2 kmod, the new module loader (replaces kerneld)
5 Reorganized not to be a daemon by Adam Richter, with guidance
8 Modified to avoid chroot and file sharing problems.
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/smp_lock.h>
27 #include <linux/slab.h>
28 #include <linux/mnt_namespace.h>
29 #include <linux/completion.h>
30 #include <linux/file.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <asm/uaccess.h>
39 extern int delete_module(const char *name
, unsigned int flags
);
41 extern int max_threads
;
43 static struct workqueue_struct
*khelper_wq
;
48 modprobe_path is set via /proc/sys.
50 char modprobe_path
[KMOD_PATH_LEN
] = "/sbin/modprobe";
51 struct module_kobject kmod_mk
;
54 * request_module - try to load a kernel module
55 * @fmt: printf style format string for the name of the module
56 * @varargs: arguements as specified in the format string
58 * Load a module using the user mode module loader. The function returns
59 * zero on success or a negative errno code on failure. Note that a
60 * successful module load does not mean the module did not then unload
61 * and exit on an error of its own. Callers must check that the service
62 * they requested is now available not blindly invoke it.
64 * If module auto-loading support is disabled then this function
65 * becomes a no-operation.
67 int request_module(const char *fmt
, ...)
70 char module_name
[MODULE_NAME_LEN
];
71 unsigned int max_modprobes
;
73 char *argv
[] = { modprobe_path
, "-q", "--", module_name
, NULL
};
74 static char *envp
[] = { "HOME=/",
76 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
78 static atomic_t kmod_concurrent
= ATOMIC_INIT(0);
79 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
80 static int kmod_loop_msg
;
81 char modalias
[16 + MODULE_NAME_LEN
] = "MODALIAS=";
82 char *uevent_envp
[2] = {
88 ret
= vsnprintf(module_name
, MODULE_NAME_LEN
, fmt
, args
);
90 if (ret
>= MODULE_NAME_LEN
)
93 strcpy(&modalias
[strlen("MODALIAS=")], module_name
);
94 kobject_uevent_env(&kmod_mk
.kobj
, KOBJ_CHANGE
, uevent_envp
);
96 if (modprobe_path
[0] == '\0')
99 /* If modprobe needs a service that is in a module, we get a recursive
100 * loop. Limit the number of running kmod threads to max_threads/2 or
101 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
102 * would be to run the parents of this process, counting how many times
103 * kmod was invoked. That would mean accessing the internals of the
104 * process tables to get the command line, proc_pid_cmdline is static
105 * and it is not worth changing the proc code just to handle this case.
108 * "trace the ppid" is simple, but will fail if someone's
109 * parent exits. I think this is as good as it gets. --RR
111 max_modprobes
= min(max_threads
/2, MAX_KMOD_CONCURRENT
);
112 atomic_inc(&kmod_concurrent
);
113 if (atomic_read(&kmod_concurrent
) > max_modprobes
) {
114 /* We may be blaming an innocent here, but unlikely */
115 if (kmod_loop_msg
++ < 5)
117 "request_module: runaway loop modprobe %s\n",
119 atomic_dec(&kmod_concurrent
);
123 ret
= call_usermodehelper(modprobe_path
, argv
, envp
, 1);
124 atomic_dec(&kmod_concurrent
);
128 EXPORT_SYMBOL(request_module
);
130 static ssize_t
store_mod_request(struct module_attribute
*mattr
,
132 const char *buffer
, size_t count
)
134 char name
[MODULE_NAME_LEN
];
137 if (count
< 1 || count
+1 > MODULE_NAME_LEN
)
139 memcpy(name
, buffer
, count
);
141 if (name
[count
-1] == '\n')
142 name
[count
-1] = '\0';
144 ret
= request_module(name
);
150 static struct module_attribute mod_request
= {
151 .attr
= { .name
= "mod_request", .mode
= S_IWUSR
, .owner
= THIS_MODULE
},
152 .store
= store_mod_request
,
155 #ifdef CONFIG_MODULE_UNLOAD
156 static ssize_t
store_mod_unload(struct module_attribute
*mattr
,
158 const char *buffer
, size_t count
)
160 char name
[MODULE_NAME_LEN
];
163 if (count
< 1 || count
+1 > MODULE_NAME_LEN
)
165 memcpy(name
, buffer
, count
);
167 if (name
[count
-1] == '\n')
168 name
[count
-1] = '\0';
170 ret
= delete_module(name
, O_NONBLOCK
);
176 static struct module_attribute mod_unload
= {
177 .attr
= { .name
= "mod_unload", .mode
= S_IWUSR
, .owner
= THIS_MODULE
},
178 .store
= store_mod_unload
,
182 static ssize_t
show_mod_request_helper(struct module_attribute
*mattr
,
186 return sprintf(buffer
, "%s\n", modprobe_path
);
189 static ssize_t
store_mod_request_helper(struct module_attribute
*mattr
,
191 const char *buffer
, size_t count
)
193 if (count
< 1 || count
+1 > KMOD_PATH_LEN
)
195 memcpy(modprobe_path
, buffer
, count
);
196 modprobe_path
[count
] = '\0';
197 if (modprobe_path
[count
-1] == '\n')
198 modprobe_path
[count
-1] = '\0';
202 static struct module_attribute mod_request_helper
= {
204 .name
= "mod_request_helper",
205 .mode
= S_IWUSR
| S_IRUGO
,
208 .show
= show_mod_request_helper
,
209 .store
= store_mod_request_helper
,
212 void __init
kmod_sysfs_init(void)
216 kmod_mk
.mod
= THIS_MODULE
;
217 kobj_set_kset_s(&kmod_mk
, module_subsys
);
218 kobject_set_name(&kmod_mk
.kobj
, "kmod");
219 kobject_init(&kmod_mk
.kobj
);
220 ret
= kobject_add(&kmod_mk
.kobj
);
224 ret
= sysfs_create_file(&kmod_mk
.kobj
, &mod_request_helper
.attr
);
225 ret
= sysfs_create_file(&kmod_mk
.kobj
, &mod_request
.attr
);
226 #ifdef CONFIG_MODULE_UNLOAD
227 ret
= sysfs_create_file(&kmod_mk
.kobj
, &mod_unload
.attr
);
230 kobject_uevent(&kmod_mk
.kobj
, KOBJ_ADD
);
234 #endif /* CONFIG_KMOD */
236 struct subprocess_info
{
237 struct work_struct work
;
238 struct completion
*complete
;
249 * This is the task which runs the usermode application
251 static int ____call_usermodehelper(void *data
)
253 struct subprocess_info
*sub_info
= data
;
254 struct key
*new_session
, *old_session
;
257 /* Unblock all signals and set the session keyring. */
258 new_session
= key_get(sub_info
->ring
);
259 flush_signals(current
);
260 spin_lock_irq(¤t
->sighand
->siglock
);
261 old_session
= __install_session_keyring(current
, new_session
);
262 flush_signal_handlers(current
, 1);
263 sigemptyset(¤t
->blocked
);
265 spin_unlock_irq(¤t
->sighand
->siglock
);
267 key_put(old_session
);
269 /* Install input pipe when needed */
270 if (sub_info
->stdin
) {
271 struct files_struct
*f
= current
->files
;
273 /* no races because files should be private here */
275 fd_install(0, sub_info
->stdin
);
276 spin_lock(&f
->file_lock
);
277 fdt
= files_fdtable(f
);
278 FD_SET(0, fdt
->open_fds
);
279 FD_CLR(0, fdt
->close_on_exec
);
280 spin_unlock(&f
->file_lock
);
282 /* and disallow core files too */
283 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){0, 0};
286 /* We can run anywhere, unlike our parent keventd(). */
287 set_cpus_allowed(current
, CPU_MASK_ALL
);
290 if (current
->fs
->root
)
291 retval
= kernel_execve(sub_info
->path
,
292 sub_info
->argv
, sub_info
->envp
);
295 sub_info
->retval
= retval
;
299 /* Keventd can't block, but this (a child) can. */
300 static int wait_for_helper(void *data
)
302 struct subprocess_info
*sub_info
= data
;
304 struct k_sigaction sa
;
306 /* Install a handler: if SIGCLD isn't handled sys_wait4 won't
307 * populate the status, but will return -ECHILD. */
308 sa
.sa
.sa_handler
= SIG_IGN
;
310 siginitset(&sa
.sa
.sa_mask
, sigmask(SIGCHLD
));
311 do_sigaction(SIGCHLD
, &sa
, NULL
);
312 allow_signal(SIGCHLD
);
314 pid
= kernel_thread(____call_usermodehelper
, sub_info
, SIGCHLD
);
316 sub_info
->retval
= pid
;
321 * Normally it is bogus to call wait4() from in-kernel because
322 * wait4() wants to write the exit code to a userspace address.
323 * But wait_for_helper() always runs as keventd, and put_user()
324 * to a kernel address works OK for kernel threads, due to their
325 * having an mm_segment_t which spans the entire address space.
327 * Thus the __user pointer cast is valid here.
329 sys_wait4(pid
, (int __user
*)&ret
, 0, NULL
);
332 * If ret is 0, either ____call_usermodehelper failed and the
333 * real error code is already in sub_info->retval or
334 * sub_info->retval is 0 anyway, so don't mess with it then.
337 sub_info
->retval
= ret
;
340 if (sub_info
->wait
< 0)
343 complete(sub_info
->complete
);
347 /* This is run by khelper thread */
348 static void __call_usermodehelper(struct work_struct
*work
)
350 struct subprocess_info
*sub_info
=
351 container_of(work
, struct subprocess_info
, work
);
353 int wait
= sub_info
->wait
;
355 /* CLONE_VFORK: wait until the usermode helper has execve'd
356 * successfully We need the data structures to stay around
357 * until that is done. */
359 pid
= kernel_thread(wait_for_helper
, sub_info
,
360 CLONE_FS
| CLONE_FILES
| SIGCHLD
);
362 pid
= kernel_thread(____call_usermodehelper
, sub_info
,
363 CLONE_VFORK
| SIGCHLD
);
369 sub_info
->retval
= pid
;
370 complete(sub_info
->complete
);
372 complete(sub_info
->complete
);
376 * call_usermodehelper_keys - start a usermode application
377 * @path: pathname for the application
378 * @argv: null-terminated argument list
379 * @envp: null-terminated environment list
380 * @session_keyring: session keyring for process (NULL for an empty keyring)
381 * @wait: wait for the application to finish and return status.
382 * when -1 don't wait at all, but you get no useful error back when
383 * the program couldn't be exec'ed. This makes it safe to call
384 * from interrupt context.
386 * Runs a user-space application. The application is started
387 * asynchronously if wait is not set, and runs as a child of keventd.
388 * (ie. it runs with full root capabilities).
390 * Must be called from process context. Returns a negative error code
391 * if program was not execed successfully, or 0.
393 int call_usermodehelper_keys(char *path
, char **argv
, char **envp
,
394 struct key
*session_keyring
, int wait
)
396 DECLARE_COMPLETION_ONSTACK(done
);
397 struct subprocess_info
*sub_info
;
406 sub_info
= kzalloc(sizeof(struct subprocess_info
), GFP_ATOMIC
);
410 INIT_WORK(&sub_info
->work
, __call_usermodehelper
);
411 sub_info
->complete
= &done
;
412 sub_info
->path
= path
;
413 sub_info
->argv
= argv
;
414 sub_info
->envp
= envp
;
415 sub_info
->ring
= session_keyring
;
416 sub_info
->wait
= wait
;
418 queue_work(khelper_wq
, &sub_info
->work
);
419 if (wait
< 0) /* task has freed sub_info */
421 wait_for_completion(&done
);
422 retval
= sub_info
->retval
;
426 EXPORT_SYMBOL(call_usermodehelper_keys
);
428 int call_usermodehelper_pipe(char *path
, char **argv
, char **envp
,
431 DECLARE_COMPLETION(done
);
432 struct subprocess_info sub_info
= {
433 .work
= __WORK_INITIALIZER(sub_info
.work
,
434 __call_usermodehelper
),
449 f
= create_write_pipe();
454 f
= create_read_pipe(f
);
456 free_write_pipe(*filp
);
461 queue_work(khelper_wq
, &sub_info
.work
);
462 wait_for_completion(&done
);
463 return sub_info
.retval
;
465 EXPORT_SYMBOL(call_usermodehelper_pipe
);
467 void __init
usermodehelper_init(void)
469 khelper_wq
= create_singlethread_workqueue("khelper");