2 * aops.c - NTFS kernel address space operations and page cache handling.
3 * Part of the Linux-NTFS project.
5 * Copyright (c) 2001-2006 Anton Altaparmakov
6 * Copyright (c) 2002 Richard Russon
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/errno.h>
27 #include <linux/pagemap.h>
28 #include <linux/swap.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/bit_spinlock.h>
43 * ntfs_end_buffer_async_read - async io completion for reading attributes
44 * @bh: buffer head on which io is completed
45 * @uptodate: whether @bh is now uptodate or not
47 * Asynchronous I/O completion handler for reading pages belonging to the
48 * attribute address space of an inode. The inodes can either be files or
49 * directories or they can be fake inodes describing some attribute.
51 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
52 * page has been completed and mark the page uptodate or set the error bit on
53 * the page. To determine the size of the records that need fixing up, we
54 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
55 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
58 static void ntfs_end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
61 struct buffer_head
*first
, *tmp
;
65 int page_uptodate
= 1;
68 vi
= page
->mapping
->host
;
71 if (likely(uptodate
)) {
73 s64 file_ofs
, init_size
;
75 set_buffer_uptodate(bh
);
77 file_ofs
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
79 read_lock_irqsave(&ni
->size_lock
, flags
);
80 init_size
= ni
->initialized_size
;
81 i_size
= i_size_read(vi
);
82 read_unlock_irqrestore(&ni
->size_lock
, flags
);
83 if (unlikely(init_size
> i_size
)) {
84 /* Race with shrinking truncate. */
87 /* Check for the current buffer head overflowing. */
88 if (unlikely(file_ofs
+ bh
->b_size
> init_size
)) {
93 if (file_ofs
< init_size
)
94 ofs
= init_size
- file_ofs
;
95 local_irq_save(flags
);
96 kaddr
= kmap_atomic(page
, KM_BIO_SRC_IRQ
);
97 memset(kaddr
+ bh_offset(bh
) + ofs
, 0,
99 kunmap_atomic(kaddr
, KM_BIO_SRC_IRQ
);
100 local_irq_restore(flags
);
101 flush_dcache_page(page
);
104 clear_buffer_uptodate(bh
);
106 ntfs_error(ni
->vol
->sb
, "Buffer I/O error, logical block "
107 "0x%llx.", (unsigned long long)bh
->b_blocknr
);
109 first
= page_buffers(page
);
110 local_irq_save(flags
);
111 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
112 clear_buffer_async_read(bh
);
116 if (!buffer_uptodate(tmp
))
118 if (buffer_async_read(tmp
)) {
119 if (likely(buffer_locked(tmp
)))
121 /* Async buffers must be locked. */
124 tmp
= tmp
->b_this_page
;
126 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
127 local_irq_restore(flags
);
129 * If none of the buffers had errors then we can set the page uptodate,
130 * but we first have to perform the post read mst fixups, if the
131 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
132 * Note we ignore fixup errors as those are detected when
133 * map_mft_record() is called which gives us per record granularity
134 * rather than per page granularity.
136 if (!NInoMstProtected(ni
)) {
137 if (likely(page_uptodate
&& !PageError(page
)))
138 SetPageUptodate(page
);
141 unsigned int i
, recs
;
144 rec_size
= ni
->itype
.index
.block_size
;
145 recs
= PAGE_CACHE_SIZE
/ rec_size
;
146 /* Should have been verified before we got here... */
148 local_irq_save(flags
);
149 kaddr
= kmap_atomic(page
, KM_BIO_SRC_IRQ
);
150 for (i
= 0; i
< recs
; i
++)
151 post_read_mst_fixup((NTFS_RECORD
*)(kaddr
+
152 i
* rec_size
), rec_size
);
153 kunmap_atomic(kaddr
, KM_BIO_SRC_IRQ
);
154 local_irq_restore(flags
);
155 flush_dcache_page(page
);
156 if (likely(page_uptodate
&& !PageError(page
)))
157 SetPageUptodate(page
);
162 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
163 local_irq_restore(flags
);
168 * ntfs_read_block - fill a @page of an address space with data
169 * @page: page cache page to fill with data
171 * Fill the page @page of the address space belonging to the @page->host inode.
172 * We read each buffer asynchronously and when all buffers are read in, our io
173 * completion handler ntfs_end_buffer_read_async(), if required, automatically
174 * applies the mst fixups to the page before finally marking it uptodate and
177 * We only enforce allocated_size limit because i_size is checked for in
178 * generic_file_read().
180 * Return 0 on success and -errno on error.
182 * Contains an adapted version of fs/buffer.c::block_read_full_page().
184 static int ntfs_read_block(struct page
*page
)
194 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
195 sector_t iblock
, lblock
, zblock
;
197 unsigned int blocksize
, vcn_ofs
;
199 unsigned char blocksize_bits
;
201 vi
= page
->mapping
->host
;
205 /* $MFT/$DATA must have its complete runlist in memory at all times. */
206 BUG_ON(!ni
->runlist
.rl
&& !ni
->mft_no
&& !NInoAttr(ni
));
208 blocksize
= vol
->sb
->s_blocksize
;
209 blocksize_bits
= vol
->sb
->s_blocksize_bits
;
211 if (!page_has_buffers(page
)) {
212 create_empty_buffers(page
, blocksize
, 0);
213 if (unlikely(!page_has_buffers(page
))) {
218 bh
= head
= page_buffers(page
);
222 * We may be racing with truncate. To avoid some of the problems we
223 * now take a snapshot of the various sizes and use those for the whole
224 * of the function. In case of an extending truncate it just means we
225 * may leave some buffers unmapped which are now allocated. This is
226 * not a problem since these buffers will just get mapped when a write
227 * occurs. In case of a shrinking truncate, we will detect this later
228 * on due to the runlist being incomplete and if the page is being
229 * fully truncated, truncate will throw it away as soon as we unlock
230 * it so no need to worry what we do with it.
232 iblock
= (s64
)page
->index
<< (PAGE_CACHE_SHIFT
- blocksize_bits
);
233 read_lock_irqsave(&ni
->size_lock
, flags
);
234 lblock
= (ni
->allocated_size
+ blocksize
- 1) >> blocksize_bits
;
235 init_size
= ni
->initialized_size
;
236 i_size
= i_size_read(vi
);
237 read_unlock_irqrestore(&ni
->size_lock
, flags
);
238 if (unlikely(init_size
> i_size
)) {
239 /* Race with shrinking truncate. */
242 zblock
= (init_size
+ blocksize
- 1) >> blocksize_bits
;
244 /* Loop through all the buffers in the page. */
251 if (unlikely(buffer_uptodate(bh
)))
253 if (unlikely(buffer_mapped(bh
))) {
258 bh
->b_bdev
= vol
->sb
->s_bdev
;
259 /* Is the block within the allowed limits? */
260 if (iblock
< lblock
) {
261 bool is_retry
= false;
263 /* Convert iblock into corresponding vcn and offset. */
264 vcn
= (VCN
)iblock
<< blocksize_bits
>>
265 vol
->cluster_size_bits
;
266 vcn_ofs
= ((VCN
)iblock
<< blocksize_bits
) &
267 vol
->cluster_size_mask
;
270 down_read(&ni
->runlist
.lock
);
273 if (likely(rl
!= NULL
)) {
274 /* Seek to element containing target vcn. */
275 while (rl
->length
&& rl
[1].vcn
<= vcn
)
277 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
279 lcn
= LCN_RL_NOT_MAPPED
;
280 /* Successful remap. */
282 /* Setup buffer head to correct block. */
283 bh
->b_blocknr
= ((lcn
<< vol
->cluster_size_bits
)
284 + vcn_ofs
) >> blocksize_bits
;
285 set_buffer_mapped(bh
);
286 /* Only read initialized data blocks. */
287 if (iblock
< zblock
) {
291 /* Fully non-initialized data block, zero it. */
294 /* It is a hole, need to zero it. */
297 /* If first try and runlist unmapped, map and retry. */
298 if (!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
) {
301 * Attempt to map runlist, dropping lock for
304 up_read(&ni
->runlist
.lock
);
305 err
= ntfs_map_runlist(ni
, vcn
);
307 goto lock_retry_remap
;
310 up_read(&ni
->runlist
.lock
);
312 * If buffer is outside the runlist, treat it as a
313 * hole. This can happen due to concurrent truncate
316 if (err
== -ENOENT
|| lcn
== LCN_ENOENT
) {
320 /* Hard error, zero out region. */
325 ntfs_error(vol
->sb
, "Failed to read from inode 0x%lx, "
326 "attribute type 0x%x, vcn 0x%llx, "
327 "offset 0x%x because its location on "
328 "disk could not be determined%s "
329 "(error code %i).", ni
->mft_no
,
330 ni
->type
, (unsigned long long)vcn
,
331 vcn_ofs
, is_retry
? " even after "
332 "retrying" : "", err
);
335 * Either iblock was outside lblock limits or
336 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
337 * of the page and set the buffer uptodate.
340 bh
->b_blocknr
= -1UL;
341 clear_buffer_mapped(bh
);
343 kaddr
= kmap_atomic(page
, KM_USER0
);
344 memset(kaddr
+ i
* blocksize
, 0, blocksize
);
345 kunmap_atomic(kaddr
, KM_USER0
);
346 flush_dcache_page(page
);
348 set_buffer_uptodate(bh
);
349 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
351 /* Release the lock if we took it. */
353 up_read(&ni
->runlist
.lock
);
355 /* Check we have at least one buffer ready for i/o. */
357 struct buffer_head
*tbh
;
359 /* Lock the buffers. */
360 for (i
= 0; i
< nr
; i
++) {
363 tbh
->b_end_io
= ntfs_end_buffer_async_read
;
364 set_buffer_async_read(tbh
);
366 /* Finally, start i/o on the buffers. */
367 for (i
= 0; i
< nr
; i
++) {
369 if (likely(!buffer_uptodate(tbh
)))
370 submit_bh(READ
, tbh
);
372 ntfs_end_buffer_async_read(tbh
, 1);
376 /* No i/o was scheduled on any of the buffers. */
377 if (likely(!PageError(page
)))
378 SetPageUptodate(page
);
379 else /* Signal synchronous i/o error. */
386 * ntfs_readpage - fill a @page of a @file with data from the device
387 * @file: open file to which the page @page belongs or NULL
388 * @page: page cache page to fill with data
390 * For non-resident attributes, ntfs_readpage() fills the @page of the open
391 * file @file by calling the ntfs version of the generic block_read_full_page()
392 * function, ntfs_read_block(), which in turn creates and reads in the buffers
393 * associated with the page asynchronously.
395 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
396 * data from the mft record (which at this stage is most likely in memory) and
397 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
398 * even if the mft record is not cached at this point in time, we need to wait
399 * for it to be read in before we can do the copy.
401 * Return 0 on success and -errno on error.
403 static int ntfs_readpage(struct file
*file
, struct page
*page
)
407 ntfs_inode
*ni
, *base_ni
;
409 ntfs_attr_search_ctx
*ctx
;
416 BUG_ON(!PageLocked(page
));
418 * This can potentially happen because we clear PageUptodate() during
419 * ntfs_writepage() of MstProtected() attributes.
421 if (PageUptodate(page
)) {
425 vi
= page
->mapping
->host
;
428 * Only $DATA attributes can be encrypted and only unnamed $DATA
429 * attributes can be compressed. Index root can have the flags set but
430 * this means to create compressed/encrypted files, not that the
431 * attribute is compressed/encrypted. Note we need to check for
432 * AT_INDEX_ALLOCATION since this is the type of both directory and
435 if (ni
->type
!= AT_INDEX_ALLOCATION
) {
436 /* If attribute is encrypted, deny access, just like NT4. */
437 if (NInoEncrypted(ni
)) {
438 BUG_ON(ni
->type
!= AT_DATA
);
442 /* Compressed data streams are handled in compress.c. */
443 if (NInoNonResident(ni
) && NInoCompressed(ni
)) {
444 BUG_ON(ni
->type
!= AT_DATA
);
445 BUG_ON(ni
->name_len
);
446 return ntfs_read_compressed_block(page
);
449 /* NInoNonResident() == NInoIndexAllocPresent() */
450 if (NInoNonResident(ni
)) {
451 /* Normal, non-resident data stream. */
452 return ntfs_read_block(page
);
455 * Attribute is resident, implying it is not compressed or encrypted.
456 * This also means the attribute is smaller than an mft record and
457 * hence smaller than a page, so can simply zero out any pages with
458 * index above 0. Note the attribute can actually be marked compressed
459 * but if it is resident the actual data is not compressed so we are
460 * ok to ignore the compressed flag here.
462 if (unlikely(page
->index
> 0)) {
463 kaddr
= kmap_atomic(page
, KM_USER0
);
464 memset(kaddr
, 0, PAGE_CACHE_SIZE
);
465 flush_dcache_page(page
);
466 kunmap_atomic(kaddr
, KM_USER0
);
472 base_ni
= ni
->ext
.base_ntfs_ino
;
473 /* Map, pin, and lock the mft record. */
474 mrec
= map_mft_record(base_ni
);
480 * If a parallel write made the attribute non-resident, drop the mft
481 * record and retry the readpage.
483 if (unlikely(NInoNonResident(ni
))) {
484 unmap_mft_record(base_ni
);
487 ctx
= ntfs_attr_get_search_ctx(base_ni
, mrec
);
488 if (unlikely(!ctx
)) {
492 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
493 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
495 goto put_unm_err_out
;
496 attr_len
= le32_to_cpu(ctx
->attr
->data
.resident
.value_length
);
497 read_lock_irqsave(&ni
->size_lock
, flags
);
498 if (unlikely(attr_len
> ni
->initialized_size
))
499 attr_len
= ni
->initialized_size
;
500 i_size
= i_size_read(vi
);
501 read_unlock_irqrestore(&ni
->size_lock
, flags
);
502 if (unlikely(attr_len
> i_size
)) {
503 /* Race with shrinking truncate. */
506 kaddr
= kmap_atomic(page
, KM_USER0
);
507 /* Copy the data to the page. */
508 memcpy(kaddr
, (u8
*)ctx
->attr
+
509 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
),
511 /* Zero the remainder of the page. */
512 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
513 flush_dcache_page(page
);
514 kunmap_atomic(kaddr
, KM_USER0
);
516 ntfs_attr_put_search_ctx(ctx
);
518 unmap_mft_record(base_ni
);
520 SetPageUptodate(page
);
529 * ntfs_write_block - write a @page to the backing store
530 * @page: page cache page to write out
531 * @wbc: writeback control structure
533 * This function is for writing pages belonging to non-resident, non-mst
534 * protected attributes to their backing store.
536 * For a page with buffers, map and write the dirty buffers asynchronously
537 * under page writeback. For a page without buffers, create buffers for the
538 * page, then proceed as above.
540 * If a page doesn't have buffers the page dirty state is definitive. If a page
541 * does have buffers, the page dirty state is just a hint, and the buffer dirty
542 * state is definitive. (A hint which has rules: dirty buffers against a clean
543 * page is illegal. Other combinations are legal and need to be handled. In
544 * particular a dirty page containing clean buffers for example.)
546 * Return 0 on success and -errno on error.
548 * Based on ntfs_read_block() and __block_write_full_page().
550 static int ntfs_write_block(struct page
*page
, struct writeback_control
*wbc
)
554 s64 initialized_size
;
556 sector_t block
, dblock
, iblock
;
561 struct buffer_head
*bh
, *head
;
563 unsigned int blocksize
, vcn_ofs
;
565 bool need_end_writeback
;
566 unsigned char blocksize_bits
;
568 vi
= page
->mapping
->host
;
572 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
573 "0x%lx.", ni
->mft_no
, ni
->type
, page
->index
);
575 BUG_ON(!NInoNonResident(ni
));
576 BUG_ON(NInoMstProtected(ni
));
577 blocksize
= vol
->sb
->s_blocksize
;
578 blocksize_bits
= vol
->sb
->s_blocksize_bits
;
579 if (!page_has_buffers(page
)) {
580 BUG_ON(!PageUptodate(page
));
581 create_empty_buffers(page
, blocksize
,
582 (1 << BH_Uptodate
) | (1 << BH_Dirty
));
583 if (unlikely(!page_has_buffers(page
))) {
584 ntfs_warning(vol
->sb
, "Error allocating page "
585 "buffers. Redirtying page so we try "
588 * Put the page back on mapping->dirty_pages, but leave
589 * its buffers' dirty state as-is.
591 redirty_page_for_writepage(wbc
, page
);
596 bh
= head
= page_buffers(page
);
599 /* NOTE: Different naming scheme to ntfs_read_block()! */
601 /* The first block in the page. */
602 block
= (s64
)page
->index
<< (PAGE_CACHE_SHIFT
- blocksize_bits
);
604 read_lock_irqsave(&ni
->size_lock
, flags
);
605 i_size
= i_size_read(vi
);
606 initialized_size
= ni
->initialized_size
;
607 read_unlock_irqrestore(&ni
->size_lock
, flags
);
609 /* The first out of bounds block for the data size. */
610 dblock
= (i_size
+ blocksize
- 1) >> blocksize_bits
;
612 /* The last (fully or partially) initialized block. */
613 iblock
= initialized_size
>> blocksize_bits
;
616 * Be very careful. We have no exclusion from __set_page_dirty_buffers
617 * here, and the (potentially unmapped) buffers may become dirty at
618 * any time. If a buffer becomes dirty here after we've inspected it
619 * then we just miss that fact, and the page stays dirty.
621 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
622 * handle that here by just cleaning them.
626 * Loop through all the buffers in the page, mapping all the dirty
627 * buffers to disk addresses and handling any aliases from the
628 * underlying block device's mapping.
633 bool is_retry
= false;
635 if (unlikely(block
>= dblock
)) {
637 * Mapped buffers outside i_size will occur, because
638 * this page can be outside i_size when there is a
639 * truncate in progress. The contents of such buffers
640 * were zeroed by ntfs_writepage().
642 * FIXME: What about the small race window where
643 * ntfs_writepage() has not done any clearing because
644 * the page was within i_size but before we get here,
645 * vmtruncate() modifies i_size?
647 clear_buffer_dirty(bh
);
648 set_buffer_uptodate(bh
);
652 /* Clean buffers are not written out, so no need to map them. */
653 if (!buffer_dirty(bh
))
656 /* Make sure we have enough initialized size. */
657 if (unlikely((block
>= iblock
) &&
658 (initialized_size
< i_size
))) {
660 * If this page is fully outside initialized size, zero
661 * out all pages between the current initialized size
662 * and the current page. Just use ntfs_readpage() to do
663 * the zeroing transparently.
665 if (block
> iblock
) {
668 // - read_cache_page()
669 // Again for each page do:
670 // - wait_on_page_locked()
671 // - Check (PageUptodate(page) &&
673 // Update initialized size in the attribute and
675 // Again, for each page do:
676 // __set_page_dirty_buffers();
677 // page_cache_release()
678 // We don't need to wait on the writes.
682 * The current page straddles initialized size. Zero
683 * all non-uptodate buffers and set them uptodate (and
684 * dirty?). Note, there aren't any non-uptodate buffers
685 * if the page is uptodate.
686 * FIXME: For an uptodate page, the buffers may need to
687 * be written out because they were not initialized on
690 if (!PageUptodate(page
)) {
692 // Zero any non-uptodate buffers up to i_size.
693 // Set them uptodate and dirty.
696 // Update initialized size in the attribute and in the
697 // inode (up to i_size).
699 // FIXME: This is inefficient. Try to batch the two
700 // size changes to happen in one go.
701 ntfs_error(vol
->sb
, "Writing beyond initialized size "
702 "is not supported yet. Sorry.");
705 // Do NOT set_buffer_new() BUT DO clear buffer range
706 // outside write request range.
707 // set_buffer_uptodate() on complete buffers as well as
708 // set_buffer_dirty().
711 /* No need to map buffers that are already mapped. */
712 if (buffer_mapped(bh
))
715 /* Unmapped, dirty buffer. Need to map it. */
716 bh
->b_bdev
= vol
->sb
->s_bdev
;
718 /* Convert block into corresponding vcn and offset. */
719 vcn
= (VCN
)block
<< blocksize_bits
;
720 vcn_ofs
= vcn
& vol
->cluster_size_mask
;
721 vcn
>>= vol
->cluster_size_bits
;
724 down_read(&ni
->runlist
.lock
);
727 if (likely(rl
!= NULL
)) {
728 /* Seek to element containing target vcn. */
729 while (rl
->length
&& rl
[1].vcn
<= vcn
)
731 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
733 lcn
= LCN_RL_NOT_MAPPED
;
734 /* Successful remap. */
736 /* Setup buffer head to point to correct block. */
737 bh
->b_blocknr
= ((lcn
<< vol
->cluster_size_bits
) +
738 vcn_ofs
) >> blocksize_bits
;
739 set_buffer_mapped(bh
);
742 /* It is a hole, need to instantiate it. */
743 if (lcn
== LCN_HOLE
) {
745 unsigned long *bpos
, *bend
;
747 /* Check if the buffer is zero. */
748 kaddr
= kmap_atomic(page
, KM_USER0
);
749 bpos
= (unsigned long *)(kaddr
+ bh_offset(bh
));
750 bend
= (unsigned long *)((u8
*)bpos
+ blocksize
);
754 } while (likely(++bpos
< bend
));
755 kunmap_atomic(kaddr
, KM_USER0
);
758 * Buffer is zero and sparse, no need to write
762 clear_buffer_dirty(bh
);
765 // TODO: Instantiate the hole.
766 // clear_buffer_new(bh);
767 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
768 ntfs_error(vol
->sb
, "Writing into sparse regions is "
769 "not supported yet. Sorry.");
773 /* If first try and runlist unmapped, map and retry. */
774 if (!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
) {
777 * Attempt to map runlist, dropping lock for
780 up_read(&ni
->runlist
.lock
);
781 err
= ntfs_map_runlist(ni
, vcn
);
783 goto lock_retry_remap
;
786 up_read(&ni
->runlist
.lock
);
788 * If buffer is outside the runlist, truncate has cut it out
789 * of the runlist. Just clean and clear the buffer and set it
790 * uptodate so it can get discarded by the VM.
792 if (err
== -ENOENT
|| lcn
== LCN_ENOENT
) {
796 clear_buffer_dirty(bh
);
797 kaddr
= kmap_atomic(page
, KM_USER0
);
798 memset(kaddr
+ bh_offset(bh
), 0, blocksize
);
799 kunmap_atomic(kaddr
, KM_USER0
);
800 flush_dcache_page(page
);
801 set_buffer_uptodate(bh
);
805 /* Failed to map the buffer, even after retrying. */
809 ntfs_error(vol
->sb
, "Failed to write to inode 0x%lx, "
810 "attribute type 0x%x, vcn 0x%llx, offset 0x%x "
811 "because its location on disk could not be "
812 "determined%s (error code %i).", ni
->mft_no
,
813 ni
->type
, (unsigned long long)vcn
,
814 vcn_ofs
, is_retry
? " even after "
815 "retrying" : "", err
);
817 } while (block
++, (bh
= bh
->b_this_page
) != head
);
819 /* Release the lock if we took it. */
821 up_read(&ni
->runlist
.lock
);
823 /* For the error case, need to reset bh to the beginning. */
826 /* Just an optimization, so ->readpage() is not called later. */
827 if (unlikely(!PageUptodate(page
))) {
830 if (!buffer_uptodate(bh
)) {
835 } while ((bh
= bh
->b_this_page
) != head
);
837 SetPageUptodate(page
);
840 /* Setup all mapped, dirty buffers for async write i/o. */
842 if (buffer_mapped(bh
) && buffer_dirty(bh
)) {
844 if (test_clear_buffer_dirty(bh
)) {
845 BUG_ON(!buffer_uptodate(bh
));
846 mark_buffer_async_write(bh
);
849 } else if (unlikely(err
)) {
851 * For the error case. The buffer may have been set
852 * dirty during attachment to a dirty page.
855 clear_buffer_dirty(bh
);
857 } while ((bh
= bh
->b_this_page
) != head
);
860 // TODO: Remove the -EOPNOTSUPP check later on...
861 if (unlikely(err
== -EOPNOTSUPP
))
863 else if (err
== -ENOMEM
) {
864 ntfs_warning(vol
->sb
, "Error allocating memory. "
865 "Redirtying page so we try again "
868 * Put the page back on mapping->dirty_pages, but
869 * leave its buffer's dirty state as-is.
871 redirty_page_for_writepage(wbc
, page
);
877 BUG_ON(PageWriteback(page
));
878 set_page_writeback(page
); /* Keeps try_to_free_buffers() away. */
880 /* Submit the prepared buffers for i/o. */
881 need_end_writeback
= true;
883 struct buffer_head
*next
= bh
->b_this_page
;
884 if (buffer_async_write(bh
)) {
885 submit_bh(WRITE
, bh
);
886 need_end_writeback
= false;
889 } while (bh
!= head
);
892 /* If no i/o was started, need to end_page_writeback(). */
893 if (unlikely(need_end_writeback
))
894 end_page_writeback(page
);
901 * ntfs_write_mst_block - write a @page to the backing store
902 * @page: page cache page to write out
903 * @wbc: writeback control structure
905 * This function is for writing pages belonging to non-resident, mst protected
906 * attributes to their backing store. The only supported attributes are index
907 * allocation and $MFT/$DATA. Both directory inodes and index inodes are
908 * supported for the index allocation case.
910 * The page must remain locked for the duration of the write because we apply
911 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
912 * page before undoing the fixups, any other user of the page will see the
913 * page contents as corrupt.
915 * We clear the page uptodate flag for the duration of the function to ensure
916 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
917 * are about to apply the mst fixups to.
919 * Return 0 on success and -errno on error.
921 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
922 * write_mft_record_nolock().
924 static int ntfs_write_mst_block(struct page
*page
,
925 struct writeback_control
*wbc
)
927 sector_t block
, dblock
, rec_block
;
928 struct inode
*vi
= page
->mapping
->host
;
929 ntfs_inode
*ni
= NTFS_I(vi
);
930 ntfs_volume
*vol
= ni
->vol
;
932 unsigned int rec_size
= ni
->itype
.index
.block_size
;
933 ntfs_inode
*locked_nis
[PAGE_CACHE_SIZE
/ rec_size
];
934 struct buffer_head
*bh
, *head
, *tbh
, *rec_start_bh
;
935 struct buffer_head
*bhs
[MAX_BUF_PER_PAGE
];
937 int i
, nr_locked_nis
, nr_recs
, nr_bhs
, max_bhs
, bhs_per_rec
, err
, err2
;
938 unsigned bh_size
, rec_size_bits
;
939 bool sync
, is_mft
, page_is_dirty
, rec_is_dirty
;
940 unsigned char bh_size_bits
;
942 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
943 "0x%lx.", vi
->i_ino
, ni
->type
, page
->index
);
944 BUG_ON(!NInoNonResident(ni
));
945 BUG_ON(!NInoMstProtected(ni
));
946 is_mft
= (S_ISREG(vi
->i_mode
) && !vi
->i_ino
);
948 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
949 * in its page cache were to be marked dirty. However this should
950 * never happen with the current driver and considering we do not
951 * handle this case here we do want to BUG(), at least for now.
953 BUG_ON(!(is_mft
|| S_ISDIR(vi
->i_mode
) ||
954 (NInoAttr(ni
) && ni
->type
== AT_INDEX_ALLOCATION
)));
955 bh_size
= vol
->sb
->s_blocksize
;
956 bh_size_bits
= vol
->sb
->s_blocksize_bits
;
957 max_bhs
= PAGE_CACHE_SIZE
/ bh_size
;
959 BUG_ON(max_bhs
> MAX_BUF_PER_PAGE
);
961 /* Were we called for sync purposes? */
962 sync
= (wbc
->sync_mode
== WB_SYNC_ALL
);
964 /* Make sure we have mapped buffers. */
965 bh
= head
= page_buffers(page
);
968 rec_size_bits
= ni
->itype
.index
.block_size_bits
;
969 BUG_ON(!(PAGE_CACHE_SIZE
>> rec_size_bits
));
970 bhs_per_rec
= rec_size
>> bh_size_bits
;
971 BUG_ON(!bhs_per_rec
);
973 /* The first block in the page. */
974 rec_block
= block
= (sector_t
)page
->index
<<
975 (PAGE_CACHE_SHIFT
- bh_size_bits
);
977 /* The first out of bounds block for the data size. */
978 dblock
= (i_size_read(vi
) + bh_size
- 1) >> bh_size_bits
;
981 err
= err2
= nr_bhs
= nr_recs
= nr_locked_nis
= 0;
982 page_is_dirty
= rec_is_dirty
= false;
985 bool is_retry
= false;
987 if (likely(block
< rec_block
)) {
988 if (unlikely(block
>= dblock
)) {
989 clear_buffer_dirty(bh
);
990 set_buffer_uptodate(bh
);
994 * This block is not the first one in the record. We
995 * ignore the buffer's dirty state because we could
996 * have raced with a parallel mark_ntfs_record_dirty().
1000 if (unlikely(err2
)) {
1001 if (err2
!= -ENOMEM
)
1002 clear_buffer_dirty(bh
);
1005 } else /* if (block == rec_block) */ {
1006 BUG_ON(block
> rec_block
);
1007 /* This block is the first one in the record. */
1008 rec_block
+= bhs_per_rec
;
1010 if (unlikely(block
>= dblock
)) {
1011 clear_buffer_dirty(bh
);
1014 if (!buffer_dirty(bh
)) {
1015 /* Clean records are not written out. */
1016 rec_is_dirty
= false;
1019 rec_is_dirty
= true;
1022 /* Need to map the buffer if it is not mapped already. */
1023 if (unlikely(!buffer_mapped(bh
))) {
1026 unsigned int vcn_ofs
;
1028 bh
->b_bdev
= vol
->sb
->s_bdev
;
1029 /* Obtain the vcn and offset of the current block. */
1030 vcn
= (VCN
)block
<< bh_size_bits
;
1031 vcn_ofs
= vcn
& vol
->cluster_size_mask
;
1032 vcn
>>= vol
->cluster_size_bits
;
1035 down_read(&ni
->runlist
.lock
);
1036 rl
= ni
->runlist
.rl
;
1038 if (likely(rl
!= NULL
)) {
1039 /* Seek to element containing target vcn. */
1040 while (rl
->length
&& rl
[1].vcn
<= vcn
)
1042 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
1044 lcn
= LCN_RL_NOT_MAPPED
;
1045 /* Successful remap. */
1046 if (likely(lcn
>= 0)) {
1047 /* Setup buffer head to correct block. */
1048 bh
->b_blocknr
= ((lcn
<<
1049 vol
->cluster_size_bits
) +
1050 vcn_ofs
) >> bh_size_bits
;
1051 set_buffer_mapped(bh
);
1054 * Remap failed. Retry to map the runlist once
1055 * unless we are working on $MFT which always
1056 * has the whole of its runlist in memory.
1058 if (!is_mft
&& !is_retry
&&
1059 lcn
== LCN_RL_NOT_MAPPED
) {
1062 * Attempt to map runlist, dropping
1063 * lock for the duration.
1065 up_read(&ni
->runlist
.lock
);
1066 err2
= ntfs_map_runlist(ni
, vcn
);
1068 goto lock_retry_remap
;
1069 if (err2
== -ENOMEM
)
1070 page_is_dirty
= true;
1075 up_read(&ni
->runlist
.lock
);
1077 /* Hard error. Abort writing this record. */
1078 if (!err
|| err
== -ENOMEM
)
1081 ntfs_error(vol
->sb
, "Cannot write ntfs record "
1082 "0x%llx (inode 0x%lx, "
1083 "attribute type 0x%x) because "
1084 "its location on disk could "
1085 "not be determined (error "
1089 vol
->mft_record_size_bits
,
1090 ni
->mft_no
, ni
->type
,
1093 * If this is not the first buffer, remove the
1094 * buffers in this record from the list of
1095 * buffers to write and clear their dirty bit
1096 * if not error -ENOMEM.
1098 if (rec_start_bh
!= bh
) {
1099 while (bhs
[--nr_bhs
] != rec_start_bh
)
1101 if (err2
!= -ENOMEM
) {
1105 } while ((rec_start_bh
=
1114 BUG_ON(!buffer_uptodate(bh
));
1115 BUG_ON(nr_bhs
>= max_bhs
);
1117 } while (block
++, (bh
= bh
->b_this_page
) != head
);
1119 up_read(&ni
->runlist
.lock
);
1120 /* If there were no dirty buffers, we are done. */
1123 /* Map the page so we can access its contents. */
1125 /* Clear the page uptodate flag whilst the mst fixups are applied. */
1126 BUG_ON(!PageUptodate(page
));
1127 ClearPageUptodate(page
);
1128 for (i
= 0; i
< nr_bhs
; i
++) {
1131 /* Skip buffers which are not at the beginning of records. */
1132 if (i
% bhs_per_rec
)
1135 ofs
= bh_offset(tbh
);
1138 unsigned long mft_no
;
1140 /* Get the mft record number. */
1141 mft_no
= (((s64
)page
->index
<< PAGE_CACHE_SHIFT
) + ofs
)
1143 /* Check whether to write this mft record. */
1145 if (!ntfs_may_write_mft_record(vol
, mft_no
,
1146 (MFT_RECORD
*)(kaddr
+ ofs
), &tni
)) {
1148 * The record should not be written. This
1149 * means we need to redirty the page before
1152 page_is_dirty
= true;
1154 * Remove the buffers in this mft record from
1155 * the list of buffers to write.
1159 } while (++i
% bhs_per_rec
);
1163 * The record should be written. If a locked ntfs
1164 * inode was returned, add it to the array of locked
1168 locked_nis
[nr_locked_nis
++] = tni
;
1170 /* Apply the mst protection fixups. */
1171 err2
= pre_write_mst_fixup((NTFS_RECORD
*)(kaddr
+ ofs
),
1173 if (unlikely(err2
)) {
1174 if (!err
|| err
== -ENOMEM
)
1176 ntfs_error(vol
->sb
, "Failed to apply mst fixups "
1177 "(inode 0x%lx, attribute type 0x%x, "
1178 "page index 0x%lx, page offset 0x%x)!"
1179 " Unmount and run chkdsk.", vi
->i_ino
,
1180 ni
->type
, page
->index
, ofs
);
1182 * Mark all the buffers in this record clean as we do
1183 * not want to write corrupt data to disk.
1186 clear_buffer_dirty(bhs
[i
]);
1188 } while (++i
% bhs_per_rec
);
1193 /* If no records are to be written out, we are done. */
1196 flush_dcache_page(page
);
1197 /* Lock buffers and start synchronous write i/o on them. */
1198 for (i
= 0; i
< nr_bhs
; i
++) {
1202 if (unlikely(test_set_buffer_locked(tbh
)))
1204 /* The buffer dirty state is now irrelevant, just clean it. */
1205 clear_buffer_dirty(tbh
);
1206 BUG_ON(!buffer_uptodate(tbh
));
1207 BUG_ON(!buffer_mapped(tbh
));
1209 tbh
->b_end_io
= end_buffer_write_sync
;
1210 submit_bh(WRITE
, tbh
);
1212 /* Synchronize the mft mirror now if not @sync. */
1213 if (is_mft
&& !sync
)
1216 /* Wait on i/o completion of buffers. */
1217 for (i
= 0; i
< nr_bhs
; i
++) {
1221 wait_on_buffer(tbh
);
1222 if (unlikely(!buffer_uptodate(tbh
))) {
1223 ntfs_error(vol
->sb
, "I/O error while writing ntfs "
1224 "record buffer (inode 0x%lx, "
1225 "attribute type 0x%x, page index "
1226 "0x%lx, page offset 0x%lx)! Unmount "
1227 "and run chkdsk.", vi
->i_ino
, ni
->type
,
1228 page
->index
, bh_offset(tbh
));
1229 if (!err
|| err
== -ENOMEM
)
1232 * Set the buffer uptodate so the page and buffer
1233 * states do not become out of sync.
1235 set_buffer_uptodate(tbh
);
1238 /* If @sync, now synchronize the mft mirror. */
1239 if (is_mft
&& sync
) {
1241 for (i
= 0; i
< nr_bhs
; i
++) {
1242 unsigned long mft_no
;
1246 * Skip buffers which are not at the beginning of
1249 if (i
% bhs_per_rec
)
1252 /* Skip removed buffers (and hence records). */
1255 ofs
= bh_offset(tbh
);
1256 /* Get the mft record number. */
1257 mft_no
= (((s64
)page
->index
<< PAGE_CACHE_SHIFT
) + ofs
)
1259 if (mft_no
< vol
->mftmirr_size
)
1260 ntfs_sync_mft_mirror(vol
, mft_no
,
1261 (MFT_RECORD
*)(kaddr
+ ofs
),
1267 /* Remove the mst protection fixups again. */
1268 for (i
= 0; i
< nr_bhs
; i
++) {
1269 if (!(i
% bhs_per_rec
)) {
1273 post_write_mst_fixup((NTFS_RECORD
*)(kaddr
+
1277 flush_dcache_page(page
);
1279 /* Unlock any locked inodes. */
1280 while (nr_locked_nis
-- > 0) {
1281 ntfs_inode
*tni
, *base_tni
;
1283 tni
= locked_nis
[nr_locked_nis
];
1284 /* Get the base inode. */
1285 mutex_lock(&tni
->extent_lock
);
1286 if (tni
->nr_extents
>= 0)
1289 base_tni
= tni
->ext
.base_ntfs_ino
;
1292 mutex_unlock(&tni
->extent_lock
);
1293 ntfs_debug("Unlocking %s inode 0x%lx.",
1294 tni
== base_tni
? "base" : "extent",
1296 mutex_unlock(&tni
->mrec_lock
);
1297 atomic_dec(&tni
->count
);
1298 iput(VFS_I(base_tni
));
1300 SetPageUptodate(page
);
1303 if (unlikely(err
&& err
!= -ENOMEM
)) {
1305 * Set page error if there is only one ntfs record in the page.
1306 * Otherwise we would loose per-record granularity.
1308 if (ni
->itype
.index
.block_size
== PAGE_CACHE_SIZE
)
1312 if (page_is_dirty
) {
1313 ntfs_debug("Page still contains one or more dirty ntfs "
1314 "records. Redirtying the page starting at "
1315 "record 0x%lx.", page
->index
<<
1316 (PAGE_CACHE_SHIFT
- rec_size_bits
));
1317 redirty_page_for_writepage(wbc
, page
);
1321 * Keep the VM happy. This must be done otherwise the
1322 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1323 * the page is clean.
1325 BUG_ON(PageWriteback(page
));
1326 set_page_writeback(page
);
1328 end_page_writeback(page
);
1331 ntfs_debug("Done.");
1336 * ntfs_writepage - write a @page to the backing store
1337 * @page: page cache page to write out
1338 * @wbc: writeback control structure
1340 * This is called from the VM when it wants to have a dirty ntfs page cache
1341 * page cleaned. The VM has already locked the page and marked it clean.
1343 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1344 * the ntfs version of the generic block_write_full_page() function,
1345 * ntfs_write_block(), which in turn if necessary creates and writes the
1346 * buffers associated with the page asynchronously.
1348 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1349 * the data to the mft record (which at this stage is most likely in memory).
1350 * The mft record is then marked dirty and written out asynchronously via the
1351 * vfs inode dirty code path for the inode the mft record belongs to or via the
1352 * vm page dirty code path for the page the mft record is in.
1354 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1356 * Return 0 on success and -errno on error.
1358 static int ntfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
1361 struct inode
*vi
= page
->mapping
->host
;
1362 ntfs_inode
*base_ni
= NULL
, *ni
= NTFS_I(vi
);
1364 ntfs_attr_search_ctx
*ctx
= NULL
;
1365 MFT_RECORD
*m
= NULL
;
1370 BUG_ON(!PageLocked(page
));
1371 i_size
= i_size_read(vi
);
1372 /* Is the page fully outside i_size? (truncate in progress) */
1373 if (unlikely(page
->index
>= (i_size
+ PAGE_CACHE_SIZE
- 1) >>
1374 PAGE_CACHE_SHIFT
)) {
1376 * The page may have dirty, unmapped buffers. Make them
1377 * freeable here, so the page does not leak.
1379 block_invalidatepage(page
, 0);
1381 ntfs_debug("Write outside i_size - truncated?");
1385 * Only $DATA attributes can be encrypted and only unnamed $DATA
1386 * attributes can be compressed. Index root can have the flags set but
1387 * this means to create compressed/encrypted files, not that the
1388 * attribute is compressed/encrypted. Note we need to check for
1389 * AT_INDEX_ALLOCATION since this is the type of both directory and
1392 if (ni
->type
!= AT_INDEX_ALLOCATION
) {
1393 /* If file is encrypted, deny access, just like NT4. */
1394 if (NInoEncrypted(ni
)) {
1396 BUG_ON(ni
->type
!= AT_DATA
);
1397 ntfs_debug("Denying write access to encrypted file.");
1400 /* Compressed data streams are handled in compress.c. */
1401 if (NInoNonResident(ni
) && NInoCompressed(ni
)) {
1402 BUG_ON(ni
->type
!= AT_DATA
);
1403 BUG_ON(ni
->name_len
);
1404 // TODO: Implement and replace this with
1405 // return ntfs_write_compressed_block(page);
1407 ntfs_error(vi
->i_sb
, "Writing to compressed files is "
1408 "not supported yet. Sorry.");
1411 // TODO: Implement and remove this check.
1412 if (NInoNonResident(ni
) && NInoSparse(ni
)) {
1414 ntfs_error(vi
->i_sb
, "Writing to sparse files is not "
1415 "supported yet. Sorry.");
1419 /* NInoNonResident() == NInoIndexAllocPresent() */
1420 if (NInoNonResident(ni
)) {
1421 /* We have to zero every time due to mmap-at-end-of-file. */
1422 if (page
->index
>= (i_size
>> PAGE_CACHE_SHIFT
)) {
1423 /* The page straddles i_size. */
1424 unsigned int ofs
= i_size
& ~PAGE_CACHE_MASK
;
1425 kaddr
= kmap_atomic(page
, KM_USER0
);
1426 memset(kaddr
+ ofs
, 0, PAGE_CACHE_SIZE
- ofs
);
1427 kunmap_atomic(kaddr
, KM_USER0
);
1428 flush_dcache_page(page
);
1430 /* Handle mst protected attributes. */
1431 if (NInoMstProtected(ni
))
1432 return ntfs_write_mst_block(page
, wbc
);
1433 /* Normal, non-resident data stream. */
1434 return ntfs_write_block(page
, wbc
);
1437 * Attribute is resident, implying it is not compressed, encrypted, or
1438 * mst protected. This also means the attribute is smaller than an mft
1439 * record and hence smaller than a page, so can simply return error on
1440 * any pages with index above 0. Note the attribute can actually be
1441 * marked compressed but if it is resident the actual data is not
1442 * compressed so we are ok to ignore the compressed flag here.
1444 BUG_ON(page_has_buffers(page
));
1445 BUG_ON(!PageUptodate(page
));
1446 if (unlikely(page
->index
> 0)) {
1447 ntfs_error(vi
->i_sb
, "BUG()! page->index (0x%lx) > 0. "
1448 "Aborting write.", page
->index
);
1449 BUG_ON(PageWriteback(page
));
1450 set_page_writeback(page
);
1452 end_page_writeback(page
);
1458 base_ni
= ni
->ext
.base_ntfs_ino
;
1459 /* Map, pin, and lock the mft record. */
1460 m
= map_mft_record(base_ni
);
1468 * If a parallel write made the attribute non-resident, drop the mft
1469 * record and retry the writepage.
1471 if (unlikely(NInoNonResident(ni
))) {
1472 unmap_mft_record(base_ni
);
1473 goto retry_writepage
;
1475 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1476 if (unlikely(!ctx
)) {
1480 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1481 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1485 * Keep the VM happy. This must be done otherwise the radix-tree tag
1486 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1488 BUG_ON(PageWriteback(page
));
1489 set_page_writeback(page
);
1491 attr_len
= le32_to_cpu(ctx
->attr
->data
.resident
.value_length
);
1492 i_size
= i_size_read(vi
);
1493 if (unlikely(attr_len
> i_size
)) {
1494 /* Race with shrinking truncate or a failed truncate. */
1497 * If the truncate failed, fix it up now. If a concurrent
1498 * truncate, we do its job, so it does not have to do anything.
1500 err
= ntfs_resident_attr_value_resize(ctx
->mrec
, ctx
->attr
,
1502 /* Shrinking cannot fail. */
1505 kaddr
= kmap_atomic(page
, KM_USER0
);
1506 /* Copy the data from the page to the mft record. */
1507 memcpy((u8
*)ctx
->attr
+
1508 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
),
1510 /* Zero out of bounds area in the page cache page. */
1511 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
1512 kunmap_atomic(kaddr
, KM_USER0
);
1513 flush_dcache_page(page
);
1514 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1515 /* We are done with the page. */
1516 end_page_writeback(page
);
1517 /* Finally, mark the mft record dirty, so it gets written back. */
1518 mark_mft_record_dirty(ctx
->ntfs_ino
);
1519 ntfs_attr_put_search_ctx(ctx
);
1520 unmap_mft_record(base_ni
);
1523 if (err
== -ENOMEM
) {
1524 ntfs_warning(vi
->i_sb
, "Error allocating memory. Redirtying "
1525 "page so we try again later.");
1527 * Put the page back on mapping->dirty_pages, but leave its
1528 * buffers' dirty state as-is.
1530 redirty_page_for_writepage(wbc
, page
);
1533 ntfs_error(vi
->i_sb
, "Resident attribute write failed with "
1536 NVolSetErrors(ni
->vol
);
1540 ntfs_attr_put_search_ctx(ctx
);
1542 unmap_mft_record(base_ni
);
1546 #endif /* NTFS_RW */
1549 * ntfs_aops - general address space operations for inodes and attributes
1551 const struct address_space_operations ntfs_aops
= {
1552 .readpage
= ntfs_readpage
, /* Fill page with data. */
1553 .sync_page
= block_sync_page
, /* Currently, just unplugs the
1554 disk request queue. */
1556 .writepage
= ntfs_writepage
, /* Write dirty page to disk. */
1557 #endif /* NTFS_RW */
1558 .migratepage
= buffer_migrate_page
, /* Move a page cache page from
1559 one physical page to an
1564 * ntfs_mst_aops - general address space operations for mst protecteed inodes
1567 const struct address_space_operations ntfs_mst_aops
= {
1568 .readpage
= ntfs_readpage
, /* Fill page with data. */
1569 .sync_page
= block_sync_page
, /* Currently, just unplugs the
1570 disk request queue. */
1572 .writepage
= ntfs_writepage
, /* Write dirty page to disk. */
1573 .set_page_dirty
= __set_page_dirty_nobuffers
, /* Set the page dirty
1574 without touching the buffers
1575 belonging to the page. */
1576 #endif /* NTFS_RW */
1577 .migratepage
= buffer_migrate_page
, /* Move a page cache page from
1578 one physical page to an
1585 * mark_ntfs_record_dirty - mark an ntfs record dirty
1586 * @page: page containing the ntfs record to mark dirty
1587 * @ofs: byte offset within @page at which the ntfs record begins
1589 * Set the buffers and the page in which the ntfs record is located dirty.
1591 * The latter also marks the vfs inode the ntfs record belongs to dirty
1592 * (I_DIRTY_PAGES only).
1594 * If the page does not have buffers, we create them and set them uptodate.
1595 * The page may not be locked which is why we need to handle the buffers under
1596 * the mapping->private_lock. Once the buffers are marked dirty we no longer
1597 * need the lock since try_to_free_buffers() does not free dirty buffers.
1599 void mark_ntfs_record_dirty(struct page
*page
, const unsigned int ofs
) {
1600 struct address_space
*mapping
= page
->mapping
;
1601 ntfs_inode
*ni
= NTFS_I(mapping
->host
);
1602 struct buffer_head
*bh
, *head
, *buffers_to_free
= NULL
;
1603 unsigned int end
, bh_size
, bh_ofs
;
1605 BUG_ON(!PageUptodate(page
));
1606 end
= ofs
+ ni
->itype
.index
.block_size
;
1607 bh_size
= VFS_I(ni
)->i_sb
->s_blocksize
;
1608 spin_lock(&mapping
->private_lock
);
1609 if (unlikely(!page_has_buffers(page
))) {
1610 spin_unlock(&mapping
->private_lock
);
1611 bh
= head
= alloc_page_buffers(page
, bh_size
, 1);
1612 spin_lock(&mapping
->private_lock
);
1613 if (likely(!page_has_buffers(page
))) {
1614 struct buffer_head
*tail
;
1617 set_buffer_uptodate(bh
);
1619 bh
= bh
->b_this_page
;
1621 tail
->b_this_page
= head
;
1622 attach_page_buffers(page
, head
);
1624 buffers_to_free
= bh
;
1626 bh
= head
= page_buffers(page
);
1629 bh_ofs
= bh_offset(bh
);
1630 if (bh_ofs
+ bh_size
<= ofs
)
1632 if (unlikely(bh_ofs
>= end
))
1634 set_buffer_dirty(bh
);
1635 } while ((bh
= bh
->b_this_page
) != head
);
1636 spin_unlock(&mapping
->private_lock
);
1637 __set_page_dirty_nobuffers(page
);
1638 if (unlikely(buffers_to_free
)) {
1640 bh
= buffers_to_free
->b_this_page
;
1641 free_buffer_head(buffers_to_free
);
1642 buffers_to_free
= bh
;
1643 } while (buffers_to_free
);
1647 #endif /* NTFS_RW */