2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
111 static inline int SlabFrozen(struct page
*page
)
113 return page
->flags
& FROZEN
;
116 static inline void SetSlabFrozen(struct page
*page
)
118 page
->flags
|= FROZEN
;
121 static inline void ClearSlabFrozen(struct page
*page
)
123 page
->flags
&= ~FROZEN
;
126 static inline int SlabDebug(struct page
*page
)
128 return page
->flags
& SLABDEBUG
;
131 static inline void SetSlabDebug(struct page
*page
)
133 page
->flags
|= SLABDEBUG
;
136 static inline void ClearSlabDebug(struct page
*page
)
138 page
->flags
&= ~SLABDEBUG
;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
155 * Small page size. Make sure that we do not fragment memory
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
163 * Large page machines are customarily able to handle larger
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
175 #define MIN_PARTIAL 2
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
182 #define MAX_PARTIAL 10
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
188 * Set of flags that will prevent slab merging
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
208 /* Not all arches define cache_line_size */
209 #ifndef cache_line_size
210 #define cache_line_size() L1_CACHE_BYTES
213 static int kmem_size
= sizeof(struct kmem_cache
);
216 static struct notifier_block slab_notifier
;
220 DOWN
, /* No slab functionality available */
221 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
222 UP
, /* Everything works but does not show up in sysfs */
226 /* A list of all slab caches on the system */
227 static DECLARE_RWSEM(slub_lock
);
228 static LIST_HEAD(slab_caches
);
231 * Tracking user of a slab.
234 void *addr
; /* Called from address */
235 int cpu
; /* Was running on cpu */
236 int pid
; /* Pid context */
237 unsigned long when
; /* When did the operation occur */
240 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
242 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
243 static int sysfs_slab_add(struct kmem_cache
*);
244 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
245 static void sysfs_slab_remove(struct kmem_cache
*);
247 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
248 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
250 static inline void sysfs_slab_remove(struct kmem_cache
*s
) {}
253 /********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
257 int slab_is_available(void)
259 return slab_state
>= UP
;
262 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
265 return s
->node
[node
];
267 return &s
->local_node
;
271 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
274 return s
->cpu_slab
[cpu
];
280 static inline int check_valid_pointer(struct kmem_cache
*s
,
281 struct page
*page
, const void *object
)
288 base
= page_address(page
);
289 if (object
< base
|| object
>= base
+ s
->objects
* s
->size
||
290 (object
- base
) % s
->size
) {
298 * Slow version of get and set free pointer.
300 * This version requires touching the cache lines of kmem_cache which
301 * we avoid to do in the fast alloc free paths. There we obtain the offset
302 * from the page struct.
304 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
306 return *(void **)(object
+ s
->offset
);
309 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
311 *(void **)(object
+ s
->offset
) = fp
;
314 /* Loop over all objects in a slab */
315 #define for_each_object(__p, __s, __addr) \
316 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
320 #define for_each_free_object(__p, __s, __free) \
321 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
323 /* Determine object index from a given position */
324 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
326 return (p
- addr
) / s
->size
;
329 #ifdef CONFIG_SLUB_DEBUG
333 #ifdef CONFIG_SLUB_DEBUG_ON
334 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
336 static int slub_debug
;
339 static char *slub_debug_slabs
;
344 static void print_section(char *text
, u8
*addr
, unsigned int length
)
352 for (i
= 0; i
< length
; i
++) {
354 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
357 printk(" %02x", addr
[i
]);
359 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
361 printk(" %s\n",ascii
);
372 printk(" %s\n", ascii
);
376 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
377 enum track_item alloc
)
382 p
= object
+ s
->offset
+ sizeof(void *);
384 p
= object
+ s
->inuse
;
389 static void set_track(struct kmem_cache
*s
, void *object
,
390 enum track_item alloc
, void *addr
)
395 p
= object
+ s
->offset
+ sizeof(void *);
397 p
= object
+ s
->inuse
;
402 p
->cpu
= smp_processor_id();
403 p
->pid
= current
? current
->pid
: -1;
406 memset(p
, 0, sizeof(struct track
));
409 static void init_tracking(struct kmem_cache
*s
, void *object
)
411 if (!(s
->flags
& SLAB_STORE_USER
))
414 set_track(s
, object
, TRACK_FREE
, NULL
);
415 set_track(s
, object
, TRACK_ALLOC
, NULL
);
418 static void print_track(const char *s
, struct track
*t
)
423 printk(KERN_ERR
"INFO: %s in ", s
);
424 __print_symbol("%s", (unsigned long)t
->addr
);
425 printk(" age=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
428 static void print_tracking(struct kmem_cache
*s
, void *object
)
430 if (!(s
->flags
& SLAB_STORE_USER
))
433 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
434 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
437 static void print_page_info(struct page
*page
)
439 printk(KERN_ERR
"INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 page
, page
->inuse
, page
->freelist
, page
->flags
);
444 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
450 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
452 printk(KERN_ERR
"========================================"
453 "=====================================\n");
454 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
455 printk(KERN_ERR
"----------------------------------------"
456 "-------------------------------------\n\n");
459 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
465 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
467 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
470 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
472 unsigned int off
; /* Offset of last byte */
473 u8
*addr
= page_address(page
);
475 print_tracking(s
, p
);
477 print_page_info(page
);
479 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 p
, p
- addr
, get_freepointer(s
, p
));
483 print_section("Bytes b4", p
- 16, 16);
485 print_section("Object", p
, min(s
->objsize
, 128));
487 if (s
->flags
& SLAB_RED_ZONE
)
488 print_section("Redzone", p
+ s
->objsize
,
489 s
->inuse
- s
->objsize
);
492 off
= s
->offset
+ sizeof(void *);
496 if (s
->flags
& SLAB_STORE_USER
)
497 off
+= 2 * sizeof(struct track
);
500 /* Beginning of the filler is the free pointer */
501 print_section("Padding", p
+ off
, s
->size
- off
);
506 static void object_err(struct kmem_cache
*s
, struct page
*page
,
507 u8
*object
, char *reason
)
510 print_trailer(s
, page
, object
);
513 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
519 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
522 print_page_info(page
);
526 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
530 if (s
->flags
& __OBJECT_POISON
) {
531 memset(p
, POISON_FREE
, s
->objsize
- 1);
532 p
[s
->objsize
-1] = POISON_END
;
535 if (s
->flags
& SLAB_RED_ZONE
)
536 memset(p
+ s
->objsize
,
537 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
538 s
->inuse
- s
->objsize
);
541 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
544 if (*start
!= (u8
)value
)
552 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
553 void *from
, void *to
)
555 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
556 memset(from
, data
, to
- from
);
559 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
560 u8
*object
, char *what
,
561 u8
* start
, unsigned int value
, unsigned int bytes
)
566 fault
= check_bytes(start
, value
, bytes
);
571 while (end
> fault
&& end
[-1] == value
)
574 slab_bug(s
, "%s overwritten", what
);
575 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 fault
, end
- 1, fault
[0], value
);
577 print_trailer(s
, page
, object
);
579 restore_bytes(s
, what
, value
, fault
, end
);
587 * Bytes of the object to be managed.
588 * If the freepointer may overlay the object then the free
589 * pointer is the first word of the object.
591 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
594 * object + s->objsize
595 * Padding to reach word boundary. This is also used for Redzoning.
596 * Padding is extended by another word if Redzoning is enabled and
599 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600 * 0xcc (RED_ACTIVE) for objects in use.
603 * Meta data starts here.
605 * A. Free pointer (if we cannot overwrite object on free)
606 * B. Tracking data for SLAB_STORE_USER
607 * C. Padding to reach required alignment boundary or at mininum
608 * one word if debuggin is on to be able to detect writes
609 * before the word boundary.
611 * Padding is done using 0x5a (POISON_INUSE)
614 * Nothing is used beyond s->size.
616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617 * ignored. And therefore no slab options that rely on these boundaries
618 * may be used with merged slabcaches.
621 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
623 unsigned long off
= s
->inuse
; /* The end of info */
626 /* Freepointer is placed after the object. */
627 off
+= sizeof(void *);
629 if (s
->flags
& SLAB_STORE_USER
)
630 /* We also have user information there */
631 off
+= 2 * sizeof(struct track
);
636 return check_bytes_and_report(s
, page
, p
, "Object padding",
637 p
+ off
, POISON_INUSE
, s
->size
- off
);
640 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
648 if (!(s
->flags
& SLAB_POISON
))
651 start
= page_address(page
);
652 end
= start
+ (PAGE_SIZE
<< s
->order
);
653 length
= s
->objects
* s
->size
;
654 remainder
= end
- (start
+ length
);
658 fault
= check_bytes(start
+ length
, POISON_INUSE
, remainder
);
661 while (end
> fault
&& end
[-1] == POISON_INUSE
)
664 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
665 print_section("Padding", start
, length
);
667 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
671 static int check_object(struct kmem_cache
*s
, struct page
*page
,
672 void *object
, int active
)
675 u8
*endobject
= object
+ s
->objsize
;
677 if (s
->flags
& SLAB_RED_ZONE
) {
679 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
681 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
682 endobject
, red
, s
->inuse
- s
->objsize
))
685 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
)
686 check_bytes_and_report(s
, page
, p
, "Alignment padding", endobject
,
687 POISON_INUSE
, s
->inuse
- s
->objsize
);
690 if (s
->flags
& SLAB_POISON
) {
691 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
692 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
693 POISON_FREE
, s
->objsize
- 1) ||
694 !check_bytes_and_report(s
, page
, p
, "Poison",
695 p
+ s
->objsize
-1, POISON_END
, 1)))
698 * check_pad_bytes cleans up on its own.
700 check_pad_bytes(s
, page
, p
);
703 if (!s
->offset
&& active
)
705 * Object and freepointer overlap. Cannot check
706 * freepointer while object is allocated.
710 /* Check free pointer validity */
711 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
712 object_err(s
, page
, p
, "Freepointer corrupt");
714 * No choice but to zap it and thus loose the remainder
715 * of the free objects in this slab. May cause
716 * another error because the object count is now wrong.
718 set_freepointer(s
, p
, NULL
);
724 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
726 VM_BUG_ON(!irqs_disabled());
728 if (!PageSlab(page
)) {
729 slab_err(s
, page
, "Not a valid slab page");
732 if (page
->inuse
> s
->objects
) {
733 slab_err(s
, page
, "inuse %u > max %u",
734 s
->name
, page
->inuse
, s
->objects
);
737 /* Slab_pad_check fixes things up after itself */
738 slab_pad_check(s
, page
);
743 * Determine if a certain object on a page is on the freelist. Must hold the
744 * slab lock to guarantee that the chains are in a consistent state.
746 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
749 void *fp
= page
->freelist
;
752 while (fp
&& nr
<= s
->objects
) {
755 if (!check_valid_pointer(s
, page
, fp
)) {
757 object_err(s
, page
, object
,
758 "Freechain corrupt");
759 set_freepointer(s
, object
, NULL
);
762 slab_err(s
, page
, "Freepointer corrupt");
763 page
->freelist
= NULL
;
764 page
->inuse
= s
->objects
;
765 slab_fix(s
, "Freelist cleared");
771 fp
= get_freepointer(s
, object
);
775 if (page
->inuse
!= s
->objects
- nr
) {
776 slab_err(s
, page
, "Wrong object count. Counter is %d but "
777 "counted were %d", page
->inuse
, s
->objects
- nr
);
778 page
->inuse
= s
->objects
- nr
;
779 slab_fix(s
, "Object count adjusted.");
781 return search
== NULL
;
784 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
, int alloc
)
786 if (s
->flags
& SLAB_TRACE
) {
787 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
789 alloc
? "alloc" : "free",
794 print_section("Object", (void *)object
, s
->objsize
);
801 * Tracking of fully allocated slabs for debugging purposes.
803 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
805 spin_lock(&n
->list_lock
);
806 list_add(&page
->lru
, &n
->full
);
807 spin_unlock(&n
->list_lock
);
810 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
812 struct kmem_cache_node
*n
;
814 if (!(s
->flags
& SLAB_STORE_USER
))
817 n
= get_node(s
, page_to_nid(page
));
819 spin_lock(&n
->list_lock
);
820 list_del(&page
->lru
);
821 spin_unlock(&n
->list_lock
);
824 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
827 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
830 init_object(s
, object
, 0);
831 init_tracking(s
, object
);
834 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
835 void *object
, void *addr
)
837 if (!check_slab(s
, page
))
840 if (object
&& !on_freelist(s
, page
, object
)) {
841 object_err(s
, page
, object
, "Object already allocated");
845 if (!check_valid_pointer(s
, page
, object
)) {
846 object_err(s
, page
, object
, "Freelist Pointer check fails");
850 if (object
&& !check_object(s
, page
, object
, 0))
853 /* Success perform special debug activities for allocs */
854 if (s
->flags
& SLAB_STORE_USER
)
855 set_track(s
, object
, TRACK_ALLOC
, addr
);
856 trace(s
, page
, object
, 1);
857 init_object(s
, object
, 1);
861 if (PageSlab(page
)) {
863 * If this is a slab page then lets do the best we can
864 * to avoid issues in the future. Marking all objects
865 * as used avoids touching the remaining objects.
867 slab_fix(s
, "Marking all objects used");
868 page
->inuse
= s
->objects
;
869 page
->freelist
= NULL
;
874 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
875 void *object
, void *addr
)
877 if (!check_slab(s
, page
))
880 if (!check_valid_pointer(s
, page
, object
)) {
881 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
885 if (on_freelist(s
, page
, object
)) {
886 object_err(s
, page
, object
, "Object already free");
890 if (!check_object(s
, page
, object
, 1))
893 if (unlikely(s
!= page
->slab
)) {
895 slab_err(s
, page
, "Attempt to free object(0x%p) "
896 "outside of slab", object
);
900 "SLUB <none>: no slab for object 0x%p.\n",
905 object_err(s
, page
, object
,
906 "page slab pointer corrupt.");
910 /* Special debug activities for freeing objects */
911 if (!SlabFrozen(page
) && !page
->freelist
)
912 remove_full(s
, page
);
913 if (s
->flags
& SLAB_STORE_USER
)
914 set_track(s
, object
, TRACK_FREE
, addr
);
915 trace(s
, page
, object
, 0);
916 init_object(s
, object
, 0);
920 slab_fix(s
, "Object at 0x%p not freed", object
);
924 static int __init
setup_slub_debug(char *str
)
926 slub_debug
= DEBUG_DEFAULT_FLAGS
;
927 if (*str
++ != '=' || !*str
)
929 * No options specified. Switch on full debugging.
935 * No options but restriction on slabs. This means full
936 * debugging for slabs matching a pattern.
943 * Switch off all debugging measures.
948 * Determine which debug features should be switched on
950 for ( ;*str
&& *str
!= ','; str
++) {
951 switch (tolower(*str
)) {
953 slub_debug
|= SLAB_DEBUG_FREE
;
956 slub_debug
|= SLAB_RED_ZONE
;
959 slub_debug
|= SLAB_POISON
;
962 slub_debug
|= SLAB_STORE_USER
;
965 slub_debug
|= SLAB_TRACE
;
968 printk(KERN_ERR
"slub_debug option '%c' "
969 "unknown. skipped\n",*str
);
975 slub_debug_slabs
= str
+ 1;
980 __setup("slub_debug", setup_slub_debug
);
982 static unsigned long kmem_cache_flags(unsigned long objsize
,
983 unsigned long flags
, const char *name
,
984 void (*ctor
)(struct kmem_cache
*, void *))
987 * The page->offset field is only 16 bit wide. This is an offset
988 * in units of words from the beginning of an object. If the slab
989 * size is bigger then we cannot move the free pointer behind the
992 * On 32 bit platforms the limit is 256k. On 64bit platforms
995 * Debugging or ctor may create a need to move the free
996 * pointer. Fail if this happens.
998 if (objsize
>= 65535 * sizeof(void *)) {
999 BUG_ON(flags
& (SLAB_RED_ZONE
| SLAB_POISON
|
1000 SLAB_STORE_USER
| SLAB_DESTROY_BY_RCU
));
1004 * Enable debugging if selected on the kernel commandline.
1006 if (slub_debug
&& (!slub_debug_slabs
||
1007 strncmp(slub_debug_slabs
, name
,
1008 strlen(slub_debug_slabs
)) == 0))
1009 flags
|= slub_debug
;
1015 static inline void setup_object_debug(struct kmem_cache
*s
,
1016 struct page
*page
, void *object
) {}
1018 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1019 struct page
*page
, void *object
, void *addr
) { return 0; }
1021 static inline int free_debug_processing(struct kmem_cache
*s
,
1022 struct page
*page
, void *object
, void *addr
) { return 0; }
1024 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1026 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1027 void *object
, int active
) { return 1; }
1028 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1029 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1030 unsigned long flags
, const char *name
,
1031 void (*ctor
)(struct kmem_cache
*, void *))
1035 #define slub_debug 0
1038 * Slab allocation and freeing
1040 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1043 int pages
= 1 << s
->order
;
1046 flags
|= __GFP_COMP
;
1048 if (s
->flags
& SLAB_CACHE_DMA
)
1051 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
1052 flags
|= __GFP_RECLAIMABLE
;
1055 page
= alloc_pages(flags
, s
->order
);
1057 page
= alloc_pages_node(node
, flags
, s
->order
);
1062 mod_zone_page_state(page_zone(page
),
1063 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1064 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1070 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1073 setup_object_debug(s
, page
, object
);
1074 if (unlikely(s
->ctor
))
1078 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1081 struct kmem_cache_node
*n
;
1087 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1089 page
= allocate_slab(s
,
1090 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1094 n
= get_node(s
, page_to_nid(page
));
1096 atomic_long_inc(&n
->nr_slabs
);
1098 page
->flags
|= 1 << PG_slab
;
1099 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1100 SLAB_STORE_USER
| SLAB_TRACE
))
1103 start
= page_address(page
);
1104 end
= start
+ s
->objects
* s
->size
;
1106 if (unlikely(s
->flags
& SLAB_POISON
))
1107 memset(start
, POISON_INUSE
, PAGE_SIZE
<< s
->order
);
1110 for_each_object(p
, s
, start
) {
1111 setup_object(s
, page
, last
);
1112 set_freepointer(s
, last
, p
);
1115 setup_object(s
, page
, last
);
1116 set_freepointer(s
, last
, NULL
);
1118 page
->freelist
= start
;
1124 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1126 int pages
= 1 << s
->order
;
1128 if (unlikely(SlabDebug(page
))) {
1131 slab_pad_check(s
, page
);
1132 for_each_object(p
, s
, page_address(page
))
1133 check_object(s
, page
, p
, 0);
1134 ClearSlabDebug(page
);
1137 mod_zone_page_state(page_zone(page
),
1138 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1139 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1142 __free_pages(page
, s
->order
);
1145 static void rcu_free_slab(struct rcu_head
*h
)
1149 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1150 __free_slab(page
->slab
, page
);
1153 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1155 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1157 * RCU free overloads the RCU head over the LRU
1159 struct rcu_head
*head
= (void *)&page
->lru
;
1161 call_rcu(head
, rcu_free_slab
);
1163 __free_slab(s
, page
);
1166 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1168 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1170 atomic_long_dec(&n
->nr_slabs
);
1171 reset_page_mapcount(page
);
1172 __ClearPageSlab(page
);
1177 * Per slab locking using the pagelock
1179 static __always_inline
void slab_lock(struct page
*page
)
1181 bit_spin_lock(PG_locked
, &page
->flags
);
1184 static __always_inline
void slab_unlock(struct page
*page
)
1186 bit_spin_unlock(PG_locked
, &page
->flags
);
1189 static __always_inline
int slab_trylock(struct page
*page
)
1193 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1198 * Management of partially allocated slabs
1200 static void add_partial_tail(struct kmem_cache_node
*n
, struct page
*page
)
1202 spin_lock(&n
->list_lock
);
1204 list_add_tail(&page
->lru
, &n
->partial
);
1205 spin_unlock(&n
->list_lock
);
1208 static void add_partial(struct kmem_cache_node
*n
, struct page
*page
)
1210 spin_lock(&n
->list_lock
);
1212 list_add(&page
->lru
, &n
->partial
);
1213 spin_unlock(&n
->list_lock
);
1216 static void remove_partial(struct kmem_cache
*s
,
1219 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1221 spin_lock(&n
->list_lock
);
1222 list_del(&page
->lru
);
1224 spin_unlock(&n
->list_lock
);
1228 * Lock slab and remove from the partial list.
1230 * Must hold list_lock.
1232 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
, struct page
*page
)
1234 if (slab_trylock(page
)) {
1235 list_del(&page
->lru
);
1237 SetSlabFrozen(page
);
1244 * Try to allocate a partial slab from a specific node.
1246 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1251 * Racy check. If we mistakenly see no partial slabs then we
1252 * just allocate an empty slab. If we mistakenly try to get a
1253 * partial slab and there is none available then get_partials()
1256 if (!n
|| !n
->nr_partial
)
1259 spin_lock(&n
->list_lock
);
1260 list_for_each_entry(page
, &n
->partial
, lru
)
1261 if (lock_and_freeze_slab(n
, page
))
1265 spin_unlock(&n
->list_lock
);
1270 * Get a page from somewhere. Search in increasing NUMA distances.
1272 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1275 struct zonelist
*zonelist
;
1280 * The defrag ratio allows a configuration of the tradeoffs between
1281 * inter node defragmentation and node local allocations. A lower
1282 * defrag_ratio increases the tendency to do local allocations
1283 * instead of attempting to obtain partial slabs from other nodes.
1285 * If the defrag_ratio is set to 0 then kmalloc() always
1286 * returns node local objects. If the ratio is higher then kmalloc()
1287 * may return off node objects because partial slabs are obtained
1288 * from other nodes and filled up.
1290 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1291 * defrag_ratio = 1000) then every (well almost) allocation will
1292 * first attempt to defrag slab caches on other nodes. This means
1293 * scanning over all nodes to look for partial slabs which may be
1294 * expensive if we do it every time we are trying to find a slab
1295 * with available objects.
1297 if (!s
->defrag_ratio
|| get_cycles() % 1024 > s
->defrag_ratio
)
1300 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
1301 ->node_zonelists
[gfp_zone(flags
)];
1302 for (z
= zonelist
->zones
; *z
; z
++) {
1303 struct kmem_cache_node
*n
;
1305 n
= get_node(s
, zone_to_nid(*z
));
1307 if (n
&& cpuset_zone_allowed_hardwall(*z
, flags
) &&
1308 n
->nr_partial
> MIN_PARTIAL
) {
1309 page
= get_partial_node(n
);
1319 * Get a partial page, lock it and return it.
1321 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1324 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1326 page
= get_partial_node(get_node(s
, searchnode
));
1327 if (page
|| (flags
& __GFP_THISNODE
))
1330 return get_any_partial(s
, flags
);
1334 * Move a page back to the lists.
1336 * Must be called with the slab lock held.
1338 * On exit the slab lock will have been dropped.
1340 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
)
1342 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1344 ClearSlabFrozen(page
);
1348 add_partial(n
, page
);
1349 else if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1354 if (n
->nr_partial
< MIN_PARTIAL
) {
1356 * Adding an empty slab to the partial slabs in order
1357 * to avoid page allocator overhead. This slab needs
1358 * to come after the other slabs with objects in
1359 * order to fill them up. That way the size of the
1360 * partial list stays small. kmem_cache_shrink can
1361 * reclaim empty slabs from the partial list.
1363 add_partial_tail(n
, page
);
1367 discard_slab(s
, page
);
1373 * Remove the cpu slab
1375 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1377 struct page
*page
= c
->page
;
1379 * Merge cpu freelist into freelist. Typically we get here
1380 * because both freelists are empty. So this is unlikely
1383 while (unlikely(c
->freelist
)) {
1386 /* Retrieve object from cpu_freelist */
1387 object
= c
->freelist
;
1388 c
->freelist
= c
->freelist
[c
->offset
];
1390 /* And put onto the regular freelist */
1391 object
[c
->offset
] = page
->freelist
;
1392 page
->freelist
= object
;
1396 unfreeze_slab(s
, page
);
1399 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1402 deactivate_slab(s
, c
);
1407 * Called from IPI handler with interrupts disabled.
1409 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1411 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1413 if (likely(c
&& c
->page
))
1417 static void flush_cpu_slab(void *d
)
1419 struct kmem_cache
*s
= d
;
1421 __flush_cpu_slab(s
, smp_processor_id());
1424 static void flush_all(struct kmem_cache
*s
)
1427 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1429 unsigned long flags
;
1431 local_irq_save(flags
);
1433 local_irq_restore(flags
);
1438 * Check if the objects in a per cpu structure fit numa
1439 * locality expectations.
1441 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1444 if (node
!= -1 && c
->node
!= node
)
1451 * Slow path. The lockless freelist is empty or we need to perform
1454 * Interrupts are disabled.
1456 * Processing is still very fast if new objects have been freed to the
1457 * regular freelist. In that case we simply take over the regular freelist
1458 * as the lockless freelist and zap the regular freelist.
1460 * If that is not working then we fall back to the partial lists. We take the
1461 * first element of the freelist as the object to allocate now and move the
1462 * rest of the freelist to the lockless freelist.
1464 * And if we were unable to get a new slab from the partial slab lists then
1465 * we need to allocate a new slab. This is slowest path since we may sleep.
1467 static void *__slab_alloc(struct kmem_cache
*s
,
1468 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1477 if (unlikely(!node_match(c
, node
)))
1480 object
= c
->page
->freelist
;
1481 if (unlikely(!object
))
1483 if (unlikely(SlabDebug(c
->page
)))
1486 object
= c
->page
->freelist
;
1487 c
->freelist
= object
[c
->offset
];
1488 c
->page
->inuse
= s
->objects
;
1489 c
->page
->freelist
= NULL
;
1490 c
->node
= page_to_nid(c
->page
);
1491 slab_unlock(c
->page
);
1495 deactivate_slab(s
, c
);
1498 new = get_partial(s
, gfpflags
, node
);
1504 if (gfpflags
& __GFP_WAIT
)
1507 new = new_slab(s
, gfpflags
, node
);
1509 if (gfpflags
& __GFP_WAIT
)
1510 local_irq_disable();
1513 c
= get_cpu_slab(s
, smp_processor_id());
1516 * Someone else populated the cpu_slab while we
1517 * enabled interrupts, or we have gotten scheduled
1518 * on another cpu. The page may not be on the
1519 * requested node even if __GFP_THISNODE was
1520 * specified. So we need to recheck.
1522 if (node_match(c
, node
)) {
1524 * Current cpuslab is acceptable and we
1525 * want the current one since its cache hot
1527 discard_slab(s
, new);
1531 /* New slab does not fit our expectations */
1541 object
= c
->page
->freelist
;
1542 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1546 c
->page
->freelist
= object
[c
->offset
];
1548 slab_unlock(c
->page
);
1553 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1554 * have the fastpath folded into their functions. So no function call
1555 * overhead for requests that can be satisfied on the fastpath.
1557 * The fastpath works by first checking if the lockless freelist can be used.
1558 * If not then __slab_alloc is called for slow processing.
1560 * Otherwise we can simply pick the next object from the lockless free list.
1562 static void __always_inline
*slab_alloc(struct kmem_cache
*s
,
1563 gfp_t gfpflags
, int node
, void *addr
)
1566 unsigned long flags
;
1567 struct kmem_cache_cpu
*c
;
1569 local_irq_save(flags
);
1570 c
= get_cpu_slab(s
, smp_processor_id());
1571 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1573 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1576 object
= c
->freelist
;
1577 c
->freelist
= object
[c
->offset
];
1579 local_irq_restore(flags
);
1581 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1582 memset(object
, 0, c
->objsize
);
1587 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1589 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1591 EXPORT_SYMBOL(kmem_cache_alloc
);
1594 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1596 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1598 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1602 * Slow patch handling. This may still be called frequently since objects
1603 * have a longer lifetime than the cpu slabs in most processing loads.
1605 * So we still attempt to reduce cache line usage. Just take the slab
1606 * lock and free the item. If there is no additional partial page
1607 * handling required then we can return immediately.
1609 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1610 void *x
, void *addr
, unsigned int offset
)
1613 void **object
= (void *)x
;
1617 if (unlikely(SlabDebug(page
)))
1620 prior
= object
[offset
] = page
->freelist
;
1621 page
->freelist
= object
;
1624 if (unlikely(SlabFrozen(page
)))
1627 if (unlikely(!page
->inuse
))
1631 * Objects left in the slab. If it
1632 * was not on the partial list before
1635 if (unlikely(!prior
))
1636 add_partial(get_node(s
, page_to_nid(page
)), page
);
1645 * Slab still on the partial list.
1647 remove_partial(s
, page
);
1650 discard_slab(s
, page
);
1654 if (!free_debug_processing(s
, page
, x
, addr
))
1660 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1661 * can perform fastpath freeing without additional function calls.
1663 * The fastpath is only possible if we are freeing to the current cpu slab
1664 * of this processor. This typically the case if we have just allocated
1667 * If fastpath is not possible then fall back to __slab_free where we deal
1668 * with all sorts of special processing.
1670 static void __always_inline
slab_free(struct kmem_cache
*s
,
1671 struct page
*page
, void *x
, void *addr
)
1673 void **object
= (void *)x
;
1674 unsigned long flags
;
1675 struct kmem_cache_cpu
*c
;
1677 local_irq_save(flags
);
1678 debug_check_no_locks_freed(object
, s
->objsize
);
1679 c
= get_cpu_slab(s
, smp_processor_id());
1680 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1681 object
[c
->offset
] = c
->freelist
;
1682 c
->freelist
= object
;
1684 __slab_free(s
, page
, x
, addr
, c
->offset
);
1686 local_irq_restore(flags
);
1689 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1693 page
= virt_to_head_page(x
);
1695 slab_free(s
, page
, x
, __builtin_return_address(0));
1697 EXPORT_SYMBOL(kmem_cache_free
);
1699 /* Figure out on which slab object the object resides */
1700 static struct page
*get_object_page(const void *x
)
1702 struct page
*page
= virt_to_head_page(x
);
1704 if (!PageSlab(page
))
1711 * Object placement in a slab is made very easy because we always start at
1712 * offset 0. If we tune the size of the object to the alignment then we can
1713 * get the required alignment by putting one properly sized object after
1716 * Notice that the allocation order determines the sizes of the per cpu
1717 * caches. Each processor has always one slab available for allocations.
1718 * Increasing the allocation order reduces the number of times that slabs
1719 * must be moved on and off the partial lists and is therefore a factor in
1724 * Mininum / Maximum order of slab pages. This influences locking overhead
1725 * and slab fragmentation. A higher order reduces the number of partial slabs
1726 * and increases the number of allocations possible without having to
1727 * take the list_lock.
1729 static int slub_min_order
;
1730 static int slub_max_order
= DEFAULT_MAX_ORDER
;
1731 static int slub_min_objects
= DEFAULT_MIN_OBJECTS
;
1734 * Merge control. If this is set then no merging of slab caches will occur.
1735 * (Could be removed. This was introduced to pacify the merge skeptics.)
1737 static int slub_nomerge
;
1740 * Calculate the order of allocation given an slab object size.
1742 * The order of allocation has significant impact on performance and other
1743 * system components. Generally order 0 allocations should be preferred since
1744 * order 0 does not cause fragmentation in the page allocator. Larger objects
1745 * be problematic to put into order 0 slabs because there may be too much
1746 * unused space left. We go to a higher order if more than 1/8th of the slab
1749 * In order to reach satisfactory performance we must ensure that a minimum
1750 * number of objects is in one slab. Otherwise we may generate too much
1751 * activity on the partial lists which requires taking the list_lock. This is
1752 * less a concern for large slabs though which are rarely used.
1754 * slub_max_order specifies the order where we begin to stop considering the
1755 * number of objects in a slab as critical. If we reach slub_max_order then
1756 * we try to keep the page order as low as possible. So we accept more waste
1757 * of space in favor of a small page order.
1759 * Higher order allocations also allow the placement of more objects in a
1760 * slab and thereby reduce object handling overhead. If the user has
1761 * requested a higher mininum order then we start with that one instead of
1762 * the smallest order which will fit the object.
1764 static inline int slab_order(int size
, int min_objects
,
1765 int max_order
, int fract_leftover
)
1769 int min_order
= slub_min_order
;
1771 for (order
= max(min_order
,
1772 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1773 order
<= max_order
; order
++) {
1775 unsigned long slab_size
= PAGE_SIZE
<< order
;
1777 if (slab_size
< min_objects
* size
)
1780 rem
= slab_size
% size
;
1782 if (rem
<= slab_size
/ fract_leftover
)
1790 static inline int calculate_order(int size
)
1797 * Attempt to find best configuration for a slab. This
1798 * works by first attempting to generate a layout with
1799 * the best configuration and backing off gradually.
1801 * First we reduce the acceptable waste in a slab. Then
1802 * we reduce the minimum objects required in a slab.
1804 min_objects
= slub_min_objects
;
1805 while (min_objects
> 1) {
1807 while (fraction
>= 4) {
1808 order
= slab_order(size
, min_objects
,
1809 slub_max_order
, fraction
);
1810 if (order
<= slub_max_order
)
1818 * We were unable to place multiple objects in a slab. Now
1819 * lets see if we can place a single object there.
1821 order
= slab_order(size
, 1, slub_max_order
, 1);
1822 if (order
<= slub_max_order
)
1826 * Doh this slab cannot be placed using slub_max_order.
1828 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1829 if (order
<= MAX_ORDER
)
1835 * Figure out what the alignment of the objects will be.
1837 static unsigned long calculate_alignment(unsigned long flags
,
1838 unsigned long align
, unsigned long size
)
1841 * If the user wants hardware cache aligned objects then
1842 * follow that suggestion if the object is sufficiently
1845 * The hardware cache alignment cannot override the
1846 * specified alignment though. If that is greater
1849 if ((flags
& SLAB_HWCACHE_ALIGN
) &&
1850 size
> cache_line_size() / 2)
1851 return max_t(unsigned long, align
, cache_line_size());
1853 if (align
< ARCH_SLAB_MINALIGN
)
1854 return ARCH_SLAB_MINALIGN
;
1856 return ALIGN(align
, sizeof(void *));
1859 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1860 struct kmem_cache_cpu
*c
)
1865 c
->offset
= s
->offset
/ sizeof(void *);
1866 c
->objsize
= s
->objsize
;
1869 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1872 atomic_long_set(&n
->nr_slabs
, 0);
1873 spin_lock_init(&n
->list_lock
);
1874 INIT_LIST_HEAD(&n
->partial
);
1875 #ifdef CONFIG_SLUB_DEBUG
1876 INIT_LIST_HEAD(&n
->full
);
1882 * Per cpu array for per cpu structures.
1884 * The per cpu array places all kmem_cache_cpu structures from one processor
1885 * close together meaning that it becomes possible that multiple per cpu
1886 * structures are contained in one cacheline. This may be particularly
1887 * beneficial for the kmalloc caches.
1889 * A desktop system typically has around 60-80 slabs. With 100 here we are
1890 * likely able to get per cpu structures for all caches from the array defined
1891 * here. We must be able to cover all kmalloc caches during bootstrap.
1893 * If the per cpu array is exhausted then fall back to kmalloc
1894 * of individual cachelines. No sharing is possible then.
1896 #define NR_KMEM_CACHE_CPU 100
1898 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1899 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1901 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1902 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
1904 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1905 int cpu
, gfp_t flags
)
1907 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1910 per_cpu(kmem_cache_cpu_free
, cpu
) =
1911 (void *)c
->freelist
;
1913 /* Table overflow: So allocate ourselves */
1915 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1916 flags
, cpu_to_node(cpu
));
1921 init_kmem_cache_cpu(s
, c
);
1925 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
1927 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
1928 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
1932 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
1933 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
1936 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
1940 for_each_online_cpu(cpu
) {
1941 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1944 s
->cpu_slab
[cpu
] = NULL
;
1945 free_kmem_cache_cpu(c
, cpu
);
1950 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
1954 for_each_online_cpu(cpu
) {
1955 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1960 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
1962 free_kmem_cache_cpus(s
);
1965 s
->cpu_slab
[cpu
] = c
;
1971 * Initialize the per cpu array.
1973 static void init_alloc_cpu_cpu(int cpu
)
1977 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
1980 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
1981 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
1983 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
1986 static void __init
init_alloc_cpu(void)
1990 for_each_online_cpu(cpu
)
1991 init_alloc_cpu_cpu(cpu
);
1995 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
1996 static inline void init_alloc_cpu(void) {}
1998 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2000 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2007 * No kmalloc_node yet so do it by hand. We know that this is the first
2008 * slab on the node for this slabcache. There are no concurrent accesses
2011 * Note that this function only works on the kmalloc_node_cache
2012 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2013 * memory on a fresh node that has no slab structures yet.
2015 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2019 struct kmem_cache_node
*n
;
2021 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2023 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2026 if (page_to_nid(page
) != node
) {
2027 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2029 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2030 "in order to be able to continue\n");
2035 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2037 kmalloc_caches
->node
[node
] = n
;
2038 #ifdef CONFIG_SLUB_DEBUG
2039 init_object(kmalloc_caches
, n
, 1);
2040 init_tracking(kmalloc_caches
, n
);
2042 init_kmem_cache_node(n
);
2043 atomic_long_inc(&n
->nr_slabs
);
2044 add_partial(n
, page
);
2048 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2052 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2053 struct kmem_cache_node
*n
= s
->node
[node
];
2054 if (n
&& n
!= &s
->local_node
)
2055 kmem_cache_free(kmalloc_caches
, n
);
2056 s
->node
[node
] = NULL
;
2060 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2065 if (slab_state
>= UP
)
2066 local_node
= page_to_nid(virt_to_page(s
));
2070 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2071 struct kmem_cache_node
*n
;
2073 if (local_node
== node
)
2076 if (slab_state
== DOWN
) {
2077 n
= early_kmem_cache_node_alloc(gfpflags
,
2081 n
= kmem_cache_alloc_node(kmalloc_caches
,
2085 free_kmem_cache_nodes(s
);
2091 init_kmem_cache_node(n
);
2096 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2100 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2102 init_kmem_cache_node(&s
->local_node
);
2108 * calculate_sizes() determines the order and the distribution of data within
2111 static int calculate_sizes(struct kmem_cache
*s
)
2113 unsigned long flags
= s
->flags
;
2114 unsigned long size
= s
->objsize
;
2115 unsigned long align
= s
->align
;
2118 * Determine if we can poison the object itself. If the user of
2119 * the slab may touch the object after free or before allocation
2120 * then we should never poison the object itself.
2122 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2124 s
->flags
|= __OBJECT_POISON
;
2126 s
->flags
&= ~__OBJECT_POISON
;
2129 * Round up object size to the next word boundary. We can only
2130 * place the free pointer at word boundaries and this determines
2131 * the possible location of the free pointer.
2133 size
= ALIGN(size
, sizeof(void *));
2135 #ifdef CONFIG_SLUB_DEBUG
2137 * If we are Redzoning then check if there is some space between the
2138 * end of the object and the free pointer. If not then add an
2139 * additional word to have some bytes to store Redzone information.
2141 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2142 size
+= sizeof(void *);
2146 * With that we have determined the number of bytes in actual use
2147 * by the object. This is the potential offset to the free pointer.
2151 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2154 * Relocate free pointer after the object if it is not
2155 * permitted to overwrite the first word of the object on
2158 * This is the case if we do RCU, have a constructor or
2159 * destructor or are poisoning the objects.
2162 size
+= sizeof(void *);
2165 #ifdef CONFIG_SLUB_DEBUG
2166 if (flags
& SLAB_STORE_USER
)
2168 * Need to store information about allocs and frees after
2171 size
+= 2 * sizeof(struct track
);
2173 if (flags
& SLAB_RED_ZONE
)
2175 * Add some empty padding so that we can catch
2176 * overwrites from earlier objects rather than let
2177 * tracking information or the free pointer be
2178 * corrupted if an user writes before the start
2181 size
+= sizeof(void *);
2185 * Determine the alignment based on various parameters that the
2186 * user specified and the dynamic determination of cache line size
2189 align
= calculate_alignment(flags
, align
, s
->objsize
);
2192 * SLUB stores one object immediately after another beginning from
2193 * offset 0. In order to align the objects we have to simply size
2194 * each object to conform to the alignment.
2196 size
= ALIGN(size
, align
);
2199 s
->order
= calculate_order(size
);
2204 * Determine the number of objects per slab
2206 s
->objects
= (PAGE_SIZE
<< s
->order
) / size
;
2208 return !!s
->objects
;
2212 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2213 const char *name
, size_t size
,
2214 size_t align
, unsigned long flags
,
2215 void (*ctor
)(struct kmem_cache
*, void *))
2217 memset(s
, 0, kmem_size
);
2222 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2224 if (!calculate_sizes(s
))
2229 s
->defrag_ratio
= 100;
2231 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2234 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2236 free_kmem_cache_nodes(s
);
2238 if (flags
& SLAB_PANIC
)
2239 panic("Cannot create slab %s size=%lu realsize=%u "
2240 "order=%u offset=%u flags=%lx\n",
2241 s
->name
, (unsigned long)size
, s
->size
, s
->order
,
2247 * Check if a given pointer is valid
2249 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2253 page
= get_object_page(object
);
2255 if (!page
|| s
!= page
->slab
)
2256 /* No slab or wrong slab */
2259 if (!check_valid_pointer(s
, page
, object
))
2263 * We could also check if the object is on the slabs freelist.
2264 * But this would be too expensive and it seems that the main
2265 * purpose of kmem_ptr_valid is to check if the object belongs
2266 * to a certain slab.
2270 EXPORT_SYMBOL(kmem_ptr_validate
);
2273 * Determine the size of a slab object
2275 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2279 EXPORT_SYMBOL(kmem_cache_size
);
2281 const char *kmem_cache_name(struct kmem_cache
*s
)
2285 EXPORT_SYMBOL(kmem_cache_name
);
2288 * Attempt to free all slabs on a node. Return the number of slabs we
2289 * were unable to free.
2291 static int free_list(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
2292 struct list_head
*list
)
2294 int slabs_inuse
= 0;
2295 unsigned long flags
;
2296 struct page
*page
, *h
;
2298 spin_lock_irqsave(&n
->list_lock
, flags
);
2299 list_for_each_entry_safe(page
, h
, list
, lru
)
2301 list_del(&page
->lru
);
2302 discard_slab(s
, page
);
2305 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2310 * Release all resources used by a slab cache.
2312 static inline int kmem_cache_close(struct kmem_cache
*s
)
2318 /* Attempt to free all objects */
2319 free_kmem_cache_cpus(s
);
2320 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2321 struct kmem_cache_node
*n
= get_node(s
, node
);
2323 n
->nr_partial
-= free_list(s
, n
, &n
->partial
);
2324 if (atomic_long_read(&n
->nr_slabs
))
2327 free_kmem_cache_nodes(s
);
2332 * Close a cache and release the kmem_cache structure
2333 * (must be used for caches created using kmem_cache_create)
2335 void kmem_cache_destroy(struct kmem_cache
*s
)
2337 down_write(&slub_lock
);
2341 up_write(&slub_lock
);
2342 if (kmem_cache_close(s
))
2344 sysfs_slab_remove(s
);
2347 up_write(&slub_lock
);
2349 EXPORT_SYMBOL(kmem_cache_destroy
);
2351 /********************************************************************
2353 *******************************************************************/
2355 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
] __cacheline_aligned
;
2356 EXPORT_SYMBOL(kmalloc_caches
);
2358 #ifdef CONFIG_ZONE_DMA
2359 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
];
2362 static int __init
setup_slub_min_order(char *str
)
2364 get_option (&str
, &slub_min_order
);
2369 __setup("slub_min_order=", setup_slub_min_order
);
2371 static int __init
setup_slub_max_order(char *str
)
2373 get_option (&str
, &slub_max_order
);
2378 __setup("slub_max_order=", setup_slub_max_order
);
2380 static int __init
setup_slub_min_objects(char *str
)
2382 get_option (&str
, &slub_min_objects
);
2387 __setup("slub_min_objects=", setup_slub_min_objects
);
2389 static int __init
setup_slub_nomerge(char *str
)
2395 __setup("slub_nomerge", setup_slub_nomerge
);
2397 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2398 const char *name
, int size
, gfp_t gfp_flags
)
2400 unsigned int flags
= 0;
2402 if (gfp_flags
& SLUB_DMA
)
2403 flags
= SLAB_CACHE_DMA
;
2405 down_write(&slub_lock
);
2406 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2410 list_add(&s
->list
, &slab_caches
);
2411 up_write(&slub_lock
);
2412 if (sysfs_slab_add(s
))
2417 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2420 #ifdef CONFIG_ZONE_DMA
2422 static void sysfs_add_func(struct work_struct
*w
)
2424 struct kmem_cache
*s
;
2426 down_write(&slub_lock
);
2427 list_for_each_entry(s
, &slab_caches
, list
) {
2428 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2429 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2433 up_write(&slub_lock
);
2436 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2438 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2440 struct kmem_cache
*s
;
2444 s
= kmalloc_caches_dma
[index
];
2448 /* Dynamically create dma cache */
2449 if (flags
& __GFP_WAIT
)
2450 down_write(&slub_lock
);
2452 if (!down_write_trylock(&slub_lock
))
2456 if (kmalloc_caches_dma
[index
])
2459 realsize
= kmalloc_caches
[index
].objsize
;
2460 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d", (unsigned int)realsize
),
2461 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2463 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2464 realsize
, ARCH_KMALLOC_MINALIGN
,
2465 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2471 list_add(&s
->list
, &slab_caches
);
2472 kmalloc_caches_dma
[index
] = s
;
2474 schedule_work(&sysfs_add_work
);
2477 up_write(&slub_lock
);
2479 return kmalloc_caches_dma
[index
];
2484 * Conversion table for small slabs sizes / 8 to the index in the
2485 * kmalloc array. This is necessary for slabs < 192 since we have non power
2486 * of two cache sizes there. The size of larger slabs can be determined using
2489 static s8 size_index
[24] = {
2516 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2522 return ZERO_SIZE_PTR
;
2524 index
= size_index
[(size
- 1) / 8];
2526 index
= fls(size
- 1);
2528 #ifdef CONFIG_ZONE_DMA
2529 if (unlikely((flags
& SLUB_DMA
)))
2530 return dma_kmalloc_cache(index
, flags
);
2533 return &kmalloc_caches
[index
];
2536 void *__kmalloc(size_t size
, gfp_t flags
)
2538 struct kmem_cache
*s
;
2540 if (unlikely(size
> PAGE_SIZE
/ 2))
2541 return (void *)__get_free_pages(flags
| __GFP_COMP
,
2544 s
= get_slab(size
, flags
);
2546 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2549 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2551 EXPORT_SYMBOL(__kmalloc
);
2554 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2556 struct kmem_cache
*s
;
2558 if (unlikely(size
> PAGE_SIZE
/ 2))
2559 return (void *)__get_free_pages(flags
| __GFP_COMP
,
2562 s
= get_slab(size
, flags
);
2564 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2567 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2569 EXPORT_SYMBOL(__kmalloc_node
);
2572 size_t ksize(const void *object
)
2575 struct kmem_cache
*s
;
2578 if (unlikely(object
== ZERO_SIZE_PTR
))
2581 page
= get_object_page(object
);
2587 * Debugging requires use of the padding between object
2588 * and whatever may come after it.
2590 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2594 * If we have the need to store the freelist pointer
2595 * back there or track user information then we can
2596 * only use the space before that information.
2598 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2602 * Else we can use all the padding etc for the allocation
2606 EXPORT_SYMBOL(ksize
);
2608 void kfree(const void *x
)
2612 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2615 page
= virt_to_head_page(x
);
2616 if (unlikely(!PageSlab(page
))) {
2620 slab_free(page
->slab
, page
, (void *)x
, __builtin_return_address(0));
2622 EXPORT_SYMBOL(kfree
);
2625 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2626 * the remaining slabs by the number of items in use. The slabs with the
2627 * most items in use come first. New allocations will then fill those up
2628 * and thus they can be removed from the partial lists.
2630 * The slabs with the least items are placed last. This results in them
2631 * being allocated from last increasing the chance that the last objects
2632 * are freed in them.
2634 int kmem_cache_shrink(struct kmem_cache
*s
)
2638 struct kmem_cache_node
*n
;
2641 struct list_head
*slabs_by_inuse
=
2642 kmalloc(sizeof(struct list_head
) * s
->objects
, GFP_KERNEL
);
2643 unsigned long flags
;
2645 if (!slabs_by_inuse
)
2649 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2650 n
= get_node(s
, node
);
2655 for (i
= 0; i
< s
->objects
; i
++)
2656 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2658 spin_lock_irqsave(&n
->list_lock
, flags
);
2661 * Build lists indexed by the items in use in each slab.
2663 * Note that concurrent frees may occur while we hold the
2664 * list_lock. page->inuse here is the upper limit.
2666 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2667 if (!page
->inuse
&& slab_trylock(page
)) {
2669 * Must hold slab lock here because slab_free
2670 * may have freed the last object and be
2671 * waiting to release the slab.
2673 list_del(&page
->lru
);
2676 discard_slab(s
, page
);
2678 list_move(&page
->lru
,
2679 slabs_by_inuse
+ page
->inuse
);
2684 * Rebuild the partial list with the slabs filled up most
2685 * first and the least used slabs at the end.
2687 for (i
= s
->objects
- 1; i
>= 0; i
--)
2688 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2690 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2693 kfree(slabs_by_inuse
);
2696 EXPORT_SYMBOL(kmem_cache_shrink
);
2698 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2699 static int slab_mem_going_offline_callback(void *arg
)
2701 struct kmem_cache
*s
;
2703 down_read(&slub_lock
);
2704 list_for_each_entry(s
, &slab_caches
, list
)
2705 kmem_cache_shrink(s
);
2706 up_read(&slub_lock
);
2711 static void slab_mem_offline_callback(void *arg
)
2713 struct kmem_cache_node
*n
;
2714 struct kmem_cache
*s
;
2715 struct memory_notify
*marg
= arg
;
2718 offline_node
= marg
->status_change_nid
;
2721 * If the node still has available memory. we need kmem_cache_node
2724 if (offline_node
< 0)
2727 down_read(&slub_lock
);
2728 list_for_each_entry(s
, &slab_caches
, list
) {
2729 n
= get_node(s
, offline_node
);
2732 * if n->nr_slabs > 0, slabs still exist on the node
2733 * that is going down. We were unable to free them,
2734 * and offline_pages() function shoudn't call this
2735 * callback. So, we must fail.
2737 BUG_ON(atomic_read(&n
->nr_slabs
));
2739 s
->node
[offline_node
] = NULL
;
2740 kmem_cache_free(kmalloc_caches
, n
);
2743 up_read(&slub_lock
);
2746 static int slab_mem_going_online_callback(void *arg
)
2748 struct kmem_cache_node
*n
;
2749 struct kmem_cache
*s
;
2750 struct memory_notify
*marg
= arg
;
2751 int nid
= marg
->status_change_nid
;
2755 * If the node's memory is already available, then kmem_cache_node is
2756 * already created. Nothing to do.
2762 * We are bringing a node online. No memory is availabe yet. We must
2763 * allocate a kmem_cache_node structure in order to bring the node
2766 down_read(&slub_lock
);
2767 list_for_each_entry(s
, &slab_caches
, list
) {
2769 * XXX: kmem_cache_alloc_node will fallback to other nodes
2770 * since memory is not yet available from the node that
2773 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2778 init_kmem_cache_node(n
);
2782 up_read(&slub_lock
);
2786 static int slab_memory_callback(struct notifier_block
*self
,
2787 unsigned long action
, void *arg
)
2792 case MEM_GOING_ONLINE
:
2793 ret
= slab_mem_going_online_callback(arg
);
2795 case MEM_GOING_OFFLINE
:
2796 ret
= slab_mem_going_offline_callback(arg
);
2799 case MEM_CANCEL_ONLINE
:
2800 slab_mem_offline_callback(arg
);
2803 case MEM_CANCEL_OFFLINE
:
2807 ret
= notifier_from_errno(ret
);
2811 #endif /* CONFIG_MEMORY_HOTPLUG */
2813 /********************************************************************
2814 * Basic setup of slabs
2815 *******************************************************************/
2817 void __init
kmem_cache_init(void)
2826 * Must first have the slab cache available for the allocations of the
2827 * struct kmem_cache_node's. There is special bootstrap code in
2828 * kmem_cache_open for slab_state == DOWN.
2830 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2831 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2832 kmalloc_caches
[0].refcount
= -1;
2835 hotplug_memory_notifier(slab_memory_callback
, 1);
2838 /* Able to allocate the per node structures */
2839 slab_state
= PARTIAL
;
2841 /* Caches that are not of the two-to-the-power-of size */
2842 if (KMALLOC_MIN_SIZE
<= 64) {
2843 create_kmalloc_cache(&kmalloc_caches
[1],
2844 "kmalloc-96", 96, GFP_KERNEL
);
2847 if (KMALLOC_MIN_SIZE
<= 128) {
2848 create_kmalloc_cache(&kmalloc_caches
[2],
2849 "kmalloc-192", 192, GFP_KERNEL
);
2853 for (i
= KMALLOC_SHIFT_LOW
; i
< PAGE_SHIFT
; i
++) {
2854 create_kmalloc_cache(&kmalloc_caches
[i
],
2855 "kmalloc", 1 << i
, GFP_KERNEL
);
2861 * Patch up the size_index table if we have strange large alignment
2862 * requirements for the kmalloc array. This is only the case for
2863 * mips it seems. The standard arches will not generate any code here.
2865 * Largest permitted alignment is 256 bytes due to the way we
2866 * handle the index determination for the smaller caches.
2868 * Make sure that nothing crazy happens if someone starts tinkering
2869 * around with ARCH_KMALLOC_MINALIGN
2871 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
2872 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
2874 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
2875 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
2879 /* Provide the correct kmalloc names now that the caches are up */
2880 for (i
= KMALLOC_SHIFT_LOW
; i
< PAGE_SHIFT
; i
++)
2881 kmalloc_caches
[i
]. name
=
2882 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
2885 register_cpu_notifier(&slab_notifier
);
2886 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
2887 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
2889 kmem_size
= sizeof(struct kmem_cache
);
2893 printk(KERN_INFO
"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2894 " CPUs=%d, Nodes=%d\n",
2895 caches
, cache_line_size(),
2896 slub_min_order
, slub_max_order
, slub_min_objects
,
2897 nr_cpu_ids
, nr_node_ids
);
2901 * Find a mergeable slab cache
2903 static int slab_unmergeable(struct kmem_cache
*s
)
2905 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
2912 * We may have set a slab to be unmergeable during bootstrap.
2914 if (s
->refcount
< 0)
2920 static struct kmem_cache
*find_mergeable(size_t size
,
2921 size_t align
, unsigned long flags
, const char *name
,
2922 void (*ctor
)(struct kmem_cache
*, void *))
2924 struct kmem_cache
*s
;
2926 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
2932 size
= ALIGN(size
, sizeof(void *));
2933 align
= calculate_alignment(flags
, align
, size
);
2934 size
= ALIGN(size
, align
);
2935 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
2937 list_for_each_entry(s
, &slab_caches
, list
) {
2938 if (slab_unmergeable(s
))
2944 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
2947 * Check if alignment is compatible.
2948 * Courtesy of Adrian Drzewiecki
2950 if ((s
->size
& ~(align
-1)) != s
->size
)
2953 if (s
->size
- size
>= sizeof(void *))
2961 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
2962 size_t align
, unsigned long flags
,
2963 void (*ctor
)(struct kmem_cache
*, void *))
2965 struct kmem_cache
*s
;
2967 down_write(&slub_lock
);
2968 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
2974 * Adjust the object sizes so that we clear
2975 * the complete object on kzalloc.
2977 s
->objsize
= max(s
->objsize
, (int)size
);
2980 * And then we need to update the object size in the
2981 * per cpu structures
2983 for_each_online_cpu(cpu
)
2984 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
2985 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
2986 up_write(&slub_lock
);
2987 if (sysfs_slab_alias(s
, name
))
2991 s
= kmalloc(kmem_size
, GFP_KERNEL
);
2993 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
2994 size
, align
, flags
, ctor
)) {
2995 list_add(&s
->list
, &slab_caches
);
2996 up_write(&slub_lock
);
2997 if (sysfs_slab_add(s
))
3003 up_write(&slub_lock
);
3006 if (flags
& SLAB_PANIC
)
3007 panic("Cannot create slabcache %s\n", name
);
3012 EXPORT_SYMBOL(kmem_cache_create
);
3016 * Use the cpu notifier to insure that the cpu slabs are flushed when
3019 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3020 unsigned long action
, void *hcpu
)
3022 long cpu
= (long)hcpu
;
3023 struct kmem_cache
*s
;
3024 unsigned long flags
;
3027 case CPU_UP_PREPARE
:
3028 case CPU_UP_PREPARE_FROZEN
:
3029 init_alloc_cpu_cpu(cpu
);
3030 down_read(&slub_lock
);
3031 list_for_each_entry(s
, &slab_caches
, list
)
3032 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3034 up_read(&slub_lock
);
3037 case CPU_UP_CANCELED
:
3038 case CPU_UP_CANCELED_FROZEN
:
3040 case CPU_DEAD_FROZEN
:
3041 down_read(&slub_lock
);
3042 list_for_each_entry(s
, &slab_caches
, list
) {
3043 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3045 local_irq_save(flags
);
3046 __flush_cpu_slab(s
, cpu
);
3047 local_irq_restore(flags
);
3048 free_kmem_cache_cpu(c
, cpu
);
3049 s
->cpu_slab
[cpu
] = NULL
;
3051 up_read(&slub_lock
);
3059 static struct notifier_block __cpuinitdata slab_notifier
=
3060 { &slab_cpuup_callback
, NULL
, 0 };
3064 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3066 struct kmem_cache
*s
;
3068 if (unlikely(size
> PAGE_SIZE
/ 2))
3069 return (void *)__get_free_pages(gfpflags
| __GFP_COMP
,
3071 s
= get_slab(size
, gfpflags
);
3073 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3076 return slab_alloc(s
, gfpflags
, -1, caller
);
3079 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3080 int node
, void *caller
)
3082 struct kmem_cache
*s
;
3084 if (unlikely(size
> PAGE_SIZE
/ 2))
3085 return (void *)__get_free_pages(gfpflags
| __GFP_COMP
,
3087 s
= get_slab(size
, gfpflags
);
3089 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3092 return slab_alloc(s
, gfpflags
, node
, caller
);
3095 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3096 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3100 void *addr
= page_address(page
);
3102 if (!check_slab(s
, page
) ||
3103 !on_freelist(s
, page
, NULL
))
3106 /* Now we know that a valid freelist exists */
3107 bitmap_zero(map
, s
->objects
);
3109 for_each_free_object(p
, s
, page
->freelist
) {
3110 set_bit(slab_index(p
, s
, addr
), map
);
3111 if (!check_object(s
, page
, p
, 0))
3115 for_each_object(p
, s
, addr
)
3116 if (!test_bit(slab_index(p
, s
, addr
), map
))
3117 if (!check_object(s
, page
, p
, 1))
3122 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3125 if (slab_trylock(page
)) {
3126 validate_slab(s
, page
, map
);
3129 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3132 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3133 if (!SlabDebug(page
))
3134 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
3135 "on slab 0x%p\n", s
->name
, page
);
3137 if (SlabDebug(page
))
3138 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
3139 "slab 0x%p\n", s
->name
, page
);
3143 static int validate_slab_node(struct kmem_cache
*s
,
3144 struct kmem_cache_node
*n
, unsigned long *map
)
3146 unsigned long count
= 0;
3148 unsigned long flags
;
3150 spin_lock_irqsave(&n
->list_lock
, flags
);
3152 list_for_each_entry(page
, &n
->partial
, lru
) {
3153 validate_slab_slab(s
, page
, map
);
3156 if (count
!= n
->nr_partial
)
3157 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3158 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3160 if (!(s
->flags
& SLAB_STORE_USER
))
3163 list_for_each_entry(page
, &n
->full
, lru
) {
3164 validate_slab_slab(s
, page
, map
);
3167 if (count
!= atomic_long_read(&n
->nr_slabs
))
3168 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3169 "counter=%ld\n", s
->name
, count
,
3170 atomic_long_read(&n
->nr_slabs
));
3173 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3177 static long validate_slab_cache(struct kmem_cache
*s
)
3180 unsigned long count
= 0;
3181 unsigned long *map
= kmalloc(BITS_TO_LONGS(s
->objects
) *
3182 sizeof(unsigned long), GFP_KERNEL
);
3188 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3189 struct kmem_cache_node
*n
= get_node(s
, node
);
3191 count
+= validate_slab_node(s
, n
, map
);
3197 #ifdef SLUB_RESILIENCY_TEST
3198 static void resiliency_test(void)
3202 printk(KERN_ERR
"SLUB resiliency testing\n");
3203 printk(KERN_ERR
"-----------------------\n");
3204 printk(KERN_ERR
"A. Corruption after allocation\n");
3206 p
= kzalloc(16, GFP_KERNEL
);
3208 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3209 " 0x12->0x%p\n\n", p
+ 16);
3211 validate_slab_cache(kmalloc_caches
+ 4);
3213 /* Hmmm... The next two are dangerous */
3214 p
= kzalloc(32, GFP_KERNEL
);
3215 p
[32 + sizeof(void *)] = 0x34;
3216 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3217 " 0x34 -> -0x%p\n", p
);
3218 printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
3220 validate_slab_cache(kmalloc_caches
+ 5);
3221 p
= kzalloc(64, GFP_KERNEL
);
3222 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3224 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3226 printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
3227 validate_slab_cache(kmalloc_caches
+ 6);
3229 printk(KERN_ERR
"\nB. Corruption after free\n");
3230 p
= kzalloc(128, GFP_KERNEL
);
3233 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3234 validate_slab_cache(kmalloc_caches
+ 7);
3236 p
= kzalloc(256, GFP_KERNEL
);
3239 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
3240 validate_slab_cache(kmalloc_caches
+ 8);
3242 p
= kzalloc(512, GFP_KERNEL
);
3245 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3246 validate_slab_cache(kmalloc_caches
+ 9);
3249 static void resiliency_test(void) {};
3253 * Generate lists of code addresses where slabcache objects are allocated
3258 unsigned long count
;
3271 unsigned long count
;
3272 struct location
*loc
;
3275 static void free_loc_track(struct loc_track
*t
)
3278 free_pages((unsigned long)t
->loc
,
3279 get_order(sizeof(struct location
) * t
->max
));
3282 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3287 order
= get_order(sizeof(struct location
) * max
);
3289 l
= (void *)__get_free_pages(flags
, order
);
3294 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3302 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3303 const struct track
*track
)
3305 long start
, end
, pos
;
3308 unsigned long age
= jiffies
- track
->when
;
3314 pos
= start
+ (end
- start
+ 1) / 2;
3317 * There is nothing at "end". If we end up there
3318 * we need to add something to before end.
3323 caddr
= t
->loc
[pos
].addr
;
3324 if (track
->addr
== caddr
) {
3330 if (age
< l
->min_time
)
3332 if (age
> l
->max_time
)
3335 if (track
->pid
< l
->min_pid
)
3336 l
->min_pid
= track
->pid
;
3337 if (track
->pid
> l
->max_pid
)
3338 l
->max_pid
= track
->pid
;
3340 cpu_set(track
->cpu
, l
->cpus
);
3342 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3346 if (track
->addr
< caddr
)
3353 * Not found. Insert new tracking element.
3355 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3361 (t
->count
- pos
) * sizeof(struct location
));
3364 l
->addr
= track
->addr
;
3368 l
->min_pid
= track
->pid
;
3369 l
->max_pid
= track
->pid
;
3370 cpus_clear(l
->cpus
);
3371 cpu_set(track
->cpu
, l
->cpus
);
3372 nodes_clear(l
->nodes
);
3373 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3377 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3378 struct page
*page
, enum track_item alloc
)
3380 void *addr
= page_address(page
);
3381 DECLARE_BITMAP(map
, s
->objects
);
3384 bitmap_zero(map
, s
->objects
);
3385 for_each_free_object(p
, s
, page
->freelist
)
3386 set_bit(slab_index(p
, s
, addr
), map
);
3388 for_each_object(p
, s
, addr
)
3389 if (!test_bit(slab_index(p
, s
, addr
), map
))
3390 add_location(t
, s
, get_track(s
, p
, alloc
));
3393 static int list_locations(struct kmem_cache
*s
, char *buf
,
3394 enum track_item alloc
)
3398 struct loc_track t
= { 0, 0, NULL
};
3401 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3403 return sprintf(buf
, "Out of memory\n");
3405 /* Push back cpu slabs */
3408 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3409 struct kmem_cache_node
*n
= get_node(s
, node
);
3410 unsigned long flags
;
3413 if (!atomic_long_read(&n
->nr_slabs
))
3416 spin_lock_irqsave(&n
->list_lock
, flags
);
3417 list_for_each_entry(page
, &n
->partial
, lru
)
3418 process_slab(&t
, s
, page
, alloc
);
3419 list_for_each_entry(page
, &n
->full
, lru
)
3420 process_slab(&t
, s
, page
, alloc
);
3421 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3424 for (i
= 0; i
< t
.count
; i
++) {
3425 struct location
*l
= &t
.loc
[i
];
3427 if (n
> PAGE_SIZE
- 100)
3429 n
+= sprintf(buf
+ n
, "%7ld ", l
->count
);
3432 n
+= sprint_symbol(buf
+ n
, (unsigned long)l
->addr
);
3434 n
+= sprintf(buf
+ n
, "<not-available>");
3436 if (l
->sum_time
!= l
->min_time
) {
3437 unsigned long remainder
;
3439 n
+= sprintf(buf
+ n
, " age=%ld/%ld/%ld",
3441 div_long_long_rem(l
->sum_time
, l
->count
, &remainder
),
3444 n
+= sprintf(buf
+ n
, " age=%ld",
3447 if (l
->min_pid
!= l
->max_pid
)
3448 n
+= sprintf(buf
+ n
, " pid=%ld-%ld",
3449 l
->min_pid
, l
->max_pid
);
3451 n
+= sprintf(buf
+ n
, " pid=%ld",
3454 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3455 n
< PAGE_SIZE
- 60) {
3456 n
+= sprintf(buf
+ n
, " cpus=");
3457 n
+= cpulist_scnprintf(buf
+ n
, PAGE_SIZE
- n
- 50,
3461 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3462 n
< PAGE_SIZE
- 60) {
3463 n
+= sprintf(buf
+ n
, " nodes=");
3464 n
+= nodelist_scnprintf(buf
+ n
, PAGE_SIZE
- n
- 50,
3468 n
+= sprintf(buf
+ n
, "\n");
3473 n
+= sprintf(buf
, "No data\n");
3477 static unsigned long count_partial(struct kmem_cache_node
*n
)
3479 unsigned long flags
;
3480 unsigned long x
= 0;
3483 spin_lock_irqsave(&n
->list_lock
, flags
);
3484 list_for_each_entry(page
, &n
->partial
, lru
)
3486 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3490 enum slab_stat_type
{
3497 #define SO_FULL (1 << SL_FULL)
3498 #define SO_PARTIAL (1 << SL_PARTIAL)
3499 #define SO_CPU (1 << SL_CPU)
3500 #define SO_OBJECTS (1 << SL_OBJECTS)
3502 static unsigned long slab_objects(struct kmem_cache
*s
,
3503 char *buf
, unsigned long flags
)
3505 unsigned long total
= 0;
3509 unsigned long *nodes
;
3510 unsigned long *per_cpu
;
3512 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3513 per_cpu
= nodes
+ nr_node_ids
;
3515 for_each_possible_cpu(cpu
) {
3518 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3528 if (flags
& SO_CPU
) {
3531 if (flags
& SO_OBJECTS
)
3542 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3543 struct kmem_cache_node
*n
= get_node(s
, node
);
3545 if (flags
& SO_PARTIAL
) {
3546 if (flags
& SO_OBJECTS
)
3547 x
= count_partial(n
);
3554 if (flags
& SO_FULL
) {
3555 int full_slabs
= atomic_long_read(&n
->nr_slabs
)
3559 if (flags
& SO_OBJECTS
)
3560 x
= full_slabs
* s
->objects
;
3568 x
= sprintf(buf
, "%lu", total
);
3570 for_each_node_state(node
, N_NORMAL_MEMORY
)
3572 x
+= sprintf(buf
+ x
, " N%d=%lu",
3576 return x
+ sprintf(buf
+ x
, "\n");
3579 static int any_slab_objects(struct kmem_cache
*s
)
3584 for_each_possible_cpu(cpu
) {
3585 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3591 for_each_online_node(node
) {
3592 struct kmem_cache_node
*n
= get_node(s
, node
);
3597 if (n
->nr_partial
|| atomic_long_read(&n
->nr_slabs
))
3603 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3604 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3606 struct slab_attribute
{
3607 struct attribute attr
;
3608 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3609 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3612 #define SLAB_ATTR_RO(_name) \
3613 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3615 #define SLAB_ATTR(_name) \
3616 static struct slab_attribute _name##_attr = \
3617 __ATTR(_name, 0644, _name##_show, _name##_store)
3619 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3621 return sprintf(buf
, "%d\n", s
->size
);
3623 SLAB_ATTR_RO(slab_size
);
3625 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3627 return sprintf(buf
, "%d\n", s
->align
);
3629 SLAB_ATTR_RO(align
);
3631 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3633 return sprintf(buf
, "%d\n", s
->objsize
);
3635 SLAB_ATTR_RO(object_size
);
3637 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3639 return sprintf(buf
, "%d\n", s
->objects
);
3641 SLAB_ATTR_RO(objs_per_slab
);
3643 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3645 return sprintf(buf
, "%d\n", s
->order
);
3647 SLAB_ATTR_RO(order
);
3649 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3652 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3654 return n
+ sprintf(buf
+ n
, "\n");
3660 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3662 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3664 SLAB_ATTR_RO(aliases
);
3666 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3668 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
);
3670 SLAB_ATTR_RO(slabs
);
3672 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3674 return slab_objects(s
, buf
, SO_PARTIAL
);
3676 SLAB_ATTR_RO(partial
);
3678 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3680 return slab_objects(s
, buf
, SO_CPU
);
3682 SLAB_ATTR_RO(cpu_slabs
);
3684 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3686 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
|SO_OBJECTS
);
3688 SLAB_ATTR_RO(objects
);
3690 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3692 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3695 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3696 const char *buf
, size_t length
)
3698 s
->flags
&= ~SLAB_DEBUG_FREE
;
3700 s
->flags
|= SLAB_DEBUG_FREE
;
3703 SLAB_ATTR(sanity_checks
);
3705 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3707 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3710 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3713 s
->flags
&= ~SLAB_TRACE
;
3715 s
->flags
|= SLAB_TRACE
;
3720 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3722 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3725 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3726 const char *buf
, size_t length
)
3728 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3730 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3733 SLAB_ATTR(reclaim_account
);
3735 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3737 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3739 SLAB_ATTR_RO(hwcache_align
);
3741 #ifdef CONFIG_ZONE_DMA
3742 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3744 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3746 SLAB_ATTR_RO(cache_dma
);
3749 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3751 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3753 SLAB_ATTR_RO(destroy_by_rcu
);
3755 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3757 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3760 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3761 const char *buf
, size_t length
)
3763 if (any_slab_objects(s
))
3766 s
->flags
&= ~SLAB_RED_ZONE
;
3768 s
->flags
|= SLAB_RED_ZONE
;
3772 SLAB_ATTR(red_zone
);
3774 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3776 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3779 static ssize_t
poison_store(struct kmem_cache
*s
,
3780 const char *buf
, size_t length
)
3782 if (any_slab_objects(s
))
3785 s
->flags
&= ~SLAB_POISON
;
3787 s
->flags
|= SLAB_POISON
;
3793 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3795 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3798 static ssize_t
store_user_store(struct kmem_cache
*s
,
3799 const char *buf
, size_t length
)
3801 if (any_slab_objects(s
))
3804 s
->flags
&= ~SLAB_STORE_USER
;
3806 s
->flags
|= SLAB_STORE_USER
;
3810 SLAB_ATTR(store_user
);
3812 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
3817 static ssize_t
validate_store(struct kmem_cache
*s
,
3818 const char *buf
, size_t length
)
3822 if (buf
[0] == '1') {
3823 ret
= validate_slab_cache(s
);
3829 SLAB_ATTR(validate
);
3831 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
3836 static ssize_t
shrink_store(struct kmem_cache
*s
,
3837 const char *buf
, size_t length
)
3839 if (buf
[0] == '1') {
3840 int rc
= kmem_cache_shrink(s
);
3850 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
3852 if (!(s
->flags
& SLAB_STORE_USER
))
3854 return list_locations(s
, buf
, TRACK_ALLOC
);
3856 SLAB_ATTR_RO(alloc_calls
);
3858 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
3860 if (!(s
->flags
& SLAB_STORE_USER
))
3862 return list_locations(s
, buf
, TRACK_FREE
);
3864 SLAB_ATTR_RO(free_calls
);
3867 static ssize_t
defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
3869 return sprintf(buf
, "%d\n", s
->defrag_ratio
/ 10);
3872 static ssize_t
defrag_ratio_store(struct kmem_cache
*s
,
3873 const char *buf
, size_t length
)
3875 int n
= simple_strtoul(buf
, NULL
, 10);
3878 s
->defrag_ratio
= n
* 10;
3881 SLAB_ATTR(defrag_ratio
);
3884 static struct attribute
* slab_attrs
[] = {
3885 &slab_size_attr
.attr
,
3886 &object_size_attr
.attr
,
3887 &objs_per_slab_attr
.attr
,
3892 &cpu_slabs_attr
.attr
,
3896 &sanity_checks_attr
.attr
,
3898 &hwcache_align_attr
.attr
,
3899 &reclaim_account_attr
.attr
,
3900 &destroy_by_rcu_attr
.attr
,
3901 &red_zone_attr
.attr
,
3903 &store_user_attr
.attr
,
3904 &validate_attr
.attr
,
3906 &alloc_calls_attr
.attr
,
3907 &free_calls_attr
.attr
,
3908 #ifdef CONFIG_ZONE_DMA
3909 &cache_dma_attr
.attr
,
3912 &defrag_ratio_attr
.attr
,
3917 static struct attribute_group slab_attr_group
= {
3918 .attrs
= slab_attrs
,
3921 static ssize_t
slab_attr_show(struct kobject
*kobj
,
3922 struct attribute
*attr
,
3925 struct slab_attribute
*attribute
;
3926 struct kmem_cache
*s
;
3929 attribute
= to_slab_attr(attr
);
3932 if (!attribute
->show
)
3935 err
= attribute
->show(s
, buf
);
3940 static ssize_t
slab_attr_store(struct kobject
*kobj
,
3941 struct attribute
*attr
,
3942 const char *buf
, size_t len
)
3944 struct slab_attribute
*attribute
;
3945 struct kmem_cache
*s
;
3948 attribute
= to_slab_attr(attr
);
3951 if (!attribute
->store
)
3954 err
= attribute
->store(s
, buf
, len
);
3959 static struct sysfs_ops slab_sysfs_ops
= {
3960 .show
= slab_attr_show
,
3961 .store
= slab_attr_store
,
3964 static struct kobj_type slab_ktype
= {
3965 .sysfs_ops
= &slab_sysfs_ops
,
3968 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
3970 struct kobj_type
*ktype
= get_ktype(kobj
);
3972 if (ktype
== &slab_ktype
)
3977 static struct kset_uevent_ops slab_uevent_ops
= {
3978 .filter
= uevent_filter
,
3981 static decl_subsys(slab
, &slab_ktype
, &slab_uevent_ops
);
3983 #define ID_STR_LENGTH 64
3985 /* Create a unique string id for a slab cache:
3987 * :[flags-]size:[memory address of kmemcache]
3989 static char *create_unique_id(struct kmem_cache
*s
)
3991 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
3998 * First flags affecting slabcache operations. We will only
3999 * get here for aliasable slabs so we do not need to support
4000 * too many flags. The flags here must cover all flags that
4001 * are matched during merging to guarantee that the id is
4004 if (s
->flags
& SLAB_CACHE_DMA
)
4006 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4008 if (s
->flags
& SLAB_DEBUG_FREE
)
4012 p
+= sprintf(p
, "%07d", s
->size
);
4013 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4017 static int sysfs_slab_add(struct kmem_cache
*s
)
4023 if (slab_state
< SYSFS
)
4024 /* Defer until later */
4027 unmergeable
= slab_unmergeable(s
);
4030 * Slabcache can never be merged so we can use the name proper.
4031 * This is typically the case for debug situations. In that
4032 * case we can catch duplicate names easily.
4034 sysfs_remove_link(&slab_subsys
.kobj
, s
->name
);
4038 * Create a unique name for the slab as a target
4041 name
= create_unique_id(s
);
4044 kobj_set_kset_s(s
, slab_subsys
);
4045 kobject_set_name(&s
->kobj
, name
);
4046 kobject_init(&s
->kobj
);
4047 err
= kobject_add(&s
->kobj
);
4051 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4054 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4056 /* Setup first alias */
4057 sysfs_slab_alias(s
, s
->name
);
4063 static void sysfs_slab_remove(struct kmem_cache
*s
)
4065 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4066 kobject_del(&s
->kobj
);
4070 * Need to buffer aliases during bootup until sysfs becomes
4071 * available lest we loose that information.
4073 struct saved_alias
{
4074 struct kmem_cache
*s
;
4076 struct saved_alias
*next
;
4079 static struct saved_alias
*alias_list
;
4081 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4083 struct saved_alias
*al
;
4085 if (slab_state
== SYSFS
) {
4087 * If we have a leftover link then remove it.
4089 sysfs_remove_link(&slab_subsys
.kobj
, name
);
4090 return sysfs_create_link(&slab_subsys
.kobj
,
4094 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4100 al
->next
= alias_list
;
4105 static int __init
slab_sysfs_init(void)
4107 struct kmem_cache
*s
;
4110 err
= subsystem_register(&slab_subsys
);
4112 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4118 list_for_each_entry(s
, &slab_caches
, list
) {
4119 err
= sysfs_slab_add(s
);
4121 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4122 " to sysfs\n", s
->name
);
4125 while (alias_list
) {
4126 struct saved_alias
*al
= alias_list
;
4128 alias_list
= alias_list
->next
;
4129 err
= sysfs_slab_alias(al
->s
, al
->name
);
4131 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4132 " %s to sysfs\n", s
->name
);
4140 __initcall(slab_sysfs_init
);