2 * Definitions for the 'struct sk_buff' memory handlers.
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 /* Don't change this without changing skb_csum_unnecessary! */
33 #define CHECKSUM_NONE 0
34 #define CHECKSUM_UNNECESSARY 1
35 #define CHECKSUM_COMPLETE 2
36 #define CHECKSUM_PARTIAL 3
38 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
39 ~(SMP_CACHE_BYTES - 1))
40 #define SKB_WITH_OVERHEAD(X) \
41 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
42 #define SKB_MAX_ORDER(X, ORDER) \
43 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
44 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
45 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
47 /* A. Checksumming of received packets by device.
49 * NONE: device failed to checksum this packet.
50 * skb->csum is undefined.
52 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
53 * skb->csum is undefined.
54 * It is bad option, but, unfortunately, many of vendors do this.
55 * Apparently with secret goal to sell you new device, when you
56 * will add new protocol to your host. F.e. IPv6. 8)
58 * COMPLETE: the most generic way. Device supplied checksum of _all_
59 * the packet as seen by netif_rx in skb->csum.
60 * NOTE: Even if device supports only some protocols, but
61 * is able to produce some skb->csum, it MUST use COMPLETE,
64 * PARTIAL: identical to the case for output below. This may occur
65 * on a packet received directly from another Linux OS, e.g.,
66 * a virtualised Linux kernel on the same host. The packet can
67 * be treated in the same way as UNNECESSARY except that on
68 * output (i.e., forwarding) the checksum must be filled in
69 * by the OS or the hardware.
71 * B. Checksumming on output.
73 * NONE: skb is checksummed by protocol or csum is not required.
75 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
76 * from skb->csum_start to the end and to record the checksum
77 * at skb->csum_start + skb->csum_offset.
79 * Device must show its capabilities in dev->features, set
80 * at device setup time.
81 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
83 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
84 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
85 * TCP/UDP over IPv4. Sigh. Vendors like this
86 * way by an unknown reason. Though, see comment above
87 * about CHECKSUM_UNNECESSARY. 8)
88 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
90 * Any questions? No questions, good. --ANK
95 struct pipe_inode_info
;
97 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
103 #ifdef CONFIG_BRIDGE_NETFILTER
104 struct nf_bridge_info
{
106 struct net_device
*physindev
;
107 struct net_device
*physoutdev
;
109 unsigned long data
[32 / sizeof(unsigned long)];
113 struct sk_buff_head
{
114 /* These two members must be first. */
115 struct sk_buff
*next
;
116 struct sk_buff
*prev
;
124 /* To allow 64K frame to be packed as single skb without frag_list */
125 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
127 typedef struct skb_frag_struct skb_frag_t
;
129 struct skb_frag_struct
{
135 #define HAVE_HW_TIME_STAMP
138 * struct skb_shared_hwtstamps - hardware time stamps
139 * @hwtstamp: hardware time stamp transformed into duration
140 * since arbitrary point in time
141 * @syststamp: hwtstamp transformed to system time base
143 * Software time stamps generated by ktime_get_real() are stored in
144 * skb->tstamp. The relation between the different kinds of time
145 * stamps is as follows:
147 * syststamp and tstamp can be compared against each other in
148 * arbitrary combinations. The accuracy of a
149 * syststamp/tstamp/"syststamp from other device" comparison is
150 * limited by the accuracy of the transformation into system time
151 * base. This depends on the device driver and its underlying
154 * hwtstamps can only be compared against other hwtstamps from
157 * This structure is attached to packets as part of the
158 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
160 struct skb_shared_hwtstamps
{
166 * struct skb_shared_tx - instructions for time stamping of outgoing packets
167 * @hardware: generate hardware time stamp
168 * @software: generate software time stamp
169 * @in_progress: device driver is going to provide
170 * hardware time stamp
171 * @flags: all shared_tx flags
173 * These flags are attached to packets as part of the
174 * &skb_shared_info. Use skb_tx() to get a pointer.
176 union skb_shared_tx
{
185 /* This data is invariant across clones and lives at
186 * the end of the header data, ie. at skb->end.
188 struct skb_shared_info
{
190 unsigned short nr_frags
;
191 unsigned short gso_size
;
192 /* Warning: this field is not always filled in (UFO)! */
193 unsigned short gso_segs
;
194 unsigned short gso_type
;
196 union skb_shared_tx tx_flags
;
197 #ifdef CONFIG_HAS_DMA
198 unsigned int num_dma_maps
;
200 struct sk_buff
*frag_list
;
201 struct skb_shared_hwtstamps hwtstamps
;
202 skb_frag_t frags
[MAX_SKB_FRAGS
];
203 #ifdef CONFIG_HAS_DMA
204 dma_addr_t dma_maps
[MAX_SKB_FRAGS
+ 1];
208 /* We divide dataref into two halves. The higher 16 bits hold references
209 * to the payload part of skb->data. The lower 16 bits hold references to
210 * the entire skb->data. A clone of a headerless skb holds the length of
211 * the header in skb->hdr_len.
213 * All users must obey the rule that the skb->data reference count must be
214 * greater than or equal to the payload reference count.
216 * Holding a reference to the payload part means that the user does not
217 * care about modifications to the header part of skb->data.
219 #define SKB_DATAREF_SHIFT 16
220 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
224 SKB_FCLONE_UNAVAILABLE
,
230 SKB_GSO_TCPV4
= 1 << 0,
231 SKB_GSO_UDP
= 1 << 1,
233 /* This indicates the skb is from an untrusted source. */
234 SKB_GSO_DODGY
= 1 << 2,
236 /* This indicates the tcp segment has CWR set. */
237 SKB_GSO_TCP_ECN
= 1 << 3,
239 SKB_GSO_TCPV6
= 1 << 4,
241 SKB_GSO_FCOE
= 1 << 5,
244 #if BITS_PER_LONG > 32
245 #define NET_SKBUFF_DATA_USES_OFFSET 1
248 #ifdef NET_SKBUFF_DATA_USES_OFFSET
249 typedef unsigned int sk_buff_data_t
;
251 typedef unsigned char *sk_buff_data_t
;
255 * struct sk_buff - socket buffer
256 * @next: Next buffer in list
257 * @prev: Previous buffer in list
258 * @sk: Socket we are owned by
259 * @tstamp: Time we arrived
260 * @dev: Device we arrived on/are leaving by
261 * @transport_header: Transport layer header
262 * @network_header: Network layer header
263 * @mac_header: Link layer header
264 * @dst: destination entry
265 * @sp: the security path, used for xfrm
266 * @cb: Control buffer. Free for use by every layer. Put private vars here
267 * @len: Length of actual data
268 * @data_len: Data length
269 * @mac_len: Length of link layer header
270 * @hdr_len: writable header length of cloned skb
271 * @csum: Checksum (must include start/offset pair)
272 * @csum_start: Offset from skb->head where checksumming should start
273 * @csum_offset: Offset from csum_start where checksum should be stored
274 * @local_df: allow local fragmentation
275 * @cloned: Head may be cloned (check refcnt to be sure)
276 * @nohdr: Payload reference only, must not modify header
277 * @pkt_type: Packet class
278 * @fclone: skbuff clone status
279 * @ip_summed: Driver fed us an IP checksum
280 * @priority: Packet queueing priority
281 * @users: User count - see {datagram,tcp}.c
282 * @protocol: Packet protocol from driver
283 * @truesize: Buffer size
284 * @head: Head of buffer
285 * @data: Data head pointer
286 * @tail: Tail pointer
288 * @destructor: Destruct function
289 * @mark: Generic packet mark
290 * @nfct: Associated connection, if any
291 * @ipvs_property: skbuff is owned by ipvs
292 * @peeked: this packet has been seen already, so stats have been
293 * done for it, don't do them again
294 * @nf_trace: netfilter packet trace flag
295 * @nfctinfo: Relationship of this skb to the connection
296 * @nfct_reasm: netfilter conntrack re-assembly pointer
297 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
298 * @iif: ifindex of device we arrived on
299 * @queue_mapping: Queue mapping for multiqueue devices
300 * @tc_index: Traffic control index
301 * @tc_verd: traffic control verdict
302 * @ndisc_nodetype: router type (from link layer)
303 * @do_not_encrypt: set to prevent encryption of this frame
304 * @requeue: set to indicate that the wireless core should attempt
305 * a software retry on this frame if we failed to
306 * receive an ACK for it
307 * @dma_cookie: a cookie to one of several possible DMA operations
308 * done by skb DMA functions
309 * @secmark: security marking
310 * @vlan_tci: vlan tag control information
314 /* These two members must be first. */
315 struct sk_buff
*next
;
316 struct sk_buff
*prev
;
320 struct net_device
*dev
;
323 struct dst_entry
*dst
;
324 struct rtable
*rtable
;
330 * This is the control buffer. It is free to use for every
331 * layer. Please put your private variables there. If you
332 * want to keep them across layers you have to do a skb_clone()
333 * first. This is owned by whoever has the skb queued ATM.
361 void (*destructor
)(struct sk_buff
*skb
);
362 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
363 struct nf_conntrack
*nfct
;
364 struct sk_buff
*nfct_reasm
;
366 #ifdef CONFIG_BRIDGE_NETFILTER
367 struct nf_bridge_info
*nf_bridge
;
372 #ifdef CONFIG_NET_SCHED
373 __u16 tc_index
; /* traffic control index */
374 #ifdef CONFIG_NET_CLS_ACT
375 __u16 tc_verd
; /* traffic control verdict */
378 #ifdef CONFIG_IPV6_NDISC_NODETYPE
379 __u8 ndisc_nodetype
:2;
381 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
382 __u8 do_not_encrypt
:1;
385 /* 0/13/14 bit hole */
387 #ifdef CONFIG_NET_DMA
388 dma_cookie_t dma_cookie
;
390 #ifdef CONFIG_NETWORK_SECMARK
398 sk_buff_data_t transport_header
;
399 sk_buff_data_t network_header
;
400 sk_buff_data_t mac_header
;
401 /* These elements must be at the end, see alloc_skb() for details. */
406 unsigned int truesize
;
412 * Handling routines are only of interest to the kernel
414 #include <linux/slab.h>
416 #include <asm/system.h>
418 #ifdef CONFIG_HAS_DMA
419 #include <linux/dma-mapping.h>
420 extern int skb_dma_map(struct device
*dev
, struct sk_buff
*skb
,
421 enum dma_data_direction dir
);
422 extern void skb_dma_unmap(struct device
*dev
, struct sk_buff
*skb
,
423 enum dma_data_direction dir
);
426 extern void kfree_skb(struct sk_buff
*skb
);
427 extern void consume_skb(struct sk_buff
*skb
);
428 extern void __kfree_skb(struct sk_buff
*skb
);
429 extern struct sk_buff
*__alloc_skb(unsigned int size
,
430 gfp_t priority
, int fclone
, int node
);
431 static inline struct sk_buff
*alloc_skb(unsigned int size
,
434 return __alloc_skb(size
, priority
, 0, -1);
437 static inline struct sk_buff
*alloc_skb_fclone(unsigned int size
,
440 return __alloc_skb(size
, priority
, 1, -1);
443 extern int skb_recycle_check(struct sk_buff
*skb
, int skb_size
);
445 extern struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
);
446 extern struct sk_buff
*skb_clone(struct sk_buff
*skb
,
448 extern struct sk_buff
*skb_copy(const struct sk_buff
*skb
,
450 extern struct sk_buff
*pskb_copy(struct sk_buff
*skb
,
452 extern int pskb_expand_head(struct sk_buff
*skb
,
453 int nhead
, int ntail
,
455 extern struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
,
456 unsigned int headroom
);
457 extern struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
458 int newheadroom
, int newtailroom
,
460 extern int skb_to_sgvec(struct sk_buff
*skb
,
461 struct scatterlist
*sg
, int offset
,
463 extern int skb_cow_data(struct sk_buff
*skb
, int tailbits
,
464 struct sk_buff
**trailer
);
465 extern int skb_pad(struct sk_buff
*skb
, int pad
);
466 #define dev_kfree_skb(a) consume_skb(a)
467 #define dev_consume_skb(a) kfree_skb_clean(a)
468 extern void skb_over_panic(struct sk_buff
*skb
, int len
,
470 extern void skb_under_panic(struct sk_buff
*skb
, int len
,
473 extern int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
474 int getfrag(void *from
, char *to
, int offset
,
475 int len
,int odd
, struct sk_buff
*skb
),
476 void *from
, int length
);
483 __u32 stepped_offset
;
484 struct sk_buff
*root_skb
;
485 struct sk_buff
*cur_skb
;
489 extern void skb_prepare_seq_read(struct sk_buff
*skb
,
490 unsigned int from
, unsigned int to
,
491 struct skb_seq_state
*st
);
492 extern unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
493 struct skb_seq_state
*st
);
494 extern void skb_abort_seq_read(struct skb_seq_state
*st
);
496 extern unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
497 unsigned int to
, struct ts_config
*config
,
498 struct ts_state
*state
);
500 #ifdef NET_SKBUFF_DATA_USES_OFFSET
501 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
503 return skb
->head
+ skb
->end
;
506 static inline unsigned char *skb_end_pointer(const struct sk_buff
*skb
)
513 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
515 static inline struct skb_shared_hwtstamps
*skb_hwtstamps(struct sk_buff
*skb
)
517 return &skb_shinfo(skb
)->hwtstamps
;
520 static inline union skb_shared_tx
*skb_tx(struct sk_buff
*skb
)
522 return &skb_shinfo(skb
)->tx_flags
;
526 * skb_queue_empty - check if a queue is empty
529 * Returns true if the queue is empty, false otherwise.
531 static inline int skb_queue_empty(const struct sk_buff_head
*list
)
533 return list
->next
== (struct sk_buff
*)list
;
537 * skb_queue_is_last - check if skb is the last entry in the queue
541 * Returns true if @skb is the last buffer on the list.
543 static inline bool skb_queue_is_last(const struct sk_buff_head
*list
,
544 const struct sk_buff
*skb
)
546 return (skb
->next
== (struct sk_buff
*) list
);
550 * skb_queue_is_first - check if skb is the first entry in the queue
554 * Returns true if @skb is the first buffer on the list.
556 static inline bool skb_queue_is_first(const struct sk_buff_head
*list
,
557 const struct sk_buff
*skb
)
559 return (skb
->prev
== (struct sk_buff
*) list
);
563 * skb_queue_next - return the next packet in the queue
565 * @skb: current buffer
567 * Return the next packet in @list after @skb. It is only valid to
568 * call this if skb_queue_is_last() evaluates to false.
570 static inline struct sk_buff
*skb_queue_next(const struct sk_buff_head
*list
,
571 const struct sk_buff
*skb
)
573 /* This BUG_ON may seem severe, but if we just return then we
574 * are going to dereference garbage.
576 BUG_ON(skb_queue_is_last(list
, skb
));
581 * skb_queue_prev - return the prev packet in the queue
583 * @skb: current buffer
585 * Return the prev packet in @list before @skb. It is only valid to
586 * call this if skb_queue_is_first() evaluates to false.
588 static inline struct sk_buff
*skb_queue_prev(const struct sk_buff_head
*list
,
589 const struct sk_buff
*skb
)
591 /* This BUG_ON may seem severe, but if we just return then we
592 * are going to dereference garbage.
594 BUG_ON(skb_queue_is_first(list
, skb
));
599 * skb_get - reference buffer
600 * @skb: buffer to reference
602 * Makes another reference to a socket buffer and returns a pointer
605 static inline struct sk_buff
*skb_get(struct sk_buff
*skb
)
607 atomic_inc(&skb
->users
);
612 * If users == 1, we are the only owner and are can avoid redundant
617 * skb_cloned - is the buffer a clone
618 * @skb: buffer to check
620 * Returns true if the buffer was generated with skb_clone() and is
621 * one of multiple shared copies of the buffer. Cloned buffers are
622 * shared data so must not be written to under normal circumstances.
624 static inline int skb_cloned(const struct sk_buff
*skb
)
626 return skb
->cloned
&&
627 (atomic_read(&skb_shinfo(skb
)->dataref
) & SKB_DATAREF_MASK
) != 1;
631 * skb_header_cloned - is the header a clone
632 * @skb: buffer to check
634 * Returns true if modifying the header part of the buffer requires
635 * the data to be copied.
637 static inline int skb_header_cloned(const struct sk_buff
*skb
)
644 dataref
= atomic_read(&skb_shinfo(skb
)->dataref
);
645 dataref
= (dataref
& SKB_DATAREF_MASK
) - (dataref
>> SKB_DATAREF_SHIFT
);
650 * skb_header_release - release reference to header
651 * @skb: buffer to operate on
653 * Drop a reference to the header part of the buffer. This is done
654 * by acquiring a payload reference. You must not read from the header
655 * part of skb->data after this.
657 static inline void skb_header_release(struct sk_buff
*skb
)
661 atomic_add(1 << SKB_DATAREF_SHIFT
, &skb_shinfo(skb
)->dataref
);
665 * skb_shared - is the buffer shared
666 * @skb: buffer to check
668 * Returns true if more than one person has a reference to this
671 static inline int skb_shared(const struct sk_buff
*skb
)
673 return atomic_read(&skb
->users
) != 1;
677 * skb_share_check - check if buffer is shared and if so clone it
678 * @skb: buffer to check
679 * @pri: priority for memory allocation
681 * If the buffer is shared the buffer is cloned and the old copy
682 * drops a reference. A new clone with a single reference is returned.
683 * If the buffer is not shared the original buffer is returned. When
684 * being called from interrupt status or with spinlocks held pri must
687 * NULL is returned on a memory allocation failure.
689 static inline struct sk_buff
*skb_share_check(struct sk_buff
*skb
,
692 might_sleep_if(pri
& __GFP_WAIT
);
693 if (skb_shared(skb
)) {
694 struct sk_buff
*nskb
= skb_clone(skb
, pri
);
702 * Copy shared buffers into a new sk_buff. We effectively do COW on
703 * packets to handle cases where we have a local reader and forward
704 * and a couple of other messy ones. The normal one is tcpdumping
705 * a packet thats being forwarded.
709 * skb_unshare - make a copy of a shared buffer
710 * @skb: buffer to check
711 * @pri: priority for memory allocation
713 * If the socket buffer is a clone then this function creates a new
714 * copy of the data, drops a reference count on the old copy and returns
715 * the new copy with the reference count at 1. If the buffer is not a clone
716 * the original buffer is returned. When called with a spinlock held or
717 * from interrupt state @pri must be %GFP_ATOMIC
719 * %NULL is returned on a memory allocation failure.
721 static inline struct sk_buff
*skb_unshare(struct sk_buff
*skb
,
724 might_sleep_if(pri
& __GFP_WAIT
);
725 if (skb_cloned(skb
)) {
726 struct sk_buff
*nskb
= skb_copy(skb
, pri
);
727 kfree_skb(skb
); /* Free our shared copy */
735 * @list_: list to peek at
737 * Peek an &sk_buff. Unlike most other operations you _MUST_
738 * be careful with this one. A peek leaves the buffer on the
739 * list and someone else may run off with it. You must hold
740 * the appropriate locks or have a private queue to do this.
742 * Returns %NULL for an empty list or a pointer to the head element.
743 * The reference count is not incremented and the reference is therefore
744 * volatile. Use with caution.
746 static inline struct sk_buff
*skb_peek(struct sk_buff_head
*list_
)
748 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->next
;
749 if (list
== (struct sk_buff
*)list_
)
756 * @list_: list to peek at
758 * Peek an &sk_buff. Unlike most other operations you _MUST_
759 * be careful with this one. A peek leaves the buffer on the
760 * list and someone else may run off with it. You must hold
761 * the appropriate locks or have a private queue to do this.
763 * Returns %NULL for an empty list or a pointer to the tail element.
764 * The reference count is not incremented and the reference is therefore
765 * volatile. Use with caution.
767 static inline struct sk_buff
*skb_peek_tail(struct sk_buff_head
*list_
)
769 struct sk_buff
*list
= ((struct sk_buff
*)list_
)->prev
;
770 if (list
== (struct sk_buff
*)list_
)
776 * skb_queue_len - get queue length
777 * @list_: list to measure
779 * Return the length of an &sk_buff queue.
781 static inline __u32
skb_queue_len(const struct sk_buff_head
*list_
)
787 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
788 * @list: queue to initialize
790 * This initializes only the list and queue length aspects of
791 * an sk_buff_head object. This allows to initialize the list
792 * aspects of an sk_buff_head without reinitializing things like
793 * the spinlock. It can also be used for on-stack sk_buff_head
794 * objects where the spinlock is known to not be used.
796 static inline void __skb_queue_head_init(struct sk_buff_head
*list
)
798 list
->prev
= list
->next
= (struct sk_buff
*)list
;
803 * This function creates a split out lock class for each invocation;
804 * this is needed for now since a whole lot of users of the skb-queue
805 * infrastructure in drivers have different locking usage (in hardirq)
806 * than the networking core (in softirq only). In the long run either the
807 * network layer or drivers should need annotation to consolidate the
808 * main types of usage into 3 classes.
810 static inline void skb_queue_head_init(struct sk_buff_head
*list
)
812 spin_lock_init(&list
->lock
);
813 __skb_queue_head_init(list
);
816 static inline void skb_queue_head_init_class(struct sk_buff_head
*list
,
817 struct lock_class_key
*class)
819 skb_queue_head_init(list
);
820 lockdep_set_class(&list
->lock
, class);
824 * Insert an sk_buff on a list.
826 * The "__skb_xxxx()" functions are the non-atomic ones that
827 * can only be called with interrupts disabled.
829 extern void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
);
830 static inline void __skb_insert(struct sk_buff
*newsk
,
831 struct sk_buff
*prev
, struct sk_buff
*next
,
832 struct sk_buff_head
*list
)
836 next
->prev
= prev
->next
= newsk
;
840 static inline void __skb_queue_splice(const struct sk_buff_head
*list
,
841 struct sk_buff
*prev
,
842 struct sk_buff
*next
)
844 struct sk_buff
*first
= list
->next
;
845 struct sk_buff
*last
= list
->prev
;
855 * skb_queue_splice - join two skb lists, this is designed for stacks
856 * @list: the new list to add
857 * @head: the place to add it in the first list
859 static inline void skb_queue_splice(const struct sk_buff_head
*list
,
860 struct sk_buff_head
*head
)
862 if (!skb_queue_empty(list
)) {
863 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
864 head
->qlen
+= list
->qlen
;
869 * skb_queue_splice - join two skb lists and reinitialise the emptied list
870 * @list: the new list to add
871 * @head: the place to add it in the first list
873 * The list at @list is reinitialised
875 static inline void skb_queue_splice_init(struct sk_buff_head
*list
,
876 struct sk_buff_head
*head
)
878 if (!skb_queue_empty(list
)) {
879 __skb_queue_splice(list
, (struct sk_buff
*) head
, head
->next
);
880 head
->qlen
+= list
->qlen
;
881 __skb_queue_head_init(list
);
886 * skb_queue_splice_tail - join two skb lists, each list being a queue
887 * @list: the new list to add
888 * @head: the place to add it in the first list
890 static inline void skb_queue_splice_tail(const struct sk_buff_head
*list
,
891 struct sk_buff_head
*head
)
893 if (!skb_queue_empty(list
)) {
894 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
895 head
->qlen
+= list
->qlen
;
900 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
901 * @list: the new list to add
902 * @head: the place to add it in the first list
904 * Each of the lists is a queue.
905 * The list at @list is reinitialised
907 static inline void skb_queue_splice_tail_init(struct sk_buff_head
*list
,
908 struct sk_buff_head
*head
)
910 if (!skb_queue_empty(list
)) {
911 __skb_queue_splice(list
, head
->prev
, (struct sk_buff
*) head
);
912 head
->qlen
+= list
->qlen
;
913 __skb_queue_head_init(list
);
918 * __skb_queue_after - queue a buffer at the list head
920 * @prev: place after this buffer
921 * @newsk: buffer to queue
923 * Queue a buffer int the middle of a list. This function takes no locks
924 * and you must therefore hold required locks before calling it.
926 * A buffer cannot be placed on two lists at the same time.
928 static inline void __skb_queue_after(struct sk_buff_head
*list
,
929 struct sk_buff
*prev
,
930 struct sk_buff
*newsk
)
932 __skb_insert(newsk
, prev
, prev
->next
, list
);
935 extern void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
,
936 struct sk_buff_head
*list
);
938 static inline void __skb_queue_before(struct sk_buff_head
*list
,
939 struct sk_buff
*next
,
940 struct sk_buff
*newsk
)
942 __skb_insert(newsk
, next
->prev
, next
, list
);
946 * __skb_queue_head - queue a buffer at the list head
948 * @newsk: buffer to queue
950 * Queue a buffer at the start of a list. This function takes no locks
951 * and you must therefore hold required locks before calling it.
953 * A buffer cannot be placed on two lists at the same time.
955 extern void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
956 static inline void __skb_queue_head(struct sk_buff_head
*list
,
957 struct sk_buff
*newsk
)
959 __skb_queue_after(list
, (struct sk_buff
*)list
, newsk
);
963 * __skb_queue_tail - queue a buffer at the list tail
965 * @newsk: buffer to queue
967 * Queue a buffer at the end of a list. This function takes no locks
968 * and you must therefore hold required locks before calling it.
970 * A buffer cannot be placed on two lists at the same time.
972 extern void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
);
973 static inline void __skb_queue_tail(struct sk_buff_head
*list
,
974 struct sk_buff
*newsk
)
976 __skb_queue_before(list
, (struct sk_buff
*)list
, newsk
);
980 * remove sk_buff from list. _Must_ be called atomically, and with
983 extern void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
);
984 static inline void __skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
986 struct sk_buff
*next
, *prev
;
991 skb
->next
= skb
->prev
= NULL
;
997 * __skb_dequeue - remove from the head of the queue
998 * @list: list to dequeue from
1000 * Remove the head of the list. This function does not take any locks
1001 * so must be used with appropriate locks held only. The head item is
1002 * returned or %NULL if the list is empty.
1004 extern struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
);
1005 static inline struct sk_buff
*__skb_dequeue(struct sk_buff_head
*list
)
1007 struct sk_buff
*skb
= skb_peek(list
);
1009 __skb_unlink(skb
, list
);
1014 * __skb_dequeue_tail - remove from the tail of the queue
1015 * @list: list to dequeue from
1017 * Remove the tail of the list. This function does not take any locks
1018 * so must be used with appropriate locks held only. The tail item is
1019 * returned or %NULL if the list is empty.
1021 extern struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
);
1022 static inline struct sk_buff
*__skb_dequeue_tail(struct sk_buff_head
*list
)
1024 struct sk_buff
*skb
= skb_peek_tail(list
);
1026 __skb_unlink(skb
, list
);
1031 static inline int skb_is_nonlinear(const struct sk_buff
*skb
)
1033 return skb
->data_len
;
1036 static inline unsigned int skb_headlen(const struct sk_buff
*skb
)
1038 return skb
->len
- skb
->data_len
;
1041 static inline int skb_pagelen(const struct sk_buff
*skb
)
1045 for (i
= (int)skb_shinfo(skb
)->nr_frags
- 1; i
>= 0; i
--)
1046 len
+= skb_shinfo(skb
)->frags
[i
].size
;
1047 return len
+ skb_headlen(skb
);
1050 static inline void skb_fill_page_desc(struct sk_buff
*skb
, int i
,
1051 struct page
*page
, int off
, int size
)
1053 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1056 frag
->page_offset
= off
;
1058 skb_shinfo(skb
)->nr_frags
= i
+ 1;
1061 extern void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
,
1064 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1065 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
1066 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1068 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1069 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1071 return skb
->head
+ skb
->tail
;
1074 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1076 skb
->tail
= skb
->data
- skb
->head
;
1079 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1081 skb_reset_tail_pointer(skb
);
1082 skb
->tail
+= offset
;
1084 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1085 static inline unsigned char *skb_tail_pointer(const struct sk_buff
*skb
)
1090 static inline void skb_reset_tail_pointer(struct sk_buff
*skb
)
1092 skb
->tail
= skb
->data
;
1095 static inline void skb_set_tail_pointer(struct sk_buff
*skb
, const int offset
)
1097 skb
->tail
= skb
->data
+ offset
;
1100 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1103 * Add data to an sk_buff
1105 extern unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
);
1106 static inline unsigned char *__skb_put(struct sk_buff
*skb
, unsigned int len
)
1108 unsigned char *tmp
= skb_tail_pointer(skb
);
1109 SKB_LINEAR_ASSERT(skb
);
1115 extern unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
);
1116 static inline unsigned char *__skb_push(struct sk_buff
*skb
, unsigned int len
)
1123 extern unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
);
1124 static inline unsigned char *__skb_pull(struct sk_buff
*skb
, unsigned int len
)
1127 BUG_ON(skb
->len
< skb
->data_len
);
1128 return skb
->data
+= len
;
1131 extern unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
);
1133 static inline unsigned char *__pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1135 if (len
> skb_headlen(skb
) &&
1136 !__pskb_pull_tail(skb
, len
- skb_headlen(skb
)))
1139 return skb
->data
+= len
;
1142 static inline unsigned char *pskb_pull(struct sk_buff
*skb
, unsigned int len
)
1144 return unlikely(len
> skb
->len
) ? NULL
: __pskb_pull(skb
, len
);
1147 static inline int pskb_may_pull(struct sk_buff
*skb
, unsigned int len
)
1149 if (likely(len
<= skb_headlen(skb
)))
1151 if (unlikely(len
> skb
->len
))
1153 return __pskb_pull_tail(skb
, len
- skb_headlen(skb
)) != NULL
;
1157 * skb_headroom - bytes at buffer head
1158 * @skb: buffer to check
1160 * Return the number of bytes of free space at the head of an &sk_buff.
1162 static inline unsigned int skb_headroom(const struct sk_buff
*skb
)
1164 return skb
->data
- skb
->head
;
1168 * skb_tailroom - bytes at buffer end
1169 * @skb: buffer to check
1171 * Return the number of bytes of free space at the tail of an sk_buff
1173 static inline int skb_tailroom(const struct sk_buff
*skb
)
1175 return skb_is_nonlinear(skb
) ? 0 : skb
->end
- skb
->tail
;
1179 * skb_reserve - adjust headroom
1180 * @skb: buffer to alter
1181 * @len: bytes to move
1183 * Increase the headroom of an empty &sk_buff by reducing the tail
1184 * room. This is only allowed for an empty buffer.
1186 static inline void skb_reserve(struct sk_buff
*skb
, int len
)
1192 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1193 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1195 return skb
->head
+ skb
->transport_header
;
1198 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1200 skb
->transport_header
= skb
->data
- skb
->head
;
1203 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1206 skb_reset_transport_header(skb
);
1207 skb
->transport_header
+= offset
;
1210 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1212 return skb
->head
+ skb
->network_header
;
1215 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1217 skb
->network_header
= skb
->data
- skb
->head
;
1220 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1222 skb_reset_network_header(skb
);
1223 skb
->network_header
+= offset
;
1226 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1228 return skb
->head
+ skb
->mac_header
;
1231 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1233 return skb
->mac_header
!= ~0U;
1236 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1238 skb
->mac_header
= skb
->data
- skb
->head
;
1241 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1243 skb_reset_mac_header(skb
);
1244 skb
->mac_header
+= offset
;
1247 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1249 static inline unsigned char *skb_transport_header(const struct sk_buff
*skb
)
1251 return skb
->transport_header
;
1254 static inline void skb_reset_transport_header(struct sk_buff
*skb
)
1256 skb
->transport_header
= skb
->data
;
1259 static inline void skb_set_transport_header(struct sk_buff
*skb
,
1262 skb
->transport_header
= skb
->data
+ offset
;
1265 static inline unsigned char *skb_network_header(const struct sk_buff
*skb
)
1267 return skb
->network_header
;
1270 static inline void skb_reset_network_header(struct sk_buff
*skb
)
1272 skb
->network_header
= skb
->data
;
1275 static inline void skb_set_network_header(struct sk_buff
*skb
, const int offset
)
1277 skb
->network_header
= skb
->data
+ offset
;
1280 static inline unsigned char *skb_mac_header(const struct sk_buff
*skb
)
1282 return skb
->mac_header
;
1285 static inline int skb_mac_header_was_set(const struct sk_buff
*skb
)
1287 return skb
->mac_header
!= NULL
;
1290 static inline void skb_reset_mac_header(struct sk_buff
*skb
)
1292 skb
->mac_header
= skb
->data
;
1295 static inline void skb_set_mac_header(struct sk_buff
*skb
, const int offset
)
1297 skb
->mac_header
= skb
->data
+ offset
;
1299 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1301 static inline int skb_transport_offset(const struct sk_buff
*skb
)
1303 return skb_transport_header(skb
) - skb
->data
;
1306 static inline u32
skb_network_header_len(const struct sk_buff
*skb
)
1308 return skb
->transport_header
- skb
->network_header
;
1311 static inline int skb_network_offset(const struct sk_buff
*skb
)
1313 return skb_network_header(skb
) - skb
->data
;
1317 * CPUs often take a performance hit when accessing unaligned memory
1318 * locations. The actual performance hit varies, it can be small if the
1319 * hardware handles it or large if we have to take an exception and fix it
1322 * Since an ethernet header is 14 bytes network drivers often end up with
1323 * the IP header at an unaligned offset. The IP header can be aligned by
1324 * shifting the start of the packet by 2 bytes. Drivers should do this
1327 * skb_reserve(NET_IP_ALIGN);
1329 * The downside to this alignment of the IP header is that the DMA is now
1330 * unaligned. On some architectures the cost of an unaligned DMA is high
1331 * and this cost outweighs the gains made by aligning the IP header.
1333 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1336 #ifndef NET_IP_ALIGN
1337 #define NET_IP_ALIGN 2
1341 * The networking layer reserves some headroom in skb data (via
1342 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1343 * the header has to grow. In the default case, if the header has to grow
1344 * 32 bytes or less we avoid the reallocation.
1346 * Unfortunately this headroom changes the DMA alignment of the resulting
1347 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1348 * on some architectures. An architecture can override this value,
1349 * perhaps setting it to a cacheline in size (since that will maintain
1350 * cacheline alignment of the DMA). It must be a power of 2.
1352 * Various parts of the networking layer expect at least 32 bytes of
1353 * headroom, you should not reduce this.
1356 #define NET_SKB_PAD 32
1359 extern int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
);
1361 static inline void __skb_trim(struct sk_buff
*skb
, unsigned int len
)
1363 if (unlikely(skb
->data_len
)) {
1368 skb_set_tail_pointer(skb
, len
);
1371 extern void skb_trim(struct sk_buff
*skb
, unsigned int len
);
1373 static inline int __pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1376 return ___pskb_trim(skb
, len
);
1377 __skb_trim(skb
, len
);
1381 static inline int pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1383 return (len
< skb
->len
) ? __pskb_trim(skb
, len
) : 0;
1387 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1388 * @skb: buffer to alter
1391 * This is identical to pskb_trim except that the caller knows that
1392 * the skb is not cloned so we should never get an error due to out-
1395 static inline void pskb_trim_unique(struct sk_buff
*skb
, unsigned int len
)
1397 int err
= pskb_trim(skb
, len
);
1402 * skb_orphan - orphan a buffer
1403 * @skb: buffer to orphan
1405 * If a buffer currently has an owner then we call the owner's
1406 * destructor function and make the @skb unowned. The buffer continues
1407 * to exist but is no longer charged to its former owner.
1409 static inline void skb_orphan(struct sk_buff
*skb
)
1411 if (skb
->destructor
)
1412 skb
->destructor(skb
);
1413 skb
->destructor
= NULL
;
1418 * __skb_queue_purge - empty a list
1419 * @list: list to empty
1421 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1422 * the list and one reference dropped. This function does not take the
1423 * list lock and the caller must hold the relevant locks to use it.
1425 extern void skb_queue_purge(struct sk_buff_head
*list
);
1426 static inline void __skb_queue_purge(struct sk_buff_head
*list
)
1428 struct sk_buff
*skb
;
1429 while ((skb
= __skb_dequeue(list
)) != NULL
)
1434 * __dev_alloc_skb - allocate an skbuff for receiving
1435 * @length: length to allocate
1436 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1438 * Allocate a new &sk_buff and assign it a usage count of one. The
1439 * buffer has unspecified headroom built in. Users should allocate
1440 * the headroom they think they need without accounting for the
1441 * built in space. The built in space is used for optimisations.
1443 * %NULL is returned if there is no free memory.
1445 static inline struct sk_buff
*__dev_alloc_skb(unsigned int length
,
1448 struct sk_buff
*skb
= alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
);
1450 skb_reserve(skb
, NET_SKB_PAD
);
1454 extern struct sk_buff
*dev_alloc_skb(unsigned int length
);
1456 extern struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
1457 unsigned int length
, gfp_t gfp_mask
);
1460 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1461 * @dev: network device to receive on
1462 * @length: length to allocate
1464 * Allocate a new &sk_buff and assign it a usage count of one. The
1465 * buffer has unspecified headroom built in. Users should allocate
1466 * the headroom they think they need without accounting for the
1467 * built in space. The built in space is used for optimisations.
1469 * %NULL is returned if there is no free memory. Although this function
1470 * allocates memory it can be called from an interrupt.
1472 static inline struct sk_buff
*netdev_alloc_skb(struct net_device
*dev
,
1473 unsigned int length
)
1475 return __netdev_alloc_skb(dev
, length
, GFP_ATOMIC
);
1478 extern struct page
*__netdev_alloc_page(struct net_device
*dev
, gfp_t gfp_mask
);
1481 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1482 * @dev: network device to receive on
1484 * Allocate a new page node local to the specified device.
1486 * %NULL is returned if there is no free memory.
1488 static inline struct page
*netdev_alloc_page(struct net_device
*dev
)
1490 return __netdev_alloc_page(dev
, GFP_ATOMIC
);
1493 static inline void netdev_free_page(struct net_device
*dev
, struct page
*page
)
1499 * skb_clone_writable - is the header of a clone writable
1500 * @skb: buffer to check
1501 * @len: length up to which to write
1503 * Returns true if modifying the header part of the cloned buffer
1504 * does not requires the data to be copied.
1506 static inline int skb_clone_writable(struct sk_buff
*skb
, unsigned int len
)
1508 return !skb_header_cloned(skb
) &&
1509 skb_headroom(skb
) + len
<= skb
->hdr_len
;
1512 static inline int __skb_cow(struct sk_buff
*skb
, unsigned int headroom
,
1517 if (headroom
< NET_SKB_PAD
)
1518 headroom
= NET_SKB_PAD
;
1519 if (headroom
> skb_headroom(skb
))
1520 delta
= headroom
- skb_headroom(skb
);
1522 if (delta
|| cloned
)
1523 return pskb_expand_head(skb
, ALIGN(delta
, NET_SKB_PAD
), 0,
1529 * skb_cow - copy header of skb when it is required
1530 * @skb: buffer to cow
1531 * @headroom: needed headroom
1533 * If the skb passed lacks sufficient headroom or its data part
1534 * is shared, data is reallocated. If reallocation fails, an error
1535 * is returned and original skb is not changed.
1537 * The result is skb with writable area skb->head...skb->tail
1538 * and at least @headroom of space at head.
1540 static inline int skb_cow(struct sk_buff
*skb
, unsigned int headroom
)
1542 return __skb_cow(skb
, headroom
, skb_cloned(skb
));
1546 * skb_cow_head - skb_cow but only making the head writable
1547 * @skb: buffer to cow
1548 * @headroom: needed headroom
1550 * This function is identical to skb_cow except that we replace the
1551 * skb_cloned check by skb_header_cloned. It should be used when
1552 * you only need to push on some header and do not need to modify
1555 static inline int skb_cow_head(struct sk_buff
*skb
, unsigned int headroom
)
1557 return __skb_cow(skb
, headroom
, skb_header_cloned(skb
));
1561 * skb_padto - pad an skbuff up to a minimal size
1562 * @skb: buffer to pad
1563 * @len: minimal length
1565 * Pads up a buffer to ensure the trailing bytes exist and are
1566 * blanked. If the buffer already contains sufficient data it
1567 * is untouched. Otherwise it is extended. Returns zero on
1568 * success. The skb is freed on error.
1571 static inline int skb_padto(struct sk_buff
*skb
, unsigned int len
)
1573 unsigned int size
= skb
->len
;
1574 if (likely(size
>= len
))
1576 return skb_pad(skb
, len
- size
);
1579 static inline int skb_add_data(struct sk_buff
*skb
,
1580 char __user
*from
, int copy
)
1582 const int off
= skb
->len
;
1584 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1586 __wsum csum
= csum_and_copy_from_user(from
, skb_put(skb
, copy
),
1589 skb
->csum
= csum_block_add(skb
->csum
, csum
, off
);
1592 } else if (!copy_from_user(skb_put(skb
, copy
), from
, copy
))
1595 __skb_trim(skb
, off
);
1599 static inline int skb_can_coalesce(struct sk_buff
*skb
, int i
,
1600 struct page
*page
, int off
)
1603 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
1605 return page
== frag
->page
&&
1606 off
== frag
->page_offset
+ frag
->size
;
1611 static inline int __skb_linearize(struct sk_buff
*skb
)
1613 return __pskb_pull_tail(skb
, skb
->data_len
) ? 0 : -ENOMEM
;
1617 * skb_linearize - convert paged skb to linear one
1618 * @skb: buffer to linarize
1620 * If there is no free memory -ENOMEM is returned, otherwise zero
1621 * is returned and the old skb data released.
1623 static inline int skb_linearize(struct sk_buff
*skb
)
1625 return skb_is_nonlinear(skb
) ? __skb_linearize(skb
) : 0;
1629 * skb_linearize_cow - make sure skb is linear and writable
1630 * @skb: buffer to process
1632 * If there is no free memory -ENOMEM is returned, otherwise zero
1633 * is returned and the old skb data released.
1635 static inline int skb_linearize_cow(struct sk_buff
*skb
)
1637 return skb_is_nonlinear(skb
) || skb_cloned(skb
) ?
1638 __skb_linearize(skb
) : 0;
1642 * skb_postpull_rcsum - update checksum for received skb after pull
1643 * @skb: buffer to update
1644 * @start: start of data before pull
1645 * @len: length of data pulled
1647 * After doing a pull on a received packet, you need to call this to
1648 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1649 * CHECKSUM_NONE so that it can be recomputed from scratch.
1652 static inline void skb_postpull_rcsum(struct sk_buff
*skb
,
1653 const void *start
, unsigned int len
)
1655 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1656 skb
->csum
= csum_sub(skb
->csum
, csum_partial(start
, len
, 0));
1659 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
);
1662 * pskb_trim_rcsum - trim received skb and update checksum
1663 * @skb: buffer to trim
1666 * This is exactly the same as pskb_trim except that it ensures the
1667 * checksum of received packets are still valid after the operation.
1670 static inline int pskb_trim_rcsum(struct sk_buff
*skb
, unsigned int len
)
1672 if (likely(len
>= skb
->len
))
1674 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1675 skb
->ip_summed
= CHECKSUM_NONE
;
1676 return __pskb_trim(skb
, len
);
1679 #define skb_queue_walk(queue, skb) \
1680 for (skb = (queue)->next; \
1681 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1684 #define skb_queue_walk_safe(queue, skb, tmp) \
1685 for (skb = (queue)->next, tmp = skb->next; \
1686 skb != (struct sk_buff *)(queue); \
1687 skb = tmp, tmp = skb->next)
1689 #define skb_queue_walk_from(queue, skb) \
1690 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1693 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1694 for (tmp = skb->next; \
1695 skb != (struct sk_buff *)(queue); \
1696 skb = tmp, tmp = skb->next)
1698 #define skb_queue_reverse_walk(queue, skb) \
1699 for (skb = (queue)->prev; \
1700 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1704 extern struct sk_buff
*__skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1705 int *peeked
, int *err
);
1706 extern struct sk_buff
*skb_recv_datagram(struct sock
*sk
, unsigned flags
,
1707 int noblock
, int *err
);
1708 extern unsigned int datagram_poll(struct file
*file
, struct socket
*sock
,
1709 struct poll_table_struct
*wait
);
1710 extern int skb_copy_datagram_iovec(const struct sk_buff
*from
,
1711 int offset
, struct iovec
*to
,
1713 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff
*skb
,
1716 extern int skb_copy_datagram_from_iovec(struct sk_buff
*skb
,
1720 extern void skb_free_datagram(struct sock
*sk
, struct sk_buff
*skb
);
1721 extern int skb_kill_datagram(struct sock
*sk
, struct sk_buff
*skb
,
1722 unsigned int flags
);
1723 extern __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1724 int len
, __wsum csum
);
1725 extern int skb_copy_bits(const struct sk_buff
*skb
, int offset
,
1727 extern int skb_store_bits(struct sk_buff
*skb
, int offset
,
1728 const void *from
, int len
);
1729 extern __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
,
1730 int offset
, u8
*to
, int len
,
1732 extern int skb_splice_bits(struct sk_buff
*skb
,
1733 unsigned int offset
,
1734 struct pipe_inode_info
*pipe
,
1736 unsigned int flags
);
1737 extern void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
);
1738 extern void skb_split(struct sk_buff
*skb
,
1739 struct sk_buff
*skb1
, const u32 len
);
1740 extern int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
,
1743 extern struct sk_buff
*skb_segment(struct sk_buff
*skb
, int features
);
1745 static inline void *skb_header_pointer(const struct sk_buff
*skb
, int offset
,
1746 int len
, void *buffer
)
1748 int hlen
= skb_headlen(skb
);
1750 if (hlen
- offset
>= len
)
1751 return skb
->data
+ offset
;
1753 if (skb_copy_bits(skb
, offset
, buffer
, len
) < 0)
1759 static inline void skb_copy_from_linear_data(const struct sk_buff
*skb
,
1761 const unsigned int len
)
1763 memcpy(to
, skb
->data
, len
);
1766 static inline void skb_copy_from_linear_data_offset(const struct sk_buff
*skb
,
1767 const int offset
, void *to
,
1768 const unsigned int len
)
1770 memcpy(to
, skb
->data
+ offset
, len
);
1773 static inline void skb_copy_to_linear_data(struct sk_buff
*skb
,
1775 const unsigned int len
)
1777 memcpy(skb
->data
, from
, len
);
1780 static inline void skb_copy_to_linear_data_offset(struct sk_buff
*skb
,
1783 const unsigned int len
)
1785 memcpy(skb
->data
+ offset
, from
, len
);
1788 extern void skb_init(void);
1790 static inline ktime_t
skb_get_ktime(const struct sk_buff
*skb
)
1796 * skb_get_timestamp - get timestamp from a skb
1797 * @skb: skb to get stamp from
1798 * @stamp: pointer to struct timeval to store stamp in
1800 * Timestamps are stored in the skb as offsets to a base timestamp.
1801 * This function converts the offset back to a struct timeval and stores
1804 static inline void skb_get_timestamp(const struct sk_buff
*skb
,
1805 struct timeval
*stamp
)
1807 *stamp
= ktime_to_timeval(skb
->tstamp
);
1810 static inline void skb_get_timestampns(const struct sk_buff
*skb
,
1811 struct timespec
*stamp
)
1813 *stamp
= ktime_to_timespec(skb
->tstamp
);
1816 static inline void __net_timestamp(struct sk_buff
*skb
)
1818 skb
->tstamp
= ktime_get_real();
1821 static inline ktime_t
net_timedelta(ktime_t t
)
1823 return ktime_sub(ktime_get_real(), t
);
1826 static inline ktime_t
net_invalid_timestamp(void)
1828 return ktime_set(0, 0);
1832 * skb_tstamp_tx - queue clone of skb with send time stamps
1833 * @orig_skb: the original outgoing packet
1834 * @hwtstamps: hardware time stamps, may be NULL if not available
1836 * If the skb has a socket associated, then this function clones the
1837 * skb (thus sharing the actual data and optional structures), stores
1838 * the optional hardware time stamping information (if non NULL) or
1839 * generates a software time stamp (otherwise), then queues the clone
1840 * to the error queue of the socket. Errors are silently ignored.
1842 extern void skb_tstamp_tx(struct sk_buff
*orig_skb
,
1843 struct skb_shared_hwtstamps
*hwtstamps
);
1845 extern __sum16
__skb_checksum_complete_head(struct sk_buff
*skb
, int len
);
1846 extern __sum16
__skb_checksum_complete(struct sk_buff
*skb
);
1848 static inline int skb_csum_unnecessary(const struct sk_buff
*skb
)
1850 return skb
->ip_summed
& CHECKSUM_UNNECESSARY
;
1854 * skb_checksum_complete - Calculate checksum of an entire packet
1855 * @skb: packet to process
1857 * This function calculates the checksum over the entire packet plus
1858 * the value of skb->csum. The latter can be used to supply the
1859 * checksum of a pseudo header as used by TCP/UDP. It returns the
1862 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1863 * this function can be used to verify that checksum on received
1864 * packets. In that case the function should return zero if the
1865 * checksum is correct. In particular, this function will return zero
1866 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1867 * hardware has already verified the correctness of the checksum.
1869 static inline __sum16
skb_checksum_complete(struct sk_buff
*skb
)
1871 return skb_csum_unnecessary(skb
) ?
1872 0 : __skb_checksum_complete(skb
);
1875 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1876 extern void nf_conntrack_destroy(struct nf_conntrack
*nfct
);
1877 static inline void nf_conntrack_put(struct nf_conntrack
*nfct
)
1879 if (nfct
&& atomic_dec_and_test(&nfct
->use
))
1880 nf_conntrack_destroy(nfct
);
1882 static inline void nf_conntrack_get(struct nf_conntrack
*nfct
)
1885 atomic_inc(&nfct
->use
);
1887 static inline void nf_conntrack_get_reasm(struct sk_buff
*skb
)
1890 atomic_inc(&skb
->users
);
1892 static inline void nf_conntrack_put_reasm(struct sk_buff
*skb
)
1898 #ifdef CONFIG_BRIDGE_NETFILTER
1899 static inline void nf_bridge_put(struct nf_bridge_info
*nf_bridge
)
1901 if (nf_bridge
&& atomic_dec_and_test(&nf_bridge
->use
))
1904 static inline void nf_bridge_get(struct nf_bridge_info
*nf_bridge
)
1907 atomic_inc(&nf_bridge
->use
);
1909 #endif /* CONFIG_BRIDGE_NETFILTER */
1910 static inline void nf_reset(struct sk_buff
*skb
)
1912 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1913 nf_conntrack_put(skb
->nfct
);
1915 nf_conntrack_put_reasm(skb
->nfct_reasm
);
1916 skb
->nfct_reasm
= NULL
;
1918 #ifdef CONFIG_BRIDGE_NETFILTER
1919 nf_bridge_put(skb
->nf_bridge
);
1920 skb
->nf_bridge
= NULL
;
1924 /* Note: This doesn't put any conntrack and bridge info in dst. */
1925 static inline void __nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1927 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1928 dst
->nfct
= src
->nfct
;
1929 nf_conntrack_get(src
->nfct
);
1930 dst
->nfctinfo
= src
->nfctinfo
;
1931 dst
->nfct_reasm
= src
->nfct_reasm
;
1932 nf_conntrack_get_reasm(src
->nfct_reasm
);
1934 #ifdef CONFIG_BRIDGE_NETFILTER
1935 dst
->nf_bridge
= src
->nf_bridge
;
1936 nf_bridge_get(src
->nf_bridge
);
1940 static inline void nf_copy(struct sk_buff
*dst
, const struct sk_buff
*src
)
1942 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1943 nf_conntrack_put(dst
->nfct
);
1944 nf_conntrack_put_reasm(dst
->nfct_reasm
);
1946 #ifdef CONFIG_BRIDGE_NETFILTER
1947 nf_bridge_put(dst
->nf_bridge
);
1949 __nf_copy(dst
, src
);
1952 #ifdef CONFIG_NETWORK_SECMARK
1953 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1955 to
->secmark
= from
->secmark
;
1958 static inline void skb_init_secmark(struct sk_buff
*skb
)
1963 static inline void skb_copy_secmark(struct sk_buff
*to
, const struct sk_buff
*from
)
1966 static inline void skb_init_secmark(struct sk_buff
*skb
)
1970 static inline void skb_set_queue_mapping(struct sk_buff
*skb
, u16 queue_mapping
)
1972 skb
->queue_mapping
= queue_mapping
;
1975 static inline u16
skb_get_queue_mapping(const struct sk_buff
*skb
)
1977 return skb
->queue_mapping
;
1980 static inline void skb_copy_queue_mapping(struct sk_buff
*to
, const struct sk_buff
*from
)
1982 to
->queue_mapping
= from
->queue_mapping
;
1985 static inline void skb_record_rx_queue(struct sk_buff
*skb
, u16 rx_queue
)
1987 skb
->queue_mapping
= rx_queue
+ 1;
1990 static inline u16
skb_get_rx_queue(const struct sk_buff
*skb
)
1992 return skb
->queue_mapping
- 1;
1995 static inline bool skb_rx_queue_recorded(const struct sk_buff
*skb
)
1997 return (skb
->queue_mapping
!= 0);
2000 extern u16
skb_tx_hash(const struct net_device
*dev
,
2001 const struct sk_buff
*skb
);
2004 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
2009 static inline struct sec_path
*skb_sec_path(struct sk_buff
*skb
)
2015 static inline int skb_is_gso(const struct sk_buff
*skb
)
2017 return skb_shinfo(skb
)->gso_size
;
2020 static inline int skb_is_gso_v6(const struct sk_buff
*skb
)
2022 return skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
;
2025 extern void __skb_warn_lro_forwarding(const struct sk_buff
*skb
);
2027 static inline bool skb_warn_if_lro(const struct sk_buff
*skb
)
2029 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2030 * wanted then gso_type will be set. */
2031 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
2032 if (shinfo
->gso_size
!= 0 && unlikely(shinfo
->gso_type
== 0)) {
2033 __skb_warn_lro_forwarding(skb
);
2039 static inline void skb_forward_csum(struct sk_buff
*skb
)
2041 /* Unfortunately we don't support this one. Any brave souls? */
2042 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2043 skb
->ip_summed
= CHECKSUM_NONE
;
2046 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
);
2047 #endif /* __KERNEL__ */
2048 #endif /* _LINUX_SKBUFF_H */