1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
42 #include <asm/uaccess.h>
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
45 #define MEM_CGROUP_RECLAIM_RETRIES 5
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49 int do_swap_account __read_mostly
;
50 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
52 #define do_swap_account (0)
55 static DEFINE_MUTEX(memcg_tasklist
); /* can be hold under cgroup_mutex */
58 * Statistics for memory cgroup.
60 enum mem_cgroup_stat_index
{
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
64 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
65 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
66 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
67 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
69 MEM_CGROUP_STAT_NSTATS
,
72 struct mem_cgroup_stat_cpu
{
73 s64 count
[MEM_CGROUP_STAT_NSTATS
];
74 } ____cacheline_aligned_in_smp
;
76 struct mem_cgroup_stat
{
77 struct mem_cgroup_stat_cpu cpustat
[0];
81 * For accounting under irq disable, no need for increment preempt count.
83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu
*stat
,
84 enum mem_cgroup_stat_index idx
, int val
)
86 stat
->count
[idx
] += val
;
89 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
90 enum mem_cgroup_stat_index idx
)
94 for_each_possible_cpu(cpu
)
95 ret
+= stat
->cpustat
[cpu
].count
[idx
];
99 static s64
mem_cgroup_local_usage(struct mem_cgroup_stat
*stat
)
103 ret
= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_CACHE
);
104 ret
+= mem_cgroup_read_stat(stat
, MEM_CGROUP_STAT_RSS
);
109 * per-zone information in memory controller.
111 struct mem_cgroup_per_zone
{
113 * spin_lock to protect the per cgroup LRU
115 struct list_head lists
[NR_LRU_LISTS
];
116 unsigned long count
[NR_LRU_LISTS
];
118 struct zone_reclaim_stat reclaim_stat
;
120 /* Macro for accessing counter */
121 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
123 struct mem_cgroup_per_node
{
124 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
127 struct mem_cgroup_lru_info
{
128 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
132 * The memory controller data structure. The memory controller controls both
133 * page cache and RSS per cgroup. We would eventually like to provide
134 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135 * to help the administrator determine what knobs to tune.
137 * TODO: Add a water mark for the memory controller. Reclaim will begin when
138 * we hit the water mark. May be even add a low water mark, such that
139 * no reclaim occurs from a cgroup at it's low water mark, this is
140 * a feature that will be implemented much later in the future.
143 struct cgroup_subsys_state css
;
145 * the counter to account for memory usage
147 struct res_counter res
;
149 * the counter to account for mem+swap usage.
151 struct res_counter memsw
;
153 * Per cgroup active and inactive list, similar to the
154 * per zone LRU lists.
156 struct mem_cgroup_lru_info info
;
159 protect against reclaim related member.
161 spinlock_t reclaim_param_lock
;
163 int prev_priority
; /* for recording reclaim priority */
166 * While reclaiming in a hiearchy, we cache the last child we
169 int last_scanned_child
;
171 * Should the accounting and control be hierarchical, per subtree?
174 unsigned long last_oom_jiffies
;
177 unsigned int swappiness
;
180 * statistics. This must be placed at the end of memcg.
182 struct mem_cgroup_stat stat
;
186 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
187 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
188 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
189 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
194 /* only for here (for easy reading.) */
195 #define PCGF_CACHE (1UL << PCG_CACHE)
196 #define PCGF_USED (1UL << PCG_USED)
197 #define PCGF_LOCK (1UL << PCG_LOCK)
198 static const unsigned long
199 pcg_default_flags
[NR_CHARGE_TYPE
] = {
200 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* File Cache */
201 PCGF_USED
| PCGF_LOCK
, /* Anon */
202 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* Shmem */
206 /* for encoding cft->private value on file */
209 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
210 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
211 #define MEMFILE_ATTR(val) ((val) & 0xffff)
213 static void mem_cgroup_get(struct mem_cgroup
*mem
);
214 static void mem_cgroup_put(struct mem_cgroup
*mem
);
215 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
217 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
218 struct page_cgroup
*pc
,
221 int val
= (charge
)? 1 : -1;
222 struct mem_cgroup_stat
*stat
= &mem
->stat
;
223 struct mem_cgroup_stat_cpu
*cpustat
;
226 cpustat
= &stat
->cpustat
[cpu
];
227 if (PageCgroupCache(pc
))
228 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_CACHE
, val
);
230 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_RSS
, val
);
233 __mem_cgroup_stat_add_safe(cpustat
,
234 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
236 __mem_cgroup_stat_add_safe(cpustat
,
237 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
241 static struct mem_cgroup_per_zone
*
242 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
244 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
247 static struct mem_cgroup_per_zone
*
248 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
250 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
251 int nid
= page_cgroup_nid(pc
);
252 int zid
= page_cgroup_zid(pc
);
257 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
264 struct mem_cgroup_per_zone
*mz
;
267 for_each_online_node(nid
)
268 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
269 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
270 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
275 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
277 return container_of(cgroup_subsys_state(cont
,
278 mem_cgroup_subsys_id
), struct mem_cgroup
,
282 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
285 * mm_update_next_owner() may clear mm->owner to NULL
286 * if it races with swapoff, page migration, etc.
287 * So this can be called with p == NULL.
292 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
293 struct mem_cgroup
, css
);
296 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
298 struct mem_cgroup
*mem
= NULL
;
303 * Because we have no locks, mm->owner's may be being moved to other
304 * cgroup. We use css_tryget() here even if this looks
305 * pessimistic (rather than adding locks here).
309 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
312 } while (!css_tryget(&mem
->css
));
318 * Call callback function against all cgroup under hierarchy tree.
320 static int mem_cgroup_walk_tree(struct mem_cgroup
*root
, void *data
,
321 int (*func
)(struct mem_cgroup
*, void *))
323 int found
, ret
, nextid
;
324 struct cgroup_subsys_state
*css
;
325 struct mem_cgroup
*mem
;
327 if (!root
->use_hierarchy
)
328 return (*func
)(root
, data
);
336 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root
->css
,
338 if (css
&& css_tryget(css
))
339 mem
= container_of(css
, struct mem_cgroup
, css
);
343 ret
= (*func
)(mem
, data
);
347 } while (!ret
&& css
);
353 * Following LRU functions are allowed to be used without PCG_LOCK.
354 * Operations are called by routine of global LRU independently from memcg.
355 * What we have to take care of here is validness of pc->mem_cgroup.
357 * Changes to pc->mem_cgroup happens when
360 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
361 * It is added to LRU before charge.
362 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
363 * When moving account, the page is not on LRU. It's isolated.
366 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
368 struct page_cgroup
*pc
;
369 struct mem_cgroup
*mem
;
370 struct mem_cgroup_per_zone
*mz
;
372 if (mem_cgroup_disabled())
374 pc
= lookup_page_cgroup(page
);
375 /* can happen while we handle swapcache. */
376 if (list_empty(&pc
->lru
) || !pc
->mem_cgroup
)
379 * We don't check PCG_USED bit. It's cleared when the "page" is finally
380 * removed from global LRU.
382 mz
= page_cgroup_zoneinfo(pc
);
383 mem
= pc
->mem_cgroup
;
384 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
385 list_del_init(&pc
->lru
);
389 void mem_cgroup_del_lru(struct page
*page
)
391 mem_cgroup_del_lru_list(page
, page_lru(page
));
394 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
396 struct mem_cgroup_per_zone
*mz
;
397 struct page_cgroup
*pc
;
399 if (mem_cgroup_disabled())
402 pc
= lookup_page_cgroup(page
);
404 * Used bit is set without atomic ops but after smp_wmb().
405 * For making pc->mem_cgroup visible, insert smp_rmb() here.
408 /* unused page is not rotated. */
409 if (!PageCgroupUsed(pc
))
411 mz
= page_cgroup_zoneinfo(pc
);
412 list_move(&pc
->lru
, &mz
->lists
[lru
]);
415 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
417 struct page_cgroup
*pc
;
418 struct mem_cgroup_per_zone
*mz
;
420 if (mem_cgroup_disabled())
422 pc
= lookup_page_cgroup(page
);
424 * Used bit is set without atomic ops but after smp_wmb().
425 * For making pc->mem_cgroup visible, insert smp_rmb() here.
428 if (!PageCgroupUsed(pc
))
431 mz
= page_cgroup_zoneinfo(pc
);
432 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
433 list_add(&pc
->lru
, &mz
->lists
[lru
]);
437 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
438 * lru because the page may.be reused after it's fully uncharged (because of
439 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
440 * it again. This function is only used to charge SwapCache. It's done under
441 * lock_page and expected that zone->lru_lock is never held.
443 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
446 struct zone
*zone
= page_zone(page
);
447 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
449 spin_lock_irqsave(&zone
->lru_lock
, flags
);
451 * Forget old LRU when this page_cgroup is *not* used. This Used bit
452 * is guarded by lock_page() because the page is SwapCache.
454 if (!PageCgroupUsed(pc
))
455 mem_cgroup_del_lru_list(page
, page_lru(page
));
456 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
459 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
462 struct zone
*zone
= page_zone(page
);
463 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
465 spin_lock_irqsave(&zone
->lru_lock
, flags
);
466 /* link when the page is linked to LRU but page_cgroup isn't */
467 if (PageLRU(page
) && list_empty(&pc
->lru
))
468 mem_cgroup_add_lru_list(page
, page_lru(page
));
469 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
473 void mem_cgroup_move_lists(struct page
*page
,
474 enum lru_list from
, enum lru_list to
)
476 if (mem_cgroup_disabled())
478 mem_cgroup_del_lru_list(page
, from
);
479 mem_cgroup_add_lru_list(page
, to
);
482 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
485 struct mem_cgroup
*curr
= NULL
;
489 curr
= try_get_mem_cgroup_from_mm(task
->mm
);
494 if (curr
->use_hierarchy
)
495 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
503 * prev_priority control...this will be used in memory reclaim path.
505 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
509 spin_lock(&mem
->reclaim_param_lock
);
510 prev_priority
= mem
->prev_priority
;
511 spin_unlock(&mem
->reclaim_param_lock
);
513 return prev_priority
;
516 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
518 spin_lock(&mem
->reclaim_param_lock
);
519 if (priority
< mem
->prev_priority
)
520 mem
->prev_priority
= priority
;
521 spin_unlock(&mem
->reclaim_param_lock
);
524 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
526 spin_lock(&mem
->reclaim_param_lock
);
527 mem
->prev_priority
= priority
;
528 spin_unlock(&mem
->reclaim_param_lock
);
531 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
533 unsigned long active
;
534 unsigned long inactive
;
536 unsigned long inactive_ratio
;
538 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
539 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
541 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
543 inactive_ratio
= int_sqrt(10 * gb
);
548 present_pages
[0] = inactive
;
549 present_pages
[1] = active
;
552 return inactive_ratio
;
555 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
557 unsigned long active
;
558 unsigned long inactive
;
559 unsigned long present_pages
[2];
560 unsigned long inactive_ratio
;
562 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
564 inactive
= present_pages
[0];
565 active
= present_pages
[1];
567 if (inactive
* inactive_ratio
< active
)
573 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
575 unsigned long active
;
576 unsigned long inactive
;
578 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
579 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
581 return (active
> inactive
);
584 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
588 int nid
= zone
->zone_pgdat
->node_id
;
589 int zid
= zone_idx(zone
);
590 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
592 return MEM_CGROUP_ZSTAT(mz
, lru
);
595 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
598 int nid
= zone
->zone_pgdat
->node_id
;
599 int zid
= zone_idx(zone
);
600 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
602 return &mz
->reclaim_stat
;
605 struct zone_reclaim_stat
*
606 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
608 struct page_cgroup
*pc
;
609 struct mem_cgroup_per_zone
*mz
;
611 if (mem_cgroup_disabled())
614 pc
= lookup_page_cgroup(page
);
616 * Used bit is set without atomic ops but after smp_wmb().
617 * For making pc->mem_cgroup visible, insert smp_rmb() here.
620 if (!PageCgroupUsed(pc
))
623 mz
= page_cgroup_zoneinfo(pc
);
627 return &mz
->reclaim_stat
;
630 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
631 struct list_head
*dst
,
632 unsigned long *scanned
, int order
,
633 int mode
, struct zone
*z
,
634 struct mem_cgroup
*mem_cont
,
635 int active
, int file
)
637 unsigned long nr_taken
= 0;
641 struct list_head
*src
;
642 struct page_cgroup
*pc
, *tmp
;
643 int nid
= z
->zone_pgdat
->node_id
;
644 int zid
= zone_idx(z
);
645 struct mem_cgroup_per_zone
*mz
;
646 int lru
= LRU_FILE
* !!file
+ !!active
;
649 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
650 src
= &mz
->lists
[lru
];
653 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
654 if (scan
>= nr_to_scan
)
658 if (unlikely(!PageCgroupUsed(pc
)))
660 if (unlikely(!PageLRU(page
)))
664 if (__isolate_lru_page(page
, mode
, file
) == 0) {
665 list_move(&page
->lru
, dst
);
674 #define mem_cgroup_from_res_counter(counter, member) \
675 container_of(counter, struct mem_cgroup, member)
677 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
679 if (do_swap_account
) {
680 if (res_counter_check_under_limit(&mem
->res
) &&
681 res_counter_check_under_limit(&mem
->memsw
))
684 if (res_counter_check_under_limit(&mem
->res
))
689 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
691 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
692 unsigned int swappiness
;
695 if (cgrp
->parent
== NULL
)
696 return vm_swappiness
;
698 spin_lock(&memcg
->reclaim_param_lock
);
699 swappiness
= memcg
->swappiness
;
700 spin_unlock(&memcg
->reclaim_param_lock
);
705 static int mem_cgroup_count_children_cb(struct mem_cgroup
*mem
, void *data
)
713 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
714 * @memcg: The memory cgroup that went over limit
715 * @p: Task that is going to be killed
717 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
720 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
722 struct cgroup
*task_cgrp
;
723 struct cgroup
*mem_cgrp
;
725 * Need a buffer in BSS, can't rely on allocations. The code relies
726 * on the assumption that OOM is serialized for memory controller.
727 * If this assumption is broken, revisit this code.
729 static char memcg_name
[PATH_MAX
];
738 mem_cgrp
= memcg
->css
.cgroup
;
739 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
741 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
744 * Unfortunately, we are unable to convert to a useful name
745 * But we'll still print out the usage information
752 printk(KERN_INFO
"Task in %s killed", memcg_name
);
755 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
763 * Continues from above, so we don't need an KERN_ level
765 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
768 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
769 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
770 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
771 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
772 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
774 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
775 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
776 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
780 * This function returns the number of memcg under hierarchy tree. Returns
781 * 1(self count) if no children.
783 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
786 mem_cgroup_walk_tree(mem
, &num
, mem_cgroup_count_children_cb
);
791 * Visit the first child (need not be the first child as per the ordering
792 * of the cgroup list, since we track last_scanned_child) of @mem and use
793 * that to reclaim free pages from.
795 static struct mem_cgroup
*
796 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
798 struct mem_cgroup
*ret
= NULL
;
799 struct cgroup_subsys_state
*css
;
802 if (!root_mem
->use_hierarchy
) {
803 css_get(&root_mem
->css
);
809 nextid
= root_mem
->last_scanned_child
+ 1;
810 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
812 if (css
&& css_tryget(css
))
813 ret
= container_of(css
, struct mem_cgroup
, css
);
816 /* Updates scanning parameter */
817 spin_lock(&root_mem
->reclaim_param_lock
);
819 /* this means start scan from ID:1 */
820 root_mem
->last_scanned_child
= 0;
822 root_mem
->last_scanned_child
= found
;
823 spin_unlock(&root_mem
->reclaim_param_lock
);
830 * Scan the hierarchy if needed to reclaim memory. We remember the last child
831 * we reclaimed from, so that we don't end up penalizing one child extensively
832 * based on its position in the children list.
834 * root_mem is the original ancestor that we've been reclaim from.
836 * We give up and return to the caller when we visit root_mem twice.
837 * (other groups can be removed while we're walking....)
839 * If shrink==true, for avoiding to free too much, this returns immedieately.
841 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
842 gfp_t gfp_mask
, bool noswap
, bool shrink
)
844 struct mem_cgroup
*victim
;
849 victim
= mem_cgroup_select_victim(root_mem
);
850 if (victim
== root_mem
)
852 if (!mem_cgroup_local_usage(&victim
->stat
)) {
853 /* this cgroup's local usage == 0 */
854 css_put(&victim
->css
);
857 /* we use swappiness of local cgroup */
858 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
, noswap
,
859 get_swappiness(victim
));
860 css_put(&victim
->css
);
862 * At shrinking usage, we can't check we should stop here or
863 * reclaim more. It's depends on callers. last_scanned_child
864 * will work enough for keeping fairness under tree.
869 if (mem_cgroup_check_under_limit(root_mem
))
875 bool mem_cgroup_oom_called(struct task_struct
*task
)
878 struct mem_cgroup
*mem
;
879 struct mm_struct
*mm
;
885 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
886 if (mem
&& time_before(jiffies
, mem
->last_oom_jiffies
+ HZ
/10))
892 static int record_last_oom_cb(struct mem_cgroup
*mem
, void *data
)
894 mem
->last_oom_jiffies
= jiffies
;
898 static void record_last_oom(struct mem_cgroup
*mem
)
900 mem_cgroup_walk_tree(mem
, NULL
, record_last_oom_cb
);
905 * Unlike exported interface, "oom" parameter is added. if oom==true,
906 * oom-killer can be invoked.
908 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
909 gfp_t gfp_mask
, struct mem_cgroup
**memcg
,
912 struct mem_cgroup
*mem
, *mem_over_limit
;
913 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
914 struct res_counter
*fail_res
;
916 if (unlikely(test_thread_flag(TIF_MEMDIE
))) {
917 /* Don't account this! */
923 * We always charge the cgroup the mm_struct belongs to.
924 * The mm_struct's mem_cgroup changes on task migration if the
925 * thread group leader migrates. It's possible that mm is not
926 * set, if so charge the init_mm (happens for pagecache usage).
930 mem
= try_get_mem_cgroup_from_mm(mm
);
938 VM_BUG_ON(css_is_removed(&mem
->css
));
944 ret
= res_counter_charge(&mem
->res
, PAGE_SIZE
, &fail_res
);
946 if (!do_swap_account
)
948 ret
= res_counter_charge(&mem
->memsw
, PAGE_SIZE
,
952 /* mem+swap counter fails */
953 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
955 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
958 /* mem counter fails */
959 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
962 if (!(gfp_mask
& __GFP_WAIT
))
965 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, gfp_mask
,
971 * try_to_free_mem_cgroup_pages() might not give us a full
972 * picture of reclaim. Some pages are reclaimed and might be
973 * moved to swap cache or just unmapped from the cgroup.
974 * Check the limit again to see if the reclaim reduced the
975 * current usage of the cgroup before giving up
978 if (mem_cgroup_check_under_limit(mem_over_limit
))
983 mutex_lock(&memcg_tasklist
);
984 mem_cgroup_out_of_memory(mem_over_limit
, gfp_mask
);
985 mutex_unlock(&memcg_tasklist
);
986 record_last_oom(mem_over_limit
);
999 * A helper function to get mem_cgroup from ID. must be called under
1000 * rcu_read_lock(). The caller must check css_is_removed() or some if
1001 * it's concern. (dropping refcnt from swap can be called against removed
1004 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
1006 struct cgroup_subsys_state
*css
;
1008 /* ID 0 is unused ID */
1011 css
= css_lookup(&mem_cgroup_subsys
, id
);
1014 return container_of(css
, struct mem_cgroup
, css
);
1017 static struct mem_cgroup
*try_get_mem_cgroup_from_swapcache(struct page
*page
)
1019 struct mem_cgroup
*mem
;
1020 struct page_cgroup
*pc
;
1024 VM_BUG_ON(!PageLocked(page
));
1026 if (!PageSwapCache(page
))
1029 pc
= lookup_page_cgroup(page
);
1030 lock_page_cgroup(pc
);
1031 if (PageCgroupUsed(pc
)) {
1032 mem
= pc
->mem_cgroup
;
1033 if (mem
&& !css_tryget(&mem
->css
))
1036 ent
.val
= page_private(page
);
1037 id
= lookup_swap_cgroup(ent
);
1039 mem
= mem_cgroup_lookup(id
);
1040 if (mem
&& !css_tryget(&mem
->css
))
1044 unlock_page_cgroup(pc
);
1049 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1050 * USED state. If already USED, uncharge and return.
1053 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
1054 struct page_cgroup
*pc
,
1055 enum charge_type ctype
)
1057 /* try_charge() can return NULL to *memcg, taking care of it. */
1061 lock_page_cgroup(pc
);
1062 if (unlikely(PageCgroupUsed(pc
))) {
1063 unlock_page_cgroup(pc
);
1064 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1065 if (do_swap_account
)
1066 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1070 pc
->mem_cgroup
= mem
;
1072 pc
->flags
= pcg_default_flags
[ctype
];
1074 mem_cgroup_charge_statistics(mem
, pc
, true);
1076 unlock_page_cgroup(pc
);
1080 * mem_cgroup_move_account - move account of the page
1081 * @pc: page_cgroup of the page.
1082 * @from: mem_cgroup which the page is moved from.
1083 * @to: mem_cgroup which the page is moved to. @from != @to.
1085 * The caller must confirm following.
1086 * - page is not on LRU (isolate_page() is useful.)
1088 * returns 0 at success,
1089 * returns -EBUSY when lock is busy or "pc" is unstable.
1091 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1092 * new cgroup. It should be done by a caller.
1095 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
1096 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
1098 struct mem_cgroup_per_zone
*from_mz
, *to_mz
;
1102 VM_BUG_ON(from
== to
);
1103 VM_BUG_ON(PageLRU(pc
->page
));
1105 nid
= page_cgroup_nid(pc
);
1106 zid
= page_cgroup_zid(pc
);
1107 from_mz
= mem_cgroup_zoneinfo(from
, nid
, zid
);
1108 to_mz
= mem_cgroup_zoneinfo(to
, nid
, zid
);
1110 if (!trylock_page_cgroup(pc
))
1113 if (!PageCgroupUsed(pc
))
1116 if (pc
->mem_cgroup
!= from
)
1119 res_counter_uncharge(&from
->res
, PAGE_SIZE
);
1120 mem_cgroup_charge_statistics(from
, pc
, false);
1121 if (do_swap_account
)
1122 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
1123 css_put(&from
->css
);
1126 pc
->mem_cgroup
= to
;
1127 mem_cgroup_charge_statistics(to
, pc
, true);
1130 unlock_page_cgroup(pc
);
1135 * move charges to its parent.
1138 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
1139 struct mem_cgroup
*child
,
1142 struct page
*page
= pc
->page
;
1143 struct cgroup
*cg
= child
->css
.cgroup
;
1144 struct cgroup
*pcg
= cg
->parent
;
1145 struct mem_cgroup
*parent
;
1153 parent
= mem_cgroup_from_cont(pcg
);
1156 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
1160 if (!get_page_unless_zero(page
)) {
1165 ret
= isolate_lru_page(page
);
1170 ret
= mem_cgroup_move_account(pc
, child
, parent
);
1172 putback_lru_page(page
);
1175 /* drop extra refcnt by try_charge() */
1176 css_put(&parent
->css
);
1183 /* drop extra refcnt by try_charge() */
1184 css_put(&parent
->css
);
1185 /* uncharge if move fails */
1186 res_counter_uncharge(&parent
->res
, PAGE_SIZE
);
1187 if (do_swap_account
)
1188 res_counter_uncharge(&parent
->memsw
, PAGE_SIZE
);
1193 * Charge the memory controller for page usage.
1195 * 0 if the charge was successful
1196 * < 0 if the cgroup is over its limit
1198 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1199 gfp_t gfp_mask
, enum charge_type ctype
,
1200 struct mem_cgroup
*memcg
)
1202 struct mem_cgroup
*mem
;
1203 struct page_cgroup
*pc
;
1206 pc
= lookup_page_cgroup(page
);
1207 /* can happen at boot */
1213 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
1217 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1221 int mem_cgroup_newpage_charge(struct page
*page
,
1222 struct mm_struct
*mm
, gfp_t gfp_mask
)
1224 if (mem_cgroup_disabled())
1226 if (PageCompound(page
))
1229 * If already mapped, we don't have to account.
1230 * If page cache, page->mapping has address_space.
1231 * But page->mapping may have out-of-use anon_vma pointer,
1232 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1235 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
1239 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1240 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
1244 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1245 enum charge_type ctype
);
1247 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
1250 struct mem_cgroup
*mem
= NULL
;
1253 if (mem_cgroup_disabled())
1255 if (PageCompound(page
))
1258 * Corner case handling. This is called from add_to_page_cache()
1259 * in usual. But some FS (shmem) precharges this page before calling it
1260 * and call add_to_page_cache() with GFP_NOWAIT.
1262 * For GFP_NOWAIT case, the page may be pre-charged before calling
1263 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1264 * charge twice. (It works but has to pay a bit larger cost.)
1265 * And when the page is SwapCache, it should take swap information
1266 * into account. This is under lock_page() now.
1268 if (!(gfp_mask
& __GFP_WAIT
)) {
1269 struct page_cgroup
*pc
;
1272 pc
= lookup_page_cgroup(page
);
1275 lock_page_cgroup(pc
);
1276 if (PageCgroupUsed(pc
)) {
1277 unlock_page_cgroup(pc
);
1280 unlock_page_cgroup(pc
);
1283 if (unlikely(!mm
&& !mem
))
1286 if (page_is_file_cache(page
))
1287 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1288 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
1291 if (PageSwapCache(page
)) {
1292 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
1294 __mem_cgroup_commit_charge_swapin(page
, mem
,
1295 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
1297 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1298 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
1304 * While swap-in, try_charge -> commit or cancel, the page is locked.
1305 * And when try_charge() successfully returns, one refcnt to memcg without
1306 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1307 * "commit()" or removed by "cancel()"
1309 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
1311 gfp_t mask
, struct mem_cgroup
**ptr
)
1313 struct mem_cgroup
*mem
;
1316 if (mem_cgroup_disabled())
1319 if (!do_swap_account
)
1322 * A racing thread's fault, or swapoff, may have already updated
1323 * the pte, and even removed page from swap cache: return success
1324 * to go on to do_swap_page()'s pte_same() test, which should fail.
1326 if (!PageSwapCache(page
))
1328 mem
= try_get_mem_cgroup_from_swapcache(page
);
1332 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
1333 /* drop extra refcnt from tryget */
1339 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
1343 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
1344 enum charge_type ctype
)
1346 struct page_cgroup
*pc
;
1348 if (mem_cgroup_disabled())
1352 pc
= lookup_page_cgroup(page
);
1353 mem_cgroup_lru_del_before_commit_swapcache(page
);
1354 __mem_cgroup_commit_charge(ptr
, pc
, ctype
);
1355 mem_cgroup_lru_add_after_commit_swapcache(page
);
1357 * Now swap is on-memory. This means this page may be
1358 * counted both as mem and swap....double count.
1359 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1360 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1361 * may call delete_from_swap_cache() before reach here.
1363 if (do_swap_account
&& PageSwapCache(page
)) {
1364 swp_entry_t ent
= {.val
= page_private(page
)};
1366 struct mem_cgroup
*memcg
;
1368 id
= swap_cgroup_record(ent
, 0);
1370 memcg
= mem_cgroup_lookup(id
);
1373 * This recorded memcg can be obsolete one. So, avoid
1374 * calling css_tryget
1376 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1377 mem_cgroup_put(memcg
);
1381 /* add this page(page_cgroup) to the LRU we want. */
1385 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
1387 __mem_cgroup_commit_charge_swapin(page
, ptr
,
1388 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1391 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
1393 if (mem_cgroup_disabled())
1397 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1398 if (do_swap_account
)
1399 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1405 * uncharge if !page_mapped(page)
1407 static struct mem_cgroup
*
1408 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
1410 struct page_cgroup
*pc
;
1411 struct mem_cgroup
*mem
= NULL
;
1412 struct mem_cgroup_per_zone
*mz
;
1414 if (mem_cgroup_disabled())
1417 if (PageSwapCache(page
))
1421 * Check if our page_cgroup is valid
1423 pc
= lookup_page_cgroup(page
);
1424 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
1427 lock_page_cgroup(pc
);
1429 mem
= pc
->mem_cgroup
;
1431 if (!PageCgroupUsed(pc
))
1435 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1436 if (page_mapped(page
))
1439 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
1440 if (!PageAnon(page
)) { /* Shared memory */
1441 if (page
->mapping
&& !page_is_file_cache(page
))
1443 } else if (page_mapped(page
)) /* Anon */
1450 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1451 if (do_swap_account
&& (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
))
1452 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1453 mem_cgroup_charge_statistics(mem
, pc
, false);
1455 ClearPageCgroupUsed(pc
);
1457 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1458 * freed from LRU. This is safe because uncharged page is expected not
1459 * to be reused (freed soon). Exception is SwapCache, it's handled by
1460 * special functions.
1463 mz
= page_cgroup_zoneinfo(pc
);
1464 unlock_page_cgroup(pc
);
1466 /* at swapout, this memcg will be accessed to record to swap */
1467 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
1473 unlock_page_cgroup(pc
);
1477 void mem_cgroup_uncharge_page(struct page
*page
)
1480 if (page_mapped(page
))
1482 if (page
->mapping
&& !PageAnon(page
))
1484 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1487 void mem_cgroup_uncharge_cache_page(struct page
*page
)
1489 VM_BUG_ON(page_mapped(page
));
1490 VM_BUG_ON(page
->mapping
);
1491 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
1496 * called after __delete_from_swap_cache() and drop "page" account.
1497 * memcg information is recorded to swap_cgroup of "ent"
1499 void mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
)
1501 struct mem_cgroup
*memcg
;
1503 memcg
= __mem_cgroup_uncharge_common(page
,
1504 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
);
1505 /* record memcg information */
1506 if (do_swap_account
&& memcg
) {
1507 swap_cgroup_record(ent
, css_id(&memcg
->css
));
1508 mem_cgroup_get(memcg
);
1511 css_put(&memcg
->css
);
1515 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1517 * called from swap_entry_free(). remove record in swap_cgroup and
1518 * uncharge "memsw" account.
1520 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
1522 struct mem_cgroup
*memcg
;
1525 if (!do_swap_account
)
1528 id
= swap_cgroup_record(ent
, 0);
1530 memcg
= mem_cgroup_lookup(id
);
1533 * We uncharge this because swap is freed.
1534 * This memcg can be obsolete one. We avoid calling css_tryget
1536 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1537 mem_cgroup_put(memcg
);
1544 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1547 int mem_cgroup_prepare_migration(struct page
*page
, struct mem_cgroup
**ptr
)
1549 struct page_cgroup
*pc
;
1550 struct mem_cgroup
*mem
= NULL
;
1553 if (mem_cgroup_disabled())
1556 pc
= lookup_page_cgroup(page
);
1557 lock_page_cgroup(pc
);
1558 if (PageCgroupUsed(pc
)) {
1559 mem
= pc
->mem_cgroup
;
1562 unlock_page_cgroup(pc
);
1565 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
1572 /* remove redundant charge if migration failed*/
1573 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
1574 struct page
*oldpage
, struct page
*newpage
)
1576 struct page
*target
, *unused
;
1577 struct page_cgroup
*pc
;
1578 enum charge_type ctype
;
1583 /* at migration success, oldpage->mapping is NULL. */
1584 if (oldpage
->mapping
) {
1592 if (PageAnon(target
))
1593 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
1594 else if (page_is_file_cache(target
))
1595 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
1597 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
1599 /* unused page is not on radix-tree now. */
1601 __mem_cgroup_uncharge_common(unused
, ctype
);
1603 pc
= lookup_page_cgroup(target
);
1605 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1606 * So, double-counting is effectively avoided.
1608 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1611 * Both of oldpage and newpage are still under lock_page().
1612 * Then, we don't have to care about race in radix-tree.
1613 * But we have to be careful that this page is unmapped or not.
1615 * There is a case for !page_mapped(). At the start of
1616 * migration, oldpage was mapped. But now, it's zapped.
1617 * But we know *target* page is not freed/reused under us.
1618 * mem_cgroup_uncharge_page() does all necessary checks.
1620 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
1621 mem_cgroup_uncharge_page(target
);
1625 * A call to try to shrink memory usage on charge failure at shmem's swapin.
1626 * Calling hierarchical_reclaim is not enough because we should update
1627 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1628 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1629 * not from the memcg which this page would be charged to.
1630 * try_charge_swapin does all of these works properly.
1632 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
1633 struct mm_struct
*mm
,
1636 struct mem_cgroup
*mem
= NULL
;
1639 if (mem_cgroup_disabled())
1642 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
1644 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
1649 static DEFINE_MUTEX(set_limit_mutex
);
1651 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
1652 unsigned long long val
)
1658 int children
= mem_cgroup_count_children(memcg
);
1659 u64 curusage
, oldusage
;
1662 * For keeping hierarchical_reclaim simple, how long we should retry
1663 * is depends on callers. We set our retry-count to be function
1664 * of # of children which we should visit in this loop.
1666 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
1668 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
1670 while (retry_count
) {
1671 if (signal_pending(current
)) {
1676 * Rather than hide all in some function, I do this in
1677 * open coded manner. You see what this really does.
1678 * We have to guarantee mem->res.limit < mem->memsw.limit.
1680 mutex_lock(&set_limit_mutex
);
1681 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1682 if (memswlimit
< val
) {
1684 mutex_unlock(&set_limit_mutex
);
1687 ret
= res_counter_set_limit(&memcg
->res
, val
);
1688 mutex_unlock(&set_limit_mutex
);
1693 progress
= mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
,
1695 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
1696 /* Usage is reduced ? */
1697 if (curusage
>= oldusage
)
1700 oldusage
= curusage
;
1706 int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
1707 unsigned long long val
)
1710 u64 memlimit
, oldusage
, curusage
;
1711 int children
= mem_cgroup_count_children(memcg
);
1714 if (!do_swap_account
)
1716 /* see mem_cgroup_resize_res_limit */
1717 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
1718 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1719 while (retry_count
) {
1720 if (signal_pending(current
)) {
1725 * Rather than hide all in some function, I do this in
1726 * open coded manner. You see what this really does.
1727 * We have to guarantee mem->res.limit < mem->memsw.limit.
1729 mutex_lock(&set_limit_mutex
);
1730 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1731 if (memlimit
> val
) {
1733 mutex_unlock(&set_limit_mutex
);
1736 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
1737 mutex_unlock(&set_limit_mutex
);
1742 mem_cgroup_hierarchical_reclaim(memcg
, GFP_KERNEL
, true, true);
1743 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1744 /* Usage is reduced ? */
1745 if (curusage
>= oldusage
)
1748 oldusage
= curusage
;
1754 * This routine traverse page_cgroup in given list and drop them all.
1755 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1757 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
1758 int node
, int zid
, enum lru_list lru
)
1761 struct mem_cgroup_per_zone
*mz
;
1762 struct page_cgroup
*pc
, *busy
;
1763 unsigned long flags
, loop
;
1764 struct list_head
*list
;
1767 zone
= &NODE_DATA(node
)->node_zones
[zid
];
1768 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
1769 list
= &mz
->lists
[lru
];
1771 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
1772 /* give some margin against EBUSY etc...*/
1777 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1778 if (list_empty(list
)) {
1779 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1782 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
1784 list_move(&pc
->lru
, list
);
1786 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1789 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1791 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
1795 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
1796 /* found lock contention or "pc" is obsolete. */
1803 if (!ret
&& !list_empty(list
))
1809 * make mem_cgroup's charge to be 0 if there is no task.
1810 * This enables deleting this mem_cgroup.
1812 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
1815 int node
, zid
, shrink
;
1816 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1817 struct cgroup
*cgrp
= mem
->css
.cgroup
;
1822 /* should free all ? */
1826 while (mem
->res
.usage
> 0) {
1828 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
1831 if (signal_pending(current
))
1833 /* This is for making all *used* pages to be on LRU. */
1834 lru_add_drain_all();
1836 for_each_node_state(node
, N_HIGH_MEMORY
) {
1837 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
1840 ret
= mem_cgroup_force_empty_list(mem
,
1849 /* it seems parent cgroup doesn't have enough mem */
1860 /* returns EBUSY if there is a task or if we come here twice. */
1861 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
1865 /* we call try-to-free pages for make this cgroup empty */
1866 lru_add_drain_all();
1867 /* try to free all pages in this cgroup */
1869 while (nr_retries
&& mem
->res
.usage
> 0) {
1872 if (signal_pending(current
)) {
1876 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
1877 false, get_swappiness(mem
));
1880 /* maybe some writeback is necessary */
1881 congestion_wait(WRITE
, HZ
/10);
1886 /* try move_account...there may be some *locked* pages. */
1893 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
1895 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
1899 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
1901 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
1904 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
1908 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1909 struct cgroup
*parent
= cont
->parent
;
1910 struct mem_cgroup
*parent_mem
= NULL
;
1913 parent_mem
= mem_cgroup_from_cont(parent
);
1917 * If parent's use_hiearchy is set, we can't make any modifications
1918 * in the child subtrees. If it is unset, then the change can
1919 * occur, provided the current cgroup has no children.
1921 * For the root cgroup, parent_mem is NULL, we allow value to be
1922 * set if there are no children.
1924 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
1925 (val
== 1 || val
== 0)) {
1926 if (list_empty(&cont
->children
))
1927 mem
->use_hierarchy
= val
;
1937 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
1939 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1943 type
= MEMFILE_TYPE(cft
->private);
1944 name
= MEMFILE_ATTR(cft
->private);
1947 val
= res_counter_read_u64(&mem
->res
, name
);
1950 if (do_swap_account
)
1951 val
= res_counter_read_u64(&mem
->memsw
, name
);
1960 * The user of this function is...
1963 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
1966 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
1968 unsigned long long val
;
1971 type
= MEMFILE_TYPE(cft
->private);
1972 name
= MEMFILE_ATTR(cft
->private);
1975 /* This function does all necessary parse...reuse it */
1976 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
1980 ret
= mem_cgroup_resize_limit(memcg
, val
);
1982 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
1985 ret
= -EINVAL
; /* should be BUG() ? */
1991 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
1992 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
1994 struct cgroup
*cgroup
;
1995 unsigned long long min_limit
, min_memsw_limit
, tmp
;
1997 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1998 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1999 cgroup
= memcg
->css
.cgroup
;
2000 if (!memcg
->use_hierarchy
)
2003 while (cgroup
->parent
) {
2004 cgroup
= cgroup
->parent
;
2005 memcg
= mem_cgroup_from_cont(cgroup
);
2006 if (!memcg
->use_hierarchy
)
2008 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2009 min_limit
= min(min_limit
, tmp
);
2010 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2011 min_memsw_limit
= min(min_memsw_limit
, tmp
);
2014 *mem_limit
= min_limit
;
2015 *memsw_limit
= min_memsw_limit
;
2019 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
2021 struct mem_cgroup
*mem
;
2024 mem
= mem_cgroup_from_cont(cont
);
2025 type
= MEMFILE_TYPE(event
);
2026 name
= MEMFILE_ATTR(event
);
2030 res_counter_reset_max(&mem
->res
);
2032 res_counter_reset_max(&mem
->memsw
);
2036 res_counter_reset_failcnt(&mem
->res
);
2038 res_counter_reset_failcnt(&mem
->memsw
);
2045 /* For read statistics */
2059 struct mcs_total_stat
{
2060 s64 stat
[NR_MCS_STAT
];
2066 } memcg_stat_strings
[NR_MCS_STAT
] = {
2067 {"cache", "total_cache"},
2068 {"rss", "total_rss"},
2069 {"pgpgin", "total_pgpgin"},
2070 {"pgpgout", "total_pgpgout"},
2071 {"inactive_anon", "total_inactive_anon"},
2072 {"active_anon", "total_active_anon"},
2073 {"inactive_file", "total_inactive_file"},
2074 {"active_file", "total_active_file"},
2075 {"unevictable", "total_unevictable"}
2079 static int mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, void *data
)
2081 struct mcs_total_stat
*s
= data
;
2085 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_CACHE
);
2086 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
2087 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
2088 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
2089 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
2090 s
->stat
[MCS_PGPGIN
] += val
;
2091 val
= mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
2092 s
->stat
[MCS_PGPGOUT
] += val
;
2095 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
2096 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
2097 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
2098 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
2099 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
2100 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
2101 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
2102 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
2103 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
2104 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
2109 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
2111 mem_cgroup_walk_tree(mem
, s
, mem_cgroup_get_local_stat
);
2114 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
2115 struct cgroup_map_cb
*cb
)
2117 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
2118 struct mcs_total_stat mystat
;
2121 memset(&mystat
, 0, sizeof(mystat
));
2122 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
2124 for (i
= 0; i
< NR_MCS_STAT
; i
++)
2125 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
2127 /* Hierarchical information */
2129 unsigned long long limit
, memsw_limit
;
2130 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
2131 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
2132 if (do_swap_account
)
2133 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
2136 memset(&mystat
, 0, sizeof(mystat
));
2137 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
2138 for (i
= 0; i
< NR_MCS_STAT
; i
++)
2139 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
2142 #ifdef CONFIG_DEBUG_VM
2143 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
2147 struct mem_cgroup_per_zone
*mz
;
2148 unsigned long recent_rotated
[2] = {0, 0};
2149 unsigned long recent_scanned
[2] = {0, 0};
2151 for_each_online_node(nid
)
2152 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
2153 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
2155 recent_rotated
[0] +=
2156 mz
->reclaim_stat
.recent_rotated
[0];
2157 recent_rotated
[1] +=
2158 mz
->reclaim_stat
.recent_rotated
[1];
2159 recent_scanned
[0] +=
2160 mz
->reclaim_stat
.recent_scanned
[0];
2161 recent_scanned
[1] +=
2162 mz
->reclaim_stat
.recent_scanned
[1];
2164 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
2165 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
2166 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
2167 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
2174 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
2176 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
2178 return get_swappiness(memcg
);
2181 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
2184 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
2185 struct mem_cgroup
*parent
;
2190 if (cgrp
->parent
== NULL
)
2193 parent
= mem_cgroup_from_cont(cgrp
->parent
);
2197 /* If under hierarchy, only empty-root can set this value */
2198 if ((parent
->use_hierarchy
) ||
2199 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
2204 spin_lock(&memcg
->reclaim_param_lock
);
2205 memcg
->swappiness
= val
;
2206 spin_unlock(&memcg
->reclaim_param_lock
);
2214 static struct cftype mem_cgroup_files
[] = {
2216 .name
= "usage_in_bytes",
2217 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
2218 .read_u64
= mem_cgroup_read
,
2221 .name
= "max_usage_in_bytes",
2222 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
2223 .trigger
= mem_cgroup_reset
,
2224 .read_u64
= mem_cgroup_read
,
2227 .name
= "limit_in_bytes",
2228 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
2229 .write_string
= mem_cgroup_write
,
2230 .read_u64
= mem_cgroup_read
,
2234 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
2235 .trigger
= mem_cgroup_reset
,
2236 .read_u64
= mem_cgroup_read
,
2240 .read_map
= mem_control_stat_show
,
2243 .name
= "force_empty",
2244 .trigger
= mem_cgroup_force_empty_write
,
2247 .name
= "use_hierarchy",
2248 .write_u64
= mem_cgroup_hierarchy_write
,
2249 .read_u64
= mem_cgroup_hierarchy_read
,
2252 .name
= "swappiness",
2253 .read_u64
= mem_cgroup_swappiness_read
,
2254 .write_u64
= mem_cgroup_swappiness_write
,
2258 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2259 static struct cftype memsw_cgroup_files
[] = {
2261 .name
= "memsw.usage_in_bytes",
2262 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
2263 .read_u64
= mem_cgroup_read
,
2266 .name
= "memsw.max_usage_in_bytes",
2267 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
2268 .trigger
= mem_cgroup_reset
,
2269 .read_u64
= mem_cgroup_read
,
2272 .name
= "memsw.limit_in_bytes",
2273 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
2274 .write_string
= mem_cgroup_write
,
2275 .read_u64
= mem_cgroup_read
,
2278 .name
= "memsw.failcnt",
2279 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
2280 .trigger
= mem_cgroup_reset
,
2281 .read_u64
= mem_cgroup_read
,
2285 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2287 if (!do_swap_account
)
2289 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
2290 ARRAY_SIZE(memsw_cgroup_files
));
2293 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2299 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2301 struct mem_cgroup_per_node
*pn
;
2302 struct mem_cgroup_per_zone
*mz
;
2304 int zone
, tmp
= node
;
2306 * This routine is called against possible nodes.
2307 * But it's BUG to call kmalloc() against offline node.
2309 * TODO: this routine can waste much memory for nodes which will
2310 * never be onlined. It's better to use memory hotplug callback
2313 if (!node_state(node
, N_NORMAL_MEMORY
))
2315 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
2319 mem
->info
.nodeinfo
[node
] = pn
;
2320 memset(pn
, 0, sizeof(*pn
));
2322 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
2323 mz
= &pn
->zoneinfo
[zone
];
2325 INIT_LIST_HEAD(&mz
->lists
[l
]);
2330 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2332 kfree(mem
->info
.nodeinfo
[node
]);
2335 static int mem_cgroup_size(void)
2337 int cpustat_size
= nr_cpu_ids
* sizeof(struct mem_cgroup_stat_cpu
);
2338 return sizeof(struct mem_cgroup
) + cpustat_size
;
2341 static struct mem_cgroup
*mem_cgroup_alloc(void)
2343 struct mem_cgroup
*mem
;
2344 int size
= mem_cgroup_size();
2346 if (size
< PAGE_SIZE
)
2347 mem
= kmalloc(size
, GFP_KERNEL
);
2349 mem
= vmalloc(size
);
2352 memset(mem
, 0, size
);
2357 * At destroying mem_cgroup, references from swap_cgroup can remain.
2358 * (scanning all at force_empty is too costly...)
2360 * Instead of clearing all references at force_empty, we remember
2361 * the number of reference from swap_cgroup and free mem_cgroup when
2362 * it goes down to 0.
2364 * Removal of cgroup itself succeeds regardless of refs from swap.
2367 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
2371 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
2373 for_each_node_state(node
, N_POSSIBLE
)
2374 free_mem_cgroup_per_zone_info(mem
, node
);
2376 if (mem_cgroup_size() < PAGE_SIZE
)
2382 static void mem_cgroup_get(struct mem_cgroup
*mem
)
2384 atomic_inc(&mem
->refcnt
);
2387 static void mem_cgroup_put(struct mem_cgroup
*mem
)
2389 if (atomic_dec_and_test(&mem
->refcnt
)) {
2390 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
2391 __mem_cgroup_free(mem
);
2393 mem_cgroup_put(parent
);
2398 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2400 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
2402 if (!mem
->res
.parent
)
2404 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
2407 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2408 static void __init
enable_swap_cgroup(void)
2410 if (!mem_cgroup_disabled() && really_do_swap_account
)
2411 do_swap_account
= 1;
2414 static void __init
enable_swap_cgroup(void)
2419 static struct cgroup_subsys_state
* __ref
2420 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
2422 struct mem_cgroup
*mem
, *parent
;
2423 long error
= -ENOMEM
;
2426 mem
= mem_cgroup_alloc();
2428 return ERR_PTR(error
);
2430 for_each_node_state(node
, N_POSSIBLE
)
2431 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
2434 if (cont
->parent
== NULL
) {
2435 enable_swap_cgroup();
2438 parent
= mem_cgroup_from_cont(cont
->parent
);
2439 mem
->use_hierarchy
= parent
->use_hierarchy
;
2442 if (parent
&& parent
->use_hierarchy
) {
2443 res_counter_init(&mem
->res
, &parent
->res
);
2444 res_counter_init(&mem
->memsw
, &parent
->memsw
);
2446 * We increment refcnt of the parent to ensure that we can
2447 * safely access it on res_counter_charge/uncharge.
2448 * This refcnt will be decremented when freeing this
2449 * mem_cgroup(see mem_cgroup_put).
2451 mem_cgroup_get(parent
);
2453 res_counter_init(&mem
->res
, NULL
);
2454 res_counter_init(&mem
->memsw
, NULL
);
2456 mem
->last_scanned_child
= 0;
2457 spin_lock_init(&mem
->reclaim_param_lock
);
2460 mem
->swappiness
= get_swappiness(parent
);
2461 atomic_set(&mem
->refcnt
, 1);
2464 __mem_cgroup_free(mem
);
2465 return ERR_PTR(error
);
2468 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
2469 struct cgroup
*cont
)
2471 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2473 return mem_cgroup_force_empty(mem
, false);
2476 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
2477 struct cgroup
*cont
)
2479 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2481 mem_cgroup_put(mem
);
2484 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
2485 struct cgroup
*cont
)
2489 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
2490 ARRAY_SIZE(mem_cgroup_files
));
2493 ret
= register_memsw_files(cont
, ss
);
2497 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
2498 struct cgroup
*cont
,
2499 struct cgroup
*old_cont
,
2500 struct task_struct
*p
)
2502 mutex_lock(&memcg_tasklist
);
2504 * FIXME: It's better to move charges of this process from old
2505 * memcg to new memcg. But it's just on TODO-List now.
2507 mutex_unlock(&memcg_tasklist
);
2510 struct cgroup_subsys mem_cgroup_subsys
= {
2512 .subsys_id
= mem_cgroup_subsys_id
,
2513 .create
= mem_cgroup_create
,
2514 .pre_destroy
= mem_cgroup_pre_destroy
,
2515 .destroy
= mem_cgroup_destroy
,
2516 .populate
= mem_cgroup_populate
,
2517 .attach
= mem_cgroup_move_task
,
2522 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2524 static int __init
disable_swap_account(char *s
)
2526 really_do_swap_account
= 0;
2529 __setup("noswapaccount", disable_swap_account
);