1 Semantics and Behavior of Local Atomic Operations
6 This document explains the purpose of the local atomic operations, how
7 to implement them for any given architecture and shows how they can be used
8 properly. It also stresses on the precautions that must be taken when reading
9 those local variables across CPUs when the order of memory writes matters.
13 * Purpose of local atomic operations
15 Local atomic operations are meant to provide fast and highly reentrant per CPU
16 counters. They minimize the performance cost of standard atomic operations by
17 removing the LOCK prefix and memory barriers normally required to synchronize
20 Having fast per CPU atomic counters is interesting in many cases : it does not
21 require disabling interrupts to protect from interrupt handlers and it permits
22 coherent counters in NMI handlers. It is especially useful for tracing purposes
23 and for various performance monitoring counters.
25 Local atomic operations only guarantee variable modification atomicity wrt the
26 CPU which owns the data. Therefore, care must taken to make sure that only one
27 CPU writes to the local_t data. This is done by using per cpu data and making
28 sure that we modify it from within a preemption safe context. It is however
29 permitted to read local_t data from any CPU : it will then appear to be written
30 out of order wrt other memory writes on the owner CPU.
33 * Implementation for a given architecture
35 It can be done by slightly modifying the standard atomic operations : only
36 their UP variant must be kept. It typically means removing LOCK prefix (on
37 i386 and x86_64) and any SMP sychronization barrier. If the architecture does
38 not have a different behavior between SMP and UP, including asm-generic/local.h
39 in your archtecture's local.h is sufficient.
41 The local_t type is defined as an opaque signed long by embedding an
42 atomic_long_t inside a structure. This is made so a cast from this type to a
43 long fails. The definition looks like :
45 typedef struct { atomic_long_t a; } local_t;
48 * How to use local atomic operations
50 #include <linux/percpu.h>
51 #include <asm/local.h>
53 static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0);
58 Counting is done on all the bits of a signed long.
60 In preemptible context, use get_cpu_var() and put_cpu_var() around local atomic
61 operations : it makes sure that preemption is disabled around write access to
62 the per cpu variable. For instance :
64 local_inc(&get_cpu_var(counters));
65 put_cpu_var(counters);
67 If you are already in a preemption-safe context, you can directly use
68 __get_cpu_var() instead.
70 local_inc(&__get_cpu_var(counters));
74 * Reading the counters
76 Those local counters can be read from foreign CPUs to sum the count. Note that
77 the data seen by local_read across CPUs must be considered to be out of order
78 relatively to other memory writes happening on the CPU that owns the data.
81 for_each_online_cpu(cpu)
82 sum += local_read(&per_cpu(counters, cpu));
84 If you want to use a remote local_read to synchronize access to a resource
85 between CPUs, explicit smp_wmb() and smp_rmb() memory barriers must be used
86 respectively on the writer and the reader CPUs. It would be the case if you use
87 the local_t variable as a counter of bytes written in a buffer : there should
88 be a smp_wmb() between the buffer write and the counter increment and also a
89 smp_rmb() between the counter read and the buffer read.
92 Here is a sample module which implements a basic per cpu counter using local.h.
97 * Sample module for local.h usage.
101 #include <asm/local.h>
102 #include <linux/module.h>
103 #include <linux/timer.h>
105 static DEFINE_PER_CPU(local_t, counters) = LOCAL_INIT(0);
107 static struct timer_list test_timer;
109 /* IPI called on each CPU. */
110 static void test_each(void *info)
112 /* Increment the counter from a non preemptible context */
113 printk("Increment on cpu %d\n", smp_processor_id());
114 local_inc(&__get_cpu_var(counters));
116 /* This is what incrementing the variable would look like within a
117 * preemptible context (it disables preemption) :
119 * local_inc(&get_cpu_var(counters));
120 * put_cpu_var(counters);
124 static void do_test_timer(unsigned long data)
128 /* Increment the counters */
129 on_each_cpu(test_each, NULL, 0, 1);
130 /* Read all the counters */
131 printk("Counters read from CPU %d\n", smp_processor_id());
132 for_each_online_cpu(cpu) {
133 printk("Read : CPU %d, count %ld\n", cpu,
134 local_read(&per_cpu(counters, cpu)));
136 del_timer(&test_timer);
137 test_timer.expires = jiffies + 1000;
138 add_timer(&test_timer);
141 static int __init test_init(void)
143 /* initialize the timer that will increment the counter */
144 init_timer(&test_timer);
145 test_timer.function = do_test_timer;
146 test_timer.expires = jiffies + 1;
147 add_timer(&test_timer);
152 static void __exit test_exit(void)
154 del_timer_sync(&test_timer);
157 module_init(test_init);
158 module_exit(test_exit);
160 MODULE_LICENSE("GPL");
161 MODULE_AUTHOR("Mathieu Desnoyers");
162 MODULE_DESCRIPTION("Local Atomic Ops");