * (bpp
+ indirects
) + 2;
3050 /* We know that structure was already allocated during DQUOT_INIT so
3051 * we will be updating only the data blocks + inodes */
3052 ret
+= 2*EXT4_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
3059 * The caller must have previously called ext4_reserve_inode_write().
3060 * Give this, we know that the caller already has write access to iloc->bh.
3062 int ext4_mark_iloc_dirty(handle_t
*handle
,
3063 struct inode
*inode
, struct ext4_iloc
*iloc
)
3067 /* the do_update_inode consumes one bh->b_count */
3070 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3071 err
= ext4_do_update_inode(handle
, inode
, iloc
);
3077 * On success, We end up with an outstanding reference count against
3078 * iloc->bh. This _must_ be cleaned up later.
3082 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
3083 struct ext4_iloc
*iloc
)
3087 err
= ext4_get_inode_loc(inode
, iloc
);
3089 BUFFER_TRACE(iloc
->bh
, "get_write_access");
3090 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
3097 ext4_std_error(inode
->i_sb
, err
);
3102 * Expand an inode by new_extra_isize bytes.
3103 * Returns 0 on success or negative error number on failure.
3105 int ext4_expand_extra_isize(struct inode
*inode
, unsigned int new_extra_isize
,
3106 struct ext4_iloc iloc
, handle_t
*handle
)
3108 struct ext4_inode
*raw_inode
;
3109 struct ext4_xattr_ibody_header
*header
;
3110 struct ext4_xattr_entry
*entry
;
3112 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
3115 raw_inode
= ext4_raw_inode(&iloc
);
3117 header
= IHDR(inode
, raw_inode
);
3118 entry
= IFIRST(header
);
3120 /* No extended attributes present */
3121 if (!(EXT4_I(inode
)->i_state
& EXT4_STATE_XATTR
) ||
3122 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
3123 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
3125 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
3129 /* try to expand with EAs present */
3130 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
3135 * What we do here is to mark the in-core inode as clean with respect to inode
3136 * dirtiness (it may still be data-dirty).
3137 * This means that the in-core inode may be reaped by prune_icache
3138 * without having to perform any I/O. This is a very good thing,
3139 * because *any* task may call prune_icache - even ones which
3140 * have a transaction open against a different journal.
3142 * Is this cheating? Not really. Sure, we haven't written the
3143 * inode out, but prune_icache isn't a user-visible syncing function.
3144 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3145 * we start and wait on commits.
3147 * Is this efficient/effective? Well, we're being nice to the system
3148 * by cleaning up our inodes proactively so they can be reaped
3149 * without I/O. But we are potentially leaving up to five seconds'
3150 * worth of inodes floating about which prune_icache wants us to
3151 * write out. One way to fix that would be to get prune_icache()
3152 * to do a write_super() to free up some memory. It has the desired
3155 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
3157 struct ext4_iloc iloc
;
3158 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3159 static unsigned int mnt_count
;
3163 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
3164 if (EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
3165 !(EXT4_I(inode
)->i_state
& EXT4_STATE_NO_EXPAND
)) {
3167 * We need extra buffer credits since we may write into EA block
3168 * with this same handle. If journal_extend fails, then it will
3169 * only result in a minor loss of functionality for that inode.
3170 * If this is felt to be critical, then e2fsck should be run to
3171 * force a large enough s_min_extra_isize.
3173 if ((jbd2_journal_extend(handle
,
3174 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
3175 ret
= ext4_expand_extra_isize(inode
,
3176 sbi
->s_want_extra_isize
,
3179 EXT4_I(inode
)->i_state
|= EXT4_STATE_NO_EXPAND
;
3180 if (mnt_count
!= sbi
->s_es
->s_mnt_count
) {
3181 ext4_warning(inode
->i_sb
, __FUNCTION__
,
3182 "Unable to expand inode %lu. Delete"
3183 " some EAs or run e2fsck.",
3185 mnt_count
= sbi
->s_es
->s_mnt_count
;
3191 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
3196 * ext4_dirty_inode() is called from __mark_inode_dirty()
3198 * We're really interested in the case where a file is being extended.
3199 * i_size has been changed by generic_commit_write() and we thus need
3200 * to include the updated inode in the current transaction.
3202 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3203 * are allocated to the file.
3205 * If the inode is marked synchronous, we don't honour that here - doing
3206 * so would cause a commit on atime updates, which we don't bother doing.
3207 * We handle synchronous inodes at the highest possible level.
3209 void ext4_dirty_inode(struct inode
*inode
)
3211 handle_t
*current_handle
= ext4_journal_current_handle();
3214 handle
= ext4_journal_start(inode
, 2);
3217 if (current_handle
&&
3218 current_handle
->h_transaction
!= handle
->h_transaction
) {
3219 /* This task has a transaction open against a different fs */
3220 printk(KERN_EMERG
"%s: transactions do not match!\n",
3223 jbd_debug(5, "marking dirty. outer handle=%p\n",
3225 ext4_mark_inode_dirty(handle
, inode
);
3227 ext4_journal_stop(handle
);
3234 * Bind an inode's backing buffer_head into this transaction, to prevent
3235 * it from being flushed to disk early. Unlike
3236 * ext4_reserve_inode_write, this leaves behind no bh reference and
3237 * returns no iloc structure, so the caller needs to repeat the iloc
3238 * lookup to mark the inode dirty later.
3240 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
3242 struct ext4_iloc iloc
;
3246 err
= ext4_get_inode_loc(inode
, &iloc
);
3248 BUFFER_TRACE(iloc
.bh
, "get_write_access");
3249 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
3251 err
= ext4_journal_dirty_metadata(handle
,
3256 ext4_std_error(inode
->i_sb
, err
);
3261 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
3268 * We have to be very careful here: changing a data block's
3269 * journaling status dynamically is dangerous. If we write a
3270 * data block to the journal, change the status and then delete
3271 * that block, we risk forgetting to revoke the old log record
3272 * from the journal and so a subsequent replay can corrupt data.
3273 * So, first we make sure that the journal is empty and that
3274 * nobody is changing anything.
3277 journal
= EXT4_JOURNAL(inode
);
3278 if (is_journal_aborted(journal
))
3281 jbd2_journal_lock_updates(journal
);
3282 jbd2_journal_flush(journal
);
3285 * OK, there are no updates running now, and all cached data is
3286 * synced to disk. We are now in a completely consistent state
3287 * which doesn't have anything in the journal, and we know that
3288 * no filesystem updates are running, so it is safe to modify
3289 * the inode's in-core data-journaling state flag now.
3293 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
3295 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
3296 ext4_set_aops(inode
);
3298 jbd2_journal_unlock_updates(journal
);
3300 /* Finally we can mark the inode as dirty. */
3302 handle
= ext4_journal_start(inode
, 1);
3304 return PTR_ERR(handle
);
3306 err
= ext4_mark_inode_dirty(handle
, inode
);
3308 ext4_journal_stop(handle
);
3309 ext4_std_error(inode
->i_sb
, err
);