drm: convert drawable code to using idr
[linux-2.6/mini2440.git] / kernel / exit.c
blob57626692cd90202a08ad86b032f432bf543f7a21
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/signalfd.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/cpuset.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
53 extern void sem_exit (void);
55 static void exit_mm(struct task_struct * tsk);
57 static void __unhash_process(struct task_struct *p)
59 nr_threads--;
60 detach_pid(p, PIDTYPE_PID);
61 if (thread_group_leader(p)) {
62 detach_pid(p, PIDTYPE_PGID);
63 detach_pid(p, PIDTYPE_SID);
65 list_del_rcu(&p->tasks);
66 __get_cpu_var(process_counts)--;
68 list_del_rcu(&p->thread_group);
69 remove_parent(p);
73 * This function expects the tasklist_lock write-locked.
75 static void __exit_signal(struct task_struct *tsk)
77 struct signal_struct *sig = tsk->signal;
78 struct sighand_struct *sighand;
80 BUG_ON(!sig);
81 BUG_ON(!atomic_read(&sig->count));
83 rcu_read_lock();
84 sighand = rcu_dereference(tsk->sighand);
85 spin_lock(&sighand->siglock);
88 * Notify that this sighand has been detached. This must
89 * be called with the tsk->sighand lock held. Also, this
90 * access tsk->sighand internally, so it must be called
91 * before tsk->sighand is reset.
93 signalfd_detach_locked(tsk);
95 posix_cpu_timers_exit(tsk);
96 if (atomic_dec_and_test(&sig->count))
97 posix_cpu_timers_exit_group(tsk);
98 else {
100 * If there is any task waiting for the group exit
101 * then notify it:
103 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
104 wake_up_process(sig->group_exit_task);
105 sig->group_exit_task = NULL;
107 if (tsk == sig->curr_target)
108 sig->curr_target = next_thread(tsk);
110 * Accumulate here the counters for all threads but the
111 * group leader as they die, so they can be added into
112 * the process-wide totals when those are taken.
113 * The group leader stays around as a zombie as long
114 * as there are other threads. When it gets reaped,
115 * the exit.c code will add its counts into these totals.
116 * We won't ever get here for the group leader, since it
117 * will have been the last reference on the signal_struct.
119 sig->utime = cputime_add(sig->utime, tsk->utime);
120 sig->stime = cputime_add(sig->stime, tsk->stime);
121 sig->min_flt += tsk->min_flt;
122 sig->maj_flt += tsk->maj_flt;
123 sig->nvcsw += tsk->nvcsw;
124 sig->nivcsw += tsk->nivcsw;
125 sig->inblock += task_io_get_inblock(tsk);
126 sig->oublock += task_io_get_oublock(tsk);
127 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
128 sig = NULL; /* Marker for below. */
131 __unhash_process(tsk);
133 tsk->signal = NULL;
134 tsk->sighand = NULL;
135 spin_unlock(&sighand->siglock);
136 rcu_read_unlock();
138 __cleanup_sighand(sighand);
139 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
140 flush_sigqueue(&tsk->pending);
141 if (sig) {
142 flush_sigqueue(&sig->shared_pending);
143 taskstats_tgid_free(sig);
144 __cleanup_signal(sig);
148 static void delayed_put_task_struct(struct rcu_head *rhp)
150 put_task_struct(container_of(rhp, struct task_struct, rcu));
153 void release_task(struct task_struct * p)
155 struct task_struct *leader;
156 int zap_leader;
157 repeat:
158 atomic_dec(&p->user->processes);
159 write_lock_irq(&tasklist_lock);
160 ptrace_unlink(p);
161 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
162 __exit_signal(p);
165 * If we are the last non-leader member of the thread
166 * group, and the leader is zombie, then notify the
167 * group leader's parent process. (if it wants notification.)
169 zap_leader = 0;
170 leader = p->group_leader;
171 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
172 BUG_ON(leader->exit_signal == -1);
173 do_notify_parent(leader, leader->exit_signal);
175 * If we were the last child thread and the leader has
176 * exited already, and the leader's parent ignores SIGCHLD,
177 * then we are the one who should release the leader.
179 * do_notify_parent() will have marked it self-reaping in
180 * that case.
182 zap_leader = (leader->exit_signal == -1);
185 write_unlock_irq(&tasklist_lock);
186 proc_flush_task(p);
187 release_thread(p);
188 call_rcu(&p->rcu, delayed_put_task_struct);
190 p = leader;
191 if (unlikely(zap_leader))
192 goto repeat;
196 * This checks not only the pgrp, but falls back on the pid if no
197 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
198 * without this...
200 * The caller must hold rcu lock or the tasklist lock.
202 struct pid *session_of_pgrp(struct pid *pgrp)
204 struct task_struct *p;
205 struct pid *sid = NULL;
207 p = pid_task(pgrp, PIDTYPE_PGID);
208 if (p == NULL)
209 p = pid_task(pgrp, PIDTYPE_PID);
210 if (p != NULL)
211 sid = task_session(p);
213 return sid;
217 * Determine if a process group is "orphaned", according to the POSIX
218 * definition in 2.2.2.52. Orphaned process groups are not to be affected
219 * by terminal-generated stop signals. Newly orphaned process groups are
220 * to receive a SIGHUP and a SIGCONT.
222 * "I ask you, have you ever known what it is to be an orphan?"
224 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
226 struct task_struct *p;
227 int ret = 1;
229 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
230 if (p == ignored_task
231 || p->exit_state
232 || is_init(p->real_parent))
233 continue;
234 if (task_pgrp(p->real_parent) != pgrp &&
235 task_session(p->real_parent) == task_session(p)) {
236 ret = 0;
237 break;
239 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
240 return ret; /* (sighing) "Often!" */
243 int is_current_pgrp_orphaned(void)
245 int retval;
247 read_lock(&tasklist_lock);
248 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
249 read_unlock(&tasklist_lock);
251 return retval;
254 static int has_stopped_jobs(struct pid *pgrp)
256 int retval = 0;
257 struct task_struct *p;
259 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
260 if (p->state != TASK_STOPPED)
261 continue;
262 retval = 1;
263 break;
264 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265 return retval;
269 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
271 * If a kernel thread is launched as a result of a system call, or if
272 * it ever exits, it should generally reparent itself to kthreadd so it
273 * isn't in the way of other processes and is correctly cleaned up on exit.
275 * The various task state such as scheduling policy and priority may have
276 * been inherited from a user process, so we reset them to sane values here.
278 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
280 static void reparent_to_kthreadd(void)
282 write_lock_irq(&tasklist_lock);
284 ptrace_unlink(current);
285 /* Reparent to init */
286 remove_parent(current);
287 current->real_parent = current->parent = kthreadd_task;
288 add_parent(current);
290 /* Set the exit signal to SIGCHLD so we signal init on exit */
291 current->exit_signal = SIGCHLD;
293 if (task_nice(current) < 0)
294 set_user_nice(current, 0);
295 /* cpus_allowed? */
296 /* rt_priority? */
297 /* signals? */
298 security_task_reparent_to_init(current);
299 memcpy(current->signal->rlim, init_task.signal->rlim,
300 sizeof(current->signal->rlim));
301 atomic_inc(&(INIT_USER->__count));
302 write_unlock_irq(&tasklist_lock);
303 switch_uid(INIT_USER);
306 void __set_special_pids(pid_t session, pid_t pgrp)
308 struct task_struct *curr = current->group_leader;
310 if (process_session(curr) != session) {
311 detach_pid(curr, PIDTYPE_SID);
312 set_signal_session(curr->signal, session);
313 attach_pid(curr, PIDTYPE_SID, find_pid(session));
315 if (process_group(curr) != pgrp) {
316 detach_pid(curr, PIDTYPE_PGID);
317 curr->signal->pgrp = pgrp;
318 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
322 static void set_special_pids(pid_t session, pid_t pgrp)
324 write_lock_irq(&tasklist_lock);
325 __set_special_pids(session, pgrp);
326 write_unlock_irq(&tasklist_lock);
330 * Let kernel threads use this to say that they
331 * allow a certain signal (since daemonize() will
332 * have disabled all of them by default).
334 int allow_signal(int sig)
336 if (!valid_signal(sig) || sig < 1)
337 return -EINVAL;
339 spin_lock_irq(&current->sighand->siglock);
340 sigdelset(&current->blocked, sig);
341 if (!current->mm) {
342 /* Kernel threads handle their own signals.
343 Let the signal code know it'll be handled, so
344 that they don't get converted to SIGKILL or
345 just silently dropped */
346 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
348 recalc_sigpending();
349 spin_unlock_irq(&current->sighand->siglock);
350 return 0;
353 EXPORT_SYMBOL(allow_signal);
355 int disallow_signal(int sig)
357 if (!valid_signal(sig) || sig < 1)
358 return -EINVAL;
360 spin_lock_irq(&current->sighand->siglock);
361 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
362 recalc_sigpending();
363 spin_unlock_irq(&current->sighand->siglock);
364 return 0;
367 EXPORT_SYMBOL(disallow_signal);
370 * Put all the gunge required to become a kernel thread without
371 * attached user resources in one place where it belongs.
374 void daemonize(const char *name, ...)
376 va_list args;
377 struct fs_struct *fs;
378 sigset_t blocked;
380 va_start(args, name);
381 vsnprintf(current->comm, sizeof(current->comm), name, args);
382 va_end(args);
385 * If we were started as result of loading a module, close all of the
386 * user space pages. We don't need them, and if we didn't close them
387 * they would be locked into memory.
389 exit_mm(current);
391 set_special_pids(1, 1);
392 proc_clear_tty(current);
394 /* Block and flush all signals */
395 sigfillset(&blocked);
396 sigprocmask(SIG_BLOCK, &blocked, NULL);
397 flush_signals(current);
399 /* Become as one with the init task */
401 exit_fs(current); /* current->fs->count--; */
402 fs = init_task.fs;
403 current->fs = fs;
404 atomic_inc(&fs->count);
406 exit_task_namespaces(current);
407 current->nsproxy = init_task.nsproxy;
408 get_task_namespaces(current);
410 exit_files(current);
411 current->files = init_task.files;
412 atomic_inc(&current->files->count);
414 reparent_to_kthreadd();
417 EXPORT_SYMBOL(daemonize);
419 static void close_files(struct files_struct * files)
421 int i, j;
422 struct fdtable *fdt;
424 j = 0;
427 * It is safe to dereference the fd table without RCU or
428 * ->file_lock because this is the last reference to the
429 * files structure.
431 fdt = files_fdtable(files);
432 for (;;) {
433 unsigned long set;
434 i = j * __NFDBITS;
435 if (i >= fdt->max_fds)
436 break;
437 set = fdt->open_fds->fds_bits[j++];
438 while (set) {
439 if (set & 1) {
440 struct file * file = xchg(&fdt->fd[i], NULL);
441 if (file) {
442 filp_close(file, files);
443 cond_resched();
446 i++;
447 set >>= 1;
452 struct files_struct *get_files_struct(struct task_struct *task)
454 struct files_struct *files;
456 task_lock(task);
457 files = task->files;
458 if (files)
459 atomic_inc(&files->count);
460 task_unlock(task);
462 return files;
465 void fastcall put_files_struct(struct files_struct *files)
467 struct fdtable *fdt;
469 if (atomic_dec_and_test(&files->count)) {
470 close_files(files);
472 * Free the fd and fdset arrays if we expanded them.
473 * If the fdtable was embedded, pass files for freeing
474 * at the end of the RCU grace period. Otherwise,
475 * you can free files immediately.
477 fdt = files_fdtable(files);
478 if (fdt != &files->fdtab)
479 kmem_cache_free(files_cachep, files);
480 free_fdtable(fdt);
484 EXPORT_SYMBOL(put_files_struct);
486 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
488 struct files_struct *old;
490 old = tsk->files;
491 task_lock(tsk);
492 tsk->files = files;
493 task_unlock(tsk);
494 put_files_struct(old);
496 EXPORT_SYMBOL(reset_files_struct);
498 static inline void __exit_files(struct task_struct *tsk)
500 struct files_struct * files = tsk->files;
502 if (files) {
503 task_lock(tsk);
504 tsk->files = NULL;
505 task_unlock(tsk);
506 put_files_struct(files);
510 void exit_files(struct task_struct *tsk)
512 __exit_files(tsk);
515 static inline void __put_fs_struct(struct fs_struct *fs)
517 /* No need to hold fs->lock if we are killing it */
518 if (atomic_dec_and_test(&fs->count)) {
519 dput(fs->root);
520 mntput(fs->rootmnt);
521 dput(fs->pwd);
522 mntput(fs->pwdmnt);
523 if (fs->altroot) {
524 dput(fs->altroot);
525 mntput(fs->altrootmnt);
527 kmem_cache_free(fs_cachep, fs);
531 void put_fs_struct(struct fs_struct *fs)
533 __put_fs_struct(fs);
536 static inline void __exit_fs(struct task_struct *tsk)
538 struct fs_struct * fs = tsk->fs;
540 if (fs) {
541 task_lock(tsk);
542 tsk->fs = NULL;
543 task_unlock(tsk);
544 __put_fs_struct(fs);
548 void exit_fs(struct task_struct *tsk)
550 __exit_fs(tsk);
553 EXPORT_SYMBOL_GPL(exit_fs);
556 * Turn us into a lazy TLB process if we
557 * aren't already..
559 static void exit_mm(struct task_struct * tsk)
561 struct mm_struct *mm = tsk->mm;
563 mm_release(tsk, mm);
564 if (!mm)
565 return;
567 * Serialize with any possible pending coredump.
568 * We must hold mmap_sem around checking core_waiters
569 * and clearing tsk->mm. The core-inducing thread
570 * will increment core_waiters for each thread in the
571 * group with ->mm != NULL.
573 down_read(&mm->mmap_sem);
574 if (mm->core_waiters) {
575 up_read(&mm->mmap_sem);
576 down_write(&mm->mmap_sem);
577 if (!--mm->core_waiters)
578 complete(mm->core_startup_done);
579 up_write(&mm->mmap_sem);
581 wait_for_completion(&mm->core_done);
582 down_read(&mm->mmap_sem);
584 atomic_inc(&mm->mm_count);
585 BUG_ON(mm != tsk->active_mm);
586 /* more a memory barrier than a real lock */
587 task_lock(tsk);
588 tsk->mm = NULL;
589 up_read(&mm->mmap_sem);
590 enter_lazy_tlb(mm, current);
591 task_unlock(tsk);
592 mmput(mm);
595 static inline void
596 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
599 * Make sure we're not reparenting to ourselves and that
600 * the parent is not a zombie.
602 BUG_ON(p == reaper || reaper->exit_state);
603 p->real_parent = reaper;
606 static void
607 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
609 if (p->pdeath_signal)
610 /* We already hold the tasklist_lock here. */
611 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
613 /* Move the child from its dying parent to the new one. */
614 if (unlikely(traced)) {
615 /* Preserve ptrace links if someone else is tracing this child. */
616 list_del_init(&p->ptrace_list);
617 if (p->parent != p->real_parent)
618 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
619 } else {
620 /* If this child is being traced, then we're the one tracing it
621 * anyway, so let go of it.
623 p->ptrace = 0;
624 remove_parent(p);
625 p->parent = p->real_parent;
626 add_parent(p);
628 if (p->state == TASK_TRACED) {
630 * If it was at a trace stop, turn it into
631 * a normal stop since it's no longer being
632 * traced.
634 ptrace_untrace(p);
638 /* If this is a threaded reparent there is no need to
639 * notify anyone anything has happened.
641 if (p->real_parent->group_leader == father->group_leader)
642 return;
644 /* We don't want people slaying init. */
645 if (p->exit_signal != -1)
646 p->exit_signal = SIGCHLD;
648 /* If we'd notified the old parent about this child's death,
649 * also notify the new parent.
651 if (!traced && p->exit_state == EXIT_ZOMBIE &&
652 p->exit_signal != -1 && thread_group_empty(p))
653 do_notify_parent(p, p->exit_signal);
656 * process group orphan check
657 * Case ii: Our child is in a different pgrp
658 * than we are, and it was the only connection
659 * outside, so the child pgrp is now orphaned.
661 if ((task_pgrp(p) != task_pgrp(father)) &&
662 (task_session(p) == task_session(father))) {
663 struct pid *pgrp = task_pgrp(p);
665 if (will_become_orphaned_pgrp(pgrp, NULL) &&
666 has_stopped_jobs(pgrp)) {
667 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
668 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
674 * When we die, we re-parent all our children.
675 * Try to give them to another thread in our thread
676 * group, and if no such member exists, give it to
677 * the child reaper process (ie "init") in our pid
678 * space.
680 static void
681 forget_original_parent(struct task_struct *father, struct list_head *to_release)
683 struct task_struct *p, *reaper = father;
684 struct list_head *_p, *_n;
686 do {
687 reaper = next_thread(reaper);
688 if (reaper == father) {
689 reaper = child_reaper(father);
690 break;
692 } while (reaper->exit_state);
695 * There are only two places where our children can be:
697 * - in our child list
698 * - in our ptraced child list
700 * Search them and reparent children.
702 list_for_each_safe(_p, _n, &father->children) {
703 int ptrace;
704 p = list_entry(_p, struct task_struct, sibling);
706 ptrace = p->ptrace;
708 /* if father isn't the real parent, then ptrace must be enabled */
709 BUG_ON(father != p->real_parent && !ptrace);
711 if (father == p->real_parent) {
712 /* reparent with a reaper, real father it's us */
713 choose_new_parent(p, reaper);
714 reparent_thread(p, father, 0);
715 } else {
716 /* reparent ptraced task to its real parent */
717 __ptrace_unlink (p);
718 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
719 thread_group_empty(p))
720 do_notify_parent(p, p->exit_signal);
724 * if the ptraced child is a zombie with exit_signal == -1
725 * we must collect it before we exit, or it will remain
726 * zombie forever since we prevented it from self-reap itself
727 * while it was being traced by us, to be able to see it in wait4.
729 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
730 list_add(&p->ptrace_list, to_release);
732 list_for_each_safe(_p, _n, &father->ptrace_children) {
733 p = list_entry(_p, struct task_struct, ptrace_list);
734 choose_new_parent(p, reaper);
735 reparent_thread(p, father, 1);
740 * Send signals to all our closest relatives so that they know
741 * to properly mourn us..
743 static void exit_notify(struct task_struct *tsk)
745 int state;
746 struct task_struct *t;
747 struct list_head ptrace_dead, *_p, *_n;
748 struct pid *pgrp;
750 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
751 && !thread_group_empty(tsk)) {
753 * This occurs when there was a race between our exit
754 * syscall and a group signal choosing us as the one to
755 * wake up. It could be that we are the only thread
756 * alerted to check for pending signals, but another thread
757 * should be woken now to take the signal since we will not.
758 * Now we'll wake all the threads in the group just to make
759 * sure someone gets all the pending signals.
761 read_lock(&tasklist_lock);
762 spin_lock_irq(&tsk->sighand->siglock);
763 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
764 if (!signal_pending(t) && !(t->flags & PF_EXITING))
765 recalc_sigpending_and_wake(t);
766 spin_unlock_irq(&tsk->sighand->siglock);
767 read_unlock(&tasklist_lock);
770 write_lock_irq(&tasklist_lock);
773 * This does two things:
775 * A. Make init inherit all the child processes
776 * B. Check to see if any process groups have become orphaned
777 * as a result of our exiting, and if they have any stopped
778 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
781 INIT_LIST_HEAD(&ptrace_dead);
782 forget_original_parent(tsk, &ptrace_dead);
783 BUG_ON(!list_empty(&tsk->children));
784 BUG_ON(!list_empty(&tsk->ptrace_children));
787 * Check to see if any process groups have become orphaned
788 * as a result of our exiting, and if they have any stopped
789 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
791 * Case i: Our father is in a different pgrp than we are
792 * and we were the only connection outside, so our pgrp
793 * is about to become orphaned.
796 t = tsk->real_parent;
798 pgrp = task_pgrp(tsk);
799 if ((task_pgrp(t) != pgrp) &&
800 (task_session(t) == task_session(tsk)) &&
801 will_become_orphaned_pgrp(pgrp, tsk) &&
802 has_stopped_jobs(pgrp)) {
803 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
804 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
807 /* Let father know we died
809 * Thread signals are configurable, but you aren't going to use
810 * that to send signals to arbitary processes.
811 * That stops right now.
813 * If the parent exec id doesn't match the exec id we saved
814 * when we started then we know the parent has changed security
815 * domain.
817 * If our self_exec id doesn't match our parent_exec_id then
818 * we have changed execution domain as these two values started
819 * the same after a fork.
823 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
824 ( tsk->parent_exec_id != t->self_exec_id ||
825 tsk->self_exec_id != tsk->parent_exec_id)
826 && !capable(CAP_KILL))
827 tsk->exit_signal = SIGCHLD;
830 /* If something other than our normal parent is ptracing us, then
831 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
832 * only has special meaning to our real parent.
834 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
835 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
836 do_notify_parent(tsk, signal);
837 } else if (tsk->ptrace) {
838 do_notify_parent(tsk, SIGCHLD);
841 state = EXIT_ZOMBIE;
842 if (tsk->exit_signal == -1 &&
843 (likely(tsk->ptrace == 0) ||
844 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
845 state = EXIT_DEAD;
846 tsk->exit_state = state;
848 write_unlock_irq(&tasklist_lock);
850 list_for_each_safe(_p, _n, &ptrace_dead) {
851 list_del_init(_p);
852 t = list_entry(_p, struct task_struct, ptrace_list);
853 release_task(t);
856 /* If the process is dead, release it - nobody will wait for it */
857 if (state == EXIT_DEAD)
858 release_task(tsk);
861 #ifdef CONFIG_DEBUG_STACK_USAGE
862 static void check_stack_usage(void)
864 static DEFINE_SPINLOCK(low_water_lock);
865 static int lowest_to_date = THREAD_SIZE;
866 unsigned long *n = end_of_stack(current);
867 unsigned long free;
869 while (*n == 0)
870 n++;
871 free = (unsigned long)n - (unsigned long)end_of_stack(current);
873 if (free >= lowest_to_date)
874 return;
876 spin_lock(&low_water_lock);
877 if (free < lowest_to_date) {
878 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
879 "left\n",
880 current->comm, free);
881 lowest_to_date = free;
883 spin_unlock(&low_water_lock);
885 #else
886 static inline void check_stack_usage(void) {}
887 #endif
889 fastcall NORET_TYPE void do_exit(long code)
891 struct task_struct *tsk = current;
892 int group_dead;
894 profile_task_exit(tsk);
896 WARN_ON(atomic_read(&tsk->fs_excl));
898 if (unlikely(in_interrupt()))
899 panic("Aiee, killing interrupt handler!");
900 if (unlikely(!tsk->pid))
901 panic("Attempted to kill the idle task!");
902 if (unlikely(tsk == child_reaper(tsk))) {
903 if (tsk->nsproxy->pid_ns != &init_pid_ns)
904 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
905 else
906 panic("Attempted to kill init!");
910 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
911 current->ptrace_message = code;
912 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
916 * We're taking recursive faults here in do_exit. Safest is to just
917 * leave this task alone and wait for reboot.
919 if (unlikely(tsk->flags & PF_EXITING)) {
920 printk(KERN_ALERT
921 "Fixing recursive fault but reboot is needed!\n");
923 * We can do this unlocked here. The futex code uses
924 * this flag just to verify whether the pi state
925 * cleanup has been done or not. In the worst case it
926 * loops once more. We pretend that the cleanup was
927 * done as there is no way to return. Either the
928 * OWNER_DIED bit is set by now or we push the blocked
929 * task into the wait for ever nirwana as well.
931 tsk->flags |= PF_EXITPIDONE;
932 if (tsk->io_context)
933 exit_io_context();
934 set_current_state(TASK_UNINTERRUPTIBLE);
935 schedule();
939 * tsk->flags are checked in the futex code to protect against
940 * an exiting task cleaning up the robust pi futexes.
942 spin_lock_irq(&tsk->pi_lock);
943 tsk->flags |= PF_EXITING;
944 spin_unlock_irq(&tsk->pi_lock);
946 if (unlikely(in_atomic()))
947 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
948 current->comm, current->pid,
949 preempt_count());
951 acct_update_integrals(tsk);
952 if (tsk->mm) {
953 update_hiwater_rss(tsk->mm);
954 update_hiwater_vm(tsk->mm);
956 group_dead = atomic_dec_and_test(&tsk->signal->live);
957 if (group_dead) {
958 hrtimer_cancel(&tsk->signal->real_timer);
959 exit_itimers(tsk->signal);
961 acct_collect(code, group_dead);
962 if (unlikely(tsk->robust_list))
963 exit_robust_list(tsk);
964 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
965 if (unlikely(tsk->compat_robust_list))
966 compat_exit_robust_list(tsk);
967 #endif
968 if (group_dead)
969 tty_audit_exit();
970 if (unlikely(tsk->audit_context))
971 audit_free(tsk);
973 taskstats_exit(tsk, group_dead);
975 exit_mm(tsk);
977 if (group_dead)
978 acct_process();
979 exit_sem(tsk);
980 __exit_files(tsk);
981 __exit_fs(tsk);
982 check_stack_usage();
983 exit_thread();
984 cpuset_exit(tsk);
985 exit_keys(tsk);
987 if (group_dead && tsk->signal->leader)
988 disassociate_ctty(1);
990 module_put(task_thread_info(tsk)->exec_domain->module);
991 if (tsk->binfmt)
992 module_put(tsk->binfmt->module);
994 tsk->exit_code = code;
995 proc_exit_connector(tsk);
996 exit_task_namespaces(tsk);
997 exit_notify(tsk);
998 #ifdef CONFIG_NUMA
999 mpol_free(tsk->mempolicy);
1000 tsk->mempolicy = NULL;
1001 #endif
1003 * This must happen late, after the PID is not
1004 * hashed anymore:
1006 if (unlikely(!list_empty(&tsk->pi_state_list)))
1007 exit_pi_state_list(tsk);
1008 if (unlikely(current->pi_state_cache))
1009 kfree(current->pi_state_cache);
1011 * Make sure we are holding no locks:
1013 debug_check_no_locks_held(tsk);
1015 * We can do this unlocked here. The futex code uses this flag
1016 * just to verify whether the pi state cleanup has been done
1017 * or not. In the worst case it loops once more.
1019 tsk->flags |= PF_EXITPIDONE;
1021 if (tsk->io_context)
1022 exit_io_context();
1024 if (tsk->splice_pipe)
1025 __free_pipe_info(tsk->splice_pipe);
1027 preempt_disable();
1028 /* causes final put_task_struct in finish_task_switch(). */
1029 tsk->state = TASK_DEAD;
1031 schedule();
1032 BUG();
1033 /* Avoid "noreturn function does return". */
1034 for (;;)
1035 cpu_relax(); /* For when BUG is null */
1038 EXPORT_SYMBOL_GPL(do_exit);
1040 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1042 if (comp)
1043 complete(comp);
1045 do_exit(code);
1048 EXPORT_SYMBOL(complete_and_exit);
1050 asmlinkage long sys_exit(int error_code)
1052 do_exit((error_code&0xff)<<8);
1056 * Take down every thread in the group. This is called by fatal signals
1057 * as well as by sys_exit_group (below).
1059 NORET_TYPE void
1060 do_group_exit(int exit_code)
1062 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1064 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1065 exit_code = current->signal->group_exit_code;
1066 else if (!thread_group_empty(current)) {
1067 struct signal_struct *const sig = current->signal;
1068 struct sighand_struct *const sighand = current->sighand;
1069 spin_lock_irq(&sighand->siglock);
1070 if (sig->flags & SIGNAL_GROUP_EXIT)
1071 /* Another thread got here before we took the lock. */
1072 exit_code = sig->group_exit_code;
1073 else {
1074 sig->group_exit_code = exit_code;
1075 zap_other_threads(current);
1077 spin_unlock_irq(&sighand->siglock);
1080 do_exit(exit_code);
1081 /* NOTREACHED */
1085 * this kills every thread in the thread group. Note that any externally
1086 * wait4()-ing process will get the correct exit code - even if this
1087 * thread is not the thread group leader.
1089 asmlinkage void sys_exit_group(int error_code)
1091 do_group_exit((error_code & 0xff) << 8);
1094 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1096 int err;
1098 if (pid > 0) {
1099 if (p->pid != pid)
1100 return 0;
1101 } else if (!pid) {
1102 if (process_group(p) != process_group(current))
1103 return 0;
1104 } else if (pid != -1) {
1105 if (process_group(p) != -pid)
1106 return 0;
1110 * Do not consider detached threads that are
1111 * not ptraced:
1113 if (p->exit_signal == -1 && !p->ptrace)
1114 return 0;
1116 /* Wait for all children (clone and not) if __WALL is set;
1117 * otherwise, wait for clone children *only* if __WCLONE is
1118 * set; otherwise, wait for non-clone children *only*. (Note:
1119 * A "clone" child here is one that reports to its parent
1120 * using a signal other than SIGCHLD.) */
1121 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1122 && !(options & __WALL))
1123 return 0;
1125 * Do not consider thread group leaders that are
1126 * in a non-empty thread group:
1128 if (delay_group_leader(p))
1129 return 2;
1131 err = security_task_wait(p);
1132 if (err)
1133 return err;
1135 return 1;
1138 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1139 int why, int status,
1140 struct siginfo __user *infop,
1141 struct rusage __user *rusagep)
1143 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1145 put_task_struct(p);
1146 if (!retval)
1147 retval = put_user(SIGCHLD, &infop->si_signo);
1148 if (!retval)
1149 retval = put_user(0, &infop->si_errno);
1150 if (!retval)
1151 retval = put_user((short)why, &infop->si_code);
1152 if (!retval)
1153 retval = put_user(pid, &infop->si_pid);
1154 if (!retval)
1155 retval = put_user(uid, &infop->si_uid);
1156 if (!retval)
1157 retval = put_user(status, &infop->si_status);
1158 if (!retval)
1159 retval = pid;
1160 return retval;
1164 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1165 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1166 * the lock and this task is uninteresting. If we return nonzero, we have
1167 * released the lock and the system call should return.
1169 static int wait_task_zombie(struct task_struct *p, int noreap,
1170 struct siginfo __user *infop,
1171 int __user *stat_addr, struct rusage __user *ru)
1173 unsigned long state;
1174 int retval;
1175 int status;
1177 if (unlikely(noreap)) {
1178 pid_t pid = p->pid;
1179 uid_t uid = p->uid;
1180 int exit_code = p->exit_code;
1181 int why, status;
1183 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1184 return 0;
1185 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1186 return 0;
1187 get_task_struct(p);
1188 read_unlock(&tasklist_lock);
1189 if ((exit_code & 0x7f) == 0) {
1190 why = CLD_EXITED;
1191 status = exit_code >> 8;
1192 } else {
1193 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1194 status = exit_code & 0x7f;
1196 return wait_noreap_copyout(p, pid, uid, why,
1197 status, infop, ru);
1201 * Try to move the task's state to DEAD
1202 * only one thread is allowed to do this:
1204 state = xchg(&p->exit_state, EXIT_DEAD);
1205 if (state != EXIT_ZOMBIE) {
1206 BUG_ON(state != EXIT_DEAD);
1207 return 0;
1209 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1211 * This can only happen in a race with a ptraced thread
1212 * dying on another processor.
1214 return 0;
1217 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1218 struct signal_struct *psig;
1219 struct signal_struct *sig;
1222 * The resource counters for the group leader are in its
1223 * own task_struct. Those for dead threads in the group
1224 * are in its signal_struct, as are those for the child
1225 * processes it has previously reaped. All these
1226 * accumulate in the parent's signal_struct c* fields.
1228 * We don't bother to take a lock here to protect these
1229 * p->signal fields, because they are only touched by
1230 * __exit_signal, which runs with tasklist_lock
1231 * write-locked anyway, and so is excluded here. We do
1232 * need to protect the access to p->parent->signal fields,
1233 * as other threads in the parent group can be right
1234 * here reaping other children at the same time.
1236 spin_lock_irq(&p->parent->sighand->siglock);
1237 psig = p->parent->signal;
1238 sig = p->signal;
1239 psig->cutime =
1240 cputime_add(psig->cutime,
1241 cputime_add(p->utime,
1242 cputime_add(sig->utime,
1243 sig->cutime)));
1244 psig->cstime =
1245 cputime_add(psig->cstime,
1246 cputime_add(p->stime,
1247 cputime_add(sig->stime,
1248 sig->cstime)));
1249 psig->cmin_flt +=
1250 p->min_flt + sig->min_flt + sig->cmin_flt;
1251 psig->cmaj_flt +=
1252 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1253 psig->cnvcsw +=
1254 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1255 psig->cnivcsw +=
1256 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1257 psig->cinblock +=
1258 task_io_get_inblock(p) +
1259 sig->inblock + sig->cinblock;
1260 psig->coublock +=
1261 task_io_get_oublock(p) +
1262 sig->oublock + sig->coublock;
1263 spin_unlock_irq(&p->parent->sighand->siglock);
1267 * Now we are sure this task is interesting, and no other
1268 * thread can reap it because we set its state to EXIT_DEAD.
1270 read_unlock(&tasklist_lock);
1272 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1273 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1274 ? p->signal->group_exit_code : p->exit_code;
1275 if (!retval && stat_addr)
1276 retval = put_user(status, stat_addr);
1277 if (!retval && infop)
1278 retval = put_user(SIGCHLD, &infop->si_signo);
1279 if (!retval && infop)
1280 retval = put_user(0, &infop->si_errno);
1281 if (!retval && infop) {
1282 int why;
1284 if ((status & 0x7f) == 0) {
1285 why = CLD_EXITED;
1286 status >>= 8;
1287 } else {
1288 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1289 status &= 0x7f;
1291 retval = put_user((short)why, &infop->si_code);
1292 if (!retval)
1293 retval = put_user(status, &infop->si_status);
1295 if (!retval && infop)
1296 retval = put_user(p->pid, &infop->si_pid);
1297 if (!retval && infop)
1298 retval = put_user(p->uid, &infop->si_uid);
1299 if (retval) {
1300 // TODO: is this safe?
1301 p->exit_state = EXIT_ZOMBIE;
1302 return retval;
1304 retval = p->pid;
1305 if (p->real_parent != p->parent) {
1306 write_lock_irq(&tasklist_lock);
1307 /* Double-check with lock held. */
1308 if (p->real_parent != p->parent) {
1309 __ptrace_unlink(p);
1310 // TODO: is this safe?
1311 p->exit_state = EXIT_ZOMBIE;
1313 * If this is not a detached task, notify the parent.
1314 * If it's still not detached after that, don't release
1315 * it now.
1317 if (p->exit_signal != -1) {
1318 do_notify_parent(p, p->exit_signal);
1319 if (p->exit_signal != -1)
1320 p = NULL;
1323 write_unlock_irq(&tasklist_lock);
1325 if (p != NULL)
1326 release_task(p);
1327 BUG_ON(!retval);
1328 return retval;
1332 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1333 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1334 * the lock and this task is uninteresting. If we return nonzero, we have
1335 * released the lock and the system call should return.
1337 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1338 int noreap, struct siginfo __user *infop,
1339 int __user *stat_addr, struct rusage __user *ru)
1341 int retval, exit_code;
1343 if (!p->exit_code)
1344 return 0;
1345 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1346 p->signal && p->signal->group_stop_count > 0)
1348 * A group stop is in progress and this is the group leader.
1349 * We won't report until all threads have stopped.
1351 return 0;
1354 * Now we are pretty sure this task is interesting.
1355 * Make sure it doesn't get reaped out from under us while we
1356 * give up the lock and then examine it below. We don't want to
1357 * keep holding onto the tasklist_lock while we call getrusage and
1358 * possibly take page faults for user memory.
1360 get_task_struct(p);
1361 read_unlock(&tasklist_lock);
1363 if (unlikely(noreap)) {
1364 pid_t pid = p->pid;
1365 uid_t uid = p->uid;
1366 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1368 exit_code = p->exit_code;
1369 if (unlikely(!exit_code) ||
1370 unlikely(p->state & TASK_TRACED))
1371 goto bail_ref;
1372 return wait_noreap_copyout(p, pid, uid,
1373 why, (exit_code << 8) | 0x7f,
1374 infop, ru);
1377 write_lock_irq(&tasklist_lock);
1380 * This uses xchg to be atomic with the thread resuming and setting
1381 * it. It must also be done with the write lock held to prevent a
1382 * race with the EXIT_ZOMBIE case.
1384 exit_code = xchg(&p->exit_code, 0);
1385 if (unlikely(p->exit_state)) {
1387 * The task resumed and then died. Let the next iteration
1388 * catch it in EXIT_ZOMBIE. Note that exit_code might
1389 * already be zero here if it resumed and did _exit(0).
1390 * The task itself is dead and won't touch exit_code again;
1391 * other processors in this function are locked out.
1393 p->exit_code = exit_code;
1394 exit_code = 0;
1396 if (unlikely(exit_code == 0)) {
1398 * Another thread in this function got to it first, or it
1399 * resumed, or it resumed and then died.
1401 write_unlock_irq(&tasklist_lock);
1402 bail_ref:
1403 put_task_struct(p);
1405 * We are returning to the wait loop without having successfully
1406 * removed the process and having released the lock. We cannot
1407 * continue, since the "p" task pointer is potentially stale.
1409 * Return -EAGAIN, and do_wait() will restart the loop from the
1410 * beginning. Do _not_ re-acquire the lock.
1412 return -EAGAIN;
1415 /* move to end of parent's list to avoid starvation */
1416 remove_parent(p);
1417 add_parent(p);
1419 write_unlock_irq(&tasklist_lock);
1421 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1422 if (!retval && stat_addr)
1423 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1424 if (!retval && infop)
1425 retval = put_user(SIGCHLD, &infop->si_signo);
1426 if (!retval && infop)
1427 retval = put_user(0, &infop->si_errno);
1428 if (!retval && infop)
1429 retval = put_user((short)((p->ptrace & PT_PTRACED)
1430 ? CLD_TRAPPED : CLD_STOPPED),
1431 &infop->si_code);
1432 if (!retval && infop)
1433 retval = put_user(exit_code, &infop->si_status);
1434 if (!retval && infop)
1435 retval = put_user(p->pid, &infop->si_pid);
1436 if (!retval && infop)
1437 retval = put_user(p->uid, &infop->si_uid);
1438 if (!retval)
1439 retval = p->pid;
1440 put_task_struct(p);
1442 BUG_ON(!retval);
1443 return retval;
1447 * Handle do_wait work for one task in a live, non-stopped state.
1448 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1449 * the lock and this task is uninteresting. If we return nonzero, we have
1450 * released the lock and the system call should return.
1452 static int wait_task_continued(struct task_struct *p, int noreap,
1453 struct siginfo __user *infop,
1454 int __user *stat_addr, struct rusage __user *ru)
1456 int retval;
1457 pid_t pid;
1458 uid_t uid;
1460 if (unlikely(!p->signal))
1461 return 0;
1463 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1464 return 0;
1466 spin_lock_irq(&p->sighand->siglock);
1467 /* Re-check with the lock held. */
1468 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1469 spin_unlock_irq(&p->sighand->siglock);
1470 return 0;
1472 if (!noreap)
1473 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1474 spin_unlock_irq(&p->sighand->siglock);
1476 pid = p->pid;
1477 uid = p->uid;
1478 get_task_struct(p);
1479 read_unlock(&tasklist_lock);
1481 if (!infop) {
1482 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1483 put_task_struct(p);
1484 if (!retval && stat_addr)
1485 retval = put_user(0xffff, stat_addr);
1486 if (!retval)
1487 retval = p->pid;
1488 } else {
1489 retval = wait_noreap_copyout(p, pid, uid,
1490 CLD_CONTINUED, SIGCONT,
1491 infop, ru);
1492 BUG_ON(retval == 0);
1495 return retval;
1499 static inline int my_ptrace_child(struct task_struct *p)
1501 if (!(p->ptrace & PT_PTRACED))
1502 return 0;
1503 if (!(p->ptrace & PT_ATTACHED))
1504 return 1;
1506 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1507 * we are the attacher. If we are the real parent, this is a race
1508 * inside ptrace_attach. It is waiting for the tasklist_lock,
1509 * which we have to switch the parent links, but has already set
1510 * the flags in p->ptrace.
1512 return (p->parent != p->real_parent);
1515 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1516 int __user *stat_addr, struct rusage __user *ru)
1518 DECLARE_WAITQUEUE(wait, current);
1519 struct task_struct *tsk;
1520 int flag, retval;
1521 int allowed, denied;
1523 add_wait_queue(&current->signal->wait_chldexit,&wait);
1524 repeat:
1526 * We will set this flag if we see any child that might later
1527 * match our criteria, even if we are not able to reap it yet.
1529 flag = 0;
1530 allowed = denied = 0;
1531 current->state = TASK_INTERRUPTIBLE;
1532 read_lock(&tasklist_lock);
1533 tsk = current;
1534 do {
1535 struct task_struct *p;
1536 struct list_head *_p;
1537 int ret;
1539 list_for_each(_p,&tsk->children) {
1540 p = list_entry(_p, struct task_struct, sibling);
1542 ret = eligible_child(pid, options, p);
1543 if (!ret)
1544 continue;
1546 if (unlikely(ret < 0)) {
1547 denied = ret;
1548 continue;
1550 allowed = 1;
1552 switch (p->state) {
1553 case TASK_TRACED:
1555 * When we hit the race with PTRACE_ATTACH,
1556 * we will not report this child. But the
1557 * race means it has not yet been moved to
1558 * our ptrace_children list, so we need to
1559 * set the flag here to avoid a spurious ECHILD
1560 * when the race happens with the only child.
1562 flag = 1;
1563 if (!my_ptrace_child(p))
1564 continue;
1565 /*FALLTHROUGH*/
1566 case TASK_STOPPED:
1568 * It's stopped now, so it might later
1569 * continue, exit, or stop again.
1571 flag = 1;
1572 if (!(options & WUNTRACED) &&
1573 !my_ptrace_child(p))
1574 continue;
1575 retval = wait_task_stopped(p, ret == 2,
1576 (options & WNOWAIT),
1577 infop,
1578 stat_addr, ru);
1579 if (retval == -EAGAIN)
1580 goto repeat;
1581 if (retval != 0) /* He released the lock. */
1582 goto end;
1583 break;
1584 default:
1585 // case EXIT_DEAD:
1586 if (p->exit_state == EXIT_DEAD)
1587 continue;
1588 // case EXIT_ZOMBIE:
1589 if (p->exit_state == EXIT_ZOMBIE) {
1591 * Eligible but we cannot release
1592 * it yet:
1594 if (ret == 2)
1595 goto check_continued;
1596 if (!likely(options & WEXITED))
1597 continue;
1598 retval = wait_task_zombie(
1599 p, (options & WNOWAIT),
1600 infop, stat_addr, ru);
1601 /* He released the lock. */
1602 if (retval != 0)
1603 goto end;
1604 break;
1606 check_continued:
1608 * It's running now, so it might later
1609 * exit, stop, or stop and then continue.
1611 flag = 1;
1612 if (!unlikely(options & WCONTINUED))
1613 continue;
1614 retval = wait_task_continued(
1615 p, (options & WNOWAIT),
1616 infop, stat_addr, ru);
1617 if (retval != 0) /* He released the lock. */
1618 goto end;
1619 break;
1622 if (!flag) {
1623 list_for_each(_p, &tsk->ptrace_children) {
1624 p = list_entry(_p, struct task_struct,
1625 ptrace_list);
1626 if (!eligible_child(pid, options, p))
1627 continue;
1628 flag = 1;
1629 break;
1632 if (options & __WNOTHREAD)
1633 break;
1634 tsk = next_thread(tsk);
1635 BUG_ON(tsk->signal != current->signal);
1636 } while (tsk != current);
1638 read_unlock(&tasklist_lock);
1639 if (flag) {
1640 retval = 0;
1641 if (options & WNOHANG)
1642 goto end;
1643 retval = -ERESTARTSYS;
1644 if (signal_pending(current))
1645 goto end;
1646 schedule();
1647 goto repeat;
1649 retval = -ECHILD;
1650 if (unlikely(denied) && !allowed)
1651 retval = denied;
1652 end:
1653 current->state = TASK_RUNNING;
1654 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1655 if (infop) {
1656 if (retval > 0)
1657 retval = 0;
1658 else {
1660 * For a WNOHANG return, clear out all the fields
1661 * we would set so the user can easily tell the
1662 * difference.
1664 if (!retval)
1665 retval = put_user(0, &infop->si_signo);
1666 if (!retval)
1667 retval = put_user(0, &infop->si_errno);
1668 if (!retval)
1669 retval = put_user(0, &infop->si_code);
1670 if (!retval)
1671 retval = put_user(0, &infop->si_pid);
1672 if (!retval)
1673 retval = put_user(0, &infop->si_uid);
1674 if (!retval)
1675 retval = put_user(0, &infop->si_status);
1678 return retval;
1681 asmlinkage long sys_waitid(int which, pid_t pid,
1682 struct siginfo __user *infop, int options,
1683 struct rusage __user *ru)
1685 long ret;
1687 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1688 return -EINVAL;
1689 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1690 return -EINVAL;
1692 switch (which) {
1693 case P_ALL:
1694 pid = -1;
1695 break;
1696 case P_PID:
1697 if (pid <= 0)
1698 return -EINVAL;
1699 break;
1700 case P_PGID:
1701 if (pid <= 0)
1702 return -EINVAL;
1703 pid = -pid;
1704 break;
1705 default:
1706 return -EINVAL;
1709 ret = do_wait(pid, options, infop, NULL, ru);
1711 /* avoid REGPARM breakage on x86: */
1712 prevent_tail_call(ret);
1713 return ret;
1716 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1717 int options, struct rusage __user *ru)
1719 long ret;
1721 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1722 __WNOTHREAD|__WCLONE|__WALL))
1723 return -EINVAL;
1724 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1726 /* avoid REGPARM breakage on x86: */
1727 prevent_tail_call(ret);
1728 return ret;
1731 #ifdef __ARCH_WANT_SYS_WAITPID
1734 * sys_waitpid() remains for compatibility. waitpid() should be
1735 * implemented by calling sys_wait4() from libc.a.
1737 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1739 return sys_wait4(pid, stat_addr, options, NULL);
1742 #endif